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• Downscaled-GRACE data improve esti-
mates of groundwater storage (GWS) at
fine spatial scales.

• Integrating downscaled-GRACE with re-
sults from SWAT helps detect groundwa-
ter depletion hotspots.

• GWS changes exhibit significant spatial
heterogeneity in the Irrigated Indus Basin.

• Groundwater depletions were higher in
the irrigated rice-wheat and cotton-
wheat cropping systems.
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 The growth of agricultural production systems is a major driver of groundwater depletion worldwide. Balancing
groundwater supply and food production requires localized understanding of groundwater storage and depletion var-
iations in response to diverse cropping systems and surface water availability for irrigation. While advances through
Gravity Recovery and Climate Experiment (GRACE) have facilitated estimating the groundwater storage (GWS)
changes in recent years, the coarse resolution of GRACE data hinders the characterization of GWS variation hotspots.
Herein, we present a novel spatial water balance approach to improve the distributed estimation of groundwater stor-
age and depletion changes at a spatial scale that can detect the hotspots of GWS variation.We used a mixed geographi-
cally weighted regression (MGWR) model to downscale GRACE Level-3 data from coarse resolution (1° × 1°) to fine
scale (1 km × 1 km) based on high resolution environmental variables. We then combined the downscaled GRACE-
based GWS variations with results from a calibrated Soil and Water Assessment Tool (SWAT) model. We demonstrate
an application of the approach in the Irrigated Indus Basin (IIB). Between 2002 and 2019, total loss of groundwater
reserves varied in the IIB's 55 canal command areas with the highest loss observed in Dehli Doab by>50 km3 followed
by 7.8–49 km3 in the upstream, and 0.77–7.77 km3 in the downstream canal command areas. GWS declined by
−325.55 mm/year at Dehli Doab, followed by −186.86 mm/year at BIST Doab, −119.20 mm/year at BARI Doab,
and −100.82 mm/year at JECH Doab. The rate of groundwater depletion is increasing in the canal command areas
of Delhi Doab and BIST Doab by 0.21–0.35 m/year. Larger groundwater depletion in some canal command areas
(e.g., RACHNA, BIST Doab, and Delhi Doab) is associated with the rice-wheat cropping system, low rainfall, and
low flows from tributaries.
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1. Introduction

Groundwater sustainability has been greatly influenced by massive
pumping in the Irrigated Indus Basin (IIB) (Qureshi, 2020) where average
groundwater withdrawal consistently exceeds aquifer recharge (Cheema
et al., 2014). The contribution of groundwater has reached 40%–60% of
the overall irrigation water supply in the recent decades due to the rapid
growth of the agricultural sector, population, and industrial demands
(Watto and Mugera, 2016; Arshad et al., 2019; Qureshi and Perry, 2021).
The surface irrigation system in the IIB delivers a fixed water allocation
to each of the 55 canal command areas rather than adjusting the diversion
based on the demand. Increasing food and water demand has exacerbated
water scarcity, prompting farmers to drill thousands of tube-wells for irriga-
tion (Janjua et al., 2021). Continuous pumping has resulted in a dramatic
drop in the water table and groundwater quality (Watto et al., 2021;
Qureshi, 2020). The depletion varies depending upon agricultural land
uses, cropping systems, rainfall-induced recharge, and diversion of surface
water from canals (Scott and Shah, 2004; Arshad et al., 2008; Cheema
et al., 2014; Ahmed and Abdelmohsen, 2018). For example, rice-
wheat cropping system generally consumes more water than cotton-
wheat (Cheema et al., 2014; Arshad et al., 2019). Furthermore, uneven
surface water diversion across the canal commands areas plays an im-
portant role in groundwater depletion variation (Simons et al., 2020).
Accurate, spatially distributed estimates of groundwater depletion and
storage variations are essential to analyze the implications of different
cropping systems and distribution of surface water supply for ground-
water sustainability.

Previous studies have applied a variety of approaches to estimate
groundwater depletion (Bierkens and Wada, 2019), including volume-
based methods using hydraulic head data (Scanlon et al., 2012; Wang
et al., 2020; Ali et al., 2021), groundwater flow modeling (Liu et al.,
2020), and remote sensing assisted water balance methods (Rodell et al.,
2018; Wang et al., 2020; Mehrnegar et al., 2021; Ali et al., 2021; Ahamed
et al., 2022a, 2022b). Volume-based methods, which are generally the
most accurate, and groundwater flowmodeling have twomajor limitations
for applications in large basins such as the IIB: (1) collecting extensive
groundwater monitoring data from observation-wells throughout the
basin is costly; and (2) the data are typically unevenly distributed, limiting
the ability to capture the spatial variability of groundwater changes across
the basin (Ali et al., 2021; Arshad et al., 2020). Alternatively, remote sens-
ing assisted water balance methods compute the groundwater withdrawal
rates and compare these with recharge rates obtained from large-scale
global hydrological models (e.g., PCR-GLOBWB (Van Beek et al. , 2011),
as well as combined remote sensing and watershed hydrology models
such as SWAT (Cheema et al., 2014; Liu et al., 2020).

Using SWAT (Soil Water and Assessment Tool) in conjunction with
Gravity Recovery and Climate Experiment (GRACE) data allows distributed
estimation of groundwater storage and depletion changes at a spatial scale
that can detect the hotspots of GWS variation. SWAT is a semi-distributed
watershed simulation model (Arnold et al., 1998) that has been widely ap-
plied in agricultural regions to simulate the impacts of crops, point source
pollution, and irrigation on watershed hydrology (Tan et al., 2020;
Samimi et al., 2020). SWAT has been used to investigate the total water
storage variability (Hassan and Jin, 2016; Biancamaria et al., 2019; Li
et al., 2021) and shallow groundwater storage at basin scale (Awan and
Ismaeel, 2014; Dakhlalla et al., 2016; Liu et al., 2020). GRACE is a jointmis-
sion of the National Aeronautics and Space Administration (NASA) and the
Deutsches Zentrum für Luft und Raumfahrt (DLR). GRACE (April 2002–
June 2017) and GRACE-FO (June 2018–present) data facilitate hydrologic
assessments by providing total water storage (TWS) data, including soil
moisture, groundwater, canopy water, and water from ice and snow with
global coverage every 30 days (Rodell et al., 2007; Feng et al., 2013;
Castellazzi et al., 2018). GRACE measures the groundwater storage
(GWS) variations driven by natural and human influences (Ahmed et al.,
2014; Huang et al., 2015; Chen et al., 2019a, 2019b). GRACE data have
been used along with land surfacemodels to quantify groundwater changes
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over the Indus Basin (Iqbal et al., 2016; Tang et al., 2017; Ali et al., 2021)
and other watersheds around the globe (Xiang et al., 2016; Felfelani
et al., 2017; Yang et al., 2017; Chen et al., 2019a, 2019b; Ahmed et al.,
2021; Hu et al., 2022). Xie et al. (2020) integrated GRACE data with
SWAT results to improve the representation of groundwater depletion at
basin-scale, accounting for anthropogenic impacts. However, the coarse
resolution of GRACE data in basin-scale groundwater assessments hinders
localized understanding of groundwater storage and depletion variations
(e.g., canal command areas in the IIB).

GRACE Level 2 products are available at a spatial resolution of ~3°×3°
which were then processed at gridded level to release Level 3 products
represented by three spherical harmonic solutions (with spatial resolution
of 1° × 1°) and two mascon solutions (with spatial resolution ranging
0.5°–0.25°) (Watkins et al., 2015; Wiese et al., 2016). We chose to use
Spherical Harmonic (SH) from Jet Propulsion Laboratory (JPL) because
this product has been shown to have less uncertainty thanMascon products
when estimating water storage (Ali et al., 2022), which is why it is widely
applied in the Indus Basin (e.g., Iqbal et al., 2016; Tang et al., 2017;
Hussain et al., 2020; Ali et al., 2021; Akhtar et al., 2022). Despite spatial im-
provements in Level 3 products, the resolution of GRACE products remains
too coarse for analyzing groundwater changes over smaller agricultural
areas (Śliwińska et al., 2021; Ali et al., 2021). Further, Level 3 products
with improved resolution contain no more physical information than the
native GRACE datasets (Watkins et al., 2015; Gemitzi et al., 2021). Down-
scaling GRACE-SH data to a fine spatial resolution (~1 km) will make it
suitable for small scale applications (e.g., catchments to canal command
areas) with improved physical information (Vishwakarma et al., 2021; Ali
et al., 2021).

