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ABSTRACT: In spite of recent advancements in artificial neural networks (ANNs), the
energy efficiency, multifunctionality, adaptability, and integrated nature of biological neural
networks remain largely unimitated by hardware neuromorphic computing systems. Here,
we exploit optoelectronic, computing, and programmable memory devices based on
emerging two-dimensional (2D) layered materials such as MoS, to demonstrate a
monolithically integrated, multipixel, and “all-in-one” bioinspired neural network (BNN)
capable of sensing, encoding, learning, forgetting, and inferring at minuscule energy
expenditure. We also demonstrate learning adaptability and simulate learning challenges
under specific synaptic conditions to mimic biological learning. Our findings highlight the
potential of in-memory computing and sensing based on emerging 2D materials, devices,
and integrated circuits to not only overcome the bottleneck of von Neumann computing in
conventional CMOS designs but also to aid in eliminating the peripheral components

necessary for competing technologies such as memristors.
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gate-tunable persistent photoconductivity, charge trapping/detrapping

iological neural networks comprising billions of

neurons connected via trillions of synapses are

incredibly diverse, integrated, and energy efficient in
processing information that involves sensing, encoding,
storage, and computation. For example, sensory neurons
receive external/internal stimuli from various sensory organs
and convert the information into spike trains following various
encoding algorithms, which are then communicated via
interneurons to the central nervous system (CNS) where
spike-based computation leads to memory formation (learn-
ing) and/or decision making (inference). Spikes are electrical
impulses or digital point events in time that enable ultralow-
power neural computation as well as long-distance neural
communication. Spiking activity between the presynaptic and
postsynaptic neurons determines the potentiation or depres-
sion of their connection strengths or synaptic weights, which is
ultimately responsible for learning and forgetting. Another key
feature of the biological neural network is neuroplasticity,
which allows adaptation to learning and decision-making under
changing environmental conditions. For example, eyes can
identify patterns under both low-light (scotopic vision) as well
as bright-light (photopic vision) conditions. Finally, the
balance between the relative strength of potentiation and
depression of synaptic connections is critical, and any deviation
can lead to neurological disorders including learning
disabilities. Therefore, designing low-power neuromorphic
hardware systems that resemble the functionality, organization,
and plasticity of the biological neural network can not only
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accelerate the development of hardware artificial intelligence
(AI) but also benefit edge computing.

Artificial neural networks (ANNS) are a highly simplified yet
common abstraction of biological neural networks that have
already demonstrated breakthroughs in many applications,
including image classification, speech recognition, and game
playing.”” However, hardware realization of ANNs using
traditional complementary metal-oxide-semiconductor
(CMOS) technology consumes orders of magnitude higher
power compared to what the brain demands for similar tasks.
One of the key differences is in the computing architecture;
where CMOS-based computation embraces von Neumann
architecture that physically separates the compute (logic) and
storage (memory), biological neural networks dissolve such
gaps by placing neurons, the computational primitives, and
synapses, the storage units, right next to each other.

Acknowledging the energy gap, field-programmable gate
arrays (FPGAs)” and crossbar architectures utilizing mem-
ristors,” resistive random-access memory (RRAM),6 phase
change memory (PCM),””” etc, with tunable conductance
states are accelerating the development of energy-efficient and
non-von Neumann computing architectures. However, these
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Figure 1. Monolithically integrated, multipixel, all-in-one biological neural network. a) Biological neural network (BNN) for processing
visual information. Optical images of b) 7 X 7-pixel BNN architecture, c) a pixel comprising four monolayer MoS, FETs (4T cell) that
monolithically integrates the sensing module (SM), encoding module (EM), and learning module (LM), and d) an individual monolayer
MoS, field-effect transistor (FET), which is locally back-gated using a stack comprising atomic layer deposition (ALD) grown 50 nm Al O,
on sputter deposited 40/30 nm Pt/TiN. All back-gate islands were placed on a commercially purchased SiO,/p**-Si substrate. e) Circuit
schematic for each pixel showing the connection between the SM, EM, and LM consisting of 1 (Tsy), 2 (Tgyy and Tgyp), and 1 (Tpy,) MoS,
FETs, respectively. MoS, FETs used for the SMs and LMs have footprints (W X L) of § gm X 1 pm, MoS, FETs used for the EMs have a
footprint of S gm X 3 um excluding the contact pads, and each pixel has a footprint of 400 gm X 600 gm. Each pixel is designed to achieve
functional and organizational resemblance with different neuronal cells found in the visual BNN. For example, the SM is functionally
equivalent to photoreceptor cells (rods and cones) in the human eyes that convert external optical stimuli into corresponding graded
potentials (Vy;) at node N;. Rods primarily enable low-light (scotopic) vision, whereas cones are responsible for bright-light (photopic)
vision, both of which can be achieved using Ty by exploiting gate-tunable persistent photoconductivity. Similarly, the EM mimics the
functionality of retinal ganglion cells that encode the graded potentials into spike trains and transmit to the visual cortex for further
processing. Finally, the LM imitates the visual cortex where learning, forgetting, and inference take place.

non-von Neumann platforms still require CMOS-based
peripheral transducers for converting external stimuli into
electrical impulses, unlike biological neural networks where
specialized afferent neurons transduce sensed information into
electrical signals, ie., spike trains. Such preprocessing can
ultimately limit the energy efficiency and scalability of
emerging non-von Neumann architectures.'”'" Finally, neuro-
plasticity of learning in changing environments and modeling
of learning disabilities even at a high level of abstraction is yet
to be demonstrated.

Here, we mitigate the aforementioned challenges by
introducing a monolithically integrated, multipixel, and “all-

20101

in-one” bioinspired neural network (BNN) which is capable of
sensing, encoding, learning, forgetting, and inferring using
monolayer MoS,-based multifunctional field effect transistors
(FETs). First, we use gate-tunable persistent photoconductiv-
ity in a monolayer MoS, FET to convert optical information
into graded potentials using a neuromorphic sensing module
(SM). Next, we demonstrate the MoS,-based neuromorphic
encoding module (EM) comprising two MoS, FETs to
transform the graded potentials into spike-count- and spike-
duration-based programming voltages. Finally, we exploit the
electrical programmability of MoS,-FET-based nonvolatile
synapses for realizing a neuromorphic learning module (LM)
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Figure 2. Characterization and device-to-device variation of MoS, FETs. a) Raman and b) photoluminescence (PL) spectra of a
representative MoS, channel region. The Raman peak separation between the characteristic A;, and Elzgmodes was consistent with

monolayer MoS, at 17 cm™'; the PL peak location at 1.82 eV was also consistent with monolayer MoS,. c¢) Raman map of 21 gm X 20 gm
and d) PL map of 10 gm X 10 pm taken across the as-grown MoS, film, with each grid corresponding to an area of 1 pum?. Colormaps of the
distribution of e) the Raman peak separation and f) the PL peak position across 49 MoS, channels corresponding to each of the 7 X 7 pixels
of our BNN architecture. The mean and standard deviation values were extracted to be 18 cm™ and 0.8 cm™', respectively, for Raman peak
separation and 1.82 and 0.01 eV, respectively, for PL peak location. g) Transfer characteristics, i.e., source-to-drain current (Ipg) as a
function of the local back-gate voltage (Vi), at different drain biases (Vpg) for a representative MoS, FET with L = 1 gm. h) Device-to-
device variation in the transfer characteristics across 49 MoS, FETs corresponding to each of the 7 X 7 pixels. Colormaps of the distribution
of (i) the electron field-effect mobility (#gg) extracted from the peak transconductance, j) the current on/off ratio (ronjorr), k) the
subthreshold slope (SS) over 3 orders of magnitude change in I, and 1) the threshold voltage (Vyy) extracted at an iso-current of 100 nA/
pm for these 49 MoS, FETs. Extracted mean values for figy, ron/orm SS, and Vi were found to be 21 cm® V™' s7', 2.6 X 107, 275 mV/decade,
and 0.9 V, respectively, with corresponding standard deviation values of 5.5 cm® V's7! 0.8 X 107, 59 mV/decade, and 0.2 V, respectively.

