
27

Learning To Maximize Welfare with a Reusable Resource
MATTHEW FAW∗, The University of Texas at Austin, USA
ORESTIS PAPADIGENOPOULOS∗, The University of Texas at Austin, USA
CONSTANTINE CARAMANIS, The University of Texas at Austin, USA
SANJAY SHAKKOTTAI, The University of Texas at Austin, USA

Considerable work has focused on optimal stopping problems where random IID o�ers arrive sequentially
for a single available resource which is controlled by the decision-maker. After viewing the realization of
the o�er, the decision-maker irrevocably rejects it, or accepts it, collecting the reward and ending the game.
We consider an important extension of this model to a dynamic setting where the resource is “renewable” (a
rental, a work assignment, or a temporary position) and can be allocated again after a delay period 3 . In the
case where the reward distribution is known a priori, we design an (asymptotically optimal) 1/2-competitive
Prophet Inequality, namely, a policy that collects in expectation at least half of the expected reward collected
by a prophet who a priori knows all the realizations. This policy has a particularly simple characterization as
a thresholding rule which depends on the reward distribution and the blocking period 3 , and arises naturally
from an LP-relaxation of the prophet’s optimal solution. Moreover, it gives the key for extending to the case
of unknown distributions; here, we construct a dynamic threshold rule using the reward samples collected
when the resource is not blocked. We provide a regret guarantee for our algorithm against the best policy in
hindsight, and prove a complementing minimax lower bound on the best achievable regret, establishing that
our policy achieves, up to poly-logarithmic factors, the best possible regret in this setting.

CCS Concepts: • Theory of computation! Online learning algorithms; Approximation algorithms
analysis.

Additional Key Words and Phrases: Prophet Inequalities; Online Learning; Lower Bounds; Regret

ACM Reference Format:
Matthew Faw, Orestis Papadigenopoulos, Constantine Caramanis, and Sanjay Shakkottai. 2022. Learning To
Maximize Welfare with a Reusable Resource. Proc. ACM Meas. Anal. Comput. Syst. 6, 2, Article 27 (June 2022),
29 pages. https://doi.org/10.1145/3530893

1 INTRODUCTION
In a wide class of sequential decision-making environments, the decision-maker observes a sequence
of random variables and decides on the most pro�table time to take an action. Such scenarios,
which arise in a number of di�erent domains including economics, statistics and operation research,
are the main focus of optimal stopping theory [11, 44]. One of the most studied problems in this area
is the Prophet Inequality. Here, a “gambler” observes a sequence of random “rewards” -1, . . . ,-=

arriving in an arbitrary (or even adversarial) order. After observing the realization of each reward,
∗Both authors contributed equally to this research.

Authors’ addresses: Matthew Faw, matthewfaw@utexas.edu, The University of Texas at Austin, Austin, Texas, USA; Orestis
Papadigenopoulos, papadig@cs.utexas.edu, The University of Texas at Austin, Austin, Texas, USA; Constantine Caramanis,
constantine@utexas.edu, The University of Texas at Austin, Austin, Texas, USA; Sanjay Shakkottai, sanjay.shakkottai@
utexas.edu, The University of Texas at Austin, Austin, Texas, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
2476-1249/2022/6-ART27 $15.00
https://doi.org/10.1145/3530893

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.

https://doi.org/10.1145/3530893
https://doi.org/10.1145/3530893


27:2 Ma�hew Faw et al.

the gambler has to choose whether to collect it and stop, or irrevocably reject it and continue to
the next reward. Assuming distributional knowledge on the rewards, the gambler’s objective is to
maximize the expected reward collected.

The �rst results in this area (Krengel, Sucheston, and Garling [31, 32]) established the existence
of a stopping-rule guaranteeing an expected reward of at least 1/2 · E [max8 -8 ] – that is, half of the
expected reward collected by a “prophet”, who knows all the reward realizations from the beginning
and simply stops at the maximum. Soon after, Samuel-Cahn [43] showed that a remarkably simple
threshold-based policy which accepts the �rst reward in the order that is greater or equal to
median(max8 -8 ), if such a reward exists, also achieves the above guarantee. Almost three decades
later, Kleinberg and Weinberg [30] show that the same guarantee holds by replacing the median of
max8 -8 with 1/2 · E [max8 -8 ]. The above type of problems (and associated guarantees) have drawn
the attention of researchers from various �elds [14, 37].

In this work, we initiate the study of the following dynamic prophet inequality setting: A gambler
observes a sequence of random IID o�ers for a single available resource and, at each time step,
decides whether to collect the observed reward, or to skip the round. However, once the gambler
collects a reward, the resource becomes “unavailable” (or “blocked” ) and, thus, she cannot collect
or observe any other reward for a �xed and known number of subsequent time steps, known as
the “delay.” The gambler seeks to maximize her expected reward collected (“welfare”) within an
unknown time horizon. Our high-level goal is to design an optimal prophet inequality for the above
setting, even in the case where a priori distributional knowledge on the rewards is not assumed. In
that case, a parallel objective is to minimize the regret against the best possible prophet inequality.

The above natural model captures many applications in task-allocation, ride-sharing platforms,
online auctions, and matching platforms. As an example, consider a platform like Mechanical
Turk or Upwork that is used for matching workers to tasks. From the perspective of a speci�c
worker, when a new task arrives, the worker can choose to either work on this task and accept the
associated payment, or pass, depending on whether the payment makes the task worthwhile for
the worker. If the worker decides to accept the task, the worker must complete the task (and hence
is “blocked”) before accepting a new task. More generally, whenever tasks or assignments, rentals,
etc. are for a �xed duration (as in [22, 29]), our model applies directly.

1.1 Main challenges and our contributions
In this work, we distinguish between the “Bayesian” variant of our recurrent prophet inequality
problem, where the reward distribution is known to the gambler a priori, and the “learning” variant,
where the gambler starts without any information, other than the delay. We remark that in both
variants, the gambler is not aware of the time horizon of the instance. We now outline the key
challenges encountered and our main technical contributions.

Optimal prophet inequality for the Bayesian problem. In the �rst part of our work, we provide an
optimal prophet inequality for the Bayesian variant of our problem. Here, the main technical hurdle
is that, due to the complex dynamical patterns induced by the delay, the expected reward collected
by a prophet is hard to exactly characterize. Instead, we upper-bound the asymptotic prophet’s
expected reward by the solution of an in�nite-dimensional linear program (LP), de�ned over the
space of probability distributions. By analyzing the KKT conditions of this formulation, we show
that the optimal solution is characterized through greedy water�lling. This observation allows
us to construct a threshold-based policy, which computes a threshold as a function of the reward
distribution and the delay, and, then, accepts any element of reward larger than this threshold,
as long as the resource is not blocked. Speci�cally, given knowledge of the reward distribution
and the delay 3 , our policy collects (asymptotically and in expectation) at least a d (3)-fraction

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



Learning To Maximize Welfare with a Reusable Resource 27:3

of the prophet’s expected reward, where d (3) = 3+1
23+1 ⇡

1/2. As a crucial insight for proving this
guarantee, we model the resource availability as a time-homogeneous discrete time Markov Chain
(DTMC) with states {0, 1, . . .3}, each representing the number of rounds that need to pass until
the resource becomes available again. Using knowledge of the transition probabilities, which are
time-invariant as a function of the �xed threshold of our policy, we �rst compute the stationary
probability of the resource being available, and then we leverage a coupling argument in order to
lower bound the availability of any round. Finally, we prove that the competitive guarantee of our
prophet inequality is the best achievable by drawing a connection to a related bandits problem.

Regret upper bound for the learning problem. We then focus on the learning setting, where the
gambler is initially unaware of the reward distribution, and observes the realized rewards only
when the resource is available (i.e., not blocked). The objective here is to minimize the regret
measured relative to the best possible gambler’s policy. The naïve extension of the policy from the
Bayesian setting – estimating the threshold of the Bayesian setting using an explore-then-commit
type strategy (i.e., use a sub-linear number of samples purely to learn the threshold) – will not work,
since estimating the threshold to a su�ciently high accuracy requires a linear number of samples
(which would incur linear regret under an explore-then-commit strategy). Instead, we exploit the
fact that our system is guaranteed to receive a linear number of samples (roughly C/3+1 samples
after C time steps) as part of the state evolution, and continually update our estimated threshold
over time using these samples. This procedure, however, correlates the state of the system with the
estimate of the threshold, and thus poses an interesting technical challenge. Furthermore, modeling
the availability state via a time-homogeneous Markov Chain, as in the Bayesian case, is no longer
possible, since the transition probabilities of each round depend on the current trajectory through
the estimated threshold.

In order to overcome these di�culties and provide an upper bound on the regret of our learning
algorithm, we proceed as follows: As a �rst step, through an application of the “compensating
coupling” technique due to Vera and Banerjee [46], we are able to link the regret accumulated with
the error of the estimated threshold at each round. In order to control these errors, we establish that
our algorithm satis�es two properties: quality of the threshold estimator and su�ciency of samples.
In this direction, we provide “anytime” concentration guarantees for our estimator (namely, for
the case where the number of collected samples is random), and show that at any round C , the
algorithm has collected a linear in C (and independent of 3) number of samples. To achieve the
latter, we construct an “eager” (�ctitious) version of our Bayesian prophet inequality, equipped with
a carefully chosen threshold. This threshold must be large enough to guarantee that (with high
probability) ⌦(C) samples are observed by time C , while simultaneously small enough such that,
after ⇥(log=) rounds, it will always be overestimated by the threshold of the learning algorithm
(with high probability). Under the last condition, and through a deterministic charging argument
on the coupled evolution of the two policies, we show that the number of samples collected by
the learning policy stochastically dominates that of the eager prophet inequality. The above ideas
culminate in a �nal regret guarantee of O

⇣p
= · log=

⌘
, where = is the time horizon.

Regret lower bound via time-aggregated suboptimalities. We provide a regret lower bound of
⌦(
p
=/33/2), thus proving that the regret of our policy is optimal up to poly-logarithmic factors and

inverse scaling in 3 . Our construction has two main insights. (i) A fundamental di�culty in our
setting compared to the bandit setting is that our policies observe the o�ered reward before deciding
whether to accept or reject. This discrepancy invalidates several crucial steps in the standard
lower bound argument (see, e.g., [34, Theorem 15.2]) However, we show that, for the environments
considered in our lower-bound construction, any policy can simulate its decision of whether to accept

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



27:4 Ma�hew Faw et al.

or reject the reward before observing it. (ii) Even though the instantaneous regret of an algorithm
can potentially be negative (e.g., if the algorithm collects when the optimal policy is blocked), the
regret over properly-chosen time windows is always non-negative. Using this insight, we introduce
a technique we call time-aggregated suboptimality gaps, which allows us to obtain (up to small
additive terms) a regret decomposition of a similar form as in the stochastic bandit setting [34,
Lemma 4.5]. Taken together, these two insights allow us to reduce our lower bound construction to
that of a stochastic (two-armed) bandit instance.

1.2 Related work
Prophet inequalities and secretary problems. In addition to the original prophet inequality problem

[31, 32], numerous combinatorial extensions (where more than one reward can be collected, subject
to feasibility constraints) have been studied. Examples include the choose-: variant [2, 26], matroid
and packing constraints [9, 21, 30, 40], and (bipartite) matching environments [3, 18, 20, 25]. The
problem has been also studied under non-linear (submodular or subadditive) objectives [41]. We
remark that the type of feasibility constraints we consider in this work (i.e., where collecting a
reward invalidates the subsequent 3 rewards) does not fall into any of the above categories.
Of particular importance is the IID case of the problem, where the rewards are drawn indepen-

dently from the same distribution. In their seminal work, Hill and Kertz [27] prove a (1�1/4) ⇡ 0.632-
competitive prophet inequality for this setting, and conjecture that no policy can collect (in expec-
tation) more than a 0.731-fraction of the prophet’s expected reward. More than three decades later,
this conjecture was refuted by Abolhassani et al. [1] by proving the existence of a 0.738-competitive
policy. The state-of-the-art in this regime is a 0.745-competitive prophet inequality due to Correa
et al. [13], and this guarantee is known to be the best possible.

Recent work has also focused on designing prophet inequalities in the regime where the gambler
has access only to a limited number of samples from each distribution. A number of results have
been obtained in this setting, both for the IID case [12, 15], as well as for general distributions
[4, 8, 42]. However, access to limited number of samples usually entails competitive guarantees
that are far from the best achievable in the Bayesian setting.
The need for modeling reusable resources has motivated analogous models in the literature on

the secretary problem. In this setting, Fiat et al. [22] introduce the “temp secretary problem” (see
also [29]), where, every time a reward is collected, the resource becomes unavailable for a �xed
duration of time. However, since the elements in their setting arrive stochastically in continuous
time, this model is incomparable with ours.

