
Asymptotically optimal multistage tests
for iid data

Yiming Xing, Student, IEEE, and Georgios Fellouris, Member, IEEE

Abstract—The problem of testing two simple
hypotheses about the distribution of iid random
elements is considered. In particular, the focus
is on multistage tests that control the two error
probabilities below arbitrary, user-specified levels. A
novel multistage test is proposed, analyzed, and shown
to achieve the optimal expected sample size under
both hypotheses, in the class of all sequential tests with
the same error control, to a first-order approximation
as the two target error probabilities go to zero at
arbitrary rates. The proposed test is compared, both
theoretically and numerically, with a multistage test
that enjoys the same asymptotic optimality property
under one of the two hypotheses, while performing
much worse under the other.

Index Terms—multistage tests, asymptotic
optimality, sequential testing, sequential thresholding,
3-stage test.

I. INTRODUCTION

IN contrast to traditional fixed-sample-size tests,
tests that allow for stopping and making a

decision after each observation is taken can
achieve, exactly or in an asymptotic sense,
the optimal expected sample size under both
hypotheses. This was shown for the first time in
the context of testing two simple hypotheses about
iid data [1], [2], and since then, for a variety of
distributional setups (see, e.g., [3]). However, the
continuous monitoring of the sampling process can
often be an expensive and even infeasible task. In
such cases, it may be much more convenient to
apply a multistage test, i.e., a testing procedure in
which the sampling process can only be terminated
at a small number of deterministic time instances.

Various multistage tests have been proposed and
analyzed in the literature, mainly in the context of
testing two simple hypotheses for iid data [4], [5],
[6], [7], [8], [9], [10], [11]. In these works, the
main problem is to minimize the expected sample
size under one of the two hypotheses, or a mixture
of them, subject to a constraint on the number of
stages and/or the requirement of equal sizes per
stage. For general textbook references, we refer to
[12], [13].

A different approach was taken in [14], where a
specific test with at most 3 stages was proposed
and was shown to achieve the optimal expected
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sample size under both hypotheses, in the class of
all sequential tests with the same error control, to
a first-order asymptotic approximation as the two
target error error probabilities go to 0, but not very
asymmetrically.

More recently, a different multistage test was
proposed in [15], in the context of a sparse signal
detection problem. The number of stages depends
on the target error probabilities, but it is finite and
deterministic. Moreover, if the number of stages
is selected appropriately as a function of the error
probabilities, this test was shown to achieve a
similar asymptotic optimality property as in [14],
without any constraints on the decay rates of the
two error probabilities, but only under the null
hypothesis. Our first contribution in this work is
that we revisit the test in [15] and we show that
while it enjoys asymptotic optimality under the
null, its expected sample size under the alternative
is much larger than even that of the corresponding
optimal fixed-sample-size test.

The latter result implies that the test in [15] is
competitive only if one is predominantly interested
in having a small sample size under the null
(such as in the sparse detection setup considered
in that paper). As we mentioned earlier however,
there is a test in the literature that requires at
most 3 stages and achieves asymptotic optimality
under both hypotheses, as long as the two target
error probabilities go to zero at certain, not
very asymmetric rates. Our second and main
contribution in this paper is that we introduce and
analyze a novel multistage test, which generalizes
the one in [14]. Moreover, we show that with
a specific, concrete selection for the number of
stages, which increases with the asymmetry of
the target error probabilities, it is asymptotically
optimal under both hypotheses as the two error
probabilities go to zero at arbitrary rates.

The remainder of this work is organized as
follow: In Section II we formulate the testing
problem. In Section III we review the optimal fixed-
sample-size test, which is the building block for the
multistage tests under consideration. In Section IV
we revisit the test in [15], and in Section V we
introduce and analyze the proposed multistage test.
In Section VI, we present two simulation studies in
which we illustrate the above theoretical results.
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II. PROBLEM FORMULATION

Let {Xn : n ∈ N} be a iid sequence with density
f with respect to a σ-finite measure ν. We consider
two simple hypotheses about f ,

H0 : f = f0 versus H1 : f = f1, (1)

where our only assumption about f0 and f1
throughout this work is that their Kullback-Leibler
divergences are positive and finite, i.e.,

I0 ≡
∫

log(f0/f1)f0 dν ∈ (0,∞)

I1 ≡
∫

log(f1/f0)f1 dν ∈ (0,∞).