Common downscaling approaches include linear models (e.g., geogra-
phically weighted regression (GWR) (Arshad et al., 2021; Wang et al.,
2022), partial least squares regression (Vishwakarma et al., 2021)), non-
linear models (e.g., Random Forest model (Ali et al., 2021; Chen et al.,
2019)), Artificial Neural Networks (ANN) (Ali et al., 2021)), as well as
water balance models (Yin et al., 2018). Among these, the GWRmodel per-
forms better and uses simplified algorithms for spatial downscaling as com-
pared to other sole regressions (linear, and nonlinear regression models)
and machine learning models (ANN and RF) (Zhang et al., 2018; Zhang
et al., 2020). However, a common critique of GWR applications is the as-
sumption that the coefficients of variables that predict the dependent vari-
able are always spatially varied, which is not always the case, i.e. the
coefficients can be spatially constant for some predictors and varied for
others (Gao and Li, 2011; Arshad et al., 2021; Yang et al., 2021). Keeping
the coefficients of all predictor variables model spatially varied in the
GWR could result in random noise in model prediction (Zeng et al., 2016;
Chao et al., 2018; Arshad et al., 2021). To address this limitation, we per-
formed a geographically variability test (GVT) (Arshad et al., 2021) to
build a mixed geographically weighted regression (MGWR) model which
accounts for mixed interactions, i.e., coefficients can be constant for some
predictors and varied for others (Arshad et al., 2021; Yang et al., 2021).
The MGWR model handles the spatially varying (local) and constant
(fixed terms) coefficients for predictor variables (Arshad et al., 2021). Pre-
vious studies have demonstrated that the MGWR model has higher fitting
and accuracy than GWR when the regression coefficients of predictor vari-
ables are amix of constant and spatially varying values (Arshad et al., 2021;
Yang et al., 2021; Zeng et al., 2016; Chao et al., 2018). Therefore, current
study explored the applications of MGWR model to downscale GARCE
data from coarse resolution to fine scale (1 km) using high-resolution pre-
dictor variables. A set of environmental variables in the IIB were used as
predictors (see Section 3.1) based on their regional importance (Ali et a.,
2021; Arshad et al., 2020) and effects on water storage variations as docu-
mented in previous studies (Chen et al., 2019a, 2019b; Gemitzi et al., 2021;
Chen et al., 2021; Ali et al., 2021).

This paper presents a novel remote sensing assisted spatial water bal-
ance approach to detect GWS variation hotspots based on improved distrib-
uted estimation of groundwater storage and depletion changes. The central
hypothesis is that there is great spatial heterogeneity in groundwater
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depletion within each of the IIB's 55 canal command areas due to varying
levels of anthropogenic activities, irrigation water supply, and types of
cropping systems. We quantify high-resolution spatiotemporal groundwa-
ter changes (storage and depletion) in the canal command areas by:
(a) downscaling GRACE data from coarse resolution (1° × 1°) to fine
scale (1 km×1 km) for distributed quantification of GWS changes over dif-
ferent irrigated plains, and (b) combining the downscaled-GRACE-based
GWS data with hydrologic response unit (HRU) results from a calibrated
SWAT model to improve groundwater depletion (DEPgw) characterization
in different cropping systems and canal command areas. We apply the
spatial water balance approach in the IIB to answer the following research
questions: (i) how well can we estimate GWS variations over irrigated
plains?; (ii) how much groundwater has been depleted in different
command areas?; (iii) what causes the decline in GWS and increase in
DEPgw?

2. Study area

The study area is the IIB, which covers about 490,760 km2 within the
Indus Basin (Fig. 1a). The IIB is divided into 8 different irrigated plains
(land between two rivers) (Fig. 1b) and 55 canal command areas
(Fig. 1c). The basin topography changes from the highest elevation
(~8100 m) in the Himalayas to the low-lying areas of Sindh. Surface
Fig. 1. (a) Location of IIB in the Indus basin, (b) percentage distribution of irrigation f
canals), and (d) distribution of cropping systems in the IIB for year 2018–2019.

3

water in the Indus Basin is provided by the Indus River and its main tribu-
taries (Beas, Ravi, Sutlej, Jhelum, Chenab, and Kabul) which mainly origi-
nate from snowmelt and glacial waters at the upstream high-mountain
areas of the Himalayas, Karakoram, and Hindu Kush (Immerzeel et al.,
2010). The Indus River and its tributaries supply a total of ~175 billion
cubic meters (BCM) of surface water annually, of which ~128 BCM is
used for surface irrigation; ~12 BCM is lost through system losses and 35
BCM is diverted to the sea (Zuberi, 1997).

The Indus Basin is underlain by a large unconfined aquifer that encom-
passes about 16 million hectares (ha). Both surface water and groundwater
resources contribute to irrigation supply and their contribution varies in
each irrigated plain depending on the cropping system, surfacewater diver-
sion, and groundwater availability. The upper irrigated plains receive a
higher percentage of their irrigation from groundwater, whereas the
lower plains are more likely to receive water from surface diversions
(Fig. 1b&c). The study area covers diverse cropland systems such as rice-
wheat, cotton-wheat rotation/orchard, cotton-wheat rotation/sugarcane,
rice-fodder, and fodder-wheat (Fig. 1d). The rice-wheat cropping system
is more dominant in the south-east regions such as Punjab and Haryana
(Gumma et al., 2019). Over the past decades, agricultural intensification
has increased crop water use, causing available surface water to fall short
of meeting the crop water requirements (Arshad et al., 2019; Qureshi and
Perry, 2021).
rom groundwater; c) percentage distribution of irrigation from surface water (55's
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3. Materials and methods

3.1. Input data

We used different data streams including satellite observations, reanal-
ysis, model outputs, and ground-based observational data. Details of data
used in the current study are provided below and summarized in Table. 1.

3.1.1. GRACE-based TWS
GRACE-based total water storage anomalies (ΔTWS) have been proc-

essed by different centers, namely CSR (Center for Space Research), GFZ
(GermanResearchCenter for Geosciences), and JPL (Jet Propulsion Labora-
tory) (Landerer and Swenson, 2012). TWS comprises surface and sub-
surface storage compartments such as surface water, soil moisture, snow,
ice, groundwater, and canopy water (Chen et al., 2016). GRCTellus Land
RL05 release of GRACE data from these centers are available in two differ-
ent solutions, spherical harmonic (SH) and mascon. We used monthly
GRACE-based TWS of spherical harmonic solution (JPL-SH) available at
1° × 1° resolution from 2002 to 2019 (https://grace.jpl.nasa.gov/data/
get-data/monthly-mass-grids-land/). The months for which GRACE obser-
vations were missing were filled by linear interpolations and averaging
the values of two months before and after the month with missing data as
suggested by previous studies (Ali et al., 2021; Long et al., 2015). Scaling
factor was applied to restore the original signal in GRACE data that was
lost during the pre-processing (Seyoum et al., 2019).

3.1.2. GLDAS data
Monthly data of soil moisture storage (SMS), canopy water storage

(CWS), surface runoff (Qs), and snow water equivalent (SWE) were taken
from GLDAS (Global Land Data Assimilation System) version CLSMv2.0
with a spatial resolution of 0.250 × 0.250. These variables were further
resampled to a finer scale (1 km × 1 km) using the cubic resampling ap-
proach in ArcGIS (Chao et al., 2018).

3.1.3. Environmental variables
Environmental variables were used as predictors for downscaling of

GRACE data include elevation, soil moisture storage (SMS), canopy water
storage (CWS), precipitation (Precip), wind speed, cloud cover, normalized
difference vegetation index (NDVI), land surface temperature (LST), and
actual evapotranspiration (ETa). The elevation data at spatial resolution
of 90m×90mwere obtained from SRTM (Shuttle Radar TopographyMis-
sion) and upscaled to 1 km × 1 km using cubic interpolation in ArcGIS
(Chao et al., 2018). Monthly NDVI data from MODIS onboard Terra sensor
(MOD13A3) were obtained at 1 km× 1 km resolution from LPDAS (Land
Processes Distributed Active Archive Center). Eight-day daytime and night-
time average LST data fromMOD11A2were retrieved fromLPDACat a spa-
tial resolution of 1 km × 1 km. Monthly mean LST was derived by
Table 1
Summary of data used in the study.