Undiscounted reinforcement learning. The problem of regret minimization in undiscounted Rein-
forcement Learning (RL) has a rich and growing literature [28, 33, 38, 39, 45]. One distinguishing
feature of prophet inequality problems from RL is that rewards are o�ered before the policy decides
whether or not to accept, unlike in RL, where rewards are observed after an action has been selected.
Nevertheless, our problem can still be cast as a Markov Decision Process (MDP) with a (possibly
in�nite) state space ( = [3] [ supp(D), where the states B 2 [3] encode the time left until the
resource is available, and the state E 2 supp(D) encodes that the resource is available and a reward
of value E is currently o�ered to the gambler. In the case that D has �nite support, the regret upper
bounds generally depend on the size of the state space, and thus are far from optimal for our case.
While there is literature on the RL problem in the case when the state space is continuous, the
best-known regret upper bounds for this setting [33, 38, 39] have signi�cantly worse dependence on
the time horizon = (in particular, =3/4 from [38], which can be improved to =2/3 [33] under additional
smoothness conditions on the distribution). Finally, the regret lower bounds in [28, 38] (in the
discrete and continuous MDP setting, respectively) simply show that there exists a “hard” instance

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



Learning To Maximize Welfare with a Reusable Resource 27:5

where the claimed regret must be su�ered. On the other hand, the lower bounds we present in our
paper are tailored to our specialized setting.

Online matching, assortment optimization, and revenue management. The notion of reusable
resources has also been studied in the context of online matching, assortment optimization, and
revenue management. In particular, in [23, 24] the authors study the problem of online assortment
optimization with reusable resources. Their model captures scenarios of arbitrary buyer arrival
order and multiple reusable resources, each associated to a speci�c capacity (i.e., maximum number
of parallel allocations) and stochastic delay. However, the reward associated with an allocation in
these settings is resource-dependent (and not buyer-dependent, as in our case) – a fact that makes
our model di�erent in nature and our results incomparable. In [16], Dickerson et al. study the
problem of online bipartite matching, where the left-side (o�ine) vertices are reusable, while the
right-side (online) vertices arrive stochastically under some known distribution. Our setting can
be thought of as a variation of this model, where we have a single o�ine vertex of deterministic
delay (our resource), yet an in�nite number of online vertices (and, thus, the LP-based algorithm
of [16] does not apply). In [35], Levi and Radovanović consider a similar problem in the context
of revenue management, where the number of buyer types is again assumed to be �nite, and the
arrival rate of each type follows an independent Poisson process. Finally, in a di�erent spirit, Chen
et al. [10] develop an online learning approach for maximizing the net pro�t in a service queue,
which is de�ned as the service fee (i.e., the price times the demand) minus the capacity cost (i.e.,
the available number of resources times the cost of a resource) and penalty of congestion (which is
a function of the number of resources and the demand).

2 PRELIMINARIES
Model. Let -1,-2, . . . ,-= be a sequence of = rewards drawn IID from a non-negative reward

distribution D. At each round C , the gambler �rst observes the reward realization -C ⇠ D, and
then must decide whether to collect the reward or skip on it forever. Crucially, at each time C when
a reward is collected, the gambler has to skip (without observing) the 3 � 1 subsequent rewards,
{-C+1, . . . ,-C+3 }, while the resource is unavailable. The goal of the gambler is to maximize the
expected collected reward relative to that of a prophet, who has in�nite computational power and
knows a priori the reward realizations of all rounds. We assume that the gambler knows the delay
3 , but does not know the time horizon =.

For the rest of this text, we denote by � (resp., 5 ) the cumulative distribution function (resp.,
probability density function) of D. For any non-negative integer : , we denote [:] = {1, 2, . . . ,:}.
For any policy P, we denote by freeP (C) the event that, during a run of P, the resource is available
at time C , i.e., no reward has been collected by P in the past 3 time-steps. When the policy is clear
from context, we abuse this notation slightly by referring to the event as free (C). We denote by
log(·) the natural logarithm. Finally, we use G . ~ (resp., G & ~) to denote that ~ is greater than
(resp., less than) G up to constant factors.

Competitive guarantee and regret de�nition. Let ALG (resp., OPT) be the reward collected by an
online policy (resp., the prophet). For brevity, we use ALG (resp., OPT) for referring to both the
policy and the associated collected reward. The competitive guarantee of a policy ALG (which
knows the underlying reward distribution) is de�ned as the minimum ratio between the expected
reward collected by a gambler using this policy and that collected by the prophet over all possible
instances. Formally,

dALG = inf
E [ALG]
E [OPT]

,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



27:6 Ma�hew Faw et al.

where the in�mum is taken over all problem instances, including the distribution D, the delay 3 ,
and the time horizon =.

Due to information-theoretic reasons, there exist cases where no policy can achieve a competitive
guarantee greater than d . For these cases, using the prophet’s expected reward as a baseline would
inevitably lead to linear regret. Instead, for any d-competitive policy, we use the relaxed notion of
d-approximate regret (or, simply, d-regret), de�ned relative to a learning policy S as

Regretd (=) = d · E [OPT] �
’
C 2 [=]

E [-C · {S collects -C }] . (1)

Technical assumptions. In Sections 3 and 4, we assume w.l.o.g. that all the probability distributions
involved are continuous (i.e., they do not contain pointmasses). This is a purely technical assumption
and can be easily relaxed by convolving the given distribution and the obtained samples with
Gaussian noise of in�nitesimally small variance.

For the case of known reward distribution (Section 3), we do not make any assumptions on the
distribution D (other than continuity). In the case of unknown distribution (Section 4), we make
the standard assumption in online learning settings that D has bounded support in [0, 1] (we note
that our results can be readily extended to the case of subgaussian distributions).

3 CONSTRUCTING AN OPTIMAL POLICY IN THE BAYESIAN SETTING
The main result of this section is a d (3)-competitive (asymptotically) prophet inequality for the
case where the reward distribution is known a priori, where d (3) = 3+1

23+1 ⇡
1/2, and 3 the delay

of the instance. In Section 5, we show that this guarantee is the best one can hope for against
a prophet who a priori knows all the reward realizations, and optimally solves the underlying
packing problem using in�nite computational power.
We design a simple policy (see Algorithm 1) that computes a threshold g as a function of the

reward distributionD, and then accepts any reward that satis�es-C � g if and only if the resource is
available at time C . Speci�cally, given the c.d.f. � ofD, the threshold is computed at the initialization
phase as g = ��1 (1 � 1/3+1).

Algorithm 1: Asymptotically optimal policy for the case of known reward distribution
1 Input: Reward distribution D with c.d.f. � and delay 3 ;
2 Set threshold g  ��1

�
1 � 1

3+1
�
;

3 for C = 1, 2, . . . do
4 Observe reward -C ;
5 if -C � g and resource is available then
6 Collect -C and make resource unavailable for rounds C + 1, . . . , C + 3 ;
7 else
8 Skip on -C ;
9 end

10 end

The intuition behind the choice of the threshold in Algorithm 1 is simple: assuming an in�nite
time horizon, the value g = ��1 (1 � 1/3+1) corresponds exactly to the limiting case where the
algorithm is indi�erent between collecting or not a reward equal to g , since any option would not
a�ect its long-run average expected reward. As we can see, the threshold ��1 (1 � 1/3+1) increases
naturally with 3 , quantifying in that way the fact that a larger delay requires a larger reward to
make the commitment worthwhile.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



Learning To Maximize Welfare with a Reusable Resource 27:7

In addition, one might expect that an algorithm equipped with an adaptive threshold (i.e., one
that changes as a function of time) would perform strictly better (since, e.g., the algorithm could be
less conservative towards the end of the horizon). While this is true in the �nite horizon regime,
since we do not assume knowledge of the time horizon, it is unclear how to leverage such an
improvement. Moreover, our approach of simply choosing a �xed threshold comes at the cost of
only small additive losses in the competitive guarantee.
In the rest of this section, we prove the following result on the competitive guarantee of Algo-

rithm 1:

T������ 3.1. Let E [OPT] be the prophet’s expected reward. For d (3) = 3+1
23+1 , the expected reward

of Algorithm 1 satis�es

E [ALG] � d (3) · E [OPT]|             {z             }
competitive guarantee

� d (3) · (3 + 1) · E [- ]|                     {z                     }
loss due to LP upper bound

� 4 · 3 · E [- ]|        {z        }
loss due to mixing

.

As we show in the rest of this section, the d (3)-factor in the �rst term of the above bound is
the (asymptotic) competitive guarantee of our policy for instances of delay 3 . The second term
is the additive loss due to the LP relaxation (see (MP) below) we use as an upper bound on the
expected optimal reward, given that this relaxation becomes very loose when the time horizon
is small comparing to the delay. The use of this LP to motivate our algorithm is also the reason
why our asymptotic competitive guarantee does not match the best possible for the IID prophet
inequality, in the case where 3 � =. The third loss is due to the mixing of the Markov Chain we use
to lower bound the availability of the resource. Notice that the last two terms in the above bound
are vanishing as the time horizon goes to in�nity.

3.1 Competitive analysis of Algorithm 1
Characterizing the expected maximum reward. The �rst observation while attempting to design a

competitive policy is that the prophet’s expected reward lacks a simple characterization. In order to
overcome this issue, we instead choose to upper-bound this reward by constructing the following
in�nite-dimensional LP formulation:

maximize: = ·

π
1

G=0
G · @(G) dG (MP)

s.t.:
π
1

G=0
@(G) dG 

1
3 + 1

0  @(G)  5 (G), 8G � 0.

In the above formulation, each variable @(G) can be thought of as the expected fraction of time the
prophet collects a reward equal to G . Intuitively, the �rst set of constraints suggests that the expected
fraction of time where the prophet collects any reward cannot be more than 1/(3+1) (asymptotically)
for any instance of delay equal to 3 . Further, the second set of constraints indicates that the expected
fraction of time a reward G is collected cannot be more than 5 (G), namely, the p.d.f. of D at G .

In the next lemma, we show that the formulation (MP) asymptotically yields an upper bound on
the prophet’s expected reward.

L���� 3.2. LetMP⇤ be an optimal solution of (MP) andOPT be the reward collected by the prophet.
Then, it is the case that

MP⇤ �
✓
1 �

3 + 1
= + 3 + 1

◆
· E [OPT] .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



27:8 Ma�hew Faw et al.

By simply observing (MP), it is not hard to see that an optimal solution can be greedily computed
using a greedy water�lling approach: Starting from G = 1 and moving towards smaller G , we set
@(G) = 5 (G) up until G = g , where

Ø
1

G=g @(G) dG = 1
3+1 . Notice that for continuous distributions

(without point masses), such a g uniquely exists and is equal to g = ��1 (1 � 1
3+1 ). By analyzing

the KKT conditions that follow from (MP), it is not hard to verify that the optimal solution @⇤ has
a particularly simple form: @⇤ (G) = 5 (G) · {G � g}, and, thus, the optimal value of (MP) equals
= · E [- · {- � g}].

L���� 3.3. For any continuous distribution D and g = ��1 (1 � 1
3+1 ), the optimal solution of (MP)

equals = · E [- · {- � g}].

Lower bounding the availability of the resource. In order to bound the expected reward collected
by Algorithm 1, we �rst lower bound the probability that the resource is available at any time C .
The key idea here is that, since the threshold for accepting a reward is �xed, we can associate the
availability state of the system to the evolution of a 3 + 1-state time-homogeneous MC, where each
state encodes the amount of time until the system is available. Through this link, we �rst compute
the probability that the resource is available when the MC is in stationarity, and then argue on the
availability of each round via coupling arguments.

L���� 3.4. Let {freeA(C)} be the event that, at the beginning of time C , the resource is available to
Algorithm 1. We have that

Pr [freeA(C)] � d (3) �
�
1 � 4�1

� b C�13 c .
P����. In order to bound the probability that the resource is free, we study the evolution of a

Markov Chain (MC) on state space ⌦ = {0, 1, . . . ,3}, with transition probabilities ?l,l�1 = 1 for
each l 2 {1, . . . ,3}, ?0,3 = Pr [- � g] = 1

3+1 , and ?0,0 = 1 � 1
3+1 . Each state l 2 ⌦ represents the

number of time steps until the the resource is available to the algorithm, where state 0 implies that
the resource is already free. The state transition probabilities re�ect the fact that, once blocked,
the resource is unavailable deterministically for the next 3 time steps, and, by construction of the
algorithm, a reward is collected with probability 1

3+1 only when the resource is available.
Since the above MC is aperiodic and irreducible, the (unique) stationary distribution can be

computed through the following system of balance equations:
3’

l=0
c (l) = 1 and c (1) = c (2) = . . . = c (3) =

1
3 + 1

· c (0),

which gives c⇤ (0) = 3+1
23+1 = d (3) and c⇤ (l) = 1

23+1 for each l > 0.
Now, let % (C )

(0, ·) denote the C-step transition distribution of the MC initialized at state 0, since,
by construction, the resource is free at the �rst round. Observe that by the above construction, and
by de�nition of the total variation distance1, we have

Pr [freeA(C)] = % (C�1)
(0, 0) = c⇤ (0) +

⇣
% (C�1)

(0, 0) � c⇤ (0)
⌘
� d (3) �

���% (C�1)
(0, ·) � c⇤

���
TV

.