(2)

We denote by P (resp. Pi) probability under f
(resp. fi), and by E (resp. Ei) expectation under
P (resp. Pi), where i = 0, 1. Moreover, we denote
by {Fn} the natural filtration of {Xn}, i.e., Fn ≡
σ(X1, . . . , Xn), n ∈ N. We define a test for (1) to
be a pair that consists of

• an {Fn}-stopping time, T , representing the
total number of utilized observations,

• and an FT -measurable Bernoulli random
variable, D, representing the hypothesis that
is accepted upon stopping.

Thus, if (T,D) is a test, the event {T = n,D = i},
on which Hi is selected after taking n observations,
belongs to Fn for every n ∈ N and i ∈ {0, 1}. We
denote by E the family of all tests, and for any
α, β in (0, 1) we denote by E(α, β) the subfamily
of tests that control the type-I and type-II error
probabilities below α and β respectively, i.e.,

E(α, β) ≡ {(T,D) ∈ E : P0(D = 1) ≤ α

and P1(D = 0) ≤ β}.

For any α, β ∈ (0, 1) and i ∈ {0, 1} we introduce
the optimal expected sample size under Hi in
E(α, β):

Li(α, β) ≡ inf{Ei[T ] : (T,D) ∈ E(α, β)}.

As it was shown in [2], both L0(α, β) and L1(α, β)
are attained simultaneously by the Sequential
Probability Ratio Test (SPRT), i.e.,

T ∗ ≡ inf{n ∈ N : Λn /∈ (−A,B)},
D∗ ≡ 1{ΛT∗ ≥ B},

where Λn is the log-likelihood ratio of the first n
observations, i.e.,

Λn ≡
n∑

i=1

log

(
f1(Xi)

f0(Xi)

)
(3)

when the thresholds A and B are selected to satisfy
the error constraints with equalities. Moreover, it is
well known (see, e.g., [3]) that as α, β → 0, then

L0(α, β) ∼
| log β|
I0

, L1(α, β) ∼
| logα|
I1

, (4)

where ∼, << or >> in the above and later
notations means that the ratio of the two quantities
converges to 1, 0 or ∞ as α, β → 0.

III. THE FIXED-SAMPLE-SIZE TEST

For any α, β ∈ (0, 1) we denote by n∗(α, β)
the smallest sample size n for which there exists a
threshold t ∈ R so that the test that rejects H0 if
and only if the average log-likelihood ratio of the
first n observations, Λ̄n ≡ Λn/n, exceeds t belongs
to E(α, β), i.e.,

n∗(α, β) ≡ min{n ∈ N : ∃ t ∈ R such that
P0(Λ̄n > t) ≤ α and P1(Λ̄n ≤ t) ≤ β}.

We further denote by c∗(α, β) any of the
corresponding thresholds. By the Chernoff bound
we know that for every n ∈ N and t ∈ [−I0, I1]
we have

P0(Λ̄n > t) ≤ exp{−nψ0(t)},
P1(Λ̄n ≤ t) ≤ exp{−nψ1(t)},

(5)

where ψ1(t) ≡ ψ0(t)− t and

ψ0(t) ≡ sup
θ∈[0,1]

{
θt− log

(∫
fθ1 f

1−θ
0 dν

)}
.

We also introduce the Chernoff information of f1
and f0:

C ≡ − log

(
inf

θ∈[0,1]

∫
fθ1 f

1−θ
0 dν

)
.

From (4), (5), as well as the fact that ψ0(−I0) =
I0 and ψ1(I1) = I1, we have the following
implications about n∗(α, β), which we state next
without proof.

Lemma III.1. (i) For any α, β ∈ (0, 1) we have

n∗(α, β) ≤ | log(α ∧ β)|
C

+ 1.

(ii) If α, β → 0 so that | logα| << | log β|, then

n∗(α, β) ∼ | log β|
I0

∼ L0(α, β).

(iii) If α, β → 0 so that | logα| >> | log β|, then

n∗(α, β) ∼ | logα|
I1

∼ L1(α, β).

IV. GENERALIZED SEQUENTIAL
THRESHOLDING

In this section we revisit a multistage test
introduced in [15], entitled “generalized sequential
thresholding”. The main features of this test are that
(i) it allows for accepting the null at each stage but
for rejecting the null only at the last stage, and (ii)
it discards all past observations at the beginning of
each new stage.

To be more specific, this test consists of at most
K stages and requires the specification of 2K
parameters, {mi, di : i ∈ [K]}, where mi denotes
the sample size of the i-th stage and di is the critical
value used for making a decision in the i-th stage.
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To describe it, we denote by Λ′
i the average log-

likelihood ratio of the observations collected in the
i-th stage, i.e., Λ′

1 ≡ Λm1/m1 and

Λ′
i ≡ (ΛMi − ΛMi−1)/mi, 2 ≤ i ≤ K

Mi ≡ m1 + . . .+mi, 2 ≤ i ≤ K.

