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Bayesian networks (BNs) find widespread application in many real-world
probabilistic problems including diagnostics, forecasting, computer vision,

etc. The basic computing primitive for BNs is a stochastic bit (s-bit) generator
that can control the probability of obtaining ‘1" in a binary bit-stream. While
silicon-based complementary metal-oxide-semiconductor (CMOS) technology
can be used for hardware implementation of BNs, the lack of inherent sto-
chasticity makes it area and energy inefficient. On the other hand, memristors
and spintronic devices offer inherent stochasticity but lack computing ability
beyond simple vector matrix multiplication due to their two-terminal nature
and rely on extensive CMOS peripherals for BN implementation, which limits
area and energy efficiency. Here, we circumvent these challenges by introdu-
cing a hardware platform based on 2D memtransistors. First, we experimen-
tally demonstrate a low-power and compact s-bit generator circuit that
exploits cycle-to-cycle fluctuation in the post-programmed conductance state
of 2D memtransistors. Next, the s-bit generators are monolithically integrated
with 2D memtransistor-based logic gates to implement BNs. Our findings
highlight the potential for 2D memtransistor-based integrated circuits for non-
von Neumann computing applications.

The concept of a Bayesian network (BN) is deep rooted within natural
intelligence. Animals gather information from their surroundings with
the help of their sensory organs and process this information using
their brain to make decisions, enabling their survival. However, gath-
ering accurate information is often very difficult in practice either due
to the limitations of sensory organs or due to noisy environment. For
example, visual cues are an unreliable source of information for
freshwater fish like the rainbow trout to identify the presence of a
predator. In contrast, chemical cues released into the water from an
injured fish are more reliable indicators of a predatory event'. The
decision to invoke an alarm response, therefore, depends on how
the brain processes the visual and chemical cues based on their relative
probability of success from prior experiences. While the neural basis of

such computations is relatively unknown, the mathematical construct
is represented using a BN with theoretical foundation in Bayes’
theorem.

A BN is a probabilistic graphic network used to estimate and infer
the probability of interdependent events®. Figure 1a shows the basic
building block of a BN, comprising a parent node, A, a child node, B,
and an edge connecting the two. Each node represents an event, e.g.,
the presence of a chemical cue (A) and the presence of a predator (B),
and the connection represents how two events are mutually depen-
dent. The dependence is provided in a conditional probability table
(CPT) which contains the conditional probability (likelihood) values
P(B/A) and P(B/A°), where A° is the complement of the event A. In the
present example, these represent the likelihood of the presence of a
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Fig. 1| Bayesian networks (BNs). a Schematic of the basic building block of a BN,
comprising a parent node, A, a child node, B, and an edge connecting the two. Each
node represents an event, and the connection represents how two events are
mutually dependent. The dependence is provided in a conditional probability table
(CPT), which contains the conditional probability (likelihood) values P(B/A) and
P(B/A°), where A is the complement of the event. Knowing the probability of

occurrence for event A, i.e., P(A), the marginal probability of occurrence of event B,
i.e., P(B), can be evaluated using Bayes’ theorem. b Hardware implementation of the
2-node BN in (a) using three stochastic bit (s-bit) generators and one 2x1 multi-
plexer (MUX) circuit. ¢ Examples of BN architecture that represent real-life situa-
tions from ecology to forecasting and drug discovery, highlighting its usefulness in
decision making.

predator when a chemical cue is present (4) or absent (A°), respec-
tively. When the probability of occurrence for event A, i.e., P(A), is
known, the marginal probability of occurrence of event B, i.e., P(B), can
be evaluated using Bayes’ theorem following Eq. 1.

P(B)=P(B/A)P(A) + P(B/A°)P(A°) = P(B/A)P(A) + P(B/A)[1 — P(A)] (1)

P(A) +P(AC> =1 @)

In a generic BN, a child node can have multiple parent nodes, and
a parent node can have multiple children. For example, Supplementary
Fig. Sla shows a BN where the child node, B, is connected to 2 parent
nodes, A; and A,. Note that the CPT in this instance contains N = 4
entries, which are the conditional probability (likelihood) for the
occurrence of event B under all possible combinations of the occur-
rence of events A; and A,. Similarly, Supplementary Fig. S1b shows aBN
where the parent node, 4, is connected to 2 children, B, and B,. In this
case, there are 2 CPTs with N = 2 entries each.

