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ABSTRACT: Natural intelligence has many dimensions, with some of its most -
important manifestations being tied to learning about the environment and Sobationssten - f
making behavioral changes. In primates, vision plays a critical role in learning. w8
The underlying biological neural networks contain specialized neurons and
synapses which not only sense and process visual stimuli but also learn and adapt
with remarkable energy efficiency. Forgetting also plays an active role in learning.
Mimicking the adaptive neurobiological mechanisms for seeing, learning, and
forgetting can, therefore, accelerate the development of artificial intelligence (AI)
and bridge the massive energy gap that exists between AI and biological
intelligence. Here, we demonstrate a bioinspired machine vision system based on
a 2D phototransistor array fabricated from large-area monolayer molybdenum
disulfide (MoS,) and integrated with an analog, nonvolatile, and programmable
memory gate-stack; this architecture not only enables dynamic learning and
relearning from visual stimuli but also offers learning adaptability under noisy
illumination conditions at miniscule energy expenditure. In short, our demonstrated “all-in-one” hardware vision platform
combines “sensing”, “computing”, and “storage” to not only overcome the von Neumann bottleneck of conventional
complementary metal-oxide-semiconductor (CMOS) technology but also to eliminate the need for peripheral circuits and
sensors.
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ny intelligent system, natural or artificial, is one that
monitors its environment, learns or remembers key
information, and adapts to changes as necessary.
Animals do this seamlessly, often with very limited resources
and in challenging ecological conditions. Their success can be
attributed to the underlying biological neural networks
(BNNs) that not only correlate and collocate the neural
primitives for “sensing”, “computing”, and “storage”, which
drastically reduces the energy expenditure for many difficult
tasks, but also learn and adapt, thus ensuring the survival of the
species even in the most resource-constrained environments.
The world we “know” is a result of the perception enabled
by our sensory organs. Information embedded in the outside
world takes multiple sensory pathways, and their associated
transformations, before it reaches the brain, which then
processes it to give a wide variety of outcomes and sensations,
aiding in learning and memory formation. In primates
(including humans), vision constitutes a major portion of
information input, more than all the other sensory inputs
combined. Hence, a substantial percentage of the brain is
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devoted for processing visual stimuli, highlighting the
importance of visual systems in learning."

Drawing inspiration from the biological intelligence
observed in visual animals, machine learning and machine
vision are pushing the limits of artificial intelligence (AI) in our
everyday lives, from defeating professional players in the game
of “Go”” to driving autonomous vehicles in crowded streets.’
Recent years have seen significant progress in artificial neural
networks (ANNs),* which are high-level abstractions of BNNs,
i.e, neurons connected to other neurons through synapses.
Software-based ANNs and their different incarnations, such as
deep neural networks (DNNs),” convolution neural networks
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Figure 1. Bioinspired 2D vision system. Elementary components of a biological visual neural network: (a) eyes enabling biological vision and
(b) visual cortex in the brain enabling biological learning. (c) Photoreceptors in the eyes enable phototransduction and adaptation. Rods
facilitate scotopic vision and cones enable photopic vision. (d) Synapses strengthen or weaken to learn or forget. (e) Optical image of the
artificial vision system comprised of a 3 X 3 2D phototransistor array. (f) Optical image and schematic of an individual monolayer Mo§S,
phototransistor, which is locally gated using a back-gate stack composed of atomic layer deposition (ALD) grown 50 nm Al,O; on Pt/TiN/
p**-Si. (g) Transfer characteristics, i.e., source-to-drain current (Ipg) as a function of the back-gate voltage (Vg), at different drain biases
(Vps) in the dark, (h) phototransduction under different levels of illumination from a blue light emitting diode (LED), (i) optical
potentiation induced learning, or increase in device conductance (G), and (j) electrical depression induced forgetting, or decrease in G,

measured at Vzg = 0 V in a representative 2D phototransistor.