Then, assuming that K > 2, according to this test
• m1 observations are initially collected and if
Λ′
1 ≤ d1, H0 is accepted.

• Otherwise, m2 additional observations are
collected and if Λ′

2 ≤ d2, H0 is accepted.
• This is repeated for a total of at most K − 1

times (including the previous ones), and if H0

has not been accepted yet, then mK additional
observations are collected and H0 is rejected
if and only if Λ′

k > dK .
The definition of the test when K = 2 is analogous.
We denote by T ′ the resulting sample size and by
D′ the resulting decision rule. By the definition of
this test it follows that , for any selection of its
parameters, its probability to reject H0 is

P(D′ = 1) =

K∏
i=1

P (Λ′
i > di) , (6)

and its expected sample size is

E[T ′] = m1 +
K∑
i=2

mi

i−1∏
j=1

P
(
Λ′
j > dj

)
. (7)

From (6) we can easily then obtain design
parameters that guarantee the desired error control.

Proposition IV.1. For any K ≥ 1 and α, β ∈ (0, 1)
let the parameters of the test be selected as

mi = n∗(αi, βi), di = c∗(αi, βi), i ∈ [K], (8)

for any {αi, βi, i ∈ [K]} such that

K∏
i=1

αi ≤ α and
K∏
i=1

(1− βi) ≥ 1− β. (9)

Then: (T ′, D′) ∈ E(α, β).

In view of the previous proposition, to complete
the specification of this test we need to determine
K and {αi, βi, i ∈ [K]} so that (9) is satisfied.
However, since this test allows for rejecting the
null only at the last stage and discards past data at
the beginning of each stage, this selection depends
heavily on whether the goal is to have good
performance under H0 or under H1. In the latter
case, we should clearly set K = 1, in which case
(T ′, D′) reduces to a fixed-sample-size test. On the
other hand, with an appropriate selection of K, this
test can achieve the optimal expected sample size
under the null, L0(α, β), to a first-order asymptotic
approximation as α and β go to 0 at arbitrary rates,
when {αi, βi} are selected as follow:

αi = α1/K and βi = (β/2)i, i ∈ [K]. (10)

This result was shown in [15] under a second-
moment assumption on the log-likelihood ratio
statistic. In the next theorem we prove it under the
sole assumption of the finiteness of the Kullback-
Leibler divergences, (2), which is our standing
assumption throughout this paper. However, at
the same time we show that the corresponding
expected sample size under H1 is of larger order
of magnitude compared to that of the optimal
sequential test.

Theorem IV.1. For any K,α, β, let the parameters
of (T ′, D′) be selected according to (8) and (10).
Then:

E0[T
′] ∼ L0(α, β), E1[T

′] >> L1(α, β)

as α, β → 0 and K is selected so that

| logα|
| log β|

<< K << | logα|. (11)

Proof. Note first of all that condition (9) is satisfied
when {αi, βi} are selected according to (10). Note
also that (11) is equivalent to

α1/K → 0 and
| logα1/K |
| log β|

→ 0, (12)

and, in view of (10), it implies that as α, β → 0,
then αi, βi → 0 such that

| logαi| << | log βi| ∼ i | log β| ∀ i ∈ [K].

Consequently, by Lemma III.1(ii) we obtain that as
α, β → 0 then

mi = n∗ (αi, βi) ∼ i
| log β|
I0

∀ i ∈ [K]. (13)

From this asymptotic approximation and (7), (8),
(10) we therefore have

E0[T
′] = n∗ (α1, β1) +

K∑
i=2

n∗ (αi, βi) α
(i−1)/K

≲
| log β|
I0

(
1 +

K∑
i=2

i α(i−1)/K

)

≤ | log β|
I0

(
1− α1/K

)−2

.

Recalling (12) and comparing with (4), we
conclude that E0[T

′] ∼ L0(α, β). On the other
hand, from (8), (10) and (13) we have

E1[T
′] ≥ (1− β)

K∑
i=1

n∗ (αi, βi)

≳
| log β|
I0

K∑
i=1

i =
| log β|
I0

K(K + 1)

2
.

If | log β| >> | logα|, then this clearly implies
E1[T

′] >> | logα|. Otherwise, from (11) we have

E1[T
′] >> | log β|

(
| logα|
| log β|

)2

≳ | logα|.

Comparing with (4) then proves that E1[T
′] >>

L1(α, β).
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V. A NOVEL MULTISTAGE TEST

In this section we introduce and analyze the
proposed test, which generalizes the one in [14].