Thus, in order to prove the claim of the lemma, it su�ces to upper-bound the above total variation
distance. The �rst step is to use a standard upper bound on the total variation distance. By Lemma
4.11 in [36], for any time C , we have���% (C )

(0, ·) � c⇤
���
TV
 max

B2⌦

���% (C )
(0, ·) � % (C )

(B, ·)
���
TV

. (2)

1Recall that for any two probability measures ? and @ over a sample space ⌦ = {0, . . . ,3 } we have k? � @ kTV =
sup�✓⌦ |? (�) � @ (�) |.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



Learning To Maximize Welfare with a Reusable Resource 27:9

Let l⇤ 2 ⌦ denote the state where the above maximum is achieved. Recalling that���% (C )
(0, ·) � % (C )

(l⇤, ·)
���
TV

= inf
n
Pr [/C < .C ] : (/C ,.C ) a coupling of % (C )

(0, ·) and % (C )
(l⇤, ·)

o
,

we proceed by constructing a coupling in order to bound the total variation distance. Indeed, we
construct {/✓ }

C
✓=0 and {.✓ }

C
✓=0 such that /0 = 0, .0 = l⇤. If /✓ = l for somel > 0, then /✓+1 = l �1,

and similarly for .✓ . At every time ✓ , we �ip a coin �✓ ⇠ Bernoulli (1/(3+1)). If /✓ = 0, then /✓+1 = 3
when �✓ = 1, and /✓+1 = 0 otherwise. Crucially, we use the outcome of the same coin-�ip to
determine the transition for .✓+1 when .✓ = 0. Under this construction, we have that once /g = .g ,
then /g+✓ = .g+✓ for every ✓ � 0. We call this the stickiness property of our coupling. Additionally,
since every transition in the MC is deterministic except for at state 0, if ⌘ is the �rst time such that
/⌘ = .⌘ , then it must be the case that /⌘ = 0.

We complete our claim using an ampli�cation argument. Speci�cally, we �rst show a constant
lower bound on the probability of coupling on every length-3 interval, and, then, use the Markov
property to “amplify” this bound.

Indeed, let us begin by showing (by induction on :) that, for any : � 0:

Pr [/:3 < .:3 ] 
�
1 � 4�1

�:
.

Now, the base case of : = 0 holds trivially, since the RHS of the above becomes 1. Now, suppose
that the claim holds at any �xed : � 0. Now, by the law of total probability, combined with the fact
that our coupling is sticky, we may decompose

Pr
⇥
/ (:+1)3 < .(:+1)3

⇤
=

’
I<~2{0,...,3 }

Pr
⇥
/ (:+1)3 < .(:+1)3 | /:3 = I,.:3 = ~

⇤
Pr [/:3 = I,.:3 = ~] .

Now, for any �xed 0  I < ~  3 , by the Markov property and the structure of our Markov chain,
we have

Pr
⇥
/ (:+1)3 = .(:+1)3 | /:3 = I,.:3 = ~

⇤
= Pr

⇥
/ (:+1)3 = .(:+1)3 | /:3+I = 0,.:3+I = ~ � I

⇤
= Pr

⇥
�:3+9 = 0 8 9 2 [I,~) | /:3+I = 0,.:3+I = ~ � I

⇤

=
✓
1 �

1
3 + 1

◆~�I
�

✓
1 �

1
3 + 1

◆3
� 4�1,

where on the last line, we use the inequality log(1 � G) � �G
1�G when G < 1. A symmetric argument

covers the case where ~ < I. Combining the above two observations with our induction hypothesis
and the stickiness property of our coupling, we conclude that

Pr
⇥
/ (:+1)3 < .(:+1)3

⇤
= Pr

⇥
/ (:+1)3 < .(:+1)3 | /:3 < .:3

⇤
Pr [/:3 < .:3 ] 

�
1 � 4�1

�:+1
,

as required. Therefore, by another application of the stickiness property of our coupling, we may
conclude that���% (C�1)

(0, ·) � % (C�1)
(l⇤, ·)

���
TV
 Pr [/C�1 < .C�1] = Pr

h
/C�1 < .C�1,/b C�13 c3 < .b C�13 c3

i


�
1 � 4�1

� b C�13 c ,
as claimed. ⇤

Wrapping up: proving Theorem 3.1. With the above results in place, we are now ready to prove
Theorem 3.1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



27:10 Ma�hew Faw et al.

P���� �� T������ 3.1. At any time C , for the expected reward collected by Algorithm 1 we
have

E [-C · {-C is collected}] = E [-C · {-C � g and freeA(C)}]

= E [-C · {-C � g}] · Pr [freeA(C)]

� E [-C · {-C � g}] d (3) � E [- ] ·
�
1 � 4�1

� b C�13 c ,
where the �rst equality follows by de�nition of our policy, and the second since the availability
of the resource at time C is independent of the reward realization -C . The inequality follows by
Lemma 3.4 and the fact that E [-C · {-C � g}]  E [- ].

Therefore, using the above, the expected reward collected can be lower bounded as

E [ALG] =
’
C 2 [=]

E [-C · {-C is collected}]

� d (3) · = · E [- · {- � g}] � E [- ]

’
C 2 [=]

�
1 � 4�1

� b C�13 c

� d (3) ·MP⇤ � 3 · E [- ] ·

1’
:=0

�
1 � 4�1

�:
� d (3) · E [OPT] � d (3) (3 + 1) · E [- ] � 4 · 3 · E [- ] ,

where we used the facts that, by Lemmas 3.2 and 3.3, and since E [OPT]  = · E [- ],

= · E [- · {- � g}] = MP⇤ �
✓
1 �

3 + 1
= + 3 + 1

◆
E [OPT] � E [OPT] � (3 + 1) · E [- ] . ⇤

4 DESIGNING A REGRET-MINIMIZING POLICY FOR THE LEARNING SETTING
In this section, we study the problem of learning the (optimal) d (3)-competitive policy described
in the previous section, when the reward distribution is initially unknown. In particular, we design
a learning policy that estimates the threshold using the empirical distribution constructed from the
observed samples. Our goal is to prove a sublinear regret upper bound against the optimal Bayesian
prophet inequality of the previous section.
Let us denote the empirical c.d.f. based on samples .1, . . . ,.B as b�B (G) = 1

B

ÕB
8=1 {.8  G}. We

denote b&B (?) = inf{G : b�B (G) � ?} as the empirical quantile function based on B samples drawn
from the distribution. For convenience, we assume that for zero samples, we have b&0 (?) = 1. Recall
that, in this setting, we assume that the distributions are bounded in [0, 1] and, thus, this choice
forces the algorithm to reject the �rst reward almost surely.
With this notation in place, we are ready to present Algorithm 2, the learning variant of Al-

gorithm 1 presented in the previous section. Let #C be the number of samples available at the
beginning of round C (and before observing the realization -C ). Here, at each time C , the gambler
constructs the empirical distribution b�#C using #C observed samples, and computes the empirical
thresholdbg#C , wherebgB = b&B (1 � 1/3+1). Then, if it is feasible, it accepts the reward -C if and only if
-C � bg#C .

We are interested in upper-bounding the regret of Algorithm 2 with respect to an asymptotically-
optimal online policy, which in our case corresponds to the d (3)-approximate regret. The remainder
of this section is devoted to proving the following regret guarantee for Algorithm 2:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



Learning To Maximize Welfare with a Reusable Resource 27:11

Algorithm 2: Learning policy for the case of unknown reward distribution
1 Input: Delay 3 ;
2 for C = 1, 2, . . . do
3 if resource is available then
4 Construct the empirical distribution b�#C using #C samples (# of samples observed);
5 Set threshold bg#C  

b&#C

�
1 � 1

3+1
�
;

6 Observe reward -C ;
7 if -C � bg#C then
8 Collect -C , and make resource unavailable for rounds C + 1, . . . , C + 3 ;
9 else
10 Skip on -C ;
11 end
12 else
13 Skip the round (without observing -C );
14 end
15 end

T������ 4.1. For any distribution D bounded in [0, 1], and delay 3 , the d (3)-approximate regret
of Algorithm 2 for = rounds can be upper-bounded as

Regretd (3) (=) .
p
= · log= + 33 log(=).

4.1 Regret analysis of Algorithm 2
We now present the regret analysis of Algorithm 2. By de�nition of regret and the fact that
Algorithm 1 is a d (3)-competitive policy (asymptotically), it su�ces to measure the di�erence in
total expected reward between Algorithm 1 and Algorithm 2. This provides an upper bound on the
regret, as de�ned in Eq. (1), modulo an additive O(3) loss following by Theorem 3.1. In the rest of
this section and for simplicity, we refer to “regret” as the di�erence in expected reward between
the two algorithms.

Recall that Algorithms 1 and 2 operate in the same manner, except for the fact that the latter uses
an empirically constructed threshold as a surrogate for g = ��1 (1� 1/(3+1)) at each round. As a �rst
step in our analysis, we provide a simple upper bound on the regret using the compensated coupling
technique due to [46]. This allows us to associate the regret of each round to the estimation error
of our empirically constructed threshold. In order to control the estimation error of each round,
we provide “anytime” concentration results for the estimator used by Algorithm 2, and we prove
strong (high probability) lower bounds on the number of samples collected the beginning of each
round. The desired regret upper bound follows by combining the above results.

Compensated Coupling. Let us use A and L for any reference to Algorithm 1 and Algorithm 2,
respectively. By leveraging the technique of compensated coupling [46], instead of arguing on the
regret between A and L directly, we �rst introduce a family of auxiliary (�ctitious) policies PC in
order to facilitate our analysis. More speci�cally, for each time C 2 [=], we denote by PC a policy
that follows the decisions of L for the �rst C time steps (including C ) and, after that, follows the
decisions of A. Using the above de�nition, it becomes clear that P0 ⌘ A and P= ⌘ L.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



27:12 Ma�hew Faw et al.

L���� 4.2. The di�erence in expected reward between Algorithms 1 and 2 can be upper-bounded as

E [ALGA] � E [ALGL] 

’
C 2 [=]

Pr
⇥
-C 2 [bg#C , g) [ [g,bg#C )

⇤
.