(CNNs),® and, more recently, biorealistic and event driven
spiking neural networks (SNNs),” have shown remarkable
success in multiple applications, including image processing,
pattern classification, and solving complex optimization
problems. Their hardware implementation has primarily relied
on conventional Si-based complementary metal-oxide-semi-
conductor (CMOS) technology.*”'" However, unlike BNNs,

where the “computing” primitives, i.e., neurons, and synapses
(storage units) are collocated, the von Neumann architecture
used by Si CMOS physically separates “compute” from
“memory”, leading to orders of magnitude higher energy
expenditure compared to what the brain requires for similar
tasks."'~'® Non-von Neumann computing architectures based
on field-programmable gate arrays (FPGAs)'* and resistive
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random-access memory (RRAM)'*~*° bridge the gap between
“memory” and “compute”, thus offering energy efficient
alternatives for hardware implementation of ANNs. However,
current iterations of these in-memory compute architectures
heavily rely on CMOS-based peripheral sensors and circuits,
adding significant area and energy overhead.'”'>*'~**

In contrast to the silicon and memristor based efforts, early
machine vision advancements primarily relied on developing
better photodetectors and, in some instances, integrating
CMOS-based preprocessing modules (image filters, feature
extractors, etc.) to bridge the gap between “sensing” and
“compute”.”*"** More recently, researchers in the area of
brain-inspired machine vision have also attempted to combine
“sensing” with “memory”.'”*>*” While some of these
demonstrations exploit oxide-based’®™** and organic mem-
ristors,”* perovskites,”*™*° etc,, two-dimensional (2D) semi-
conducting monolayers are receiving si§niﬁcant attention due
to their superior photosensitivity,’””" gate-tunability,’**’
scalability,*’ and ease of integration with Si-based memory
technologies.“_47 Utilizing these advantages, researchers have
shown machine learning in hardware via back-propagation
algorithms implemented using software ANNs, as well as
MNIST digit recognition and filtering of preprocessed images
using hardware ANNs. For example, Mennel et al.”” exploited
gate tunable photoconductivity in a WSe,-based photodiode
array for image sensing and processing, Hong et al.*® exploited
the photogating effect in a MoS,/perovskite heterostructure to
demonstrate spectral sensing, and Hou et al.”> used a complex
multilayer heterostructure to learn input patterns. However,
these efforts still lack proper integration with sensing and
storage, and they are unable to adequately adapt to noisy
environmental conditions. Thus, none of the emerging vision
platforms have successfully integrated “sensing”, “compute”,
and “memory” for adaptive machine vision and learning
through forgetting using a single hardware platform. A
qualitative assessment of recent vision platform works is
presented using a benchmarking table in Supporting
Information 1.

Finally, while learning has been a topic of extensive research,
the importance of forgetting in learning has not received
adequate attention. Most researchers consider forgetting as a
passive brain process that allows unused memories to
disappear over time. However, this decades-old hypothesis
has now been challenged by a radical idea that suggests that
the brain is built to forget, not remember.”® In other words,
forgetting is an active brain process that plays an important
role in biological learning.

In light of the above discussion, it is imperative that the next
generation of Al benefits from an integrated hardware platform
that combines machine vision with machine learning via
mimicking the adaptive neurobiological architectures for
seeing, learning, and forgetting. Here, we accomplish the
same by integrating a monolayer MoS, phototransistor array
with an analog, nonvolatile, and programmable memory gate-
stack to bridge the gap between “sensing”, “compute”, and
“storage”. In short, we combine the analog optical memory
observed in 2D phototransistors with the analog electrical
memory enabled by the back-gate stack for memory-
augmented reinforcement learning, or “learning”, and learning
through forgetting, or “dynamic learning”, from visual stimuli.
Our bioinspired hardware vision platform also enables adaptive
learning under noisy illumination conditions at miniscule
energy expenditure, bridging the energy gap between AI and

natural intelligence. Supporting Information 2 shows a detailed
comparison of the energy performance of our work with
conventional Si-based CMOS. Finally, our “all-in-one” vision
platform not only overcomes the von Neumann bottleneck of
CMOS-based ANNs but also eliminates the need for CMOS-
based peripheral sensors and circuit components.

The motivation behind using monolayer MoS, as the
material for our bioinspired hardware vision platform is
multifold. First, the realization of BNNs requires the
involvement of photosensitive materials with unique properties
to perform machine vision operations such as analog sensing
and adaptation. Direct-bandgap monolayer 2D materials with
their superior photosensitivity, and electrostatic gate tunability,
are, therefore, natural choices for the next generation of
bioinspired machine vision platforms.”” Second, the atomi-
cally-thin nature of 2D monolayers allows for aggressive
dimension scaling, hence enabling high integration density as
reported recently.” " Moreover, some of the early criticism of
2D materials have also been successfully addressed through the
realization of low contact resistances,”’ high ON currents,””
integration of ultrathin and high-k gate dielectrics,”® and wafer
scale growth,”*** making them a technologically viable option.
Demonstration of 2D-based microprocessors,”® analogue
operational ampliﬁers,57 and RF electronics components58
support this claim. Finally, unlike silicon CMOS, 2D materials
enable flexible’” and printable® electronic circuits, adding
value toward 2D-based bioinspired and neuromorphic
hardware platforms.®'~%*