A. Description

The test in [14] requires specifying 3 positive
integers n0, n1, N , where ni ≤ N , i = 0, 1,
and three real thresholds, t0, t1, c. Then, it stops
after collecting n0 observations and Λ̄n0

≤ t0, in
which case it accepts H0, or after collecting n1
observations and Λ̄n1 > t1, in which case it rejects
H0. If none of these happens, then N observations
are collected in total and H0 is rejected if and only
if Λ̄N > c.

The proposed test adds M0 opportunities to
accept H0 and M1 opportunities to reject it. Thus,
to describe it we need to specify 2M0 + 2M1

additional parameters,

{Ni,j , cij : j ∈ [Mi], i ∈ {0, 1}},

where ni ≤ Ni,j ≤ N for every j ∈ [Mi], i ∈
{0, 1}. Then, in addition to the stopping rule of the
3-stage test,

• H0 is accepted after collecting N0,j

observations if Λ̄N0,j
≤ c0,j , where j ∈ [M0],

• H0 is rejected after collecting N1,j

observations if Λ̄N1,j > c0,j , where j ∈ [M1].

In what follows, we denote by (T̂ , D̂) the sample
size and decision rule of this test.

B. Error bounds and expected sample size

For any selection of the above parameters, the
type-I error probability of (T̂ , D̂) can be upper
bounded as follows:

P0(D̂ = 1) ≤ P0

(
Λ̄n1

> t1
)
+ P0

(
Λ̄N > c

)
+

M1∑
i=1

P0

(
Λ̄N1,i > c1,i

)
(14)

and its expected sample size under P0 can be
bounded as follows:

E0[T̂ ] ≤ n0 +N0,1 P0(Λ̄n0
> t0)

+

M0∑
i=2

N0,i P0(Λ̄N0,i−1 > c0,i−1)

+N P0(Λ̄N0,M0
> c0,M0

).

(15)

Similarly for the type-II error probability and the
expected sample size under P1:

P1(D̂ = 0) ≤ P1

(
Λ̄n0

≤ t0
)
+ P1

(
Λ̄N ≤ c

)
+

M0∑
i=1

P1

(
Λ̄N0,i ≤ c0,i

)
(16)

E1[T̂ ] ≤ n1 +N1,1 P1(Λ̄n1 ≤ t1)

+

M1∑
i=2

N1,i P1(Λ̄N1,i−1
≤ c1,i−1)

+N P1(Λ̄N1,M1
≤ c1,M1

),

(17)

C. Selection of parameters

Let the sample sizes and thresholds in the first
opportunity to accept/reject H0 be selected as
follows:

n0 = n∗(γ, β), t0 = c∗(γ, β)

n1 = n∗(α, δ), t1 = c∗(α, δ)

for some γ ∈ (α, 1) and δ ∈ (β, 1),

(18)

and let the sample size and threshold in the last
stage of the test be selected as follows:

N = n∗(α, β), c = c∗(α, β). (19)

Moreover, let M0 and M1 be selected as follows:

M0 ≡ max{i ≥ 0 : n∗(βi, βi) < n∗(α, β)},
M1 ≡ max{i ≥ 0 : n∗(αi, αi) < n∗(α, β)},

(20)

and note that at most one of them is non-zero. If
M0 > 0, let the sample sizes and thresholds in
the additional M0 opportunities to accept H0 be
selected as

N0,i = n∗
(
βi, βi

)
, c0,i = c∗

(
βi, βi

)
, (21)

for i ∈ [M0]. Similarly, if M1 > 0, let the
sample sizes and thresholds in the additional M1

opportunities to reject H0 be selected as

N1,i = n∗
(
αi, αi

)
, c1,i = c∗

(
αi, αi

)
, (22)

for i ∈ [M1]. Then, by (14) and (16) we conclude

P0(D̂ = 1) ≤ 4α and P1(D̂ = 0) ≤ 4β

when α, β ≤ 0.5, which leads to the following
proposition.

Proposition V.1. If the parameters of (T̂ , D̂)
are selected according to (18)-(22) with α and
β replaced by α/4 and β/4 respectively, then
(T̂ , D̂) ∈ E(α, β).

The parameter specification of Proposition V.1
first of all provides a concrete expression for the
number of stages of the test, which is a function of
α and β. Specifically, when α = β, we have M0 =
M1 = 0, in which case we recover the 3-stage test
in [14]. On the other hand, at most one of M0 and
M1 is zero when α and β differ, which means that,
in comparison to the 3-stage, we either add M0

opportunities to accept H0 or M1 opportunities to
reject it.