P����. By using the de�nition of PC , we can express the expected di�erence between ALGA

and ALGL as a telescoping sum:

E [ALGA � ALGL] = E
266664
’
C 2 [=]

�
ALGPC�1 � ALGPC

�377775
=

’
C 2 [=]

E
⇥
ALGPC�1 � ALGPC

⇤
. (3)

For any �xed C , the reward collected by policies PC�1 and PC running on the same sample path
can di�er only if the two policies take a di�erent decision at time C (since, otherwise, they follow
exactly the same trajectory, by construction). Recalling thatbg#C is the estimated threshold by policy
L at time C , PC�1 and PC deviate at time C only if -C 2 [bg#C , g) [ [g,bg#C ).
For any C , by the above discussion, we have that

E
⇥
ALGPC�1 � ALGPC

⇤
= E

⇥ �
ALGPC�1 � ALGPC

� �
-C 2 [bg#C , g) [ [g,bg#C )

 ⇤
= E

⇥ �
ALGPC�1 � ALGPC

� � �
-C 2 [bg#C , g)

 
+

�
-C 2 [g,bg#C )

 �⇤
. (4)

Let us denote by ALGP (C 0) the reward collected by some policy P at time C 0. In the above
expression, consider the case where -C 2 [bg#C , g). In this case, policy PC collects the reward -C (and
becomes blocked until time C + 3 + 1), while PC�1 rejects it. Thus, we have that

E
⇥ �
ALGPC�1 � ALGPC

� �
-C 2 [bg#C , g)

 ⇤

= E

" 
=’

C 0=C+1
ALGPC�1 (C

0
) �

=’
C 0=C+3+1

ALGPC (C
0
) � -C

! �
-C 2 [bg#C , g)

 #

 E

" 
=�3’
C 0=C+1

ALGPC�1 (C
0
) +

=’
C 0==�3+1

ALGPC�1 (C
0
) �

=’
C 0=C+3+1

ALGPC (C
0
)

! �
-C 2 [bg#C , g)

 #
.

Consider now any time C  = � 3 � 1. Given that -C 2 [bg#C , g), we know that the resource is
available at time C+1 forPC�1, and at time C+3+1 forPC . Thus, since the two policies coincide withA
for C 0 � C+1, by a simple translation, it is easy to see thatE

hÕ=�3
C 0=C+1 ALGPC�1 (C

0
)

�
-C 2 [bC 0#C , g)

 i
=

E
⇥Õ=

C 0=C+3+1 ALGPC (C
0
)

�
-C 2 [bg#C , g)

 ⇤
for any C (note that when C > =�3�1, both expressions are

0, since the summation range is empty). Further, since the rewards are bounded in [0, 1] and at most
one reward can be collected on any interval of 3 rounds, we have that

Õ=
C 0==�3+1 ALGPC�1 (C

0
)  1,

deterministically. Combining these observations, we conclude that, for any C ,

E
⇥ �
ALGPC�1 � ALGPC

� �
-C 2 [bg#C , g)

 ⇤
 Pr

⇥
-C 2 [bg#C , g)

⇤
. (5)

By a similar line of reasoning as above, it is easy to see that

E
⇥ �
ALGPC�1 � ALGPC

� �
-C 2 [g,bg#C )

 ⇤
 Pr

⇥
-C 2 [g,bg#C )

⇤
. (6)

The proof follows by combining Eqs. (3) to (6). ⇤

The above lemma implies that, to upper-bound the regret of Algorithm 2, it su�ces to control
the error probability Pr

⇥
-C 2 [bg#C , g) [ [g,bg#C )

⇤
for any C 2 [=].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



Learning To Maximize Welfare with a Reusable Resource 27:13

Quantile estimation via the empirical distribution. For the rest of this section, for any number of
samples B , we de�ne:

nB =

r
log (2/XB) + log (B · (B + 1))

2B
and XB =

1
B2
.

Under this notation, we can show the following result:

L���� 4.3. Let #C denote the number of samples collected by Algorithm 2 up to, but not including,
time C , from distribution D with c.d.f. � . Let -C ⇠ D be a sample drawn at time C independently from
the past observation history. Then we have that

Pr
⇥
-C 2 [bg#C , g) [ [g,bg#C ) and #C � <

⇤
 n< + X< +<�1,

where bg#C is the empirical threshold computed using #C samples.

We give the proof for Lemma 4.3 below; �rst, we establish some intermediate inequalities which
are useful in proving this result.

Our proof relies on the well-known Dvoretzky–Kiefer–Wolfowitz (DKW) inequality [19]:

T������ 4.4 (D��������–K�����–W�������� ���������). Given B samples from a distribution
with c.d.f. � , for any n > 0, we have

Pr

sup
G 2R

|b�B (G) � � (G) | > n

�
 2 · exp (�2B · n2).

Given that the number of observed samples at each round is a random quantity, we can leverage
standard techniques to convert Theorem 4.4 into the following “anytime” bound on the concentra-
tion of our estimator around its mean:

L���� 4.5. Given a random number #C of samples from a distribution with c.d.f. � , for any
< 2 [C � 1], we have

Pr

sup
G 2R

���b�#C (G) � � (G)
��� > n#C and #C � <

�
 X< .

P����. The proof follows essentially from a union bound over the possible values of#C , combined
with Theorem 4.4. Indeed,

Pr

sup
G 2R

���b�#C (G) � � (G)
��� > n#C and #C � <

�
=

C�1’
B=<

Pr

#C = B and sup

G 2R

���b�B (G) � � (G)
��� > nB

�



C�1’
B=<

Pr

sup
G 2R

���b�B (G) � � (G)
��� > nB

�



C�1’
B=<

2 · exp
✓
�2B ·

✓
log (2/XB) + log (B · (B + 1))

2B

◆◆



C�1’
B=<

XB ·
1

B (B + 1)

 X<,

where the second inequality follows by Theorem 4.4, and the last since XB is decreasing in B andÕ
1

B=1
1

B (B+1) = 1. ⇤

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



27:14 Ma�hew Faw et al.

Using the above “anytime” version of the DKW inequality we are able to prove Lemma 4.3,
through which we can bound the probability of policy L making a di�erent decision from A when
L has collected at least< samples:

P���� �� L���� 4.3. Consider a random sample -C ⇠ D drawn independently from the past
observation history. Let us denote

NC =
⇢
sup
G 2R

���b�#C (G) � � (G)
���  n#C

�
.

Intuitively, NC is a “nice sampling” event when the empirical c.d.f. has been su�ciently well-
estimated. Under this notation, we obtain the following decomposition:

Pr
⇥
-C 2 [bg#C , g) [ [g,bg#C ) and #C � <

⇤
 Pr

⇥
-C 2 [bg#C , g) [ [g,bg#C ) and #C � < | NC

⇤
+ Pr [¬NC and #C � <] ,

where the inequality follows by upper-bounding Pr [NC ] and Pr
⇥
-C 2 [bg#C , g) [ [g,bg#C ) | ¬NC and #C � <

⇤
by 1.

In order to bound the �rst term above, notice that the event {-C 2 [bg#C , g)[ [g,bg#C )} is equivalent
(by our assumption of continuity of � (·)) to the event {� (-C ) 2 [� (bg#C ), � (g)) [ [� (g), � (bg#C ))}.
By de�nition, � (g) = 1 � d (3). Further, assuming NC , it follows that

���b�#C (bg#C ) � �#C (bg#C )

���  n#C .

By de�nition of bg#C , we know that b�#C (bg#C ) � (1 � d (3)) 2 [0, 1/#C ) almost surely. Therefore, sincebg#C is computed before observing the sample -C , we have that

Pr
⇥
-C 2 [bg#C , g) [ [g,bg#C ) and #C � < | NC

⇤
= Pr

⇥
� (-C ) 2 [� (bg#C ), � (g)) and #C � < | NC ,bg#C  g

⇤
Pr

⇥bg#C  g | NC
⇤

+ Pr
⇥
� (-C ) 2 [� (g), � (bg#C )) and #C � < | NC ,bg#C > g

⇤
Pr

⇥bg#C > g | NC
⇤

 Pr
⇥
� (-C ) � (1 � d (3)) 2 [�n#C , 0) and #C � < | NC ,bg#C  g

⇤
Pr

⇥bg#C  g | NC
⇤

+ Pr
⇥
� (-C ) � (1 � d (3)) 2 [0, n#C +

1/#C ) and #C � < | NC ,bg#C > g
⇤
Pr

⇥bg#C > g | NC
⇤

 n< +<�1,

where in the last inequality we use the fact that � (-C ) is uniformly distributed in [0, 1], when -C is
drawn independently of N(C) and bg#C .

The proof follows by combining the above inequalities with the fact that Pr [¬NC and #C � <] 

X< , which follows by Lemma 4.5. ⇤

Su�ciency of samples. With Lemma 4.3 in place, to upper-bound the regret through (4.2), it
su�ces to �nd a su�ciently strong lower bound on #C .
By noticing that any policy observes at least one sample every 3 + 1 rounds, the following

deterministic lower bound on the number of samples obtained is immediate:

F��� 4.6. For any instance of delay 3 , for the number of samples collected by the policy at the
beginning of round C , we have #C � b

C�1
3+1 c.

As it turns out, simply using Fact 4.6 to lower bound #C would yield an unnecessary dependence
on the delay parameter 3 in our regret upper bound. To see that this dependence is unnecessary, let
us �rst consider the following simpler question: how many samples does a policy A

0 with a �xed
threshold g 0 = ��1 (1 � 1.5/(3+1)) “typically” collect? Using the same arguments as in Lemma 3.4,
it is straightforward to verify that the stationary resource availability distribution induced by
A
0 satis�es c 0(0) = (3+1)/(2.53+1), and, thus, A 0 collects a linear and independent of 3 number

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



Learning To Maximize Welfare with a Reusable Resource 27:15

of samples in expectation. Moreover, by appealing to a particular form of the Azuma-Hoe�ding
inequality [17, Corollary 5.20], we can show that this occurs not only in expectation, but also with
high probability:

L���� 4.7. Let # 0C denote the number of samples available at the beginning of round C to the
policy which uses as threshold g 0 = ��1 (1 � 1.5/3+1), initialized in an arbitrary availability state
( 00 2 {0, . . . ,3}. Then, with probability at least 1 � X ,

# 0C �
©≠
´
d 0(3) � 43 · 3

s
log(1/X)
2(C � 1)

™Æ
¨
· (C � 1) � 43 · 3,

where d 0(3) = (3+1)/2.53+1.

Notice that algorithm A
0 described above can be thought of as an “eager” version our Bayesian

policy, which collects rewards more frequently than Algorithm 1. The key-idea is that we can view
the threshold set by this eager policy (after a small number of rounds) as a high-probability lower
bound on the estimated threshold used by Algorithm 2. As long as this high-probability event
occurs, we can show that, by reasoning about a coupled version of A 0 and Algorithm 2, the latter
collects more samples than A

0 (up to a small additive loss). Using these insights, we are able to
establish the following key result:

L���� 4.8. Let #C denote the number of samples available to Algorithm 2 at the beginning of round
C . Then, with probability at least 1 � X, for any time C > C0 := 2(3 + 1)3 log(4=/X),

#C � # (C) := ©≠
´
d 0(3) � 43 · 3

s
log(2/X)

2(C � C0 � 1)
™Æ
¨
· (C � C0 � 1) � 43 · 3,

where d 0(3) = (3+1)/2.53+1.

P����. Recall that we use L to refer to Algorithm 2. For the sake of this proof, we de�ne
A
0 to be a policy that follows the decisions of L up to (and including) time C0 and then uses as

a �xed threshold the value g 0 = ��1 (1 � 1.5/(3+1)) for the remaining time steps. Thus, the two
algorithms have the same availability state (i.e., number of rounds until the resource is available) at
the beginning of time C0 + 1.
The high-level idea behind our proof is the following: �rst, using the weak lower bound of

Fact 4.6, we show that between rounds 1 and C0, algorithm L has collected enough information
so that its empirical threshold always overestimates that of A 0 in rounds C0 + 1 to C � 1. Then,
using a deterministic charging argument we show that, under the above assumption, the number of
samples collected by L between rounds C0 + 1 and C � 1 is lower bounded by that of A 0. Finally,
using Lemma 4.7, we provide a high-probability lower bound on this number of samples collected
by A

0 (and, hence, by L) between rounds C0 + 1 and C � 1.
Let us denote by # [C1,C2 ] (resp., # 0[C1,C2 ] ) the number of samples observed by L (resp. A 0) between

rounds C1 and C2 (including C1 and C2). Using this notation and recalling that #C (resp., # 0C ) is the
number of samples collected by L (resp. A 0) at the beginning of round C , we have that

Pr
⇥
#C < # (C)

⇤
= Pr

⇥
#C0 + # [C0+1,C�1] < # (C)

⇤
 Pr

⇥
# [C0+1,C�1] < # (C)

⇤
,

where the inequality follows by the fact that #C0 and # [C0+1,C�1] are non-negative integers. Hence,
to prove the lemma it su�ces to show that Pr

⇥
# [C0+1,C�1] < # (C)

⇤
 X .

Let us denote G✓ =
�bg#✓ � g 0

 
as the indicator of a “good” event at time ✓ – namely, that the

threshold bg#✓ used by L overestimates g 0 = ��1 (1 � 1.5/(3+1)). Further, for any C2 � C1, let us denote

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



27:16 Ma�hew Faw et al.

by G[C1,C2 ] =
—C2

✓=C1 G✓ the event that G✓ is true for all rounds ✓ 2 [C1, C2]. Then, by using the above
de�nitions, we have that

Pr
⇥
# [C0+1,C�1] < # (C)

⇤
= Pr

⇥
# [C0+1,C�1] < # (C),¬G[C0+1,C�1]

⇤
+ Pr

⇥
# [C0+1,C�1] < # (C),G[C0+1,C�1]

⇤
 Pr

⇥
¬G[C0+1,C�1]

⇤
|              {z              }

(�)

+ Pr
⇥
# [C0+1,C�1] < # (C),G[C0+1,C�1]

⇤
|                                       {z                                       }

(⌫)

.

In the rest of this proof, we upper-bound each of the terms (�) and (⌫) above by X
2 .