Note that the probability estimation for a child node requires
multiple arithmetic operations such as multiplication, subtraction,
and addition. This makes hardware implementation of a BN using
conventional silicon complementary metal-oxide-semiconductor
(CMOS) technology® * less attractive because 1) arithmetic opera-
tions require circuits consisting of hundreds of transistors, which
have large footprints and consume a significant amount of energy,

and 2) the von Neumann bottleneck necessitates storing of the CPT
in the memory, which is physically separated from the arithmetic
core and therefore requires frequent data shuttling between the
two, further aggravating the energy burden. In contrast, even the
tiniest brains with very limited numbers of neurons can perform
such apparently complex computational tasks with miniscule
energy expenditure. The success of biological brains in imple-
menting BNs could lie in the inherently stochastic nature of neural
computation.

Drawing inspiration from biology, stochastic computing (SC) has
been explored for the hardware implementation of BNs®. The key dif-
ference from classical computing, where information in presented in
the form of binary values (1's and 0’s), is that SC encodes information
using stochastic bits (s-bits) that are interpreted as probabilities that
fall in the interval [0,1]. For instance, the bit-streamS=[1001010 O]
encodes the value P(S) = 3/8, i.e., the probability of finding ‘1" in the bit-
stream S. An attractive feature of SC is that arithmetic operations can
be performed using simple logic gates®’. For example, the 2-node BN
in Fig. 1a can be realized using a multiplexer (MUX) circuit as shown in
Fig. 1b. The output, B, of a MUX with two input variables, X; and X,,
and a select line, A4, is given by Eq. (3).

B=AX;+AX, 3)
If, instead of being digital variables, X;, X, and A represent stochastic

variables with P(X;), P(X,), and P(A) being the respective probability
of obtaining ‘1" in their bit-streams, then B also transforms into a
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random variable whose probability is given by Eq. (4).
P(B)=P(A)P(X,) +P(A°)P(X;) )

Note that, if P(X;) = P(B/A) and P(X,) = P(B/AC , then Eq. (4)
transforms into Eq. (1). Therefore, hardware implementation of a child
node with a single parent can be accomplished by using 3 s-bit
generators and a 2 x 1 MUX. Interestingly, the MUX architecture can be
scaled to implement any BN. For example, hardware implementation
of the BN in Fig. 1a can be achieved by using 2 s-bit generators to obtain
A; and A,, another 4 s-bit generators to obtain the CPT, and one 4 x 1
MUX with 2 select lines as shown in Supplementary Fig. Sic. Similarly,
Supplementary Fig. 1d shows the hardware architecture for the BN in
Supplementary Fig. S1b, consisting of 1 s-bit generator to obtain A,
another 4 s-bit generators to obtain the 2 CPTs, and 2 2 x 1 MUXG.

Note that BN architecture can be used to represent many real-life
situations, as shown in Fig. 1c. For example, in the case of the rainbow
trout, events A; and A, represent the presence of independent visual
and chemical cues and event B represents the presence of a predator.
Events C; and C,, meanwhile, represent the decision taken by the
rainbow trout to stop swimming and stop foraging, respectively, which
are also independent of each other but depend on B. Similarly, in
forecasting, events A; and A, represent the probability of a day being
cloudy and windy, respectively, event B represents the probability of
rain, and events C; and C, may represent the decision to purchase an
umbrella or drink coffee, respectively. Finally, a third example is
derived from genetics and drug discovery, where events A; and A, may
represent the probability of expressing gene 1 and gene 2 when inter-
vening with a specific drug, respectively, event B represents the acti-
vation of a critical signaling pathway, and events C; and C, represent
production of specific hormones or antibodies, respectively. The
above discussion exemplifies the usefulness of BNs in depicting causal
relationships using acyclic graphs, which can subsequently be used to
predict outcomes based on prior knowledge and likelihood. For
example, to predict the relative effectiveness between drug-1 and
drug-2 that influence expression for gene 1 and gene 2, respectively, the
only experiments that one needs to do is to obtain respective prior
results, i.e., P(A;) and P(A,). A BN can then be used to obtain marginal
likelihoods, i.e., P(C;) and/or P(C,), to assess the relative effectiveness
of the two drugs.