for spike-based learning, forgetting, and inference. Further-
more, we demonstrate low-power operation and adaptability of
our BNN to learning under different ambient conditions,
mimicking the neuroplasticity of biological neural networks.
Our BNN hardware also offers a platform to model learning
disabilities and disorders at a high level of abstraction. Our
work experimentally demonstrates an integrated BNN

exploiting in-memory computing and sensing based on
emerging two-dimensional (2D) layered materials, devices,
and circuits that can accelerate the development of energy-
efficient neuromorphic systems.

The motivation behind using 2D layered MoS, as a
hardware platform for neuromorphic computing is multifold.
First, there are several demonstrations of photodetectors,12
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chemical sensors,"* biological sensors,”> touch sensors,"* and
radiation sensors'” using MoS,-based devices; these can
naturally serve as artificial sensory afferent neurons, eliminating
the need for peripheral sensors in MoS,-based intelligent
systems. Next, MoS, being a semiconductor, almost all
peripheral analog or digital signal processing units can be
built using MoS, FETs'®, thus eliminating the need for hybrid
design involving CMOS circuitry. Additionally, the atomically-
thin-body nature of MoS, allows aggressive channel length
scaling without the loss of superior gate electrostatics,
benefiting high integration density. In fact, recent studies
show high performance monolayer MoS, FETs with the
channel and contact lengths scaled to 29 and 13 nm,
respectively.'” Moreover, some of the early criticism of 2D
FETs has also been successfully addressed in recent years
through the realization of low contact resistance,'® high ON
currents,”’ integration of ultrathin and high-k gate dielectrics,*°
and wafer scale growth using chemical vapor deposition
(CVD)*! and metal—organic CVD (MOCVD).”**’ Similarly,
MoS,-based microprocessors,”* analogue operational ampli-
fiers,”> RF electronics components, ° and neuromorphic,
security,”” >’ and biomimetic hardware platforms®*~>* have
been reported. Finally, MoS, can enable flexible®® and
printable optoelectronics, adding value toward a MoS,-based
hardware platform similar to ultrathin silicon on insulators.”**>

RESULTS AND DISCUSSION

Monolithically Integrated, Multipixel, All-in-One BNN
Platform. Figure 1a shows the neurobiological architecture for
processing visual information, and Figure 1b-d, respectively,
show optical images of our multipixel (7 X 7) BNN hardware
platform, a pixel comprising four monolayer MoS, FETs (4T
cell) that monolithically integrates the sensing module (SM),
encoding module (EM), and learning module (LM), and an
individual MoS, FET, which is locally back-gated using a stack
comprising atomic layer deposition (ALD) grown 50 nm
Al,O; on sputter deposited 40/30 nm Pt/TiN. All back-gate
islands were placed on a commercially purchased SiO,/p**-Si
substrate to isolate each MoS, FET (see Supporting
Information 1—3 for enlarged optical images of the entire
chip, 7 X 7 pixels, and each pixel, respectively). In fact, any
other rigid or flexible substrate could potentially be used
instead of the SiO,/p**-Si substrate to build our “all-in-one”
bioinspired hardware platform. Within each pixel, the SM
consists of 1 MoS, FET (Tgy), the EM consists of 2 MoS,
FETs (Tgyy and Tgyp,), and the LM consists of 1 MoS, FET
(Typ), each of which are connected using the circuit diagram
shown in Figure le. MoS, FETs used for the SMs and LMs
have footprints (W X L) of S ym X 1 um, MoS, FETs used for
the EMs have a footprint of S um X 3 um excluding the
contact pads, and each pixel has a footprint of 400 ym X 600
um. For the purposes of these experiments, the scalability of
our devices was limited by our measurement setup, which
requires large contact pads for probing the devices. In fact, the
use of atomically-thin monolayer MoS, as the channel material
for the FETs makes this technology aggressively scalable.**™*
Therefore, it is possible to accomplish denser arrays of sensors,
memory devices, and compute elements using MoS, FETs,
which can then be exploited for hardware implementation of
advanced deep neural networks as well as bioinspired vision
architectures such as ON versus OFF ganglion cells or
subsequent layers of processing. Nevertheless, the circuit
schematic in Figure le shows that each pixel is designed to

achieve functional and organizational resemblance with
different neuronal cells found in the vision pathways in
primates, which is depicted schematically in Figure la. For
example, the monolayer MoS, FET-based SM is functionally
equivalent to photoreceptor cells (rods and cones) in the
human eyes that convert external optical stimuli into
corresponding graded potentials. Rods primarily enable low-
light (scotopic) vision, whereas cones are responsible for
bright-light (photopic) vision, both of which can be achieved
using our adaptive SM. Similarly, the MoS, FET-based EM
mimics the functionality of retinal ganglion cells that encode
the graded potentials into spike trains and transmit to the
visual cortex, or midbrain, for higher order processing and
computation. Finally, the MoS, FET-based LM imitates the
visual cortex where learning, forgetting, and inference take
place. As we will elucidate later, the Al,O;/Pt/TiN gate stack
allows nonvolatile programming of our MoS, FETs owing to
the trapping/detrapping of charge carriers at and near the
MoS,/ALO; interface when subjected to large positive and
negative gate biases. This, in turn, empowers our BNN
architecture to overcome the von Neumann bottleneck and
enable in-memory sensing and computing capabilities, which
are presently lacking for the conventional silicon technology.
The programming capability is also central toward the
realization of a reconfigurable BNN platform that allows
adaptation to different learning conditions (e.g, scotopic
conditions) similar to biological neuroplasticity as well as offers
a platform to model and study the origin of various learning
disabilities found in humans (e.g., autism disorder).

The MoS, used in this study was obtained from the 2D
Crystal Consortium (2DCC) and was grown epitaxially on a
sapphire substrate using MOCVD at 1000 °C.”**” As we will
elucidate, high-temperature growth ensures high film quality
and low device-to-device variability, which are critical for the
successful demonstration of our BNN platform. The
monolayer MoS, film was transferred from the growth
substrate to the target application substrate, ie, the SiO,/
p"*-Si substrate with predefined islands of Al,O;/Pt/TiN, for
subsequent FET fabrication and monolithic integration of the
SM, EM, and LM. Details on the fabrication of the back-gate
stack, monolayer MoS, synthesis, film transfer, fabrication of
MoS, FETs, and monolithic integration can be found in the
Methods section.