The remaining parameters are specified
completely up to γ and δ in (18). We propose
selecting γ to minimize the upper bound in (15)
and δ to minimize the upper bound in (17). This
specification is convenient from a practical point
of view, as it requires the minimization of two
deterministic functions, each with respect to a
single parameter. This choice however is not
necessary for achieving asymptotic optimality.
Indeed, in the next theorem we show that,
under quite general conditions on γ and δ,
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(T̂ , D̂) achieves asymptotic optimality under both
hypotheses as α and β go to zero at arbitrary rates.

Theorem V.1. Let the parameters of (T̂ , D̂) be
selected according to (18)-(22) with α and β
replaced by α/4 and β/4 respectively.

(i) If γ → 0 as β → 0 such that

| log γ| << | log β|, (23)

then E0[T̂ ] ∼ L0(α, β) as α, β → 0.
(ii) If δ → 0 as α→ 0 such that

| log δ| << | logα|, (24)

then E1[T̂ ] ∼ L1(α, β) as α, β → 0.

Proof. We only prove (i), as the proof of (ii) is
analogous. By the assumption on the decay rate of
γ, Lemma III.1(i)(ii) and (15) we obtain:

E0[T̂ ] ≲
| log β|
I0

+ γ
| log β|

C
+

M0∑
i=2

(
β

4

)i−1

i
| log β|

C

+

(
β

4

)M0

(M0 + 1)
| log β|

C

≤| log β|
I0

(
1 +

I0
C

(
γ +

∞∑
i=2

i

(
β

4

)i−1
))

.

The series in the parenthesis goes to 0 as β → 0
and comparing with (4) completes the proof.

As a final remark, we note that the maximum
sample sizes of the proposed test, n∗(α/4, β/4),
exceeds n∗(α, β) by a constant that does not
depend on α and β. As a result, for small enough
α and β, it will have much better expected sample
size than even the SPRT when the true distribution
is “between” the null and the alternative [3, p. 227].

VI. NUMERICAL STUDIES

We consider the problem of testing the mean of
a Gaussian sequence with unit variance, i.e., f ∈
{N(θ, 1), θ ∈ R}, with f0 = N(−0.5, 1), f1 =
N(0.5, 1). Then, we have an explicit formula for
the optimal fixed-sample-size test,

n∗(α, β) = (zα + zβ)
2
, c∗(α, β) =

zα − zβ
2(zα + zβ)

,

where zα is the upper α-quantile of the standard
Gaussian. We consider two cases for α and β, a
completely symmetric and a quite asymmetric one:
(i) α = β = 10−6 and (ii) α = 10−12, β = 10−2,
so that the optimal fixed-sample-size n∗(α, β) is
equal to 90 and 88 respectively. In each of these
two setups, we apply (a) the SPRT with thresholds
A = | log β| and B = | logα|, (b) the test in
Section IV, with parameters given by (8), (10), and
different values of K, (c) the test in Section V
with the thresholds described in Proposition V.1.
In particular, in setup (i) we have M0 = M1 = 0
and the resulting test has at most 3 stages, whereas
in setup (ii) we have M0 = 2, M1 = 0 and the

resulting test has at most 5 stages. Moreover, we
select the free parameters γ, δ, as suggested in
Section IV, to minimize the upper bound in (15)
and (17) respectively.

We evaluate the expected sample size of each of
the above test, for each of the two cases (i) and
(ii), when the true mean θ is between (−0.6, 0.6).
In Figure 1 we plot the expected sample size of the
test in Section IV against the true mean for different
values of K. In Figure 2 we plot the corresponding
results for the SPRT, the proposed test, and the test
in Section IV with the same number of stages.

In Figure 1 we see that the test in Section
IV decreases/increases the expected sample under
the null/alternative relative to the fixed-sample-
size test. Moreover, as K increases, the additional
decrease is minimal, whereas the increase is
dramatic. Nevertheless, from Figure 2 we can see
that even under the null the proposed test performs
slighly better, at least when the number of stages
is the same. From Figure 2 we can also see that
the expected sample size of the proposed test is
slightly larger than that of the SPRT under the two
hypotheses and much smaller when the true mean
is around 0, i.e., between the two hypotheses.

(a) (b)

Fig. 1: Expected sample size against the true mean
for the test in Section IV with different K’s.

(a) α = β = 10−6 (b) α = 10−12, β = 10−2

Fig. 2: ESS of all four tests against θ. GST is the
test in Section IV and GMT is the test in Section
V. The number of stages in them are equal.
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