The fundamental computing primitive for the stochastic com-
puting implementation of a BN is an s-bit generator, which allows
control of the output probability of obtaining ‘1’ in a given bit-stream.
So far, probabilistic CMOS®, field-programmable gate arrays
(FPGAs)’™, memristors'>™, and spintronic devices”* have been suc-
cessfully used for BN implementation. However, CMOS- and FPGA-
based BN architectures require hundreds of transistors to generate s-
bits, which limits their area and energy efficiency’” . In contrast,
memristors offer inherent stochasticity in their switching dynamics,
which can be exploited to obtain random bits. However, memristor-
based BN architectures heavily rely on CMOS peripherals to translate
random bits into s-bits and for subsequent logic operations using
those s-bits. Recently, spintronic devices such as magnetic random
access memory (MRAM)* and magnetic tunnel junctions (MTJs)*
have shown potential for BN implementation since s-bits can be
obtained by controlling the probability of spin-flip through externally
driven current. However, temperature and supply voltage fluctuations
can impact the spin-flip probability, which necessitates additional
CMOS-based peripheral circuits to remove the bit-bias. In addition,
spin-based devices still require CMOS-based logic circuits for BN
implementation.

In this work, we demonstrate hardware implementation of a BN
using a monolithic memtransistor technology based on two-
dimensional (2D) semiconductors such as monolayer MoS,. Mem-
transistors are three-terminal devices in which the gate terminal allows

non-volatile and analog programming of the conductance states,
which can then be readout by applying a source-to-drain bias. Our
main contributions in this work are 1) the design of an area and energy
efficient s-bit generator circuit composed of six memtransistors,
allowing it to achieve a tunable probability of obtaining ‘1" in the bit-
stream over the range [0,1], and 2) integration of s-bit generators with a
2D memtransistor-based 2x1 MUX that consists of three NAND gates
and one NOT gate for BN implementation. In brief, we exploit the
inherent stochasticity of the charge trapping and detrapping pro-
cesses in the gate dielectric of the memtransistor as the source of
randomness. Our in-memory computing approach based on three-
terminal 2D memtransistors not only overcomes the von Neumann
limitations of conventional digital CMOS, but also eliminates the need
for peripherals, which is inescapable for emerging memristor- and
spin-based 2-terminal stochastic devices for BN implementation.

Our choice of monolayer MoS, is motivated by the fact that
atomically thin 2D materials are being considered for advanced tech-
nology nodes®. It is widely accepted that scaling silicon thickness
beyond ~-3-4 nm is challenging. Yet, the gate electrostatics demand
aggressive reduction in the channel thickness to preserve the desired
device performance for sub-10 nm technology nodes®. The ultimate
channel thickness for a field-effect transistor (FET) would be in the sub-
1 nm range, which is difficult to realize using bulk semiconductors*,
making 2D materials a natural choice for ultra-scaled FETs***. In fact,
recent years have witnessed many experimental breakthroughs in the
development of high-performance 2D FETs**™*, neurosynaptic
devices**°, and very large scale integrated (VLSI) circuits®>*. Simi-
larly, theoretical calculations and quantum mechanical simulation
have found that the 2D FETs can outperform CMOS HP (high perfor-
mance) in both energy and delay® %,