Characterization and Device-to-Device Variation of
MoS,; FETs. Before diving deeper into each functional unit of
our hardware BNN platform, i.e, SM, EM, and LM, it is
important to thoroughly characterize the basic building blocks,
i.e,, the MoS, FETs. Figure 2a-b, respectively, show the Raman
and photoluminescence (PL) spectra of a representative MoS,
channel region. The Raman peak separation between the

characteristic A;; and EIzg modes was consistent with

monolayer MoS, at 17 cm™'; the PL peak location at 1.82
eV was also consistent with monolayer MoS,.**"*Figure 2c-d,
respectively, show the Raman map of a 21 gm X 20 ym region
and the PL map of a 10 ygm X 10 pum region, respectively, of
the as-grown MoS, film. Raman peak separation and PL peak
position vary less than 4% over the entire map, confirming the
high quality and uniformity of the monolayer film. In fact, a
similar assessment of film uniformity for the entire chip can be
made from Figure 2e-f, which shows Raman peak separation
and PL peak position across 49 MoS, channels corresponding
to each of the 7 X 7 pixels (see Supporting Information 4 and §
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Figure 3. MoS,-FET-based neuromorphic sensing module (SM): a) Transfer characteristics of a monolayer MoS, FET measured at Vg =1V
before and after illumination from a blue LED with input currents ranging from I}z, = 0.5 mA (low-brightness) to I;zp = 20 mA (high-
brightness) at different Vg = V4 for £, = 100 ms. b) Analog valued and continuous time input optical stimuli from the blue LED. c)
Corresponding temporal evolution of the graded potential, Vy;, at node N; for different V,;.’s obtained by using the circuit layout for the
SM shown in Figure le. A constant voltage, Viy; = SV, is applied to node N;, which is the drain terminal of Tgy;, and a clocking signal
toggling between V4 and V. is applied to node N,, which is the local back-gate of Ty, with ¢ x = 100 ms. The source terminal of Tg)y; is
connected to the local back-gate of Tgy; at node N;. d) Time for Vy; to reach the same magnitude (g, ) as a function of I g, and V. €)
Average energy consumption by the SM (Egy) during each 7o for different I;gy’s and V,.'s. f) Device-to-device variation in the
photoresponse of 49 MoS, FETs corresponding to the SMs of each of the 7 X 7 pixels of our BNN hardware after t,;. = 1 s exposure to I g
=20 mA at V., = —2.5 V. g) Colormap of the distribution of the ratio of postillumination photoconductance to dark conductance (rpy)
measured at Vzg = 0 V. The mean and standard deviation values were found to be 6.7 X 10° and 3.8 X 10%, respectively.

for the Raman and PL scans of each of these 49 MoS,
channels, respectively). The mean and standard deviation
values were extracted to be 18 cm™ and 0.8 cm™!, respectively,
for Raman peak separation and 1.82 and 0.01 eV, respectively,
for PL peak location.

Figure 2g shows the transfer characteristics, i.e., source-to-
drain current (Ipg) as a function of the local back-gate voltage
(Vig), at different drain biases (Vpg) for a representative MoS,
FET with channel width and length of 5 ym and 1 pm,
respectively. Figure 2h shows the device-to-device variation in

the transfer characteristics across 49 MoS, FETs of dimension
S pm X 1 ym (width X length) corresponding to each of the 7
X 7 pixels (see Supporting Information 6 for the transfer
characteristics for each of these 49 MoS, FETs). Note that, as
expected, MoS, FETs show unipolar, n-type characteristics
owing to the pinning of the metal Fermi level close to the
conduction band allowing only electron transport through the
channel. Figure 2i shows the map of electron field-effect
mobility values (ypg) extracted from the peak transconduc-
tance for these 49 MoS, FETs with a mean of ~21 cm?> V™! s™*
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and a standard deviation of 5.5 cm® V™' s7'. Figure 2j,
respectively, show similar colormaps on device-to-device
variation in current on/off ratio (ronsops), subthreshold
slope (SS) over 3 orders of magnitude change in Ipg and
threshold voltage (V1) extracted at an iso-current of 100 nA/
um, with mean values of 2.6 X 107, 275 mV/decade, and 0.9 V,
respectively, and standard deviation values of 0.8 X 107, 59
mV/decade, and 0.2 V, respectively. Our pgg, ron/ope SS, and
Viry values and the corresponding device-to-device variations
are on par with the state-of-the-art literature on large-area-
grown MoS,, which can be attributed to high-quality growth,
relative damage-free transfer, and clean device fabrication.
However, we also believe that it is possible to further reduce
the device-to-device variation by improving the growth and the
transfer process. Supporting Information 7 shows the output
characteristics, i.e., Ipgversus Vpg at different Vyg's for a
representative MoS, FET with L = 1 uym. While we mostly
exploit the off-state and subthreshold regimes of FET
operation in our SM, EM, and LM, the on-state current
reaches as high as ~100 pA/pum at Vg = 5V for an inversion
charge carrier density of ~1.5 X 10'*/cm?; this is yet another
piece of evidence indicating high film quality.

MoS, FET-Based Neuromorphic Sensing Module
(SM). Monolayer MoS,-based phototransistors have been
studied extensively in recent years, including in our own
work."”*~*" The phototransduction mechanism in MoS,
FETs is typically attributed to two mechanisms: photocarrier
generation in the MoS, channel and photogating effect arising
due to charge trapping/detrapping at the MoS,/gate-dielectric
interface. Figure 3a shows the transfer characteristics taken at
Vps = 1 V for a representative monolayer MoS, FET before
and after illumination from a blue light emitting diode (LED)
with input currents ranging from I zp = 0.5 mA (low-
brightness) to I; zp = 20 mA (high-brightness) at different Vpg
= Visite fOr tyite = 100 ms. The corresponding incident optical
power is in the range of 0.1—10 Wm™?, obtained by calibrating
using a commercially-purchased silicon PIN photodiode as
described in Supporting Information 8. Given that the channel
area of each MoS, FET used in the SM is 5 ym X 1 ym, the
estimated incident power on each pixel is 0.5—50 pW. See
Supporting Information 9 for the optical images showing
corresponding LED brightness levels. Note that, instead of the
LASER illumination conventionally used to study photo-
response in monolayer MoS,,"” we have used an LED to
provide optical stimuli since it represents a more realistic
lighting ambience akin to where most neuromorphic sensors
will be deployed.

Two distinct types of photoresponse are observed in Figure
3a. For V, ;. > 0V, i.e,, illuminations in the on-state (V, . =
2.0 V) and in the subthreshold regime (V. = 0.5 V) of the
MoS, FET, there is no visible shift in the device characteristics
postillumination irrespective of the brightness level of the LED
(Igp)- This can be ascribed to photocarrier generation in the
MoS, channel, which are swept across by the applied Vpg, and
hence, there is no persistent photocurrent beyond the optical
exposure. However, for V, ;. < 0V, i.e, illuminations in the
off-state (Ve = —1.5 V and V. = —2.5 V) of the MoS,
FET, there are significant shifts in the device characteristics
postillumination. This is a feature of the photogating effect,
where photocarrier trapping at the MoS,/dielectric interface
leads to the shift in the device threshold voltage (Viy). The
detrapping mechanism is rather slow and can take hours to
several days, which is why the Vyy shift is visible

postillumination. Higher I; zj,, more negative V., and longer
torite Daturally result in more photocarrier trapping (Qmp) and
hence larger Vry shifts (AVry). Supporting Information 10
shows AVyy and the corresponding Qu,, (= CoxAVry) as a
function of V. and f,. for I gp = 20 mA, where Coy & 2 X
1073 Fm™? is the back-gate oxide capacitance per unit area.