Upper-bounding term (�). We �rst note that, for g = ��1
�
1 � 1

3+1
�
, we have

Pr
⇥
¬G[C0+1,C�1]

⇤


C�1’
✓=C0+1

Pr
⇥bg#✓ < g 0

⇤



C�1’
✓=C0+1

Pr
⇥
� (bg#✓ ) < � (g 0)

⇤

=
C�1’

✓=C0+1
Pr

h
� (bg#✓ ) �

b�#✓ (bg#✓ ) < � (g 0) � � (g) + � (g) � b�#✓ (bg#✓ )

i
.

Now, by de�nition of bg#✓ , we know that b�#✓ (bg#✓ ) � 1 � 1/(3+1) for every ✓ . Further, by de�nition of
g and g 0, � (g 0) � � (g) = �1/2(3+1). Thus, combining these facts with the above, we conclude that

Pr
⇥
¬G[C0+1,C�1]

⇤


C�1’
✓=C0+1

Pr

� (bg#✓ ) �

b�#✓ (bg#✓ ) < �
1

2(3 + 1)
)

�



C�1’
✓=C0+1

Pr

sup
G 2R

���b�#✓ (G) � � (G)
��� > 1

2(3 + 1)

�



C�1’
✓=C0+1

2 exp
✓
�

✓�
✓ � 1
3 + 1

⌫◆
1

2(3 + 1)2

◆


X

2
.

where the third inequality follows by Lemma 4.5 combined with #✓ � b (✓�1)/(3+1)c, by Fact 4.6. The
last inequality follows by our choice of C0.

Upper-bounding term (⌫). The �rst step to upper-bound term (⌫) above is to compare through a
deterministic charging argument the number of samples collected within rounds C0 + 1 to C � 1 by
L with that of A 0.

Let us �x any sequence of realized rewards-✓ for ✓ 2 [1, C�1], which satis�es the event G[C0+1,C�1]
(recall that for �xed realizations the trajectory of L is deterministic). We argue that in any such
realization, it holds # [C0+1,C�1]  # 0

[C0+1,C�1]
, namely, algorithm L collects at least as many samples

as A 0.
Letl✓ (resp.,l 0✓ ) be the availability state of algorithmL (resp.A 0) at round C , namely, the number

of rounds until the resource becomes available again. Recall that, by de�nition of A 0, the two
algorithms meet at round C0 + 1. Further, we call some round ✓ a meeting point if the two algorithms
meet at state l✓ = l 0✓ = 0. Then, it su�ces to show that between two consecutive meeting points ✓1
and ✓2, the number of samples collected by L cannot be less than that of A 0.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



Learning To Maximize Welfare with a Reusable Resource 27:17

Suppose the two algorithms reach a meeting point ✓1. First, we note that as long as none of the
algorithms collects a reward, the di�erence between the numbers of observed samples does not
change. Second, by de�nition of G[C0+1,C�1] , the threshold of L cannot be smaller than that of A 0
for any ✓ 2 [C0 + 1, C � 1] and, hence, if L collects a reward at time ✓1, so must A 0. Now, suppose at
some meeting point ✓1 2 [C0 + 1, C � 1] algorithm A

0 collects a reward and L does not. Then, if L
does not collect any reward until the next meeting point (where A 0 returns to state 0), then L has
trivially observed more rewards than A

0 between the two meeting points. In the opposite case, let
a be the number of rounds after ✓1 where L observes rewards while A 0 is blocked. This creates
an excess of a in the samples collected by L compared to A

0. Now, notice that in order for this
excess to decrease, it has to be that A 0 stays at state 0, while L is blocked. However, every time
the excess decreases by 1, algorithm L comes one step closer to also being available (thus leading
to a new meeting point). By the above argument, it is easy to verify that the excess in number of
samples of L against A 0 can never become negative.

By the above analysis, for every �xed sample pathwhereG[C0+1,C�1] holds, we have that# [C0+1,C�1] 

# 0
[C0+1,C�1]

and, thus

Pr
⇥
# [C0+1,C�1] < # (C),G[C0+1,C�1]

⇤
 Pr

h
# 0

[C0+1,C�1] < # (C),G[C0+1,C�1]

i
 Pr

h
# 0

[C0+1,C�1] < # (C)
i
.

Now, by applying Lemma 4.7 for X/2 (which allows A
0 to start from an arbitrary state) for

C � (C0 + 1) + 1 = C � C0 rounds, we get that Pr
h
# 0

[C0+1,C�1]
< # (C)

i


X
2 , which concludes the

proof. ⇤

Putting it all together. Given the result of compensated coupling in Lemma 4.2, together with
Lemmas 4.3 and 4.8, the proof of Theorem 4.1 is immediate:

P���� �� T������ 4.1. By Lemma 4.2, it su�ces to bound Pr
⇥
-C 2 [bg#C , g) [ [g,bg#C )

⇤
for each

time C . Now, by Lemma 4.8, and taking C0 = 2(3 + 1)3 log(4=/X), if we have that C � C1 := (C0 + 1) +
2433 log(2/X)

d0 (3) , then with probability at least 1 � X , #C � d0 (3)/2 · (C � C1). Combining this insight with
Lemmas 4.2 and 4.3, it follows that, setting<C = d0 (3)/2 · (C � C1),

Regretd (3) (=)  C1 +
=’

C>C1

�
Pr

⇥
-C 2 [bg#C , g) [ [g,bg#C ) and #C � <C

⇤
+ Pr [#C < <C ]

�

 C1 + = · X +

=’
C>C1

�
n<C +<

�1
C + X<C

�

 C1 + = · X +

=�C1’
B=1

©≠
´

s
2(log(d0 (3)2/2 · B2) + log(B (B + 1)))

d 0(3)B
+

2
d 0(3)B

+
4

d 0(3)2B2
™Æ
¨

 C1 + = · X +
2p
d 0(3)

q
2
�
log(d0 (3)2/2 · =2) + log(=(= + 1))

�
· =

+
2

d 0(3)
(1 + log(=)) +

2c2

3d 0(3)2
.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



27:18 Ma�hew Faw et al.

Therefore, recalling our choices of C0 and C1, and choosing X = 1/=, we conclude that

Regretd (3) (=)  4

s
log(2=2)
d 0(3)

· = + 2(3 + 1)3
✓
1 +

1
(3 + 1)3d 0(3)

◆
+

43

(3 + 1)2d 0(3)
log(4=2)

+ 2
✓
1 +

1
d 0(3)

◆
+

2c2

3d 0(3)2

.
p
= · log(=) + 33 log(=),

as claimed. ⇤

5 UNCONDITIONAL HARDNESS AND REGRET LOWER BOUND
In this section, we study the tightness of the upper bounds presented in Sections 3 and 4. Speci�cally,
we �rst show that the policy we provide for the Bayesian setting achieves (asymptotically) the
optimal competitive guarantee. Then, we show that the d (3)-regret upper bound we provide for
learning this optimal policy has an optimal dependence in the time horizon up to poly-logarithmic
factors.

5.1 Unconditional hardness
Our upper bound on the asymptotic competitive guarantee is based on the following construction:
H��� E����������: For any �xed n > 0 and delay 3 � 1, we consider a discrete reward

distribution, such that - = 1 (“small”) with probability 1 � n , and - = -max = 1 + 1
3 ·n (“large”) with

probability n . The time horizon is =.
The following result implies that our Bayesian policy of Section 3 achieves the best possible

competitive guarantee (asymptotically). Interestingly, this result has been proven in the setting of
contextual blocking bandits [5], which is related to our setting, when the distribution is discrete
and has a small �nite support. For completeness, we provide a proof of this result in Appendix C.

T������ 5.1 (U������������ ��������, [5]). For any n > 0 and delay 3 � 1, there cannot exist
a (d (3) + n)-competitive algorithm for the asymptotic case of our problem, where d (3) = 3+1

23+1 .

5.2 Regret lower bound
We now turn our attention to the regret against an optimal gambler’s policy. We are able to show
the following lower bound on the regret guarantee.

T������ 5.2 (R����� ����� �����). For any learning policy and any 3 � 1, there exists an
environment with delay 3 such that the regret of that policy is at least ⌦

�p
=/33/2

�
.

For any delay 3 � 1, time horizon = � 1, and parameter n 2 (0, 1/(3+1)), the proof of Theorem 5.2
relies on the construction of the following two environments:

E���������� E1 (resp., E2): We consider a discrete reward distribution, such that- = 1 (“small”)
with probability 1� 1/(3+1) + n (resp., 1� 1/(3+1) � n), and - = -max = 23+1

3 (“large”) with probability
1

3+1 � n (resp.,
1

3+1 + n).2
It is not hard to see that, at any round C , and for our chosen environments, any policy can be

viewed as choosing to play one of the following two natural “strategies,” which apply both in
environments E1 and E2 (we make this point clear in the following paragraph):

2One might notice that the regret upper bound in Theorem 4.1 assumed all rewards were on the interval [0, 1], while here,
the rewards are on the interval [1, 3] (since (23+1)/3  3). This discrepancy is no issue, however, since is straightforward to
show that Theorem 4.1 continues to hold (up to constant factors) as long as the rewards are upper bounded by a constant.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



Learning To Maximize Welfare with a Reusable Resource 27:19

S������� S1 (resp., S2): If the resource is available at time C , accept any reward (resp., accept
only the reward -max = 23+1

3 ). Otherwise, skip the round.
One key di�culty in proving Theorem 5.2 is that, unlike in standard bandit lower bounds, our

policies observe each reward before making the decision of whether or not to accept it. However, a
crucial insight is that, for the environments E1 and E2 considered in the lower bound construction,
we may assume w.l.o.g. that any policy decides before observing the reward whether to play strategy
S1 or S2 at each round. While this assumption is not generally true, it holds for our choice of E1
and E2. In order to see that, we �rst note that, for the purpose of lower bounding the regret, we can
assume that the player knows a priori the support of the reward distribution (which is common in
both environments). Further, since the large reward - = -max = 23+1

3 is always collected by both
S1 and S2 (if the resource is available), any algorithm can be characterized by the probability of
playing according to strategy S1 or S2 at each round. Thus, since this decision produces a di�erent
outcome only when the subsequent reward is small (that is, - = 1), any algorithm can simulate
this decision before the observing the next reward.

Collected rewards. It is convenient to consider the asymptotic expected time-averaged reward
collected by an (asymptotically) optimal3 policy, which we denote as:

E
h
ALG

⇤

1

i
= lim

=!1
sup
g 2R

1
=

’
C 2 [=]

E [-C · {-C > g and free (C)}] . (7)

Let us denote by Regretd (3) (=; E8 ) the regret of a policy under environment E8 . Note that, as a
consequence of Lemmas 3.2 and 3.4, and since the rewards o�ered at each round are at most a
constant, the regret in environment E8 can be lower bounded under this notation as:

Regretd (3) (=;E8 ) � = · E
h
ALG

⇤

1

i
� E

266664
’
C 2 [=]

-C · {ALG collects -C }

377775
� O(3). (8)

In the next Lemma, we characterize the asymptotically-optimal policy for each of our environ-
ments.

L���� 5.3. The asymptotically-optimal policy for environment E1 (resp., E2) is to play strategy
S1 (resp., S2) at every time step. Further, the asymptotic expected time-averaged reward collected by
these policies is

E
E1

h
ALG

⇤

1

i
=
1 � n
3

and E
E2

h
ALG

⇤

1

i
=
1 + n · W (3, n)

3
,

where W (3, n) := 1+3
1+3 ( 1

3+1+n)
. Note that W (3, n) > 1 for every 3 � 1 and n 2 (�

1
3+1 ,

1
3+1 ).

Time-aggregated suboptimality gaps. Another main di�culty in proving Theorem 5.2 is that,
unlike in standard bandit lower bound arguments (e.g., [7]), the instantaneous regret can be
negative. In particular, whenever an algorithm collects the large reward, the optimal policy’s
expected instantaneous reward is smaller than this value.
However, the key insight is that even though a policy might instantaneously be better than the

expected optimal policy, the resource becomes blocked for the next 3 time steps and, thus, the policy
becomes unable to collect (or even observe) the associated rewards. Therefore, instead of considering
what the optimal policy collects instantaneously, we consider what it collects cumulatively over
this 3 + 1-time window, so that the regret over this interval is no longer negative.
3Note that, as a consequence of Lemma 3.2, there exists an asymptotically optimal threshold-based policy. Hence, we may
restrict our attention to threshold-based policies, which accept a reward only it is greater than some threshold g .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



27:20 Ma�hew Faw et al.