Type Product Spatial
(temporal) resolution)

P

TWS GRACE (JPL-SH) 1° × 1° (monthly) 2
SMS, CWS, SWE, Qs GLDAS 0.25° × 0.25° (monthly) 2
Precipitation Downscaled TRMM 1 km × 1 km (monthly) 2
ETa MODIS 1 km × 1 km (monthly) 2
NDVI MOD13A3 1 km × 1 km (monthly) 2
LST MOD11A2 1 km × 1 km (8 days) 2
Elevation SRTM 90 m × 90 m
Cloud cover ERA-interim 0.125° × 0.125° (monthly) 2
Wind speed ERA-interim 0.125° × 0.125° (monthly) 2
Climate data Ground-observations stations (daily) 1
Surface irrigation Ground-observations Seasonal

Groundwater level Ground-observations Stations (Seasonal) 2
Soil types FAO Polygons
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averaging each 8-day daytime and nighttime LST images. Monthly ETa

fromMODIS was obtained from USGS FEWS NET Data Portal which is pro-
duced using SSEBop (Operational Simplified Surface Energy Balance)
model (Senay et al., 2007). High resolution gridded precipitation data at
1 km × 1 km resolution were retrieved from a previous study which has
been validated with ground observations for the Indus Basin (Arshad
et al., 2021). Monthly data for cloud cover and wind speed (at 10m height)
of ERA-interim were obtained from European Centre for Medium-Range
Weather Forecasts (ECMWF). The native spatial resolution of data is
0.75° × 0.75°, however, ECMWF web applications server (https://apps.
ecmwf.int/datasets/data/interim-full-moda/levtype=sfc/) provides user-
specified spatial resolutions ranging 3°–0.125° based on bilinear interpola-
tion technique (Liu et al., 2018; Shu et al., 2021).We collected ERA-interim
data at 0.125° × 0.125° spatial resolution, and resampled them to 1 km×
1 km resolution using cubic interpolation in ArcGIS (Chao et al., 2018).

3.1.4. Ground-based hydro-meteorological observations
Climate data (including precipitation, temperature, wind speed, and hu-

midity) for 42 weather stations and 3 stream gauging stations were gath-
ered from the Punjab Meteorological Department (PMD) from 1990 to
2019. Depth to groundwater table (DTWT) for 1489 observation wells
was obtained from the Punjab Irrigation Department (PID), Lahore,
Pakistan. The canal water diversions (surface water supplies) data for
each canal command area were collected from various sources including
Punjab Irrigation department (PID), and Indus Water Commission (IWC),
Lahore, Pakistan, as well as literature (Cheema et al., 2014). Thewater sup-
ply values for each canal were divided by the corresponding total area
(A) to obtain surface irrigation supplies (IRRcw).

3.1.5. Soil and land use maps
Soil data and land use were used to parameterize the SWAT model.

Land-use/land-cover (LULC)mapwas prepared fromnormalized difference
vegetation index (NDVI) of MODIS (terra and aqua sensors) at a spatial
(temporal) resolution of 250 m (8 days). We used a crop phenological ap-
proach to classify the study area into 24 distinct classes using un-
supervised ISODATA clustering technique (Masud and Bastiaanssen,
2017; Gumma et al., 2019), which were subsequently recoded into 12
main classes based on spectral NDVI profiles (See Fig. S1 in Supplementary
Material). Accuracy assessment of land use map was performed by record-
ing data for 172 points from existing maps and Google Earth (Masud and
Bastiaanssen, 2017; Gumma et al., 2019; Awan and Ismaeel, 2014) to eval-
uate the error matrix as described by Cheema and Bastiaanssen (2010)
(Table S1 in Supplementary Material). The overall accuracy of the land
use map was 82% with average user's and producer's accuracy being 75%
and 69%, respectively. The digital soil map for the study area was obtained
from the Food Agriculture Organization (FAO), which contains 32 different
soil types (See Fig. S1 in Supplementary Material).
eriod Source

002–2019 https://grace.jpl.nasa.gov/data/get-data/
002–2019 https://disc.gsfc.nasa.gov/datasets
002–2019 Arshad et al. (2021)
002–2019 https://earlywarning.usgs.gov/fews/product/460
002–2019 https://lpdaac.usgs.gov/dataset_discovery/modis
002–2019 NASA Land Processes Distributed Active Archive Center

http://www2.jpl.nasa.gov/srtm/
002–2019 http://apps.ecmwf.int/datasets/data/interim-full-moda/
002–2019 http://apps.ecmwf.int/datasets/data/interim-full-moda/
990–2019 PMD (Pakistan Metrological department)

PID (Punjab Irrigation Department), Indus Water Commission (IWC),
and (Cheema et al., 2014)

003–2019 PID (Punjab Irrigation Department)
FAO (https://data.apps.fao.org/map/catalog/srv/eng/catalog.
search#/metadata/446ed430-8383-11db-b9b2-000d939bc5d8)

https://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/
https://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/
https://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc/
https://apps.ecmwf.int/datasets/data/interim-full-moda/levtype=sfc/
https://grace.jpl.nasa.gov/data/get-data/
http://disc.gsfc.nasa.gov/datasets
https://earlywarning.usgs.gov/fews/product/460
https://lpdaac.usgs.gov/dataset_discovery/modis
http://www2.jpl.nasa.gov/srtm/
http://apps.ecmwf.int/datasets/data/interim-full-moda/
http://apps.ecmwf.int/datasets/data/interim-full-moda/
https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/metadata/446ed430-8383-11db-b9b2-000d939bc5d8
https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/metadata/446ed430-8383-11db-b9b2-000d939bc5d8
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3.2. Methods

We applied two independent methodologies (1) spatial downscaling for
improving GRACE-based GWS data, and (2) SWAT model and pixel-based
water balance approach for groundwater depletion estimates (Fig. 2).
Groundwater storage changes (GWS) were estimated from the GRACE
data, which were then downscaled to 1 km × 1 km. We combined the
downscaled GRACE-based GWS variations with results from a calibrated
SWAT model to estimate the groundwater depletion in the IIB's different
canal command areas.

3.2.1. Spatial downscaling
The MGWR model was used to downscale GRACE-based TWS changes

from 1° × 1° to 1 km × 1 km. The MGWR model is an extension of the
GWR which handles spatially varying and fixed (constant) coefficients for
the predictor variables in the downscaling framework (Nakaya, 2015;
Arshad et al., 2021). Mathematical expression of the MGWR is as follows:

Yi ¼ ∑n
l¼1ϒ lZl i þ∑P

K¼1βk ui, við Þ xikþε ui ,við Þ (1)

where Yi is the predicted values of dependent variable (TWS in our case); Zl i
is the lth predictor variable with fixed regression coefficient ϒl and i= 1, 2,
3,…. , n. Xik represents the kth predictor variable with spatially varying re-
gression coefficient (βk) over spatial locations (ui, vi). The error term in the
model is represented by ε (ui, vi).
Fig. 2. Schematic of the framework, including SWAT model setup, downscalin

5

The model coefficients were estimated using weight matrix by applying
the Bi-square kernel function (see equation S1 and S2 in Supplementary
Material). The geographical variability test (GVT) was performed to iden-
tify the spatially fixed and varying coefficients for the predictor variables
in the model (Arshad et al., 2021). In the first step, local regression model
(GWR model) was fitted over each prediction location with all variables
having spatially varying coefficients. Then, new sets of models were tested
by keeping one variable constant (fixed) while the coefficients of other var-
iables were assumed to vary spatially. If the tested models attained better
performance than the local GWR model, a model comparison criterion
such as AICc (Akaike information criterion) would be smaller and, in
turn, DIFF (i.e., Diff of Criterion) would be positive, suggesting that the
tested variable has no spatial variability and vice versa (Nakaya, 2015;
Zeng et al., 2016; Arshad et al., 2021). Nakaya (2015) showed that if
DIFF values are between −2 and 2 the model judgement is weak and
higher positive values (>2) suggest that the coefficient of the tested variable
should not vary spatially. By contrast, lower negative values of DIFF (<−2)
indicate that the coefficient of the predictor variable of interest should vary
spatially. This process was repeated for each variable to finally confirm
their spatially fixed and varying coefficients to build the MGWR model.

The variable importance (VIMP) test was performed in random forest
(RF) model to investigate the settings and importance of different environ-
mental variables in the study region (Ali et al., 2021). VIMP values close to
zero show that the variable has less influence while the higher values indi-
cate the greater importance of the variable to explain the variations in
water storage.
g of GRACE-based GWS, and groundwater depletion estimation in the IIB.
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A fundamental premise of the spatial downscaling approach is that spa-
tial relationships established between GRACE-based TWS and environmen-
tal variables at a coarse spatial scale can be used to estimate the TWS at
finer scale using higher-resolution predictor variables (Jing et al., 2016;
Duan and Li, 2016; Arshad et al., 2021). The specific steps of MGWR-
based downscaling of GRACE-TWS are summarized in Fig. 2 and explained
below.