We exploit the gate-tunable photogating effect in MoS,
FETs (Tgy,) for the conversion of analog optical stimuli into a
graded potential, Vi3, at node Nj using the circuit layout
shown in Figure le. A constant voltage, Vy; = SV, is applied to
the node N, which is the drain terminal of Ty, and a clocking
signal toggling between V.4 and V, . is applied to the node
N,, which is the local back-gate of Ty, with 7 = 100 ms.
The source terminal of Ty, is connected to the local back-gate
of Tgy, at node N;. Note that Tgy and Tgyy form an RC
circuit, with Ty, serving as the resistor and the local back-gate
of Tgyy; serving as the capacitor. Prior to illumination, the time
constant for charging node N; remains very high, >100 s, since
Ty is biased in the off-state. Figure 3b shows analog-valued
and continuous-time input optical stimuli from the LED, and
Figure 3c shows the corresponding temporal evolution of Vy;
for different V,,.’s with V.4 = 0 V. Some key observations
can be made from the results: 1) Vy; increases monotonically
for any given I gy and V. owing to the photogating effect,
which results in a gradual negative shift in the Viy of Ty,
switching it from the off-state through the subthreshold to the
on-state and thereby reducing the charging time constant for
node Nj, 2) for any given I zp, Vi increases faster for more
negative V, ;. since more trap states are available at the MoS,/
dielectric interface, resulting in a greater Viy shift and hence
higher photoconductance, 3) the time required by Vy; to reach
Vi = S V scales inversely with I gy for any given V., ie,
higher I g, allows the graded potential to reach its maximum
strength earlier and vice versa, and finally, 4) a lower I g, (e.g,,
S mA) can invoke a similar response in Vy; like a higher Iy,
(e.g, 20 mA), when the former is measured using a more
negative V, ;. = —2 V compared to the latter measured using
Virite = —1.5 'V, allowing adaptation to different illumination
levels. These observations are summarized in Figure 3d, which
shows the time for V3 to reach the same magnitude as a
function of I;zp and V.. Also, see Supplementary Video 1 for
time evolution of the graded potential for various I gp’s using
different V,,;.’s.

Figure 3e shows the average energy consumption by the SM

(Esw), given by Egy = %Coxv\irite’
different I pp’s and V,g4.'s. Even for the brightest LED
illumination at the most negative V, ., Esy is ~50 fJ, which
suggests energy-efficient phototransduction by our MoS, FET-
based SM. Finally, Figure 3f shows the pre- and postillumi-
nation transfer characteristics of 49 MoS, FET's corresponding
to the SMs of each of the 7 X 7 pixels of our BNN hardware
after f,,4. = 1 s exposure to I;zp = 20 mA at V5. = =25V,
and Figure 3g shows the colormap of the ratio of
postillumination photoconductance to dark conductance
(rpy) measured at Vg = 0 V (see Supporting Information
11 for the pre- and postillumination transfer characteristics for
each of these 49 MoS, FETs). The mean and standard
deviation values were found to be 6.7 X 10® and 3.8 X 10°
respectively.

MoS, FET-Based Neuromorphic Encoding Module
(EM). The EM converts the graded potentials received from
the SM into corresponding programming waveforms using

during each 7cyx for
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Figure 4. MoS,FET-based neuromorphic encoding module (EM). a) Transfer characteristics of MoS, FETs used as Tgy; and Tgy,, in the EM.
Tgwy is programmed to operate as a depletion mode (normally on) n-channel FET, whereas Tgy, operates as an enhancement mode
(normally off) n-channel FET. Based on the circuit layout shown in Figure le, the EM serves as an NMOS inverter with a depletion load. b)
Input (Vy;) versus output (Vys) characteristics of the EM for different V}, values applied to the source terminal of Tgyy,, i.e., Ng. The drain
terminal of Ty, i.e., N,, is kept grounded. c) Various programming states of Ty, and d) corresponding EM characteristics for V, = —5 V.
The inverting threshold (Vyp), i.e., the magnitude of Vy; at which Vi reaches V;/2, can be adjusted by reconfiguring Tgy; and Tgy,. €)
Spike-duration- and f) spike-count-based encoding of the graded potential (Vy;) received from the SM, corresponding to different V, ;.’s
and I;gp’s, into a programming voltage (Vy;) for transmission to the learning module (LM). g) Total spiking time (Tspike) and h) the
corresponding average encoding energy expenditure (Eg,) per clock cycle for spike-duration-based encoding and (i) the total number of
spikes (Nspike) and h) the corresponding Eg,, for spike-count-based encoding as a function of V, ., and I zp,. The input stimulus is presented
for a duration of 10 s and Vp = —6 V. Spike-duration and spike numbers are counted once Vy; reaches 75% of Vp, i.e.,, —4.5 V.

spike-count- and spike-duration-based algorithms and trans-
mits them to the LM as summarized in Figure 4a-j. Each EM

comprises two MoS, FETSs, Tgyy; and Tgyp,, connected in series

as shown in Figure le. Note that the local back-gate of Tgyy is
shorted to its source at node Ny, which is also the drain of

Teyp and the output node of the EM. The drain terminal of

20106

Tepmy, ie., Ny, is kept grounded, and the programming voltage,
Vp, is applied to the source terminal of Ty, ie., Ng.
Furthermore, to realize an NMOS inverter, Tgy; and Tgpp
should operate as depletion mode (normally on) and
enhancement mode (normally off) n-channel FETs, respec-
tively. Since all of our MoS, FETSs are programmable, we can

https://doi.org/10.1021/acsnano.2c02172
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Figure 5. Analog and nonvolatile programming of MoS,-FET-based synapses. a) Potentiation of an MoS, synapse from a low conductance
state (LCS) after the application of a fixed number of programming spikes (Ns},ike = 10) of different amplitudes and negative polarity (Vp);
each spike was applied for ;. = 100 ms. b) Postpotentiated conductance states (Gp) measured at Vg = 0 V as a function of Npike for
different Vp’s. c) Depression of an MoS, synapse from a high conductance state (HCS) after the application of a fixed number of
programming spikes (N, = 10) of different amplitudes and positive polarity (Vp); each spike was applied for t.u, = 100 ms. d)
Postdepressed conductance states (Gp) measured at Vg = 0 V as a function of Nyike for different Vp's. e) Potentiation of the Mo$, synapse
from LCS after the application of a single spike of constant magnitude V, = —6 V for different f,;’s. f) Postpotentiated Gp measured at Vi
=0V as a function of £, for different Vy’s. g) Depression of the MoS, synapse from HCS after the application of a single spike of constant
magnitude V;, = 6 V for different f,;.’s. h) Postdepressed Gy, measured at Vzg = 0 V as a function of t,y, for different V;,’s. Retention
characteristics of (i) 6 potentiated and j) 6 depressed conductance states for 100 s. k) Device-to-device variation in the pre- and
postprogrammed transfer characteristics and 1) corresponding colormap of the distribution of the memory ratio (MR) measured at Vg = 0
V for 49 monolayer MoS, FETs from each LM of our 7 X 7 BNN platform when programmed using N ;. = 10 with spike magnitude, V;, =
—8V, and spike width, £, 3, = 100 ms. The mean and standard deviation values for MR were found to be 6 X 10° and 0.5 X 10°, respectively.