RESULTS AND DISCUSSION

Figure 1 illustrates the biological resemblance and functional
capabilities of our hardware vision platform. Figure la-d show
the visual BNN in humans and its associated neural primitives
for seeing and learning. Information in the outside world is
conveyed through images, which are projected by the lens
system of the eyes into the retina (Figure 1a). Photoreceptors
also transduce visual information into electrical impulses; with
the help of other cells in the retina, these impulses pass on to
the visual cortex in the brain (Figure 1c). The visual cortex
contains a vast network of neurons which take part in learning.
While the neuroscience of learning is still a topic of active
research, it is widely accepted that learning leads to a
strengthening of connections between associated neurons
through a process known as synaptic plasticity (Figure 1d).%°
For example, long-term potentiation, or memory formation,
leads to an increase in the number of AMPA receptors in the
postsynaptic neuron when the presynaptic neuron uses
glutamate as the neurotransmitter.’®  Similarly, forgetting
leads to a weakening of connection strengths through a
reduction in the number of AMPA receptors. The
mathematical construct of synaptic plasticity determines the
biological learning rule, which is often categorized as
unsupervised in the context of machine learning, though
evidence of reward-based or reinforcement learning can also be
found.”” Figure le shows an optical image of our 3 X 3 2D
phototransistor array, and Figure 1f shows an optical image
and schematic of an individual monolayer MoS, photo-
transistor; as with all phototransistors used in this work, this
device is locally gated using a back-gate stack composed of
atomic layer deposition (ALD) grown 50 nm AlL,O; on Pt/
TiN/p**-Si. As we will elucidate later, photoinduced carrier
trapping at the MoS,/Al,O; interface enables analog optical
memory in MoS, phototransistors, which can then be exploited

https://doi.org/10.1021/acsnano.2c02906
ACS Nano XXXX, XXX, XXX—XXX


https://pubs.acs.org/doi/suppl/10.1021/acsnano.2c02906/suppl_file/nn2c02906_si_005.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.2c02906/suppl_file/nn2c02906_si_005.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.2c02906/suppl_file/nn2c02906_si_005.pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.2c02906?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Nano

www.acshano.org

Post-illumination transfer Post-illumination

characteristics

Learning from optical Post-learned

stimuli

( a ) (b) transfer characteristics ( ) ( d) conductance retention ; . )
105 —T—T— T 105 —T—T— T 107 107
Virite = 2 A Virite = -3V l 20
g 107F L 1 1
S 0 1010 10 ool Vwre =3V ] ) | E
[} [a] -9 L -
— 10 F Vps=1v 1 = 10 E Vs =1V 10 Vps =1V ! ‘
W Ol Vgg =0V Ve =0V l 0
10-13 1 1 1 1 1 10-13 1 1 1 1 1 0-10 1 1 1 1 10_10 N . )
2 -1 0 1 2 3 4 2 41 0 1 2 3 0 5 10 15 20 25 0 25 50 75 100
VBG ) VBG V) Lurite ©) time (s)
(e ) on-state off-state off-state
Al,04 Viriee=2V Virite=-3V \ Vigrite=-3V
MoS / ] ]
o, E 00% —
— ':’o‘:° e e Dt T T e 8080 e :,‘.630’"0 777777777777777777 B e E e e
09482090 £ 00°P50 508 69, 385 950 9,
A 0892 022558 8o8 500 2850,
236 55%5] 882855 states 556585} 20008 — 855959
N . 73 ilable f Fooses 3%
available for hole trapping 3588
holg \ leads to Fermi\
trapping level realignment .
more hole trapping leads to further retention of
no states for realignment of Fermi level ianed
hole trapping twrite realigned state
(f) Learning from optical stimuli
Analog Visual
Stimulus ~ fep (mA) Epoch 0 Epoch 08 Epoch 16 Epoch 24 Epoch 32 Epoch 40 Epoch48 G (ns)