L���� 5.4. Let �C 2 {S1,S2} be the strategy chosen by an algorithm A at time C , and denote by
)S8 (=) =

Õ=
C=1 {�C = S8 and freeA(C)} the number of times over a time horizon = where strategy S8

is played while the resource is not blocked. Then, the regret in environment E8 can be lower bounded as

Regretd (3) (=; E8 ) � �E8
S1
E
E8

⇥
)S1 (=)

⇤
+ �E8

S2
E
E8

⇥
)S2 (=)

⇤
� O(3),

where �E8
S9

is the time-aggregated suboptimality gap corresponding to the regret incurred by the
algorithm for playing strategy S9 in environment E8 , where:

�E8
S1

= (3 + 1) · E
E8

h
ALG

⇤

1

i
� E

E8

[- ] ,

�E8
S2

= E
E8

h
ALG

⇤

1

i
· Pr
E8

[- = 1] +
✓
(3 + 1) E

E8

h
ALG

⇤

1

i
� -max

◆
· Pr
E8

[- = -max] .

In particular, �E1
S1

= 0 = �E2
S2
, and

�E1
S2

=
n · 3 + n2 · (3 + 1)

1 + 3
= ⇥(n) and �E2

S1
=
n · 3 � n2 · (3 + 1)
1 + 3

� 1
3+1 + n

� = ⇥(3 · n).

With this regret decomposition in place, we are now ready to prove Theorem 5.2.

P���� �� T������ 5.2. Using the time-aggregation insight from Lemma 5.4, together with the
fact that the algorithm deterministically collects =/(3+1) samples over = time steps (i.e., )S1 (=) +
)S2 (=) � =/(3+1)), we may obtain a regret lower bound in a similar manner as in the stochastic
bandit setting (see, e.g., [34, Theorem 15.1]). In particular,

Regretd (3) (=; E1) + Regretd (3) (=; E2)

� �E1
S2
E
E1

⇥
)S2 (=)

⇤
+ �E2

S1
E
E2

⇥
)S1 (=)

⇤
� O(3)

� �E1
S2
E
E1


)S2 (=)

⇢
)S2 (=) �

=

2(3 + 1)

��
+ �E2

S1
E
E2


)S1 (=)

⇢
)S2 (=) <

=

2(3 + 1)

��
� O(3)

�

min{�E1
S2
,�E2

S1
}=

2(3 + 1)

✓
Pr
E1


)S2 (=) �

=

2(3 + 1)

�
+ Pr

E2


)S2 (=) <

=

2(3 + 1)

� ◆
� O(3)

�

min{�E1
S2
,�E2

S1
}=

4(3 + 1)
exp

✓
�⇡KL

✓
Pr
E1

[·] k Pr
E2

[·]

◆◆
� O(3),

where the �rst inequality follows by the fact that �E8
S8

= 0 for 8 2 {1, 2}, and the second by the fact
that )S1 +)S2 �

=/(3+1), since the resource is available for at least =/(3+1) rounds. Finally, the third
inequality follows by the Bretagnolle-Huber inequality [6].

Let�= = (�1,-1,'1, . . . ,�=,-=,'=) be the sequence of action-observed sample-collected rewards
produced by an =-round interaction between the learning policy and the environment. Denote ?
(resp., ? 0) as the Radon-Nikodym derivative of PrE1 [·] (resp., PrE2 [·]). Under this notation, we

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



Learning To Maximize Welfare with a Reusable Resource 27:21

have that

⇡KL

✓
Pr
E1

[·] k Pr
E2

[·]

◆
= E

E1


log

✓
? (�=)

? 0(�=)

◆�

=
=’
C=1
E
E1


log

✓
? (�C | �C�1)? (-C | �C�1,�C )? ('C | �C�1,�C ,-C )

? 0(�C | �C�1)? 0(-C | �C�1,�C )? 0('C | �C�1,�C ,-C )

◆�

=
=’
C=1
E
E1


log

✓
? (-C | �C�1,�C )

? 0(-C | �C�1,�C )

◆�

 = · ⇡KL (? (- ) k ? 0(- )) ,

where the �rst equality follows by de�nition of KL-divergence and the second by Bayes’ rule. The
third equality follows by noting that (i) w.l.o.g., the policy decides on an action (or a distribution
over actions) before observing the reward and (ii) the collected reward is a deterministic function
of the history and current action and sample. The fourth inequality follows since the sample -C is
either (a) not observed in either environment (an occurrence which is completely determined by
the hisory �C�1), or (b) drawn independently from the environment’s distribution.

Since the KL-divergence is upper-bounded by the j2-distance, we get that

⇡KL (? (- ) k ? 0(- ))  j2 (? (- ) k ? 0(- )) =
4n2� 1

3+1 + n
� �
1 � 1

3+1 � n
�  16 · (3 + 1) · n2,

where the �nal inequality holds assuming that 0 < n < 1
2(3+1) . Finally, by combining the above

bounds, we have that

Regretd (3) (=; E1) + Regretd (3) (=; E2) �
min{�E1

S2
,�E2

S1
} · =

4(3 + 1)
· exp

�
�16(3 + 1) · n2 · =

�
� O(3).

Noting that n < 1
2(3+1) , the expressions from Lemma 5.4 imply that min{�(1)

S2
,�(2)

S1
} � 2·n/7. There-

fore, taking n = 1
4
p

(3+1)=
(which sati�es n  1

2(3+1) , since w.l.o.g., = � 3 � 3+1
4 for 3 � 1), we then

have that

Regretd (3) (=; E1) + Regretd (3) (=; E2) �
4�1
p
=

56(3 + 1)3/2
� O(3).

Hence, there must exist an environment with regret at least ⌦
�p

=/33/2
�
. ⇤

CONCLUSION AND FURTHER DIRECTIONS
We introduced and studied a practical variant of the IID prophet inequality problem where, once a
reward is collected by the decision-maker, she loses her ability to collect or observe any reward for a
�xed number of rounds. For the Bayesian case of our problem, we designed a simple threshold-based
prophet inequality and proved its asymptotic optimality. For the learning case, we showed that
the empirical estimate of the threshold from the Bayesian setting has a su�ciently high accuracy,
and that using this estimate as a threshold achieves sublinear regret. Moreover, by introducing a
notion of time-aggregated suboptimality gaps, we were able to reduce a speci�c instance of our
learning problem to that of a two-armed bandit problem, allowing us to prove a lower bound on
regret which matches our upper bound up to poly-logarithmic factors.
Our work leaves behind a number of interesting open questions. One natural extension of our

model is that of stochastic delay of known distribution (possibly correlated with the rewards). We
remark, however, that in the case where the delay realization is not observed by the gambler before
taking an action, there is no policy with non-trivial competitive guarantee against a prophet which

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



27:22 Ma�hew Faw et al.

knows all reward and delay realizations a priori. Another natural extension is to multiple (identical
or not) reusable resources. For the identical case, while the problem can still be modeled as an LP
(similarly to (MP)), it is unclear to us if its optimal solution can still motivate the construction of an
e�cient (or even threshold-based) algorithm. Finally, it would be interesting to show if there is any
advantage a learning policy might receive by observing samples at every round, independently of
the resource availability. Notice that since, by Lemma 4.8, our policy collects ⌦(C) samples at time
C with high probability, any such di�erence should come from the deterministic guarantee on the
number of samples available. Identifying the actual dependence on the delay parameter is by itself
an interesting direction.

ACKNOWLEDGEMENTS
This research is supported in part by NSF Grants 1826320, 2019844 and 2112471, ONR Grant N00014-
19-1-2566, and the Wireless Networking and Communications Group (WNCG) Industrial A�liates
Program.

REFERENCES
[1] Melika Abolhassani, Soheil Ehsani, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Robert Kleinberg, and Brendan

Lucier. 2017. Beating 1-1/e for ordered prophets. In Proceedings of the 49th Annual ACM SIGACT Symp. on Theory of
Computing. 61–71.

[2] Saeed Alaei. 2014. Bayesian combinatorial auctions: Expanding single buyer mechanisms to many buyers. SIAM J.
Comput. 43, 2 (2014), 930–972.

[3] Saeed Alaei, MohammadTaghi Hajiaghayi, and Vahid Liaghat. 2012. Online Prophet-Inequality Matching with
Applications to Ad Allocation. In Proceedings of the 13th ACM Conf. on Electronic Commerce (Valencia, Spain) (EC ’12).
ACM, NY, NY, USA, 18–35.

[4] Pablo D Azar, Robert Kleinberg, and S Matthew Weinberg. 2014. Prophet inequalities with limited information. In
Proceedings of the twenty-�fth annual ACM-SIAM symposium on Discrete algorithms. SIAM, 1358–1377.

[5] Soumya Basu, Orestis Papadigenopoulos, Constantine Caramanis, and Sanjay Shakkottai. 2021. Contextual blocking
bandits. In Int’l Conf. on Arti�cial Intelligence and Statistics. PMLR, 271–279.

[6] Jean Bretagnolle and Catherine Huber. 1979. Estimation des densités: risque minimax. Zeitschrift für Wahrschein-
lichkeitstheorie und verwandte Gebiete 47, 2 (1979), 119–137.

[7] Sébastien Bubeck and Nicolo Cesa-Bianchi. 2012. Regret analysis of stochastic and nonstochastic multi-armed bandit
problems. arXiv preprint arXiv:1204.5721 (2012).

[8] Constantine Caramanis, Paul Dütting, Matthew Faw, Federico Fusco, Philip Lazos, Stefano Leonardi, Orestis Pa-
padigenopoulos, Emmanouil Pountourakis, and Rebecca Rei�enhäuser. 2022. Single-Sample Prophet Inequalities via
Greedy-Ordered Selection. In Proceedings of the 2022 Annual ACM-SIAM Symp. on Discrete Algorithms (SODA). SIAM,
1298–1325.

[9] Shuchi Chawla, Jason D. Hartline, David L. Malec, and Balasubramanian Sivan. 2010. Multi-Parameter Mechanism
Design and Sequential Posted Pricing. In Proceedings of the Forty-Second ACM Symp. on Theory of Computing (Cambridge,
Massachusetts, USA) (STOC ’10). ACM, NY, NY, USA, 311–320.

[10] Xinyun Chen, Yunan Liu, and Guiyu Hong. 2020. An online learning approach to dynamic pricing and capacity sizing
in service systems. arXiv:2009.02911 [math.PR]

[11] Yuan Shih Chow, Herbert Ellis Robbins, and David Siegmund. 1971. Great expectations: The theory of optimal stopping.
[12] José Correa, Paul Dütting, Felix Fischer, and Kevin Schewior. 2019. Prophet Inequalities for I.I.D. Random Variables

from an Unknown Distribution. In Proceedings of the 2019 ACM Conf. on Economics and Computation (Phoenix, AZ,
USA) (EC ’19). ACM, NY, NY, USA, 3–17.

[13] José Correa, Patricio Foncea, Ruben Hoeksma, Tim Oosterwijk, and Tjark Vredeveld. 2017. Posted price mechanisms
for a random stream of customers. In Proceedings of the 2017 ACM Conf. on Economics and Computation. 169–186.

[14] Jose Correa, Patricio Foncea, Ruben Hoeksma, Tim Oosterwijk, and Tjark Vredeveld. 2019. Recent Developments in
Prophet Inequalities. SIGecom Exch. 17, 1 (May 2019), 61–70.

[15] José R. Correa, Andrés Cristi, Boris Epstein, and José A. Soto. 2020. The Two-Sided Game of Googol and Sample-Based
Prophet Inequalities. In Proceedings of the 2020 ACM-SIAM Symp. on Discrete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5-8, 2020. 2066–2081.

[16] John P. Dickerson, Karthik A. Sankararaman, Aravind Srinivasan, and Pan Xu. 2021. Allocation Problems in Ride-
Sharing Platforms: Online Matching with O�ine Reusable Resources. ACM Trans. Econ. Comput. 9, 3, Article 13 (jun

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.

https://arxiv.org/abs/2009.02911


Learning To Maximize Welfare with a Reusable Resource 27:23

2021), 17 pages.
[17] Devdatt P Dubhashi and Alessandro Panconesi. 2009. Concentration of measure for the analysis of randomized algorithms.

Cambridge University Press.
[18] Paul Dutting, Michal Feldman, Thomas Kesselheim, and Brendan Lucier. 2020. Prophet inequalities made easy:

Stochastic optimization by pricing nonstochastic inputs. SIAM J. Comput. 49, 3 (2020), 540–582.
[19] Aryeh Dvoretzky, Jack Kiefer, and Jacob Wolfowitz. 1956. Asymptotic minimax character of the sample distribution

function and of the classical multinomial estimator. The Annals of Mathematical Statistics (1956), 642–669.
[20] Tomer Ezra, Michal Feldman, Nick Gravin, and Zhihao Gavin Tang. 2020. Online Stochastic Max-Weight Matching:

Prophet Inequality for Vertex and Edge Arrival Models. In Proceedings of the 21st ACM Conf. on Economics and
Computation (Virtual Event, Hungary) (EC ’20). ACM, NY, NY, USA, 769–787.