shift the threshold voltage of the device by pulsing appropriate biasing configuration of the EM for spike-duration- and spike-

voltage spikes to the back-gate. Therefore, we applied a count-based encoding). Figure 4g and Figure 4i, respectively,
depression pulse to Tgy,; and a potentiation pulse to Ty, to show the total spiking time (Tspike) and the total number of
operate them as enhancement and depletion mode FETs, spikes (Nspike) as a function of V. and I gy when the input
respectively, as shown in Figure 4a. The EM, therefore, serves stimulus is presented for a duration of 10 s and V, = —6 V.
as an NMOS inverter with a depletion load. Figure 4b shows Note that we start to count the spike time and spike number
the input (Vy3) versus output (Vys) characteristics of the EM once Vys reaches 75% of Vyp, ie, —4.5 V in Figure 4e-f. As
for different V; values. Also, note that the inverting threshold expected, for any given V, ., graded potentials received from
(Vir), ie, the magnitude of Vy; at which Vys reaches V;/2, the SM module that correspond to higher values of input
can be adjusted by reconfiguring Tgy;; and Tgyp,. Figure 4c-d, stimuli (I zp) invoke longer Topike and more N at the output
respectively, show the various programming states of Ty, and of the EM for spike-duration- and spike-count-based
the corresponding EM characteristics for Vp, = =S5 V. encodings, respectively. Similarly, for any given Iy, more
Tunability in the EM characteristic is an additional benefit of negative V.. invokes longer 7, and more N, Note that
our BNN platform, allowing adaptation to various learning Topike and N, can also be controlled by configuring Vir
conditions as we will elucidate later. Finally, a constant V; (Figure 4d). For example, the scotopic condition will benefit
applied to node Ny transforms the graded potential into a from lower Vi since spikes will reach the programming
spike-duration-based programming voltage, as shown in Figure voltage, Vp, earlier for any given I;pp and V..
4e, whereas a clocking signal toggling between V}, and 0 V with Alternatively, a higher V}; value can be used to encode a
Tcix = 100 ms applied to node Ny transforms the graded shorter duration or lower number of programming spikes. See
potential into a spike-count-based programming voltage, as Supporting Information 13 for encoding of the same graded
shown in Figure 4f (see Supporting Information 12 for the potential using different Vy’s for both spike-duration- and
20107 https://doi.org/10.1021/acsnano.2c02172
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Figure 6. MoS,-FET-based neuromorphic learning module (LM). a) Spike-duration- and b) spike-count-based conductance evolution in the
MoS,-FET-based LM when input programming waveforms (Vy;) are received from the EM corresponding to different I;zp’s and V. ’s.
Final conductance state achieved by the LM for c) spike-duration- and d) spike-count-based input spiking patterns received from the EM
corresponding to different I; p,’s and V.. ’s. The average learning energy expenditure (Ep,) per clock cycle by the LM for e) spike-duration-

and f) spike-count-based learning at different I;g’s and V,;.’s.

spike-count-based adaptive encoding. The reconfigurability of
the EM can also be exploited for modeling learning disabilities.
For example, if bright light is encoded into low-magnitude Vp
spikes, potentiation of synapses can be severely limited,
invoking learning difficulty. Finally, the average encoding
energy expenditure (Egy,) per clock cycle by the EM, given by
Epm = %COXVI%B + Vulpto k, is shown in Figure 4h and Figure
4j for both spike-count and spike-duration, respectively. The
relatively higher energy expenditure for the EM is a direct
consequence of using a depletion mode NMOS inverter and
can be reduced significantly by using a CMOS inverter. This
will require the development of p-channel MoS, or the use of
another 2D material such as WSe,.

MoS, FET-Based Neuromorphic Learning Module
(LM). Optical information encoded in spikes is delivered
from the EM to the LM for pattern learning using memory
augmented reinforcement. Each learning module comprises
one MoS, FET (Tpy), as shown in Figure le, which serves as a
nonvolatile synapse with analog conductance states program-
mable by applying electrical voltage spikes to the local back-

gate terminal, N, which also serves as the output terminal of
the EM. Figure 5a-1 show that MoS,-FET-based synapses allow
both spike-count- and spike-duration-based nonvolatile pro-
gramming and can achieve both potentiation and depression
analogous to chemical synapses in BNNs with low
programming energy expenditure.

Figure Sa shows the potentiation of a representative MoS,
electrical synapse from a low conductance state (LCS) after
the application of a fixed number of programming spikes
(Nspike = 10) of different amplitudes and negative polarity (V;),
with each spike being applied for f,;. = 100 ms. Figure Sb
shows the postpotentiated conductance states (Gp) measured
at Vgg = 0 V as a function of Ny, for different Vy's. As
expected, a lower N, value invokes lower potentiation, i.e.,
smaller change in Gp, and vice versa, which can be exploited for
spike-count-based learning. Similarly, Figure Sc shows the
depression of a potentiated MoS, synapse, i.e., from a high
conductance state (HCS) to an LCS, after the application of a
fixed number of programming spikes (N, = 10) of different
amplitudes and positive polarity (Vp), with each spike again
being applied for fy;. = 100 ms. Figure Sd shows the
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Figure 7. Multipixel demonstration of analog image sensing, encoding, and leaning. a) Analog 7 X 7 input pattern obtained by illuminating
the blue LED. Temporal evolution of corresponding b) graded potential (Vy;) at the output of the SMs, c) programming spike-count (I, plke)
at the output of the EMs, and d) programmed conductance values at the output of LMs. Clearly, the input LED pattern is learned by our 7 X
7 BNN hardware. For this demonstration, all MoS,-FET-based synapses belonging to the LMs were initially programmed in their LCS (100
pS), and different LED illuminations were presented one by one to the corresponding pixels of our 7 X 7 BNN hardware.

postdepressed conductance states (Gp,) measured at Vg =0V
as a function of N, for different Vpy’s. As expected, a lower
Ny value invokes lower depression and vice versa, which can
be exploited for spike-count-based forgetting. As we will
elucidate later, forgetting capabilities enable relearning of new
patterns using the same synapses that have learned in a
previous pattern. Also, note that a smaller Ny, value can
achieve higher potentiation/depression if encoded using a
higher V}/p. As mentioned earlier, this aspect can be exploited
to achieve learning plasticity.

Figure Se-h show the spike-duration-based potentiation and
depression of MoS, synapses. Figure Se shows the potentiation
of an MoS, synapse from an LCS after the application of a
single spike of constant magnitude V, = —6 V for different
tipike S and Figure Sf shows the postpotentiated G, measured at
Vig = 0 V as a function of t,, for different V’s. Similarly,
Figure Sg shows the depression of an MoS, synapse from an
HCS after the application of a single spike of constant
magnitude Vi, = 6 V for different f,,.’s, and Figure Sh shows
the postdepressed Gp measured at Vg = 0 V as a function of
tpie for different Vp'’s. Here, shorter f;. invokes lower
potentiation/depression and vice versa, which can be used for
spike-duration-based learning/forgetting. Note that similar to
spike-count-based learning/forgetting, higher potentiation/
depression can be achieved for shorter spike durations when
encoded using a higher magnitude of V;,p, thus enabling spike-
duration-based learning plasticity under scotopic conditions.