20

10

W

Analog Learning

Figure 2. Analog vision and learning. Postillumination transfer characteristics of an MoS, phototransistor measured in dark after ;. = 10 s
exposure to blue LEDs at (a) V. =2V and (b) V, ;. = —3 V for different I, zj,. (c) Monotonic increase in conductance (G) measured at Vg
=0V as a function of t,,, for different I ;;,. (d) Nonvolatile retention of the corresponding postillumination conductance states at Vg = 0
V. (e) Energy band diagrams for the MoS,/Al,O; interface under different V., showing the dynamics of carrier trapping leading to
persistent photoconductivity (optical memory). (f) Heatmaps of the input image, with each pixel corresponding to an I, g, value, and the
output images, with each pixel showing the G of the corresponding phototransistor in the 9 X 1 array measured at Vyg = 0 V, at different
epochs. The input image is learned in 50 epochs. This shows the analog vision and learning capabilities of the photoresponsive 2D array

structure.

for direct and adaptive memory-augmented reinforcement
learning from visual stimuli under different illumination
conditions. On the other hand, analog electrical memory
enabled by the programmable back-gate stack also allows for
the realization of biological-equivalent forgetting, which
facilitates learning through forgetting, as well as learning,
under noisy illumination. Together, this stack enables adaptive
vision and learning through in-memory sensing and comput-
ing, ultimately resembling the visual BNN in humans.

The monolayer MoS, used in this study was grown via a
metal—organic chemical vapor deposition (MOCVD) techni-
que using a carbon-free chalcogen precursor at 1000 °C on an
epitaxial sapphire substrate to ensure high film quality.
Supporting Information 3a—c, respectively, show the atomic
force microscopy (AFM) micrograph, Raman spectra, and
photoluminescence (PL) spectra of a representative photo-
transistor in the vision platform. Following the growth, the film
was transferred onto the local back-gate islands for the
fabrication of the phototransistor array (see the Methods
section for further details on synthesis, film transfer, and device
fabrication). Figure 1g shows the transfer characteristics, i.e.,
source-to-drain current (Ipg) as a function of the back-gate
voltage (Vgg), at different drain biases (Vpg) for a
representative monolayer 2D phototransistor measured in the
dark. The channel length (L) and width (W) of each device

were 1 and 5 pum, respectively. Supporting Information 4a—c,
respectively, show the low device-to-device variation across the
phototransistor array, as well as the output characteristics and
back-gate hysteresis in a representative phototransistor. Figure
1h shows the response of the phototransistor to different levels
of illumination from a blue light emitting diode (LED). Note
that, instead of LASER illumination as used in most studies,”’
we have chosen LED illumination since it more closely
simulates the natural lighting conditions wherein artificial
vision sensors are deployed. Finally, Figure 1i—j, respectively,
show optical potentiation induced learning, or increase in
device conductance (G) under optical excitation, and electrical
depression induced forgetting, or decrease in G due to
electrical programming, measured at Vzg = 0 V in a
representative phototransistor, constructing the hardware
foundation for artificial machine intelligence. Details of the
optical potentiation and electrical depression are described in
the following sections.

Direct and Analog Learning from Visual Stimuli
Using 2D Phototransistor Array. Illumination of a 2D
semiconducting channel in a phototransistor will generate
photocarriers which, under an electrical bias, drift toward the
respective electrodes, thus adding to the already existing dark
current in the device. The illumination intensity will determine
the change in the conductance of the channel, allowing one to
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Figure 3. Forgetting for dynamic learning. (a) Transfer characteristics of a representative phototransistor when positive programming

voltages (V) of increasing amplitude are applied to the back-gate, each for a total duration of 100 ms. (b) Device conductance (G)
measured at Vg = 0 V as a function of the number of programming pulses (N,,.) of pulse width ¢, = 100 ms and of different amplitudes
(Verase)- (c) Nonvolatile retention of 5 representative postforgotten G-states measured at Vyg = 0 V. (d) Long-term retention of two
representative postprogrammed conductance states measured at Vg = 0 V for ~10* s. (e) Forgetting rate, defined as the rate of decrease in
G, for different V.. (f) Forgetting energy expenditure for different V,,, .. (g) Heatmaps of G, showing that smaller amplitudes of V., e.g.,
Verase = 10 V (top row) enable gradual forgetting of the learnt letter “T” while higher amplitudes of V., €.g, Ve = 12 V (bottom row),
cause immediate forgetting. (h) Dynamic relearning enabled by adaptive forgetting. Heatmaps show learning of a letter “L” (first 25 epochs)
and relearning of another letter “T” (final 25 epochs) by the phototransistor array with different forgetting rates. Here, each epoch consists of
optical potentiation and electrical depression (application of V), enabling relearning and eliminating the need for supervision. The top
row shows the input images (I zp). Each row below shows the corresponding heatmaps of G for different amplitudes of V.. Under
optimum potentiation and depression (e.g., Ve = 9.75 V), the phototransistor array can learn, forget, and relearn the input patterns.