Results

Fabrication and characterization of 2D memtransistors

Figure 2a, b, respectively, show the 2D schematic and optical image of
arepresentative 2D memtransistor based on monolayer MoS,, which is
locally back-gated with sputter-deposited 40/30 nm Pt/TiN serving as
the back-gate electrode with atomic layer deposition (ALD) grown
50 nm Al,Oj; as the gate dielectric. All back-gate islands were placed on
a commercially purchased SiO,/p**-Si substrate. As we will discuss
later, the analog, non-volatile, and stochastic programming capability
offered by the Al,O5/Pt/TiN gate stack is central to our BN architecture.
The monolayer MoS, used in this work was grown using a metal-
organic chemical vapor deposition (MOCVD) technique on a sapphire
substrate at 950 °C* ¥°. Use of an epitaxial substrate and elevated
growth temperature ensured a uniform and high quality 2D film, which
is critical for the successful demonstration of our BN architecture that
involves many 2D memtransistors. For subsequent 2D memtransistor
fabrication, the monolayer MoS, film was transferred from the growth
substrate to the SiO,/p**-Si substrate with predefined islands of Al,O5/
Pt/TiN. Details on monolayer MoS, synthesis, film transfer, and fabri-
cation of the local back-gate gate islands, MoS, memtransistors, and
BN architecture can be found in the “Methods” section as well as in the
Methods sections of our recent works * -,

The film quality and device performance were assessed using
optical and electrical measurements. The Raman spectra (Supple-
mentary Fig. S2a) obtained for a representative 2D memtransistor
shows two characteristic monolayer MoS, peaks at 383 cm™ and
404 cm™ corresponding to the in-plane £, and out-of-plane Ajg
modes, respectively, with the expected peak separation of ~20 cm™ for
monolayer MoS,*". Similarly, the photoluminescence (PL) spectra
(Supplementary Fig. S2b) shows a peak at 1.83 eV corresponding to the
direct bandgap of monolayer MoS,. The transfer characteristics, i.e.,
source-to-drain current (/pg) versus local back-gate voltage (Vy),
measured using a source-to-drain bias (Vg) of 1V are shown in Fig. 2c
in both linear and logarithmic scale for a representative MoS,
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Fig. 2 | 2D memtransistors. a 2D schematic and b optical image of a representative
2D memtransistor based on monolayer MoS,, which is locally back-gated with
sputter-deposited 40/30 nm Pt/TiN serving as the back-gate electrode with atomic
layer deposition (ALD) grown 50 nm Al,O3 as the gate dielectric. All back-gate
islands were placed on a commercially purchased SiO,/p**-Si substrate. ¢ Transfer
characteristics, i.e., source-to-drain current (/) versus local back-gate voltage
(V¢), measured at a source-to-drain bias (V) of 1V, in linear and logarithmic scale
for a representative MoS, memtransistor with channel length L = 1um and channel
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same MoS, memtransistor. e Post-programmed and f post-erased transfer char-
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applied to the local back-gate electrode, each for a duration of 7, =100 us g Non-
volatile retention for 4 representative post-programmed and post-erased con-
ductance states (G,;) over 100 s.

memtransistor with a channel length (L) of 1um and a channel width
(W) of 5 um. As expected, n-type transport is observed in MoS,, which
is attributed to the pinning of the metal Fermi level near the conduc-
tion band®*’. Nevertheless, the MoS, memtransistor exhibits excel-
lent electrostatic gate control with a current on/off ratio (ron jorf) > 10°,
a subthreshold slope (5S) < 400 mV/decade averaged over 3 orders of
magnitude change in /g, minimal gate hysteresis when measured in
air, and low gate leakage current. The threshold voltage (V) was
found to be ~1.75V extracted at an iso-current of 10 nA/um and the
electron field effect mobility (ug) extracted from the peak trans-
conductance was found to be 5cm?V-s. Figure 2d shows the output
characteristics, i.e., Ipg versus Vg, at different Vy; for the same
representative MoS, memtransistor. The on-current (/,y) reached as
high as ~ 11uA/um for an inversion carrier density of ~1 x 10%/cm? at
Vps =5 V. These results suggest that the monolayer MoS, film grown
using MOCVD is of reasonably good quality, and that the memtran-
sistor fabrication processes including the film transfer are clean
and damage-free.