The underlying mechanism behind the spike-count- and
spike-duration-based potentiation and depression of MoS,
synapses can be explained using the shift in Vyy observed in

the transfer characteristics of MoS, FETs. The Vipy shift is
attributed to charge trapping/detrapping at and near the
MoS,/AL O, interface, which is also responsible for the
photogating effect described earlier. In our previous work,*®
we performed a bias-temperature instability (BTI) test to
confirm the charge trapping in the dielectric. A high magnitude
of Vp and Vy is required for the charge trapping and detrapping
process since a minimal hysteresis loop is observed in as-
fabricated, postdepressed, and postpotentiated devices for a
narrow gate voltage range, as shown in Supporting Information
14. Interestingly, the trapping and detrapping processes were
found to be nonvolatile as evident from the retention
measurements displayed in Figure 5i-j for 6 representative
potentiated (Gp) and depressed (Gp) conductance states,
respectively, measured over 100 s. We also examined long-term
memory retention characteristics of two representative
postprogrammed analog conductance states for ~10* seconds,
as shown in Supporting Information 15. The memory ratio
(MR) between these two states was found to change from
~1.1 X 10* to 0.6 X 10 following an exponential decay with a
time constant of 1.6 X 10* seconds. The projected time before
the two states become indistinguishable, or MR reaches 1, was
found to be ~1 day. Note that, while conventional memory
devices require nonvolatile retention for years, many neuro-
morphic applications including those used by edge devices and
sensors relax the requirement for long-term retention and can
be well served with short-term memory retention of several
hours to days. The retention window demonstrated by the
MoS, FETs was adequate for the successful realization of our
proof-of-concept “all-in-one” BNN. Certainly, it is desirable and
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Figure 8. Importance of forgetting (synaptic depression) in learning and inference. a) Schematic and optical image of a 2-layer BNN with 9
presynaptic neurons and 1 postsynaptic neuron for learning and inferring patterns from 3 X 3 pixelated images. b) Training and retraining
schedule with M = 40 epochs, with each epoch having potentiation and depression cycles. During the potentiation, the pattern to be learned
is presented to the BNN, whereas during the depression, all synapses are uniformly depressed. Spiking profiles used for c) spike-count- and
d) spike-duration-based learning. For each type of learning, three BNN configurations are used: 1) weak potentiation and strong depression,
2) strong potentiation and weak depression, and 3) strong potentiation and strong depression. The strength of potentiation (V;) and
depression (V) is adjusted using the spike magnitude and spike duration for spike-count- and spike-duration-based learning, respectively.
The time evolution of the colormap of synaptic weights, i.e., the conductance states of the 9 synapses during e) spike-count- and f) spike-
duration-based learning. For each type of learning, all synapses are initialized either in an HCS where Gycs = 100 nS or in an LCS where
Gycs = 100 pS (also see the Supplementary Videos 3 and 4). Learning of the left diagonal is followed by relearning of the right diagonal when
potentiation and depression are both strong for g) spike-count- and h) spike-duration-based learning (also see the Supplementary Videos §
and 6).

possible to improve the memory retention window by
optimizing the design of the local back-gate stack, e.g., by

mimicking the floating-gate architecture used by conventional
FLASH memory devices.
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The device-to-device variation in the pre- and postprog-
rammed transfer characteristics and the corresponding color-
map of MR measured at Vzg = 0 V for 49 monolayer MoS,
FETs from each LM of our 7 X 7 BNN platform, when
programmed using Ny, = 10 with spike magnitude, V, = —8
V, and spike width, ;. = 100 ms, are shown in Figure Sk,
respectively (see Supporting Information 16 for the pre- and
postprogrammed transfer characteristics for each of these 49
MoS, FETs). The mean and standard deviation values for MR
were found to be 6 X 10° and 0.5 X 10°, respectively. In our
work, we have characterized the device-to-device variation in
the electrical memory and in the persistent photocurrent
(PPC) observed in MoS, FETs and correlated these effects
with the material characterization.

Finally, Figure 6a-b, respectively, show the spike-duration-
and spike-count-based conductance evolution in the MoS,
FET-based LM when input programming waveforms (Vys) are
received from the EM corresponding to different I zp’s and
Viite S As shown in Figure 6c¢-d, for any given V., the
spiking patterns received from the EM that correspond to
higher values of input stimuli (I zp) result in higher values of
final conductance, and vice versa, for both spike-duration- and
spike-count-based learning, respectively. Similarly, for any
given I pp, more negative V, . results in better learning, i.e.,
higher final conductance. The average learning energy
expenditure (E;y) per clock cycle by the LM, given by

Ey= ic VI%IS, for both spike-duration- and spike-count-

2 oxX
based learning is shown in Figure Ge-f, respectively. The energy
expenditure for the LM was found to be miniscule at ~50 fJ
per clock cycle even for the brightest illumination and most
negative V..

Multipixel Demonstration of Analog Image Sensing,
Encoding, and Leaning. Figure 7a-d and Supplementary
Video 2 show a complete demonstration of our BNN hardware
involving the multipixel and monolithically integrated SM, EM,
and LM. A 7 X 7 analog input pattern obtained by illuminating
the LED (Figure 7a) is transduced into corresponding graded
potentials using the SMs (Figure 7b) and encoded into
corresponding programming spikes following the spike-count-
based encoding algorithm by the EMs (Figure 7c), which are
subsequently used by the LMs to potentiate the MoS,-FET-
based nonvolatile synapses (Figure 7d). Clearly, the input LED
pattern is learned by our 7 X 7 BNN hardware. For this
demonstration, all synapses were initially programmed in their
LCS, and different LED illuminations were presented one by
one to the corresponding pixels of our 7 X 7 BNN hardware.
For simultaneous illumination, a lensing system will be needed
to focus the image pixels onto the corresponding SMs of our
BNN platform. In our future endeavors, we will attempt to
integrate the lensing system with the BNN hardware.

Note that MoS, FETs used in the SMs are biased in the
deep off-state by applying negative V. to harness the
photogating effect, resulting in the transduction of optical
illuminations into corresponding graded potentials. However,
the MoS, FETs used in the EM and LM are biased either in
the subthreshold or in the on-state, where these devices remain
insensitive to illumination and hence their operation is not
impacted by illumination. Also note that, while the input
pattern is learned by our BNN architecture, device-to-device
variation in the photogating effect, transfer characteristics, and
programming of MoS, FETs are translated into variation in the
graded potential, spike-count, and learned conductance values

corresponding to the same input LED signal, as seen in Figure
7. There is no doubt that further reduction in device-to-device
variation is desirable. As MoS, technology matures further
through the optimization of growth conditions to reduce point
defects, cleaner and damage-free techniques are developed for
large area transfer, and polymer residues are eliminated from
device fabrication processes, it will be possible to mitigate
device-to-device variation to a larger extent and achieve near-
ideal learning. Nevertheless, our proof-of-concept demonstra-
tion highlights the fully-integrated nature of our MoS,-FET-
based hardware BNN that combines sensing, computing
(encoding), and storage and thereby distinguishes it from
other hardware BNN architectures based on CMOS or
emerging technologies such as RRAM, PCM, memristor, and
all-optic, as well as hybrid, approaches.

Importance of Forgetting in Learning and Inference.
Forgetting has traditionally been considered to be a passive
brain process, which ensures unused information fades over
time so that neural resources can be reallocated for storing
newer and more important information. When machines learn
with unrestricted storage resources (e.g, cloud servers),
forgetting is irrelevant. However, when storage capacity is
either limited or not accessible, for example, in the Internet of
things (IoT) edge devices deployed in remote locations,
forgetting can play an active role in smart learning. Here, we
demonstrate the role of forgetting in relearning without any
external supervision and by directly interacting with the
changing environment.