1. All environmental variables (ET, LST, elevation, NDVI etc.,) at fine
resolution (1 km× 1 km) were spatially resampled to coarse resolution
(1° × 1°) using cubic interpolation.

2. A MGWR model was built to establish the spatial relationships between
GRACE-based TWS (1° × 1°) and environmental variables (1° × 1°) to
predict the TWS at 1° × 1° using the following expression:

TWS1
o
ui, við Þ ¼ ∑n

l¼1ϒ lZl i þ∑P
K¼1βk

1o ui, við Þ xik1o ui, við Þ þ ε1
o
ui, við Þ (2)

where TWS1o(ui,vi) represents the predicted TWS at coarse resolution. The
model coefficients (β) for each variable were estimated usingweightmatrix
with Bi-square kernel function. Model coefficients were spatially interpo-
lated from 1° to 1 km resolution using ordinary kriging approach (Duan
and Li, 2016).

3. The predicted TWS1o(ui,vi) was subtracted from GRACE-based TWS (1°
× 1°) to obtain the model residuals (ε) . These residuals were subse-
quently interpolated to 1 km× 1 km resolution using ordinary kriging
approach (Duan and Li, 2016).

4. Downscaled TWS (1 km× 1 km) were obtained using high-resolution
environmental variables (1 km× 1 km) in conjunction with model co-
efficients (1 km× 1 km) and residuals (1 km× 1 km) using following
expression.

TWSdownscaled1
km

ui, við Þ ¼ ∑n
l¼1ϒlZl i þ∑P

K¼1βk
1km ui, við Þxik1km ui, við Þ þ ε1

km
ui, við Þ (3)

3.2.2. High-resolution groundwater storage estimates
Terrestrial water storage comprises of combined contributions from the

surface water storage (SWS), groundwater storage (GWS), soil moisture
storage (SMS), snow and glacier. Based on the assumption that snow and
glacier contribution in the IIB are negligible, GWS is estimated by
substrcting the surface runoff (QS), soil moisture storage (SMS), and canopy
water storage (CWS) from the TWS (Ali et al., 2021; Ali et al., 2022; Iqbal
et al., 2016; Tang et al., 2017). The following equation was used to derive
the groundwater storage variations in the study area.

ΔGWSdownscaled ¼ ΔTWSdownscaledΔTWS � ΔSMSþ ΔCWSþ ΔQsð ÞGLDAS (4)

The contributions of Qs, SMS and CWS were subtracted from the
GRACE-based downscaled TWS to obtain the high-resolution GWS esti-
mates. Downscaled GWS was validated with observational data. The data
from observation wells are available in the form of depth to water table
(DTWT) which is converted into groundwater storage variations by apply-
ing the approach suggested by Iqbal et al. (2016) as follows:

1. GTWT is converted into groundwater level (GWL) by subtracting it from
depth to bedrock (DTB) [DTB = Depth to bedrock (Average DTB for
study area = 400 m)]

2. GWL is converted to anomalies (GWLA) by subtracting the long-term
mean (i.e., 2004–2009) similarly to the GRACE anomaly.

3. Finally, groundwater storage anomalies (GWSA) were calculated by
multiplying GWLA with specific yield (Sy) [Average Sy for the study
area is 0.12 (Iqbal et al., 2016; Bennett, 1967)]

3.2.3. SWAT model and pixel-based groundwater depletion

3.2.3.1. SWAT-model setup. The IIB was divided into 50 sub-basins, which
were further divided into 3032 HRUs (hydrological response units) based
6

on unique combinations of slope, 12 land-use types, and 23 soil types. The
water balance equation in the SWAT model simulates spatial variability of
surface runoff (Qsurf), lateral flow (Qlat), baseflow entering the main channel
(Qgw), evapotranspiration (ET), water storage (S), recharge (GWrech) to shal-
low and deep aquifers, and percolation (Qperc) (Neitsch et al., 2011; Cheema
et al., 2014). Climate data from 42weather stations were used to parameter-
ize the model from 1991 to 2019. The first three years (1991–1993) were
used as a warm-up period to initialize the model parameters. Information
about agricultural practices such as sowing, harvesting, and irrigation depths
were obtained from Pakistan Agricultural Research Council (PARC, 1982),
Cheema, et al., (2014), andAhmad (2009). The SWAT calibration and uncer-
tainty procedures (SWAT-CUP) was used to calibrate (1994–2002) and val-
idate (2002–2019) the model with streamflow data from Islam, Panjnad,
and Kottri gauging stations, and potential ET data. The NSE (Nash-Sutcliffe
efficiency coefficient) and R2 (coefficient of determination) were used to
evaluate the model's performance (Moriasi et al., 2007).

3.2.3.2. Pixel-based groundwater depletion.We applied a pixel-based ground-
water depletion technique for the IIB proposed by Cheema et al. (2014) to
reflect the changes in groundwater abstraction/depletion. The pixel infor-
mation on ETa (from MODIS), precipitation (from downscaled-TRMM),
groundwater storage changes (GRACE-based downscaled data) when inte-
grated with HRU-scale fluxes obtained from the calibrated SWATmodel fa-
cilitates quantifying total irrigation water supply (IRRtotal).

IRRtotal ¼ ETa þ Qsurf þ Qlat þ Qperc � Precipitation � ΔGWSdownscaled (5)

It is assumed that the decline in groundwater storage is driven by an in-
crease in irrigation supply. The surface irrigation (IRR cw) obtained for dif-
ferent canal command areas (Fig. S2) was subtracted from the IRRtotal to
estimate the amount of groundwater applied to irrigate (IRRgw) crops in
the study area.

IRRgw ¼ IRRtotal � IRRcw (6)

Net groundwater depletion (DEPgw) was estimated for each pixel using
pixel information on IRRgw, canal water losses (LOSScw), peculation (Qperc),
and baseflow entering the main channel (Qgw) using following expression:

DEPgw ¼ IRRgw � LOSScw � Qperc þ Qgw (7)

3.3. Uncertainty analysis

Uncertainty in downscaled TWS is associated with the model's input
variables (NDVI, LST, ET, elevation etc.). The uncertainty associated with
each input variable was quantified by multiplying their coefficient value
(β) by sample standard error obtained from standard deviation (σ) (Duan
and Li, 2016). The total uncertainty in MGWR-based downscaled TWS
(σTWS) was estimated by combining uncertainties associated with each
model input parameter using propagation of errors by linearization
(Faber, 2002; Duan and Li, 2016; Seyoum et al., 2019) as follows:

σTWS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1 ∗ σNDVIð Þ2 þ β2 ∗ σLSTð Þ2 þ β3 ∗ σETð Þ2 þ β4 ∗ σElevationð Þ2 þ β5∗σCWSð Þ2

þ β6 ∗ σSMSð Þ2 þ β7 ∗ σCloud coverð Þ2 þ β8 ∗ σWind speed
� �2 þ β9 ∗ σPrecip

� �2

vuut

(8)

The coefficient value (β) was computed using the MGWR model (Eq. (3)).
Uncertainties in downscaled GWS (i.e.,σGWS) are associated with down-

scaled GRACE-based TWS data and GLDAS variables (CWS, Qs, SMS).
Therefore, uncertainties associated with each variable were estimated by
standard deviation (σ) of the values, and subsequently combined by adding
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individual uncertainties of TWS, CWS, SMS and Qs in the first-order error
propagation (Seyoum et al., 2019; Ahmed, 2020):

σGWS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2TWS þ σ2CWS þ σ2SMS þ σ2Qs

q
(9)

4. Results and discussion

4.1. Hydrological fluxes from SWAT

Fig. 3a shows the comparison between simulated and measured stream
flows for calibration (1994–2002) and validation (2002–2019) for two
Fig. 3. a) SWAT model validation using streamflow data and potential ET; b) averag
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gauging stations; one located in the upstream of the study area and another
one near the basin outlet. A good agreement is observed based on stream-
flow upstream of the Islam Headwork station yielding NSE (R2) of 0.69
(0.68) and 0.81(0.83) during the calibration and validation periods, respec-
tively. The statistics are relatively lower near the basin outlet at Kotri with
NSE (R2) of 0.61 (0.62) for the calibration period and 0.65 (0.69) during
validation because flow is highly regulated by human activities in the
downstream regions (Immerzeel and Droogers, 2008). However, model cal-
ibration and validation based on streamflow is satisfactory given the values
of NSE and R2 within and near the acceptable limits (R2= 0.60 and NSE=
0.50) as recommended by Santhi et al. (2001) and Moriasi et al. (2007).
Further, SWAT-simulated ET values agreed well (R2 = 0.84 and NSE =
0.86)withMODIS-ET from2003 to 2019. Previous research has established
e spatial distribution of SWAT hydrological fluxes in the IIB from 2002 to 2019.
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acceptable SWAT model performance in various regions of the IIB, with R2