The post-programmed and post-erased transfer characteristics of
a representative 2D memtransistor after being subjected to negative
“Write” (Vp) and positive “Erase” (V) voltage pulses applied to the
local back-gate electrode of varying amplitudes, each for a duration of
7pr =100 ps, are shown in Fig. 2e, f, respectively. The negative and
positive shift in the respective transfer characteristics can be ascribed
to electron trapping and detrapping at and near the MoS,/Al,03
interface, respectively. Note that trap states can originate from
defects/imperfections in the dielectric and/or adsorbed species at the
2D/dielectric interface as reported in various earlier studies®® 7°. These
states can also be engineered at desired energetic locations by intro-
ducing intentional defects in the 2D channel material® ”'. Carrier
occupancy in these trap states follow Fermi-Dirac distribution. As
illustrated using the energy band diagrams in Supplementary Fig. S3, at
equilibrium, i.e., in the absence of any gate bias, the trap states with
energy levels above the Fermi energy () are empty, whereas the ones

below E are filled. When the memtransistor is subjected to a negative
“Write” (V) voltage pulse, electrons are released (detrapped) from
these trap states leaving them positively charged. This leads to
screening of the back-gate bias, which is reflected as shift in the
threshold voltage (AV ). Similarly, when the memtransistor is sub-
jected to a positive “Erase” (V) voltage pulse, electrons are captured
back (trapped) into the trap states, restoring the V. Note that the
number of electrons getting trapped/detrapped can be controlled by
both the magnitude and duration of V, and V¢, which allow us to have
an analog control of the AV, and of the conductance state of the
memtransistor.

The minimum program/erase pulse width is determined by the
trapping/detrapping time constants. Supplementary Fig. S4a-d show
the post-programmed and post-erased transfer characteristics of a 2D
memtransistor subjected to V, and V; voltage pulses of different
amplitudes ranging from 8V to 15V applied to the local back-gate
electrode, each for a duration of 7, =100 s, 10 s, 1ps, and 100 ns,
respectively. Clearly, the charge trapping and detrapping processes
can occur as fast as 100 ns, which is the limit set by our measurement
tools, allowing further improvement in the programming speed’ 7.
Supplementary Fig. S4e, f show the extracted shift in the threshold
voltage (AV ) as a function of V¢ for 7p r =100 ps and 7, =100 s,
respectively. From these results, we can conclude that, for any given
pulse magnitude Vp,, AVy,; becomes smaller as 7, becomes
shorter. To retain similar AV 7, for smaller 7, larger Vp  is required,
which will increase the energy expenditure. Therefore, one needs to
strike a balance between fast programmability and energy consump-
tion based on the application needs.

The trapping and detrapping processes were found to be non-
volatile, as shown in Fig. 2g for 4 representative post-programmed
and post-erased conductance states (G,,;) over 100 s. We also exam-
ined long-term memory retention for the 2D memtransistors and
found that states remain distinguishable even after 3 hrs. Memory
retention is important to store the CPT and the memtransistors
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demonstrate adequate memory performance for the hardware
implementation of BNs using SC. The program/erase endurance is also
important for the 2D memtransistor. Supplementary Fig. S5 shows the
post-programmed and post-erased conductance states of a repre-
sentative memtransistor, achieved with V,=-7V and V=10V using
7p,r =100 ns and measured at Vg =0V forup to 10° endurance cycles.
Clearly, there is no significant change in the two states. While it is
desirable to demonstrate endurance for an even higher number of
cycles, note that, for the many edge applications, the current endur-
ance results can be sufficient. For example, in weather forecasting, the
BN will be used every minute rather than every microsecond; similarly,
in medical diagnostics, the BN will be only used several thousand times
a day to assess patients.