Figure 8a shows the schematic and optical image of a fully
connected 2-layer BNN with 9 presynaptic input neurons and
1 postsynaptic output neuron for learning and inferring
patterns from 3 X 3 pixelated images (see Supporting
Information 17 for an enlarged version of the optical image).
Figure 8b shows the training and retraining schedule consisting
of M = 40 epochs, with each epoch having two cycles:
potentiation and depression. See Supporting Information 18
for the biasing configuring of the EM for introducing the
depression cycle. To introduce depression in the EM, Vj, is
applied to the drain terminal of Ty, ie., N, instead of
keeping it grounded with clocking profiles as shown in Figure
S17a-b for spike-duration- and spike-count-based encoding,
respectively. Figure S17c-d, respectively, show the output
(Vns) of the EM at a constant graded potential, Vy; = 5V, and
under various combinations of Vj, and V} for spike-duration-
and spike-count-based encoding, respectively. During the
potentiation cycle, the image pattern to be learned is presented
to the corresponding synapses of the 9 X 1 BNN, whereas
during the depression cycle, all 9 synapses are uniformly
depressed. The first pattern (left diagonal) is presented for 20
epochs followed by the second pattern (right diagonal) for
another 20 epochs to test whether our BNN can forget
previously learned patterns and relearn new patterns. Figure
8c-d, respectively, show the spiking profiles used for spike-
count- and spike-duration-based learning. For each type of
learning, we consider three configurations of the BNN: 1)
weak potentiation and strong depression, 2) strong potentia-
tion and weak depression, and 3) strong potentiation and
strong depression. For spike-count-based learning, the strength
of potentiation (V}) and depression (Vp) is adjusted using the
spike magnitude, for example, V, = —10 V for strong and V;, =
—8 V for weak potentiation and V, = 12V for strong and Vj, =
10 V for weak depression. Similarly, for the pattern to be

learned, each pixel in the 3 X 3 images is encoded with N, =
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10 if it is bright and N3, = 0 if it is dark. For spike-duration-
based learning, the strength of potentiation and depression is
adjusted using the spike duration, i.e., £, = 800 ms for strong
and f,;;. = 100 ms for weak potentiation/depression; for the
pattern to be learned, each pixel in the 3 X 3 images is encoded
with the appropriate t;, (weak/strong) if it is bright and .
= 10 ms if it is dark.

Figure 8e-f, respectively, show the time evolution of the
colormap of synaptic weights, i.e., the conductance states of the
9 synaptic devices, during the spike-count- and spike-duration-
based learning cycles. For each type of learning, all synapses
are initialized either in an HCS, with Gycg = 100 nS, or in an
LCS, with G s = 100 pS (also see Supplementary Videos 3
and 4). Following are the key observations. When potentiation
is weak but depression is strong, it is difficult to learn
irrespective of the initial state of the synapses; however, when
potentiation is strong but depression is weak, learning from the
LCS is fast, but forgetting, and thus relearning, from the HCS
is slow. This is expected since synapses that are potentiated get
stuck in their HCS owing to weak depression making it
difficult for them to forget their respective states. Finally, if
both potentiation and depression are strong, learning and
forgetting become faster irrespective of the initial synaptic
state. This is demonstrated in Figure 8g-h, which show learning
of the left diagonal followed by relearning of the right diagonal
when potentiation and depression are both strong for spike-
count- and spike-duration-based learning, respectively (also see
Supplementary Videos S and 6). Our findings indicate that the
relative strengths of potentiation and depression play a critical
role in learning using our BNN. This is similar to natural
BNNs; for example, autism spectrum disorder (ASD), which
includes a broad range of conditions such as challenges with
learning social skills, repetitive behaviors, etc., has been related
to dysregulation or a deficit in long-term depression in several
mouse models.””*" Therefore, our hardware BNN platform
offers an opportunity to bridge the gap between the
neuroscience of learning and machine learning. Supporting
Information 19 shows inference using our BNN architecture.
We have used a 9 X 2 fully-connected neural network
implemented using two sets of 9 X 1 synapses, as shown in
Figure S18a. The synapses between the 9 presynaptic neurons
and the “Yes” postsynaptic neuron are trained with the actual
pattern, whereas the synapses between the 9 presynaptic
neurons and the “No” postsynaptic neuron are trained with the
inverse of the pattern to obtain the respective conductance
maps (Gi_yenos | = 1,2,3,..,8,9), as shown in Figure S18b. Any
input pattern from the LED is converted to corresponding
graded potentials by the SMs and transduced into spike trains
by the EMs. For spike-count-based inference, the output
voltage spikes (V,-]-, i=123,.89;j= 1,2,3,...,N5Pike) obtained
at the output of the encoding module and corresponding to
each pixel of the 3 X 3 image are applied to the drain terminals
of the 9 presynaptic neurons. The output currents from the
common source terminal, i.e., postsynaptic “Yes” and “No”
neurons, are integrated using capacitors (CYes/NO) to obtain
Vyes and Vi, as shown in Figure S18c and in eq 1.

Nopike 9 Nypike

ke < £ ke
VYes= Cp]k Z Z Gi*Yes‘/ij VNo= Cp]k Z Z GifNo‘/ij

Yes =1 j=1 No =1 j=1

(1)

For spike-duration-based inference, a similar approach is
adopted, except for the fact that only one voltage spike (V, i =

1,2,3,..,8,9) is obtained at the output of the encoding module,
corresponding to each pixel of the 3 X 3 image with different
spiking durations. In this case, Vy, and Vi, are given by eq 2.

1 2 tspike 1 2 fpike
VYes = - Z 4/0 Gi—YesV; VNo = - Z A Gi—NoVi

CYes i=1 CNo i=1
(2)

For the “Yes” neuron to be a winner, Vy,, > Vi, and Vy, >
Viviy Where Vi, is the winning threshold determined by the
learned pattern. Clearly, the “Yes” neuron should be the
winner only when the pattern similar to the learned one is
inferred, whereas the “No” neuron should win for all other
patterns. However, the experimental inference accuracy was
found to be ~96%. This is because the patterns which contain
one or two off-diagonal pixels in addition to the diagonal pixels
also make the “Yes” neuron the winner. There are a total of °C,
+ ®C, = 21 such patterns, which accounts for ~4% of all 2° =
512 patterns that are wrongly inferred. Note that if 3 or more
pixels in addition to the diagonal pixels are bright, the “No”
neuron wins. The inference accuracy was improved to 100% by
making Vy, > Viyy, even when only one off-diagonal pixel is
present in the input pattern. This was accomplished through
greater potentiation of the synaptic connections between the
input neurons and the “No” neuron during training, with the
inverse pattern resulting in an order of magnitude higher
learned conductance value.