leverage this property for analog machine vision sensors. In materials/devices to remain in the new conductance state

most cases, after the optical stimuli is removed, the
conductance returns to the initial state without remembering
the change induced by the stimuli. This is a limitation for many
machine vision demonstrations, necessitating peripheral circuit
elements to store the new conductance value induced by the
optical stimuli.”” This challenge is overcome via “optical
memory”, or persistent photoconductivity, which allows

even after the visual stimuli is removed. In 2D-based vision
sensors, this is mainly accomplished through trapping of
photocarriers in trap states at the 2D semiconductor-oxide
interface.>”**7193%% Thege trapped charges alter the threshold
voltage of the device, changing the conductance measured at a
given Vyg. The retention of this optically induced conductance
state primarily depends on the detrapping time, which may
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range from several hours to days. This particular phenomenon
is called the photogating effect and is leveraged in our 2D-
based machine vision platform to demonstrate direct learning
from visual stimuli.

Figure 2a shows the postillumination transfer characteristics
of a representative phototransistor at Vg = 1 V measured in
the dark after ;. = 10 s exposure to different illumination
intensities (I gp) at Vi = 2 V. Little-to-no change is observed
in the device characteristics post illumination. However, as
shown in Figure 2b, the postillumination transfer character-
istics show a significant shift in the threshold voltage of the
device when biased at V. = —3 V during the illumination.
Supporting Information 5 and 6 show the influence of V. in
the dark and at different illumination intensities, respectively.
Figure 2c¢ shows the evolution of the postillumination
conductance (G) of the phototransistor, when measured at
Vie = 0V, as a function of the LED illumination time (£,,;.)
for different I gp,. Figure 2d shows the retention characteristics
for G corresponding to different Iz for a period of 100 s;
these results suggest that the learned conductance states are
stable over time. As mentioned earlier, these observations are
attributed to the phenomenon of persistent photoconductivity,
which is illustrated using the energy band diagrams in Figure
2e. At equilibrium, i.e., in the absence of any gate bias, the trap
states with energy levels above the Fermi energy (Ep) are
empty, whereas the ones below E; are filled. When the
phototransistor is illuminated in the on-state or in the
subthreshold region of device operation, most trap states are
below Ep, making carrier trapping unlikely; as a result, the
device displays nonpersistent photoconductivity, i.e., the device
returns to its initial state following illumination without any
optical memory. However, when the phototransistor is
illuminated in the off-state or in the depletion region of device
operation, most trap states are above Ep, thereby allowing
carrier trapping at and/or near the MoS,/ALO; interface.
Negative shifts in Vpy indicate trapping of photogenerated
holes. With longer illumination, more trap states are occupied,
thus leading to more shifts in Vi with increasing f,;.. The
detrapping process can be rather slow, leading to optically
induced memory in the MoS, phototransistors. See Supporting
Information 7 for the photogating effect as it corresponds to
different wavelengths of light. As can be noted, irrespective of
the wavelength used, we observe the photogating effect in our
MoS, phototransistors.

Leveraging the merits offered by the photogating effect
described above, we demonstrate memory-augmented re-
inforcement learning directly from the optical stimuli (Figure
2f and Supplementary Video 1). An analog image of size 3 X 3,
composed of 4 different LED illumination intensities (I g, = 2
mA, S mA, 10 mA, and 20 mA), is presented pixel-by-pixel to
the phototransistors in the 3 X 3 array at V. = —3 V. See
Supporting Information 8 for device-to-device variation in the
photoresponse among the 9 devices in the phototransistor
array. The conductance states G are read at Vzg = 0 V
successively for 50 epochs by sampling I, every 500 ms. All
devices start from the same conductance state, G & 1 nS at Vpg
= 0 V. During each epoch, devices learn the input image by
updating G. As expected, devices exposed to brighter
intensities reach higher G compared to the devices exposed
to lower intensities due to the difference in the photogating
effect, as illustrated in Figure 2c. As a result, the heatmap of G
(Figure 2e) mimics the contrast present in the input image at
the end of the 50 epochs, suggesting direct learning by the 3 X

3 phototransistor array from the analog visual stimuli. The total
learning energy expenditure per pixel after SO epochs was
found to be miniscule at ~50 nJ. In addition to being low-
power, Supporting Information 9 demonstrates the realization
of gate-tunable adaptive sensing in our phototransistors,
allowing for them to detect scotopic (low-light) intensities
and achieve low-latency.