[21] Moran Feldman, Ola Svensson, and Rico Zenklusen. 2016. Online Contention Resolution Schemes. In Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symp. on Discrete Algorithms (Arlington, Virginia) (SODA ’16). Society for
Industrial and Applied Mathematics, USA, 1014–1033.

[22] Amos Fiat, Ilia Gorelik, Haim Kaplan, and Slava Novgorodov. 2015. The temp secretary problem. In Algorithms-ESA
2015. Springer, 631–642.

[23] Xiao-Yue Gong, Vineet Goyal, Garud N. Iyengar, David Simchi-Levi, Rajan Udwani, and Shuangyu Wang. 0. Online
Assortment Optimization with Reusable Resources. Management Science 0, 0 (0), null.

[24] Vineet Goyal, Garud Iyengar, and Rajan Udwani. 2021. Asymptotically Optimal Competitive Ratio for Online Allocation
of Reusable Resources. arXiv:2002.02430 [cs.DS]

[25] Nikolai Gravin and Hongao Wang. 2019. Prophet Inequality for Bipartite Matching: Merits of Being Simple and Non
Adaptive. In Proceedings of the 2019 ACM Conf. on Economics and Computation (Phoenix, AZ, USA) (EC ’19). ACM, NY,
NY, USA, 93–109.

[26] Mohammad Taghi Hajiaghayi, Robert Kleinberg, and Tuomas Sandholm. 2007. Automated online mechanism design
and prophet inequalities. In AAAI, Vol. 7. 58–65.

[27] Theodore P Hill and Robert P Kertz. 1982. Comparisons of stop rule and supremum expectations of iid random
variables. The Annals of Probability 10, 2 (1982), 336–345.

[28] Thomas Jaksch, Ronald Ortner, and Peter Auer. 2010. Near-optimal Regret Bounds for Reinforcement Learning. Journal
of Machine Learning Research 11, 4 (2010).

[29] Thomas Kesselheim and Andreas Tönnis. 2016. Think eternally: Improved algorithms for the temp secretary problem
and extensions. arXiv preprint arXiv:1606.06926 (2016).

[30] Robert Kleinberg and Seth Matthew Weinberg. 2012. Matroid prophet inequalities. In Proceedings of the forty-fourth
annual ACM symposium on Theory of computing. 123–136.

[31] Ulrich Krengel and Louis Sucheston. 1977. Semiamarts and �nite values. Bull. Amer. Math. Soc. 83 (1977), 745–747.
[32] Ulrich Krengel and Louis Sucheston. 1978. On semiamarts, amarts, and processes with �nite value. Probability on

Banach Spaces (01 1978), 197–266.
[33] Kailasam Lakshmanan, Ronald Ortner, and Daniil Ryabko. 2015. Improved regret bounds for undiscounted continuous

reinforcement learning. In Int’l Conf. on Machine Learning. PMLR, 524–532.
[34] Tor Lattimore and Csaba Szepesvári. 2020. Bandit Algorithms. Cambridge University Press. https://doi.org/10.1017/

9781108571401
[35] Retsef Levi and Ana Radovanović. 2010. Provably Near-Optimal LP-Based Policies for Revenue Management in Systems

with Reusable Resources. Operations Research 58, 2 (2010), 503–507.
[36] David A Levin and Yuval Peres. 2017. Markov chains and mixing times. Vol. 107. American Mathematical Soc.
[37] Brendan Lucier. 2017. An Economic View of Prophet Inequalities. SIGecom Exch. 16, 1 (Sept. 2017), 24–47.
[38] Ronald Ortner and Daniil Ryabko. 2013. Online regret bounds for undiscounted continuous reinforcement learning.

arXiv preprint arXiv:1302.2550 (2013).
[39] Jian QIAN, Ronan Fruit, Matteo Pirotta, and Alessandro Lazaric. 2019. Exploration Bonus for Regret Minimization in

Discrete and Continuous Average Reward MDPs. In Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran Associates, Inc.

[40] Aviad Rubinstein. 2016. Beyond Matroids: Secretary Problem and Prophet Inequality with General Constraints (STOC
’16). ACM, NY, NY, USA, 324–332.

[41] Aviad Rubinstein and Sahil Singla. 2017. Combinatorial Prophet Inequalities. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symp. on Discrete Algorithms (Barcelona, Spain) (SODA ’17). Society for Industrial and Applied
Mathematics, USA, 1671–1687.

[42] Aviad Rubinstein, Jack Z. Wang, and S. Matthew Weinberg. 2020. Optimal Single-Choice Prophet Inequalities from
Samples. In 11th Innovations in Theoretical Computer Science Conf., ITCS 2020, January 12-14, 2020, Seattle, Washington,
USA (LIPIcs, Vol. 151). 60:1–60:10.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.

https://arxiv.org/abs/2002.02430
https://doi.org/10.1017/9781108571401
https://doi.org/10.1017/9781108571401


27:24 Ma�hew Faw et al.

[43] Ester Samuel-Cahn. 1984. Comparison of Threshold Stop Rules and Maximum for Independent Nonnegative Random
Variables. Annals of Probability 12 (1984), 1213–1216.

[44] Albert N Shiryaev. 2007. Optimal stopping rules. Vol. 8. Springer Science & Business Media.
[45] Aristide Tossou, Debabrota Basu, and Christos Dimitrakakis. 2019. Near-optimal optimistic reinforcement learning

using empirical bernstein inequalities. arXiv preprint arXiv:1905.12425 (2019).
[46] Alberto Vera and Siddhartha Banerjee. 2019. The bayesian prophet: A low-regret framework for online decision

making. ACM SIGMETRICS Performance Evaluation Review 47, 1 (2019), 81–82.

A CONSTRUCTING AN OPTIMAL POLICY IN THE BAYESIAN SETTING: OMITTED
PROOFS

L���� 3.2. LetMP⇤ be an optimal solution of (MP) andOPT be the reward collected by the prophet.
Then, it is the case that

MP⇤ �
✓
1 �

3 + 1
= + 3 + 1

◆
· E [OPT] .

P����. Let @̂(G) = 1
=

Õ=
C=1 5 (G,-C 2 OPT), where by OPT we denote both the total reward and

the set of rewards collected by the prophet, and 5 denotes the joint density of a reward -C ⇠ D

and the outcome of {-C 2 OPT}. For the expected prophet’s reward, we have:

E [OPT] =
’
C 2 [=]

π
1

G=0
G · 5 (G,-C 2 OPT)3G

= = ·

π
1

G=0
G ·

1
=

’
C 2 [=]

5 (G,-C 2 OPT)3G = = ·

π
1

G=0
G · @̂(G)3G .

For the second set of constraints of (MP) and for any G , we have

0  @̂(G) =
1
=

=’
C=1

5 (G,-C 2 OPT) 
1
=

=’
C=1

5 (G,-C 2 OPT) + 5 (G,-C 8 OPT) = 5 (G).

Finally, for the �rst set of constraints, we have

π
1

G=0
@̂(G)3G =

1
=

=’
C=1

π
1

G=0
5 (G,-C 2 OPT)3G 

1
=

l =

3 + 1

m


1
3 + 1

✓
1 +

3 + 1
=

◆
,

where we use the fact that for time horizon = and delay 3 , at most
⌃

=
3+1

⌥
elements can be collected.

By the above analysis, it follows immediately that the solution @̃(G) =
⇣
1 + 3+1

=

⌘�1
@̂(G) for each

G is a feasible solution to (MP) with objective value
⇣
1 � 3+1

=+3+1

⌘
· E [OPT]. This concludes the

proof. ⇤

L���� 3.3. For any continuous distribution D and g = ��1 (1 � 1
3+1 ), the optimal solution of (MP)

equals = · E [- · {- � g}].

P����. Let _G (resp., AG ) be the dual variable corresponding to constraint @(G)  5 (G) (resp.,
@(G) � 0) of (MP) for each G � 0. We denote by ^ the dual variable corresponding to constraintØ
1

G=0 @(G)3G 
1

3+1 .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



Learning To Maximize Welfare with a Reusable Resource 27:25

The following formulation is the dual of (MP):

minimize:
π
1

G=0
_G · 5 (G)3G +

^

3 + 1
(DMP)

s.t.: ^ + _G � AG  = · G 8G � 0
_G , AG � 0 8G � 0

^ � 0.

Let g = ��1
�
1 � 1

3+1
�
, where � is the c.d.f. of D. Note that by continuity of D, we have thatØ

1

G=g 5 (G)3G = 1
3+1 . We consider the following assignment: (i) We set @(G) = 5 (G) for all G � g , and

@(G) = 0, otherwise. (ii) We set _G = = · G � = · g for G � g and _G = 0, otherwise. (iii) Similarly, we
set AG = 0 for G � g and AG = = · g � = · G , otherwise. Finally, (iv) we set ^ = = · g .

For the above assignment, the primal objective becomes

= ·

π
1

G=0
G · @(G)3G = = ·

π
1

G=g
G · 5 (G)3G = = · E [- · {- � g}] .

Similarly, the dual objective becomesπ
1

G=0
_G · 5 (G)3G +

^

3 + 1
= = ·

π
1

G=g
(G � g) · 5 (G)3G + = ·

g

3 + 1

= = ·

π
1

G=g
G · 5 (G)3G � = · g ·

π
1

G=g
5 (G)3G � = ·

g

3 + 1
= = · E [- · {- � g}] ,

where in the last equality we use the fact that
Ø
1

G=g 5 (G)3G = 1
3+1 , by de�nition of g .

Now that strong duality is established, it su�ces to verify the Karush–Kuhn–Tucker (KKT)
optimality conditions. The associated Lagrangian is de�ned as

!(@, _,^, A ) = �= ·

π
1

G=0
G · @(G)3G +

π
1

G=0
_G (@(G) � 5 (G)) 3G

+^

✓π
1

G=0
@(G)3G �

1
3 + 1

◆
�

π
1

G=0
AG · @(G)3G .

It is easy to verify that the above assignment satis�es primal and dual feasibility. Further, for any
G � 0, it can be veri�ed that

m!(@, _,^, A )

m@(G)
= =G � _G � ^ � AG = 0.

In order to verify the complementary slackness conditions, for each G � 0, we have

_G · (@(G) � 5 (G)) = 0,

since _G = 0 if and only if @(G) < 5 (G). Similarly, for each G � 0, we have AG ·@(G) = 0, since AG = 0
for any G � g , where @(G) = 5 (G).

Finally, we have

^ ·

✓π
1

G=0
@(G)3G �

1
3 + 1

◆
= ^ ·

✓π
1

G=g
5 (G)3G �

1
3 + 1

◆
= 0,

since
Ø
1

G=g 5 (G)3G = 1
3+1 . ⇤

Hence, it follows that b�B (bgB )  1� 1
3+1 +

1
B . Further, by construction, b�B (bgB ) � 1� 1

3+1 . Combining
these two bounds proves the claim.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



27:26 Ma�hew Faw et al.

B DESIGNING A REGRET-MINIMIZING POLICY FOR THE LEARNING SETTING:
OMITTED PROOFS

L���� 4.7. Let # 0C denote the number of samples available at the beginning of round C to the
policy which uses as threshold g 0 = ��1 (1 � 1.5/3+1), initialized in an arbitrary availability state
( 00 2 {0, . . . ,3}. Then, with probability at least 1 � X ,

# 0C �
©≠
´
d 0(3) � 43 · 3

s
log(1/X)
2(C � 1)

™Æ
¨
· (C � 1) � 43 · 3,

where d 0(3) = (3+1)/2.53+1.

P����. Let us denote by A
0 the �xed-threshold policy with threshold g 0 = ��1 (1 � 1.5/3+1). We

show this result by proving that # 0C satis�es the averaged Lipschitz condition, which implies that
we can apply the Azuma-Hoe�ding inequality [17, Corollary 5.20].

To begin, let ( 0C 2 {0, . . . ,3} denote the availability state of A 0 at the end of round C , where
( 00 2 {0, . . . ,3} is arbitrary. To begin, let us observe that, by the same arguments as used in
Lemma 3.4,

E
⇥
# 0C

⇤
=

C�1’
B=1
E

⇥ �
( 0B�1 = 0

 ⇤
� d 0(3) · (C � 1) � 43 · 3, (9)

where d 0(3) = (3+1)/(2.53+1). We aim to prove that # 0C satis�es the averaged Lipschitz condition with
parameter 43 · 3 , that is, for any time B 2 {0, . . . , C � 1}, and for any states l,l 0 2 {0, . . . ,3}, we
will show that��E ⇥

#C | (
0

0, . . . , (
0

B�1, (
0

B = l
⇤
� E

⇥
#C | (

0

0, . . . , (
0

B�1, (
0

B = l 0
⇤ ��

=

�����
C’
8=B

E
⇥ �

( 08 = 0
 
| ( 00, . . . , (

0

B�1, (
0

B = l
⇤
� E

⇥ �
( 08 = 0

 
| ( 00, . . . , (

0

B�1, (
0

B = l 0
⇤ �����

 43 · 3 .