(NSE) ranging from 0.60–0.81 (0.77–0.83) when comparing SWAT-
simulated ET with SEBAL-based ET (Cheema et al., 2014; Awan and
Ismaeel, 2014; Awan et al., 2016; Becker et al., 2019; Umar et al., 2022).
The calibrated SWATmodel was used to compute themonthly hydrological
fluxes such as surface runoff (Qsurf), percolation (Qperc), lateralflow (Qlat),
and baseflow (Qgw) (See Fig. S3 in Supplementary Material). Fig. 3b repre-
sents the spatial distribution of SWAT-simulated hydrological fluxes aver-
aged from 2002 to 2019 in different sub-basins in the IIB. Qsurf, Qperc, and
Qlat ranged 8.5–450 mm/year, 10–725 mm/year and 0.05–127 mm/year,
respectively, with relatively higher values in the upper sub-basins corre-
sponding to higher amounts of annual precipitation (between 400 and
1100 mm/year). The spatial heterogeneity of Qgw was found to be negligi-
ble in the study area. Our findings are consistent with a previous study by
Cheema et al. (2014).

4.2. Settings of environmental variables and spatial downscaling

Themodel's ability to estimate high-resolution TWSandGWS variations
highly depends on the environmental variables that contribute to changing
trends in water storage variations (Ali et al., 2021). As indicated by the
VIMP test, the importance of environmental variables varies spatially
based on the complex hydroclimatic and topographical features of the
study region (Fig. S4). For instance, elevation changes in the lower IIB are
more important compared to upstream regions while an opposite trend is
observed in the case of CWS, which was found to be more important in
model prediction with a VIMP value of 80% followed by Precip (55%),
Cloud cover (48%), and NDVI (35%). Table 2 summarizes the results of
the GVT test, which included estimates of coefficients and DIFF of Criterion
values characterizing the spatially varying and fixed coefficients of the en-
vironmental variables in theMGWRmodel. The coefficients for cloud cover
and SMS were introduced as fixed terms into the MGWR model based on
their higher positive DIFF values (i.e., 9.29 and 4.90), while other coeffi-
cients were input as spatially varying terms.

All the spatially fixed and varying coefficients for the variables at coarse
resolution (1° × 1°) were introduced in MGWR to predict the TWS and re-
sults were compared with the original GRACE-based TWS from 2002 to
2019. Based on the statistical evaluation of MGWR-based predicted TWS
and GRACE-based TWS from 2002 to 2019 (Fig. 5S), the modeling ap-
proach under- and over-estimated the TWS with the bias of −2.81% and
9%, respectively, while R2 ranged between 0.77 and 0.89. Pixel wise eval-
uation indicated that the spatial pattern of TWS predicted by the model
closely matches the original GRACE-based TWS with slight under/over es-
timations in some locations (Fig. S6a and b). The performance of the
MGWR model was satisfactory on most grid cells, with R2 values ranging
from 0.75 to 0.95 (Fig. S6c). Fig. S6d shows the residual maps which are
noise in terms of under- and over- estimation in model prediction and de-
pict the amount of TWS not explained by the model. The maximum
under- and over-estimation reported in the model-based TWS compared
to the GRACE-based TWS were − 30 mm/year and 30 mm/year, respec-
tively. Further, the model coefficients (1° × 1°) obtained from the MGWR
Table 2
Results of geographical variability test (GVT) for environmental variables based on
DIFF of Criterion.

Variables Estimate Min Max DIFF of criterion

Intercept −2529.63 −40,857.20 11,322.52 −28.12
Could cover 3077.82 −9039.29 31,162.19 9.29
Elevation 0.34 −3.28 5.82 −2.45
Precip −0.54 −6.79 4.96 −31.74
LST 23.06 −149.47 321.28 −20.44
NDVI 316.11 −4156.63 13,270.65 −10.12
CWS −5579.54 −57,009.90 22,734.51 −46.69
SMS 1.84 −9.25 22.05 4.90
Wind speed 47.98 −2832.10 4078.09 −3.15
ETa 0.44 −5.21 20.30 −79.42
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model were interpolated to 1 km × 1 km using the ordinary kriging
method (OK) and re-introduced into the MGWR model along with 1 km
× 1 km environmental variables to obtain the high-resolution GRACE-
based TWS estimates (Fig. S6e). Residual corrections reduce the bias in
downscaling results, i.e., over/under-estimation. Residuals correction is
performed by combining model residuals with estimated TWS to obtain
the downscaled GRACE-based TWS at fine resolution (Fig. S6f). The
MGWR produced satisfactory results with high values of R2 and small resid-
uals, denoting that it can be applied to predict high-resolution TWS in the
study region with the current setting of environmental variables. The spa-
tial pattern of downscaled TWS closely resembles that of the GRACE-
based TWS, indicating that the downscaling technique enhances the spatial
information in GRACE data while preserving the spatial pattern of TWS.

Uncertainties in the MGWR-based downscaled TWS result from differ-
ent error sources (e.g., input variables). Fig. S7 represents the individual un-
certainty of each input variable. The total uncertainty in the downscaled
TWS was 28.35 mm and associated individual uncertainties were
14.70 mm (LST), 13.54 mm (ET), 12.75 mm (CWS), 11.57 mm (NDVI),
7.55 mm (SMS), 5.85 mm (cloud cover), 2.87 (wind sped), 2.83 mm
(Precip), and 0.91 mm (elevation).

Fig. 4 illustrates the spatial changes in TWS (Fig. 4a) and the compari-
son between monthly GRACE-based and downscaled TWS changes over
the IIB (Fig. 4b). The TWS is decreasing from 2002 to 2019, however, the
trend is more dominant in South-East regions (Haryana and Punjab
(India)) which is associated with high pumping of the aquifer for human
consumption and irrigation water supply where GWS is the main compo-
nent of the TWS. The spatial heterogeneity in TWS variation is also associ-
ated with substantial human footprints in the already vulnerable regions as
well as dryland characteristics of the study region (An et al., 2021; Zhu
et al., 2021). Time series of the coarse GRACE-based data and downscaled
results shows a similar variation amplitude and values of TWS are consis-
tent before and after downscaling, indicating that the downscaling ap-
proach is suitable to predict TWS changes with current data streams and
results (Fig. 4b). It is observed that regional TWS in the IIB declined by
−30.45 mm/year (from 2002 to 2009) and −104.78 mm/year (from
2009 to 2019).

Furthermore, subtracting the contribution of surfacewater storage com-
partments (SMS, CWS, Qs, and SWE) from TWS is essential to estimate the
GWS. The spatial-temporal quantification of GLDAS-based SMS, CWS, Qs,
and SWE in the study region indicated that SMS had the highest annual av-
erage contribution, ranging between 0 and 300 mm/year, followed by Qs
(0–40 mm/year) and CWS (0–0.9 mm/year), while SWE is negligible in
the study region. Therefore, GWS estimates were obtained by removing
the contributions of SMS, Qs and CWS from the TWS (See Fig. S8 in Supple-
mentary Material).

4.3. How well can we estimate GWS variations over irrigated plains?

Fig. 5 contrasts GRACE-based GWS variations with downscaled GWS
variations for different irrigated plains in the Indus basin for the year
2019. The 2° (~222 km) P1-P2 transect demonstrates howdownscaling im-
proved the estimation of GWS variations within each irrigated plain. The
high-resolution GWS data along the transect capture the spatial variation
of GWS, which appears as uniform in the coarse resolution GRACE data.
For example, downscaled data reflect a strong spatial heterogeneity in the
GWS variations (−100 mm to −3000 mm/year) in Dehli Doab with a
higher decline observed in upstream regions with predominantly high-
density rice-wheat cropping system and greater population growth necessi-
tating large amounts of groundwater withdrawal (Roy et al., 2020). The de-
cline of GWS in Dehli Doab is lower in downstream regions with barren
land and low agro-urban activities (Samie et al., 2020) where aquifer salin-
ity levels (total dissolved solids (TDS) range: 3000 to 10,000 mg/L) make
groundwater unsuitable for irrigation (Swarzenski, 1968; Khan and Khan,
2020). The high-resolution GWS data are particularly useful for small, irri-
gated plains. For example, GRACE data provide GWS over BIST Doab and
JECH Doab canal command areas in homogenized pixels while the



Fig. 4. a) Spatial and temporal distribution of downscaled TWS over the IIB; b) basin average monthly time-series changes in TWS from 2002 to 2019.
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downscaled GWS data capture distributed variations within these irrigated
plains with variable rates of groundwater depletion depending on cropping
systems and other anthropogenic factors. This is a notable advancement in
the characterization of distributed GWS variations within each irrigated
plain compared to previous studies that investigated GWS variations
using satellite observations with spatial resolutions ranging from 10 to
0.25 0 (Iqbal et al., 2016; Iqbal et al., 2017; Ali et al., 2021; Zhu et al.,
2021; Akhter et al., 2021).