Adaptive Forgetting. Forgetting has traditionally been
considered to be a passive brain process, ensuring that unused
information fades over time so that neural resources can be
reallocated for storing more important and newer information.
When machines learn with unrestricted storage resources (e.g,,
cloud servers), forgetting is irrelevant. However, when storage
capacity is either limited or not accessible, for example, in
Internet of Things (IoT) edge devices deployed in remote
locations, forgetting can play an active role in smart learning.

Forgetting is enabled in our phototransistors by exploiting
the nonvolatile and analog programmability of our local back-
gate dielectric stack. Figure 3a shows the transfer character-
istics of the phototransistor when positive programming
voltages (V) of increasing amplitude are applied to the
back-gate, each for a total duration of 100 ms. During
programming, the source and drain terminals are kept
grounded. Also note that before programming the device is
set at a high conductance state. Transfer characteristics clearly
show a positive shift in Vi with increasing magnitude of V.
See Supporting Information 10 for a detailed explanation of
programmable memory using energy band diagrams.

Figure 3b shows the evolution of the G measured at Vg = 0
V as a function of the number of epochs, ie., programming
pulses (N,,.) of pulse width t,,, = 100 ms and of different
amplitudes (V,,,..), over a total duration of 5 s. Note that, since
electrical programming via the back-gate results in a positive
shift of Viy, G decreases with increasing N, and V.
hence, this reduction in G can be exploited as synaptic
depression (forgetting). Forgetting is also permanent, as shown
in Figure 3c using nonvolatile retention of five representative
postforgotten G-states measured at Vzg = 0 V. We also
examined long-term memory retention in two representative
analog conductance states for ~10* seconds, as shown in
Figure 3d. These results indicate that the programmed states
are retentive for a longer duration of time than that
demonstrated in Figures 2d and 3c. Unlike biological
forgetting, wherein humans have limited control, the forgetting
rate of our vision platform, which we define as the rate of
decrease in G, can be precisely controlled through V...
(Figure 3e). Figure 3f shows the forgetting energy expenditure
for different V., calculated as 1/2C5V,,,.., where Cg = 9 fF
is the gate capacitance; for all tested V., the energy
expenditure is in the range of hundreds of femtojoules. The
conductance (G) heatmaps shown in Figure 3g and
Supplementary Video 2 illustrate the forgetting of a learned
“T” pattern at different rates enabled by V... Cleatly, at a
higher magnitude of V., eg, Viue = 12 V, the photo-
transistor array forgets the letter “T” almost immediately (~10
epochs), whereas lower magnitudes of V. enable gradual
forgetting (>S5S0 epochs). The energy expenditures for
immediate and gradual forgetting were found to be ~0.75
pJ/pixel and 2.5 pJ/pixel, respectively. In addition to learning
and forgetting, an important metric for phototransistor
synapses is the paired-pulsed facilitation (PPF) and paired-
pulsed depression (PPD). See Supporting Information 11 for
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Figure 4. Learning under noisy conditions. (a) An example of noisy input images of the letter “T”. To generate the noisy images, the input
current to the LED corresponding to each pixel was superimposed with a zero mean white Gaussian random noise of standard deviations.
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erase™

empirical models of PPF and PPD in our MoS,-based
phototransistors and their corresponding index.