Let us denote e( 08 as the process which follows ( 08 for the �rst B�1 time steps, and is at statel 0 at time
B , and evolves according to the analogous coupling as was considered in the proof of Lemma 3.4.
Then under this notation, and as a result of Lemma 3.4, we have that��E ⇥

#C | (
0

0, . . . , (
0

B�1, (
0

B = l
⇤
� E

⇥
#C | (

0

0, . . . , (
0

B�1, (
0

B = l 0
⇤ ��

=

�����
C’
8=B

E
h �

( 08 = 0
 
�

ne( 08 = 0
o
| ( 00, . . . , (

0

B�1, (
0

B = l,e( 0B = l 0
i �����



C’
8=B

E
h��� �

( 08 = 0
 
�

ne( 08 = 0
o��� | ( 00, . . . , ( 0B�1, ( 0B = l,e( 0B = l 0

i



C’
8=B

E
h n

( 08 < e( 08
o
| ( 00, . . . , (

0

B�1, (
0

B = l,e( 0B = l 0
i

 43 · 3,

where the �rst inequality follows by the triangle inequality and Jensen’s inequality, the second
follows since if one of ( 08 or e( 08 is not 0, then ( 08 < e( 08 , and third follows by the same arguments as in
Lemma 3.4.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



Learning To Maximize Welfare with a Reusable Resource 27:27

Hence, by applying (9) together with Azuma-Hoe�ding [17, Corollry 5.20], we conclude that

Pr

"
# 0C < d 0(3) · (C � 1) � 43 · 3

 
1 +

r
(C � 1) log(1/X)

2

!#

 Pr

"
# 0C < E

⇥
# 0C

⇤
� 43 · 3

r
(C � 1) log(1/X)

2

#
 X,

as claimed. ⇤

C UNCONDITIONAL HARDNESS AND REGRET LOWER BOUND: OMITTED
PROOFS

T������ 5.1 (U������������ ��������, [5]). For any n > 0 and delay 3 � 1, there cannot exist
a (d (3) + n)-competitive algorithm for the asymptotic case of our problem, where d (3) = 3+1

23+1 .

P����. For any �xed n > 0 and delay 3 , we consider a discrete reward distribution, such that
- = 1with probability 1�n , and- = -max = 1+ 1

3n with probability n . The time horizon is assumed
to be in�nite, thus we focus our attention on maximizing the expected average reward.

It is easy to see that any optimal policy can either (i) collect any observed reward, if the resource
is available, or (ii) collect the reward only if -C = -max. Clearly, since -max > 1, no optimal policy
skips the reward -max, if it is possible to collect it. For the policy of case (i), we can easily verify
that the average expected reward is equal to 1

3+1 (n-max + 1 � n). For the policy of case (ii), notice
that when the resource is available, a reward is collected with probability n (that is, if -C = -max).
By analyzing the underlying Markov Reward Process, it is easy to see that the expected average
reward of the second policy is exactly equal to n · -max ·

1
1+3n , where

1
1+3n is the probability that

the resource is available. For -max = 1 + 1
3n , we can see that both policies have exactly the same

average reward, which is equal to E [ALG] = 1/3. Thus, the expected average reward that can be
collected by any gambler in the above instance is exactly 1/3.
We now turn our attention to the prophet’s expected average reward. Given that the analysis

of E [OPT] is hard, we instead lower bound the prophet’s expected reward by considering an
approximate prophet that computes a possibly suboptimal solution given knowledge of the reward
realizations. For : 2 Z, we divide the time horizon into blocks of : (3 + 1) consecutive time steps.
At each block, the approximate prophet operates as follows: (a) if all the rewards of the block are
1, the prophet greedily collects any reward within the block starting from the �rst time step. On
the other hand, (b) if there exists a reward -max within the �rst (: � 1) (3 + 1) + 1 time steps of the
block, the prophet collects only this reward within the block. For simplicity, we assume that in any
other case the prophet collects no reward from the block. We remark that in the above algorithm,
the resource is always available at the beginning of each new block. In this setting, the expected
average reward of the approximate prophet is

E [OPT0] =
1

: (3 + 1)

⇣
(1 � n): (3+1) · : + ((: � 1) (3 + 1) + 1) n (1 � n) (:�1) (3�1)-max

⌘

=
(1 � n): (3+1)

3 + 1
+

✓
1 �

1
:
+

1
: (3 + 1)

◆
(1 � n) (:�1) (3�1)

✓
n +

1
3

◆
.

Now, by setting : = 1
3 d> (n

�1
)e and taking the limit for n ! 0, the expected reward collected by

the approximate prophet becomes E [OPT0] = 1/(3+1) + 1/3. Therefore, the competitive ratio of this
instance can be upper-bounded by

E [ALG]
E [OPT]


E [ALG]
E [OPT0]

=
1/3

1/(3+1) + 1/3
=

3 + 1
23 + 1

= d (3).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



27:28 Ma�hew Faw et al.

⇤

L���� 5.3. The asymptotically-optimal policy for environment E1 (resp., E2) is to play strategy
S1 (resp., S2) at every time step. Further, the asymptotic expected time-averaged reward collected by
these policies is

E
E1

h
ALG

⇤

1

i
=
1 � n
3

and E
E2

h
ALG

⇤

1

i
=
1 + n · W (3, n)

3
,

where W (3, n) := 1+3
1+3 ( 1

3+1+n)
. Note that W (3, n) > 1 for every 3 � 1 and n 2 (�

1
3+1 ,

1
3+1 ).

P����. We can easily observe that, when the policy is initialized in the available state, by always
playing under strategy S1 it collects a reward exactly once every 3 + 1 time steps. Thus, at any time
C = : (3 + 1) for some integer : � 0, in environment E1, by playing under strategy S1 the algorithm
collects

E
E1

⇥
-: (3+1)

⇤
= 1 ·

✓
1 �

1
3 + 1

+ n

◆
+ -max ·

✓
1

3 + 1
� n

◆
=

(3 + 1) (1 � n)
3

.

Similarly, when the policy plays in environment E1 under strategy S2, once it reaches stationarity4,
at each time C it collects

-max · Pr
E1

[-C = -max] · cE1 (0) =
1 � n · W (3,�n)

3
,

where cE1 (·) is the stationary distribution of always playing under S2 in environment E1, and
W (3,�n) = 1+3

1+3 ( 1
3+1�n)

> 1 (since n 2 (0, 1/3+1)).
Therefore, noting that the rewards collected in environment E2 have exactly the same expression

after replacing n with �n , the (asymptotically) optimal policy for E1 (resp., E2) is to play S1 (resp.,
S2) at every time step. Using the above expressions, we thus have that

E
E1

h
ALG

⇤

1

i
=
1 � n
3

and E
E2

h
ALG

⇤

1

i
=
1 + n · W (3, n)

3
,

as claimed. ⇤

L���� 5.4. Let �C 2 {S1,S2} be the strategy chosen by an algorithm A at time C , and denote by
)S8 (=) =

Õ=
C=1 {�C = S8 and freeA(C)} the number of times over a time horizon = where strategy S8

is played while the resource is not blocked. Then, the regret in environment E8 can be lower bounded as

Regretd (3) (=; E8 ) � �E8
S1
E
E8

⇥
)S1 (=)

⇤
+ �E8

S2
E
E8

⇥
)S2 (=)

⇤
� O(3),

where �E8
S9

is the time-aggregated suboptimality gap corresponding to the regret incurred by the
algorithm for playing strategy S9 in environment E8 , where:

�E8
S1

= (3 + 1) · E
E8

h
ALG

⇤

1

i
� E

E8

[- ] ,

�E8
S2

= E
E8

h
ALG

⇤

1

i
· Pr
E8

[- = 1] +
✓
(3 + 1) E

E8

h
ALG

⇤

1

i
� -max

◆
· Pr
E8

[- = -max] .

4Note that, by Lemma 3.4, and since -max  3, the expected reward collected by always playing under strategy S2 in
stationarity and initialized as deterministically available, over any time horizon, di�ers at most by O(3) . Thus, when
considering the asymptotic time-averaged reward collected by this policy, it su�ces to assume it is stationary.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.



Learning To Maximize Welfare with a Reusable Resource 27:29

In particular, �E1
S1

= 0 = �E2
S2
, and

�E1
S2

=
n · 3 + n2 · (3 + 1)

1 + 3
= ⇥(n) and �E2

S1
=
n · 3 � n2 · (3 + 1)
1 + 3

� 1
3+1 + n

� = ⇥(3 · n).

P����. Recalling the lower bound for the regret from (8), in order to prove the claimed bound, it
su�ces to show that

= · E
E8

h
ALG

⇤

1

i
�

’
C 2 [=]

E [-C · {ALG collects -C }] = �E8
S1
E
E8

⇥
)S1 (=)

⇤
+ �E8

S2
E
E8

⇥
)S2 (=)

⇤
� O(3).

Notice that, without loss of generality, at every round C , the algorithm can decide on a strategy
�C 2 {S1,S2} regardless of whether the resource is available or not. Hence, we may decompose the
inner terms of the LHS as

E
E8

h
ALG

⇤

1

i
� E

E8

[-C · {ALG collects -C }]

= E
E8

h
ALG

⇤

1

i
· E [ {�C = S1}] � E

E8

[-C ] E
E8

[ {�C = S1, free (C)}]

+ E
E8

h
ALG

⇤

1

i
· E
E8

[ {�C = S2,-C = 1}] � 0 · E
E8

[ {�C = S2,-C = 1, free (C)}]

+ E
E8

h
ALG

⇤

1

i
· E
E8

[ {�C = S2,-C = -max}] � -max E
E8

[ {�C = S2,-C = -max, free (C)}] .

Now, at this point, one might be concerned that some of the terms could be negative. For example,
at the time when the algorithm plays S2 and collects -max, the asymptotically-optimal policy only
collects E[ALG

⇤

1] < -max. However, observe that in that case the algorithm cannot collect any
reward for the next 3 time steps. Meanwhile, the asymptotically-optimal policy collects E[ALG

⇤

1]

at every time step. Applying this observation to the �rst and third terms above, and assuming that
C  = � 3 , we may rewrite the above in the following manner:

E
h
ALG

⇤

1

i
� E [-C · {ALG collects -C }]

=
⇣
(3 + 1)E

h
ALG

⇤

1

i
� E [-C ]

⌘
E [ {�C = S1, free (C)}]

+

⇣
E

h
ALG

⇤

1

i
� 0

⌘
E [ {�C = S2,-C = 1, free (C)}]

+

⇣
(3 + 1)E

h
ALG

⇤

1

i
� -max

⌘
E [ {�C = S2,-C = -max, free (C)}] .

Recalling that the choice of �C , as well as the availability of the resource at time C is independent of
-C , and summing the above expression over all C 2 [=], we obtain’

C 2 [=]

E
h
ALG

⇤

1

i
� E [-C · {ALG collects -C }] = �E8

S1
E

⇥
)S1 (=)

⇤
+ �E8

S2
E

⇥
)S2 (=)

⇤
� O(3),

where the additive loss of O(3) corresponds to the �nal O(3) rounds for which the time-aggregation
arguments above may not (necessarily) apply. Finally, observe that, using the expressions for
E[ALG

⇤

1] from Lemma 5.3, it is easy to verify that �E1
S1

= 0 = �E2
S2
, and that

�E1
S2

=
n · 3 + n2 · (3 + 1)

1 + 3
and �E2

S1
=
n · 3 � n2 · (3 + 1)
1 + 3

� 1
3+1 + n

�
⇤

Received February 2022; revised March 2022; accepted April 2022

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 2, Article 27. Publication date: June 2022.


	Abstract
	1 Introduction
	1.1 Main challenges and our contributions
	1.2 Related work

	2 Preliminaries
	3 Constructing an optimal policy in the Bayesian setting
	3.1 Competitive analysis of algo1

	4 Designing a regret-minimizing policy for the learning setting
	4.1 Regret analysis of algo2

	5 Unconditional hardness and regret lower bound
	5.1 Unconditional hardness
	5.2 Regret lower bound

	References
	A Constructing an optimal policy in the Bayesian setting: Omitted proofs
	B Designing a regret-minimizing policy for the learning setting: Omitted proofs
	C Unconditional hardness and regret lower bound: Omitted proofs