Fig. 6 presents the Sen's slope of GWS variations corresponding to differ-
ent cropping systems (Fig. 6 a-b) and time series of changes in GWS for eight
irrigated plains (Fig. 6 c-j) from 2002 to 2019. TheGWS is declining over all
the irrigated plains. A strong heterogeneity is observed in the GWS decline
with the highest rate in the upstream regions such as BIST Doab and Delhi
Doab where irrigated cotton-wheat and rice-wheat cropping systems are
present (Fig. 6 a-b). The highest annual GWS decline was in Dehli Doab
(−325.55 mm/year) followed by BIST Doab (−186.86 mm/year), BARI
Doab (−119.20 mm/year) and RECHNA Doab (−100.82 mm/year)
(Fig. 6 c-j). Other studies based on GRACE, Global Hydrological model
(PCR-GLOBWB) and ground-based observations have also reported GWS
decline in different periods ranging 41–45 mm/year during 2003–2008
(Rodell et al., 2009) and 46.3–68.0 mm/year from 2003 to 2013 (Prakash
et al., 2014; Panda and Wahr, 2016; Long et al., 2016; Joshi et al., 2021).
Our estimated mean annual GWS decline is relatively higher than previous
reports between 2002 and 2014, because the GWSdecline has becomemore
abrupt since 2016 (Akhtar et al., 2022).
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The GWS estimates obtained from the downscaled GRACE data provide
reasonable resolution to understand variations at canal command scale.We
investigated the GWS variations in 55 canal command areas, which have
different water allocations and cropping systems (Fig. 7). While GWS has
generally dropped from 2002 to 2019, hotspots of groundwater storage de-
cline are more visible in the BARI Doab, Rachna Doab, and Delhi Doab
canal command areas. The GWS decline is higher in the upper canal com-
mand areas as compared to those located in the lower Indus Basin
(Fig. 7). This is likely because a higher percentage of irrigation demand in
the upstream canal command areas is mainly supplied by groundwater
and the consumptive fraction of irrigation withdrawal is larger (Biemans
et al., 2016; Simons et al., 2020).

Downscaled GWS anomalies were validated using groundwater level
data from 1489 observationwells in the study region, which were averaged
at the corresponding 22 GRID cells of the GRACE data (see Fig. S10 in Sup-
plementary Material). For instance, Fig. S10 shows the mean monthly time
series of downscaled and observed GWS anomalies for GRID-1, GRID-4,
GRID-7, GRID-9, GRID-11, GRID-14, GRID-17, GRID-19, GRID-21, and
the average of all the grid cells. When compared to observational data,
downscaled GWS agreed well with R2 (0.67–0.81) and RMSE (49.70 mm/
year – 116.17 mm/year). We obtained downscaled GWS estimates by sub-
traction of TWS data from GLDAS variables (SMS, CWS, and Qs). These
components may cause uncertainty in GWS downscaling. Fig. S11 show
the uncertainty in GWS associated with different error sources. Total uncer-
tainty in GWS was estimated at 5.68 mm/month. While the individual



Fig. 5. Comparison of 1° × 1° GRACE-based GWS and downscaled GWS (1 km × 1 km) for different irrigated plains in the IIB for the year 2019. [1st and 3rd columns
represent GRACE-based GWS, while 2nd and 4th columns represent downscaled GWS estimates].
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uncertainties associated with downscaled TWS and GLDAS variables were
5.46 mm/month (TWS), 1.89 mm/month (SMS), 0.11 mm/month (Qs)
and 0.01 mm/month (CWS).

4.4. How much groundwater has been depleted?

GRACE data generally do not provide direct measurements of the
amount of depletion; however, they provide estimates of water storage
anomalies caused by anthropogenic activities (Felfelani et al., 2017;
Huang et al., 2015).We estimated net groundwater depletion by combining
GRACE-based downscaled GWS with SWAT model results and ground-
based observational data, using a spatial water balance approach. A strong
spatial heterogeneity in groundwater depletion is observed in the study
area with relatively less depletion in the southern IIB (200–600 mm/
year) and greater depletion in the northeast and central command areas
(1100–1400 mm/year) (Fig. 8). The distributed groundwater depletion
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(DEPgw) increased continuously in different canal command areas during
the 2002–2019 period (Fig. 8). For instance, net DEPgw inmost canal com-
mand areas (e.g., BARI Doab, Rachna Doab, and Delhi Doab) ranged be-
tween 200 and 600 mm/year in 2002, which reached >1400 mm/year in
2019. This is consistent with the reported net groundwater depletion
(800–1000 mm/year) in northeast and central canal command areas
(Dehli, Indian Punjab and Pakistan Punjab) for year 2007 (Cheema et al.,
2014).

Volumetric distribution of DEPgw was calculated individually for IIB's
55 canal command areas (See Fig. S12 in Supplementary Material). The
rate of groundwater depletion is increasing in Delhi Doab and BIST Doab
by 0.21–0.35 m/year while some canal command areas showed a decreas-
ing trend by−0.036m/year (Fig. S12a). Total loss of groundwater reserves
over the 18-year period varies in the study area with the highest loss ob-
served in Dehli Doab by >50 km3 followed by 7.8–49 km3 in the upstream
(e.g., JECH, RACHNA Doabs), and 0.77–7.77 km3 in the downstream canal



Fig. 6. (a-b) Spatial distribution of changing trend in GWS corresponding to different cropping systems and (c-j) GWS variations for the irrigated plains from 2002 to 2019.
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command areas (Fig. 8b). Table 3 summarized the comparison of GRACE-
based DEPgw estimates with observational data over selected GRIDs in the
study region. The depletion rate and total groundwater loss calculated
with downscaled GRACE data show similar changes over all GRIDs when
compared with observational data. On average, total groundwater depletion
was estimated to be−28.59 km3with downscaledGRACE and− 29.20 km3

with observational data. An alarming rate of groundwater depletion
(24–32 km3) in the metropolitan region of Dehli has also been reported
by Joshi et al. (2021). Iqbal et al. (2016) estimated mean groundwater de-
pletion to be ~12 km3 in the upstream irrigated regions of Punjab from
2003 to 2016. Ali et al. (2022) have reported Indus basin's average
groundwater depletion to be 34.24–41.44 km3 (with GRACE data),
43.28–49.14 km3 (WGHM model), 43.28 km3 (with PCR-GLOBWB) and
32.13 Km3 (with observational data). Similar findings on groundwater over-
exploitation have been reported for different regions of the Indus Basin (Iqbal
et al., 2016; Rodell et al., 2009; IUCN, 2010; Ali et al., 2021; Roy et al., 2020).

4.5. What causes the decline in GWS and the increase in DEPgw?

Groundwater depletion variations in the IIB are associated with several
drivers such as types of cropping systems, distribution of precipitation, sur-
face water diversion and rainfall-induced recharge, and groundwater stor-
age variations across the study region.
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4.5.1. Linkage between groundwater depletion and cropping systems
Detailed representation of seasonal cropping systems leads to more ac-

curate estimation of the extent and timing of groundwater depletion. A va-
riety of cropping systems with different water requirements exist in the IIB
such as mixed cotton-wheat rotation/sugarcane, rice-fodder, fodder-wheat,
rice-wheat, cotton, wheat rotation/orchards, and rice-wheat rotation
(Table. 4 & Fig. 1). According to Cheema et al. (2014), number (depth) of
irrigations in rice-wheat is 15 (100 mm) for rice and 4 (75 mm) for
wheat, compared to cotton-wheat (5 (120 mm) for cotton and 4 (75 mm)
for wheat)). Our results indicate that average groundwater depletion is
higher (730.86 mm/year) in regions with rice-wheat cropping system
where 1006.45 mm/year of groundwater is withdrawn for irrigation
(Table. 4). The second highest depletion is detected in mixed cotton-
wheat rotation (663 mm/year), where groundwater supply for irrigation
is estimated to be 890.01 mm/year. Higher groundwater depletion in the
BIST Doab and Delhi Doab is associated with rice-wheat production since
the net amount of irrigation required is higher than other cropping systems
(Arshad et al., 2019; Cheema et al., 2014). Muzammil et al. (2020) applied
a spatio-temporal water footprint (WF) assessment technique, reporting
that sugarcane, cotton, and rice are highly water-intensive, consuming
57% of the annual water use in the IIB. Fodder-wheat (Rabi cropping sys-
tem) ranks third in water consumption, contributing to an annual ground-
water depletion of 623.79 mm/year, nearly equal to cotton-wheat.