Importance of Forgetting in Dynamic Learning. Next,
we elucidate the role of forgetting in dynamic learning, which
refers to the process of automatic image update by removing
the previously learnt image with an electrical voltage induced
change in G. In this instance, each epoch consists of two cycles,
optical potentiation for learning followed by electrical
depression for forgetting. We have considered 3 X 3 pixel
images of the letters “L” and “T” for learning and relearning,
respectively, with each being presented for 25 epochs. As
before, all devices were initially programmed to a low
conductance state with G = 1 nS. Figure 3h and
Supplementary Video 3 show the time evolution of the
heatmap of G during dynamic learning, i.e., sensing and storing
the first image (“L”) and gradually erasing it to store the new
image (“T”), for different strengths of electrical depression
obtained by using different V,,,,.. Some of the key observations
include: (1) If the strength of electrical depression is too weak
(e.gy Verse = 9 V) compared to the optical potentiation,
devices will never forget the learned pattern and relearning
becomes futile. (2) If the strength of electrical depression is
too strong (e.g, Ve = 10 V) compared to the optical
potentiation, then it becomes difficult to learn any input
pattern. 3) Under optimum potentiation and depression (e.g.,
Vierase = 9.75 V), the phototransistor array can learn, forget, and
relearn the input patterns dynamically. These demonstrations
illustrate the critical role of forgetting in dynamic learning.

Forgetting for Learning under Random Disturbance.
Next, we show that forgetting plays an even more significant
role when learning under noisy illumination conditions. Visual
BNNs in humans possess the remarkable ability to identify
important features in an image even in the presence of
disturbances. For example, the brain remains able to extract
information in poor weather conditions, such as mist, rain,

snow, and other impediments to perfect vision. Notably, this
avoidance of dynamic noise remains a challenging task in
machine vision systems, forcing them to rely on sophisticated
computer algorithms for its elimination. As hardware
implementations of such algorithms are naturally energy
hungry, this can severely limit their implementation in
resource-constrained environments. However, as we demon-
strate below, forgetting can significantly aid in learning under
dynamic noise, circumventing the need for such energy-
expensive solutions. Figure 4 and Supplementary Video 4 show
the time evolution of the heatmap of G measured at Vz =0V
while learning from noisy 3 X 3 pixel images of the letter “T” in
the absence of (Figure 4b) and with (Figure 4c) electrical
depression (forgetting) for SO epochs. These noisy images
were generated by superimposing the input current to the
corresponding LED for each pixel with a zero mean white
Gaussian random noise of different standard deviations (o).
In the absence of forgetting (Figure 4b), the phototransistors
which are expected to remain in the low conductance state also
get randomly potentiated due to the noise, making it
impossible to learn the pattern by the end of the 50 epochs.
In contrast, when forgetting is enabled (Figure 4c), the
random potentiations in the unintended phototransistors are
compensated through regular electrical depression, allowing for
the phototransistor array to learn the letter “T” despite the
noisy illumination. As expected, learning takes longer under
noisy conditions since forgetting reduces the learning rate.
Nevertheless, this demonstration highlights the importance of
forgetting in perceiving information obscured by noise and aids
in the development of in-memory vision sensors that can
seamlessly operate under environmental disturbances.

CONCLUSION

In summary, we have experimentally demonstrated a gamut of
possibilities offered by a 2D-based in-memory optoelectronic
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platform for next-generation machine intelligent systems.
Direct analog learning from visual stimuli was experimentally
demonstrated. Furthermore, the importance of forgetting in
learning is shown using two examples: dynamic learning and
learning under noisy conditions. Remarkably, the energy
expenditure by our hardware vision platform was found to
be in the ranges of tens of nanojoules for different learning and
forgetting examples. Our findings highlight the benefits of in-
memory computing and sensing for hardware acceleration of
low-power and bioinspired machine intelligence.

METHODS

Film Growth. The monolayer MoS, used in this study was
obtained from the Pennsylvania State University 2D Crystal
Consortium (2DCC).** It was deposited on an epi-ready 2” c-
sapphire substrate by metal—organic chemical vapor deposition
(MOCVD). An inductively heated graphite susceptor equipped with
wafer rotation in a cold-wall horizontal reactor was used to achieve
uniform monolayer deposition as previously described.”” Molybde-
num hexacarbonyl (Mo(CO),) and hydrogen sulfide (H,S) were
used as the precursors. Mo(CO)s was maintained at 10 °C and 950
Torr in a stainless-steel bubbler, which was used to deliver 0.036 sccm
of the metal precursor for the growth, while 400 sccm of H,S was
used. MoS, deposition was carried out at 1000 °C and 50 Torr in H,
ambient, and monolayer growth was achieved in 18 min. The
substrate was first heated to 1000 °C in H, and maintained for 10 min
before the growth was initiated. After growth, the substrate was
cooled in H,S to 300 °C to inhibit decomposition of the MoS, films.