CONCLUSION

In conclusion, we have experimentally demonstrated a fully
integrated, multipixel, and biomimetic BNN hardware platform
based on monolayer MoS, that combines sensing, encoding,
learning, and inference. We have employed both spike-count-
and spike-duration-based encoding, learning, and inference
inspired by the energy efficiency of spike-based computing in
the brain. Similarly, we were able to show adaptive learning in
photopic and scotopic conditions and the impact of the relative
strengths of synaptic potentiation and depression on learning
and forgetting. Our accomplishments can be attributed to the
photoresponse of monolayer MoS,-based phototransistors for
sensing, MoS,-based neuromorphic circuit modules for
encoding, and programmable and nonvolatile MoS, synapses
enabled by our local back-gate memory stack for unsupervised
and adaptive learning. Our findings highlight the potential of
in-memory computing and sensing based on emerging 2D
materials, devices, and circuits that not only overcome the
bottleneck of von Neumann computing in conventional
CMOS designs but also aid in eliminating peripheral
components necessary for competing technologies such as
memristors, RRAM, PCM, etc. We believe that our MoS,-
based low-power and fully integrated hardware BNN system is
more biorealistic in terms of functionality, organization, and
plasticity of BNN and, therefore, can not only accelerate the
development of hardware artificial intelligence (AI) and benefit
edge computing and smart sensing for the Internet of Things
(IoT) but also offer a platform for adaptive leaning and for
modeling plasticity-related learning disorders in natural BNNs.

METHODS

Fabrication of Local Back-Gate Islands. To define the back-
gate island regions, the substrate (285 nm SiO, on p**-Si) was spin-
coated with a bilayer photoresist consisting of Lift-Off-Resist (LOR
SA) and Series Photoresist (SPR 3012) baked at 185 and 95 °C,
respectively. The bilayer photoresist was then exposed using a
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Heidelburg Maskless Aligner (MLA 150) to define each island and
subsequently developed using MF CD26 microposit, followed by a
deionized (DI) water rinse. The back-gate electrode of 20/50 nm
TiN/Pt was deposited using reactive sputtering. The photoresist was
the removed using acetone and Photo Resist Stripper (PRS 3000) and
cleaned using 2-propanol (IPA) and DI water. An atomic layer
deposition (ALD) process was then implemented to grow 50 nm
Al O; across the entire substrate, including the island regions. To
access the individual Pt back-gate electrodes, etch patterns were
defined using the same bilayer photoresist consisting of LOR SA and
SPR 3012. The bilayer photoresist was then exposed using the MLA
150 and developed using MF CD26 microposit. 50 nm Al,O; was
subsequently dry-etched using a BCl; reactive ion etch (RIE)
chemistry at S °C for 20 s, which was repeated four times to
minimize heating in the substrate. Next, the photoresist was removed
to give access to the individual Pt electrodes.””**

Large Area Monolayer MoS, Film Growth. Monolayer MoS,
was deposited on an epi-ready 2'' c-sapphire substrate by metal-
organic chemical vapor deposition (MOCVD). An inductively heated
graphite susceptor equipped with wafer rotation in a cold-wall
horizontal reactor was used to achieve uniform monolayer deposition
as previously described.”’ Molybdenum hexacarbonyl (Mo(CO))
and hydrogen sulfide (H,S) were used as precursors. Mo(CO)
maintained at 10 °C and 950 Torr in a stainless-steel bubbler were
used to deliver 0.036 sccm of the metal precursor for the growth,
while 400 sccm of H,S was used for the process. MoS, deposition was
carried out at 1000 °C and 50 Torr in H, ambient, where monolayer
growth was achieved in 18 min. The substrate was first heated to 1000
°C in H, and maintained for 10 min before the growth was initiated.
After growth, the substrate was cooled in H,S to 300 °C to inhibit the
decomposition of the MoS, films. More details can be found in our
carlier work.>>**5*

MoS, Film Transfer to Local Back-Gate Islands. To fabricate
the MoS, FETs, the MOCVD-grown monolayer MoS, film was
transferred from the sapphire growth substrate to the SiO,/p**-Si
application substrate with local back-gate islands using a PMMA
(polymethyl-methacrylate) assisted wet transfer process. First, the
MoS, on the growth substrate was spin-coated with PMMA and left
over night to achieve good adhesion. The corners of the spin-coated
film were then scratched using a razor blade and immersed inside a 2
M NaOH solution kept at 90 °C. Capillary action caused the NaOH
to be drawn into the substrate/film interface, separating the PMMA/
MoS, film from the sapphire substrate. The separated film was rinsed
multiple times inside a water bath and transferred onto the SiO,/p**-
Si substrate with local back-gate islands. The substrate was then baked
at 50 and 70 °C for 10 min each to remove moisture and promote
adhesion. Finally, the PMMA supporting layer was removed by
immersing the substrate in acetone and the substrate was cleaned
using an IPA bath.””**

Fabrication of Monolayer MoS, FET. To define the channel
regions of the MoS, FETs, the substrate was spin-coated with PMMA
and baked at 180 °C for 90 s. The resist was then patterned using
electron beam (e-beam) lithography and developed using a 1:1
mixture of 4-methyl-2-pentanone (MIBK) and 2-propanol (IPA) for
60 s and an IPA rinse for 45 s. The monolayer MoS, film was
subsequently etched using a sulfur hexafluoride (SF4) RIE chemistry
at 5 °C for 30 s. Next, the sample was rinsed in acetone and IPA to
remove the e-beam resist. To define the source and drain contacts, the
sample was then spin-coated with methyl methacrylate (MMA)
followed by A3 PMMA. Then, e-beam lithography was again used to
pattern the source/drain contacts and development was again
conducted using a 1:1 mixture of MIBK and IPA for 60 s and IPA
for 4S5 s. 40 nm nickel (Ni) and 30 nm gold (Au) were deposited
using e-beam evaporation to act as the contact metals. Finally, a lift-off
process was performed to remove the evaporated Ni/Au except from
the contact regions by immersing the sample in acetone for 30 min
followed by IPA for another 30 min. In the final design, each island
contains one MoS, FET to allow for individual gate control.”**

Monolithic Integration. Each pixel of our multipixel (7 X 7)
BNN hardware consists of 4 MoS, FETs, as shown using the circuit

schematic in Figure le. Within each pixel, the SM consists of 1 MoS,
FET (Tgy), the EM consists of 2 MoS, FETs (Tgy and Tgyp,), and
the LM consists of 1 MoS, FET (Tyy). To fabricate the connections
between the respective nodes of Tgy, Teyy Tewp and Tpy, the
substrate was spin-coated with MMA and PMMA, the e-beam
lithography and development processes previously described were
used to define the connections , and e-beam evaporation was used to
deposit 60 nm of Au. Finally, the e-beam resist was rinsed away by the
same lift-off process mentioned previously.””**

Electrical Characterization. Electrical characterization of the
fabricated devices was performed using a Lake Shore CRX-VF probe
station under atmospheric conditions with a Keysight BI1S00A
parameter analyzer.

Code Availability. The codes used for plotting the data are
available from the corresponding authors on reasonable request.
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Video 6 (MP4)

Optical image of all-in-one multipixel chip (1 cm X 1
cm), optical image of 7 X 7 pixel SNN platform, optical
image of one pixel, device-to-device variation in Raman
spectra, PL spectra, transfer characteristics of monolayer
MoS, FET across 7 X 7 pixel, output characteristics of
MoS, FET, calibration of input optical power, optical
images of different LED brightness, postillumination
transfer characteristics of MoS, FET for different
exposure time and back-gate bias, device-to-device
variation in photoresponse, biasing configuration of
encoding module for both spike-timing and spike count,
graded potential from sensing module corresponding to
different light intensity, hysteresis loop for as fabricated,
postpotentiated and postdepressed, long-term retention
of two conductance states, device-to-device variation in
programmability of monolayer MoS, FET, optical image
of fully connected 2-layer network, biasing configuration
of encoding module for introducing both potentiation
and depression cycle, and inference using our network
architecture (PDF)
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