Fig. 7. Spatial-temporal variations in GWS estimated from downscaled GRACE data in different canal command areas during 2002–2019.
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Groundwater use is generally higher during the Rabi season as compared to
Kharif (Archer et al., 2010; Masih and Giordano, 2014; Kirby et al., 2017;
Arshad et al., 2019). The total irrigated area used to grow major food
crops in the Rabi cropping systems is greater than in the Kharif cropping
systems, necessitating more water. In the winter, Rabi copping systems
are irrigated primarily by groundwater, while melt runoff is the primary ir-
rigation water source in the summer (Biemans et al., 2016).

4.5.2. Increasing groundwater withdrawal for irrigation and grain production
Increased pumping to meet the growing demands of grain production

also contributes to the declining storage and increasing depletion of ground-
water reserves. We compared the spatial-temporal patterns of GWS, IRR
total, IRRgw, and DEPgw with crop production time series from the Pakistan
Bureau of Statistics (https://www.pbs.gov.pk/) and Agricultural Statistics
India (http://data.icrisat.org/dld/src/additional.html). While total irriga-
tion water supplied from the aquifer increased continuously since 2002,
reaching 2200 mm/year by 2019, strong spatial heterogeneity in changes
of groundwater consumption exist across the study area (See Fig. S13 in
SupplementaryMaterial). For example, the increase in groundwater for irri-
gationwas greater in the Delhi and BIST doabs whereas there was almost no
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change in the lower Indus Basin (Fig. S13). IRRgw in the upstream canal
command areas is increasing by 16–110 mm/year (Fig. 9a) which is associ-
ated with an increase in grain sown area by 8.0–138 ha/year (Fig. 9b) and
crop production by 50–729 ton/ha/year (Fig. 9c). The upstream canal com-
mand areas have a large proportion of wheat, rice, and cotton cropping sys-
tems (Arshad et al., 2019; Peña-Arancibia et al., 2021; Muzammil et al.,
2021) which primarily use groundwater (Masih and Giordano, 2014;
Biemans et al., 2016; Kirby et al., 2017; Arshad et al., 2019). The opposite
trend is observed in the downstream regions where IRRgw is decreasing by
(−5 to −38 mm/year) corresponding to a decline in crop sown area
(−4.06–17.13 ha/year) and crop production (−31 to −148 ton/ha/
year) (Fig. 9a-c). Peña-Arancibia et al. (2021) also reported an overall in-
crease in irrigated area by 15% in the upper canal command areas located
in Punjab Province and 13% decline in Sindh region from 1981 to 2013.
We compiled times series data of crop production, groundwater storage,
total irrigation, groundwater depletion variations from 2002 to 2019 for
the eight irrigated plains (Fig. 9d-i). BIST Doab and Dehli Doab have the
highest cropping area (12,000 × 103 ha) while northeast (Sindh Saghar)
and LIB have relatively lower cropping area ranging from 1800 × 103–
2700 × 103 ha. Crop sown area and production increased gradually from

https://www.pbs.gov.pk/
http://data.icrisat.org/dld/src/additional.html


Fig. 8. DEPgw estimated by combining downscaled-GWS with SWAT results in different canal command areas during 2002–2019.

Table 3
Validation ofGRACE-basedDEPgwwith observational data over selected grids (grid
area: 12321 km2) and average of 22 GRACE grids.

Grid ID Data type Sen's slope
(GWSA
(mm/month))

Depletion
Rate
(km3/year)

Total
DEPgw
(km3)

1 Observational −13.08 −1.93 −32.87
GRACE-downscaled −11.95 −1.77 −30.04

4 Observational −10.05 −2.10 −25.26
GRACE-downscaled −8.81 −1.85 −22.15

17 Observational −24.02 −3.55 −60.36
GRACE-downscaled −21.05 −3.11 −52.91

19 Observational −8.00 −1.68 −20.12
GRACE-downscaled −8.65 −1.81 −21.75

21 Observational −10.55 −2.21 −26.52
GRACE-downscaled −13.02 −2.73 −32.73

Average (22
GRIDs)

Observational −11.62 −2.43 −29.20
GRACE-downscaled −11.38 −2.38 −28.59

Table 4
Average amount of groundwater storage changes, total irrigation, groundwater for
irrigation, and groundwater depletion for different cropping systems from 2002 to
2019.

Land use and cropping systems GWS
(mm/year)

IRR total

(mm/year)
IRR gw

(mm/year)
DEP gw

(mm/year)

Rainfed crops general/woods −152.2 698.53 236.25 136.47
Irrigated mixed rice, wheat
rotation/cotton

−804.8 871.54 531.38 423.56

Rainfed crops wheat/grams −510.9 609.07 185.49 67.51
Irrigated fodder, wheat rotation −842.7 1131.95 735.83 623.79
Irrigated mixed cotton, wheat
rotation/sugarcane

−637.7 1048.83 668.88 482.26

Rainfed crops general −735.7 1065.01 667.81 468.18
Irrigated rice, fodder rotation −626.8 1095.73 678.86 598.69
Irrigated mixed cotton, wheat
rotation/orchards

−751.4 1243.27 890.01 663.91

Irrigated rice, wheat rotation −1393.3 1288.31 1006.45 730.86
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Fig. 9. (a-c) Spatial distribution of changing trend in groundwater irrigation (IRRgw), crop sownarea and production based on Sen's slope values from2002 to 2019 over 55 canal
command areas, and (d-i) time series variations in GWS, IRRtotal, IRRgw, and DEPgw, crop sown area, and production from 2002 to 2019 over eight irrigated plains in the IIB.
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2002 to 2019 for all irrigated plains except RECHNA Doab and JECH Doab,
where it increased from 2002 to 2006 but then slowed significantly from
2006 to 2016. Overall, there is good agreement between year-to-year
changes in IRRgw with the crop sown area and production, resulting in a
clear change in GWS and DEPgw. For instance, IRRgw in Sindh-Sagar has
increased from 400 mm/year (2002) to 800 mm/year (2019) and these
changes correspond to increasing crop sown area from 1400 × 103 ha
(2002) to 2000 × 103 ha (2019) (Fig. 9d-i). Table S2 shows that IRRgw,
crop sown area, and production have negative correlation coefficients (CC
at p ≤ 0.05) with GWS, while the opposite correlation with DEPgw is
seen on themajority of the IIB's irrigated plains. Overall, maximum positive
correlation values of IRRgw, crop sown area, and production with DEPgw
were found as 0.98, 0.89, 0.81, respectively over the BIST and RECHNA
Doab indicating these drivers have significant impacts on the groundwater
depletion (See Table S2 in Supplementary Material). Previous studies also
reported that net crop irrigation requirement in the IIB has dramatically in-
creased in recent decades which is associated with increasing crop sown
area as well as climate warming leading to consuming more water
(Arshad et al., 2019; Muzammil et al., 2020).

4.5.3. Precipitation distribution and GWS changes
The increase in evapotranspiration and decline in precipitation could

contribute to falling groundwater levels in surrounding aquifers (Basharat
et al., 2014; Ahmed and Wiese, 2019). The study region covers diverse cli-
matic conditions where the precipitation distribution changes seasonally.
Most of the precipitation occurs (66%–77%) during the summer season
14
(JJAS) and a much lower proportion (16%–20%) in the winter season
(JFMA) (Minallah and Ivanov, 2019). Fig. S14 shows the relationship be-
tween long-term average monthly precipitation and GWS changes across
the study region. It is noteworthy that there is an agreement in precipitation
seasonality and GWS changes. GWS experienced a larger negative anomaly
in the dry season when precipitation amount was <20 mm/month. How-
ever, peak level of precipitation lags the peak level of GWS decline by ap-
proximately 2-months which is also reported by Akhtar et al. (2022).