Fabrication of Local Back-Gate Islands. To define the back-
gate island regions, a commercially bought substrate (285 nm SiO, on
p**-Si) was spin-coated at 4000 rpm for 45 s with a bilayer photoresist
consisting of Lift-Off-Resist (LOR SA) and Series Photoresist (SPR
3012), which were baked at 185 and 95 °C, respectively. The bilayer
photoresist was then exposed using a Heidelburg Maskless Aligner
(MLA 150) to define the islands and developed using MF CD26
microposit, followed by a deionized (DI) water rinse. The local back-
gate island electrodes (20/50 nm TiN/Pt) were deposited using
reactive sputtering. The photoresist was then removed using acetone
and Photo Resist Stripper (PRS 3000) and cleaned using 2-propanol
(IPA) and DI water. An atomic layer deposition (ALD) process was
then implemented to grow S0 nm Al,O; uniformly across the entire
substrate, including the island regions. To access the individual Pt
back-gate electrodes, etch patterns were defined using the same
bilayer photoresist (LOR SA and SPR 3012) used previously. The
bilayer photoresist was then again exposed using the MLA 150 and
developed using MF CD26 microposit. The 50 nm Al,O; was
subsequently dry etched using a BCl; reactive ion etch chemistry at S
°C for a total of 80 s; this process was split into four 20 s etches to
minimize heating in the substrate and thus ensure a uniform etch
rate/depth. The photoresist was then removed to give access to the
individual Pt electrodes.

Film Transfer. To fabricate the 2D phototransistors, the as-grown
monolayer MoS, film was transferred from the sapphire growth
substrate to the SiO,/p**-Si substrate with local back-gate islands
using a PMMA (poly(methyl methacrylate)) assisted wet transfer
process. PMMA 495 A6 resist was spun onto the growth substrate at
4000 rpm for 45 s and allowed to sit overnight to ensure good
PMMA/MoS, adhesion. The edges of the spin-coated film were then
scratched using a razor blade and the substrate was immersed into a 2
M NaOH solution kept at 90 °C. Capillary action served to draw the
NaOH solution to the PMMA/substrate interface, separating the
hydrophobic PMMA/MoS, from the hydrophilic sapphire substrate.
Note that scratching the edges of the film served to aid this process
via removing any PMMA beading that may have been formed at the
edge of the substrate during spinning and shortening the distance for
the solution to penetrate. The detached film was retrieved from the
NaOH bath using a clean glass slide and rinsed three times in separate
DI water baths (15 min each). It was then retrieved from the final

bath using the prepared SiO,/p*>-Si substrate with local back-gate
islands and baked at 50 and 70 °C for 10 min each to remove
moisture and promote adhesion. Finally, the PMMA supporting layer
was removed using an acetone bath and the substrate was cleaned
using IPA.”°

Fabrication of Monolayer MoS, Phototransistors. To define
the channel regions for the phototransistors, the sample was first spin-
coated with PMMA 950 A6 at 4000 rpm for 45 s and then baked at
180 °C for 90 s. Electron-beam (e-beam) lithography was used to
pattern the resist, which was developed using a 1:1 mixture of 4-
methyl-2-pentanone (MIBK) and IPA for 60 s and pure IPA for 4S5 s.
The defined channels were separated via dry-etching using a sulfur
hexafluoride (SFg) reactive ion etch chemistry at S °C for 30 s.
Following the etch step, the sample was rinsed in acetone for 30 min
to remove the remaining photoresist, followed by an IPA bath to clean
the sample. To define the source and drain contacts, sample was spin-
coated with methyl methacrylate (MMA) and baked at 150 °C for 90
s before applying PMMA A3, which was baked 185 °C for 90 s. Both
resists were spun at 4000 rpm for 45 s. E-beam lithography was used
to pattern the source and drain contacts, and development was again
performed using a 1:1 mixture of MIBK and IPA for 60s and pure IPA
for 45 s. Note that this development process allowed for the
formation of a significant undercut in the bilayer resist, making
subsequent metal deposition/liftoff easy. 40 nm of nickel (Ni) and 30
nm of gold (Au) were deposited using e-beam evaporation. Finally,
lift-off of the evaporated material was performed by immersing the
sample in acetone for 30 min and in IPA for 15 min. In the final
design, each local back-gate island contained one phototransistor to
allow for individual gate control.

Electrical Characterization. Electrical characterization of the
fabricated devices was performed in a Lake Shore CRX-VF probe
station under atmospheric conditions using a Keysight B1500A
parameter analyzer.
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