4.5.4. Surface water diversions and rainfall-induced recharge
Surface water diversions are an important factor that controls ground-

water storage and depletion variations in the IIB, which is the largest
surface irrigation system in the world (Basharat et al., 2014; Basharat,
2019). The flow of eastern rivers in the IIB has gradually decreased since
the Indus Waters Treaty (IWT) of 1960, necessitating more groundwater
withdrawal to cope with the dwindling surface water (Indus Water Treaty
(IWT), 1960; Basharat et al., 2014). The surface irrigation system in the
IIB allocates water on a supply basis rather than based on demand. Since
surface water supply is insufficient to sustain food production in some
canal command areas, the growing area under cultivation has put a strain
on available groundwater resources (Laghari et al., 2012). Table. 5 summa-
rizes the canal-wise changes in GWS and depletion corresponding to aver-
age amount of rainfall-induced recharge and surface water diversions.
Surface water diversion varies among the canal command areas. The rate
of decline in GWS is higher in Dehli Doab (−351.04 mm/year) followed
by BIST Doab (−341.40 mm/year), Upper Bari Canal (−198.48 mm/



Table 5
Changes in groundwater storage (GWS) and depletion (DEPgw) corresponding to
rainfall-induced recharge (GWrech) and surface water diversions (CWS).

Canal Command Area GWS (Sen's
slope:
mm/yr)

DEPgw
(Sen's
slope:
mm/yr)

GWrech

(mm/yr)
CWS
(mm/yr)

Upper Swat Canal 25.61 5.79 986.38 200.00
Lower Swat (& Doaba Sholgara
Canal)

35.83 0.51 986.38 180.00

Kabul River (Jui Shaikh &
Inundation)

36.32 −0.75 986.38 200.00

Warsak High Level Canal (Left
Bank)

34.98 7.34 986.38 180.00

Warsak High Level Canal (Left
Bank)

28.90 3.97 986.38 200.00

Bannu Scarp 16.03 2.52 820.46 170.00
Thal Canal −47.49 9.38 247.30 325.00
Upper Jehlum Canal −55.11 12.42 358.56 720.00
Lower Jehlum Canal −31.55 13.94 374.97 300.00
CRBC/Paharpur Canal −5.90 1.53 190.40 200.00
Marala Ravi Canal −127.73 21.78 531.27 180.00
Upper Chenab Canal −50.60 10.30 369.96 325.00
Jhang −54.44 11.76 289.72 400.00
Raya Branch (BRBD Inetranl) −92.56 16.77 561.51 250.00
Gugera −69.77 12.29 188.53 430.00
Central Bari Doab Canal −166.53 23.17 207.35 400.00
Lower Bari Doab Canal −63.88 11.66 127.84 500.00
Rangpur Canal −95.91 12.84 175.39 500.00
Upper Dipalpur Canal −154.06 23.06 153.56 250.00
Haveli Canal −88.75 15.52 103.44 700.00
Lower Dipalpur Canal −49.74 11.39 114.61 530.00
Muzffgarh Canal −77.58 10.34 104.08 900.00
Sidhnai Canal −61.17 9.25 110.43 500.00
Pakpattan Canal −52.40 9.69 109.81 450.00
Dera Ghazi Khan Canal −75.58 14.46 227.56 800.00
Fordwah −44.71 15.31 120.78 400.00
Sadiqia Canal −3.05 16.19 134.75 545.00
Mailsi Canal (Lower Mailsi+Lower
Pakpa)

−56.55 12.89 111.92 550.00

Sadiqia Canal −37.85 6.64 60.24 630.00
Upper Bahawal & Qaim Canal −28.12 10.75 107.99 900.00
Bahawal Canal −61.03 15.81 57.47 640.00
Abbasia Canal −68.06 18.02 42.52 300.00
Panjnad Canal −42.14 6.83 30.40 600.00
Pat feeder 5.55 −5.71 13.09 800.00
Desert Canal 0.90 0.11 13.32 740.00
Begari Canal 0.57 −0.78 13.41 700.00
Ghotki Canal −3.17 3.10 28.62 700.00
North West Canal 5.94 −4.00 13.28 550.00
Rice Canal 6.47 0.65 13.09 900.00
Khairpur West Canal 0.02 5.11 18.22 630.00
Dadu Canal 8.27 2.58 13.57 630.00
Khairpur East Canal 0.41 1.23 58.49 440.00
Rohri (North) Canal 3.75 7.48 45.75 530.00
Nara Canal −38.84 0.26 58.87 700.00
Rohri (south) Canal −17.18 3.58 54.18 530.00
Lake −36.24 1.29 24.51 200.00
Fuleli Canal −55.86 7.65 38.43 900.00
Pinyari Canal −67.87 10.87 28.84 630.00
Gaja Branch (Old Fuleli/Lined
Canal)

−40.56 1.17 29.33 630.00

Lake −35.97 5.94 24.51 500.00
Kalri Canal −51.83 8.47 24.51 750.00
Lined Canal (Tando Bago) −73.38 0.91 49.06 500.00
Upper Bari −198.48 29.03 329.31 330.00
BIST Doab −341.40 53.03 439.79 150.00
Dehli Doab −351.04 50.24 279.04 320.00
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year), and Central Bari Doab Canal (−166.53 mm/year). These rates
correspond to rainfall-induced recharge (canal water) of 279 mm/year
(320 mm/year), 439.79 mm/year (150 mm/year), 329.31 mm/year
(330mm/year), 207.35mm/year (400mm/year). Overall, canal command
areas with reduced surface water diversions experienced larger decline in
groundwater storage (Table. 5). Due to low rainfall (Ahmad et al., 2014)
and low flows from Ravi and Sutlej rivers, the groundwater recharge is
15
insufficient to prevent a decline in groundwater storage in these regions
(Basharat and Tariq, 2013). The fluctuation of surface water (high flow in
the summer and low flow in the winter) (Dahri et al., 2021; Smolenaars
et al., 2021), results in an uncertain yield. By contrast, groundwater is avail-
able on demand throughout the year, increasing the reliability of crop pro-
duction (Biemans et al., 2016). It is worth noting that some upstream canal
command areas (e.g., Upper Swat, Lower Swat, Warsak high-level canal)
that receive less surface water from canal diversions experience no ground-
water decline due to rainfed agriculture (Table. 5), and meanwhile the
rainfall-induced recharge frommonsoons helps to replenish the groundwa-
ter reserves (Qureshi and Perry, 2021; Khan et al., 2021). Gradually increas-
ing water consumption in the upper Indus basin is reducing dry season
surface water availability (Smolenaars et al., 2021), thus increasing the re-
liance on groundwater in the lower Indus Basin (Ali et al., 2021).

4.6. Limitations and future directions

The contributions of our study should be considered in light of the
following limitations, which can be addressed by future investigations to
further improve the capability to detect groundwater depletion hotspots.
First, the SWAT modeling component of the framework focused on
matching the total amount of irrigation water used in the simulation to
the total reported irrigation from surface water and groundwater in the
study area. Although this approach accounts for the distribution of surface
water allocation in the IIB, the SWAT model can be improved by explicit
modeling of surfacewater diversions through the network of water convey-
ance infrastructure. Second, we only downscaled GRACE Level-3 Spherical
Harmonic (SH) solution. The analysis can be expanded to compare the con-
sistency of the detected groundwater depletion hotspots by downscaling
other Mascon products, which are available at 0.50 to 0.250. Third, limited
groundwater level observations across the entire IIB poses a challenge for a
comprehensive process of validation. However, the estimated groundwater
depletion matches the estimates based on the available observational
groundwater level data. Likewise, our estimates are comparable with the
reported values in the published literature. Finally, detailed investigation
of crop production footprints on the groundwater system in the IIB can be
performed using empirical relations and data driven approaches to cross-
examine our findings.

5. Conclusions

High-resolution GRACE-based GWS integrated with SWAT results ad-
vance the ability to strategically detect the hotspots of groundwater storage
variation and depletion within each irrigated plain with different cropping
systems in the IIB. The GWS changes exhibit significant spatial heterogene-
ity, with the greatest decline occurring in upstream regions such as BIST
Doab and Delhi Doab, although a slight decline is also observed in the
lower Indus Basin. Groundwater depletions were higher in the plains with
irrigated rice-wheat and cotton-wheat cropping systems. Our results re-
vealed that temporal and spatial heterogeneity of GWS and DEPgw changes
are strongly associated with the distribution of surface water allocation,
types of cropping systems, and growing crop production in different canal
command areas. In general, irrigated plains that have low flows and receive
less precipitation are showing large groundwater abstraction and decline in
groundwater storage. Further, an increasing pattern of IRRgw is consistent
with increased crop sown area and production, resulting in a clear change
in GWS and DEPgw. Uncontrolled groundwater abstraction consistently
in excess of recharge is exacerbating groundwater stress, which in turn
threatens the sustainability of groundwater reserves in the IIB.
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