Programming stochasticity in 2D memtransistors and design of
s-bit generator

Design of hardware for high-quality random bit generation is central to
the hardware implementation of BNs. Here, we exploit the cycle-to-
cycle variation in the post-programmed and post-erased conductance
states (Gy,r) of 2D memtransistors as a source of true randomness.
Figure 3a shows the transfer characteristics of a representative MoS,
memtransistor, which is measured each time after applying V, =-10 V
and V=10V for 7, =100 ps, for a total of 100 cycles and Fig. 3b, c,
respectively, show the histograms of post-programmed and post-
erased G, values extracted at V; =0 V. Clearly, the G, values fol-
low Gaussian random distributions. The cycle-to-cycle variation in
program/erase processes is a direct consequence of the stochastic
nature of charge trapping and detrapping observed in most semi-
conductor/dielectric interfaces’*°. In the simple two-state model, a
trap state can be electrically neutral or charged, and it can transition
between the two states even under equilibrium condition with transi-
tion times exponentially distributed. In other words, the state transi-
tion dynamics for traps follows the classic Markovian process’ 7%. In
ultra-scaled metal-oxide-semiconductor field effect transistors (MOS-
FETs) such stochastic state transitions lead to random telegraph noise
(RTN). Metastable states are also often involved in the trapping/
detrapping processes, making the transition dynamic more complex,
rich, and, at the same time, introducing an additional source of
randomness’’. While RTN is not observed in our relatively large area
memtransistors, the stochasticity of trapping/detrapping processes
manifest during the program/erase operations, thus leading to the
cycle-to-cycle variation in AV .

To translate the stochastic conductance fluctuation into s-bits,
we deploy a circuit consisting of six memtransistors (MT1, MT2,
MT3, MT4, MT5, and MT6), as shown using the circuit diagram and
corresponding optical image in Fig. 3d, e, respectively. The voltage
waveforms applied to the nodes N1 and N2, ie., Vy; and Vy,,
respectively, are shown in Fig. 3f. Note that during each clock cycle
(tar), Var switches between OV, OV, and 2V and V,, switches
between V,=-7V, V=10V, and V, =1V. Voltages applied to nodes
N3 and N4, ie., Vy; and V,,, are held constant at 1V and OV,
respectively. This allows programming and erasing of MT1 during
each t . The voltage readout at node N5, i.e., Vs, is shown in Fig. 3g
and exhibits stochastic fluctuation. Note that the series connection
of memtransistors MT1and MT2 represents a voltage divider circuit,
and hence V; is determined by their respective conductance values,
i.e., Gy and Gy,r,. Since Gy, fluctuates from cycle-to-cycle owing
to the programming and erasing voltages applied to its local back-
gate terminal, i.e., N2, so does V5. In other words, the voltage
divider translates conductance fluctuations into voltage fluctuations.
Figure 3h shows the histogram of Vs, which, as expected, follows a
random Gaussian distribution with a mean (uyys) of 0.40V and
standard deviation (oyys) of 0.02 V.

Next, the Gaussian distribution is broadened by using an inverting
amplifier constructed using MT3 and MT4. Note that the local back-

gate of MT3 is shorted to its source at node N,. This ensures that VT3
operates as a depletion mode (normally on) transistor or as a load
resistor. Figure 3i shows the output, Vy,, as a function of the input,
Vs. The slope of the curve is referred to as the gain of the amplifier,
and the higher the gain, the wider the broadening of the Gaussian. We
achieved a gain of ~24. The gain can be increased further by cascading
multiple amplifiers; however, this adds area and energy overhead.
Figure 3j shows Vy, corresponding to Vs obtained in Fig. 3g. Clearly,
the histogram of V,,, shown in Fig. 3k exhibits a Gaussian distribution
with a mean (uyyg) of 0.99V and an increased standard deviation
(oyne) Of 0.41V.

Finally, to transform the analog fluctuations seen in V,, into s-
bits, a thresholding inverter with a programmable inversion threshold,
V1, is constructed using MT5 and MT6. Figure 3l shows the output,
V7, as a function of the input, Vy,, for different V|;. Note that V/; is
the magnitude of Vy for which Vy; reaches Vp/2, ie., 1V in the
present case. The programmability of V| is a critical feature that dis-
tinguishes 2D memtransistor-based inverters from conventional
CMOS-based inverters and allows us to seamlessly obtain the s-bits.
Figure 3m shows Vy; corresponding to V,, obtained in Fig. 3j for
different V| and Fig. 3n shows the corresponding probability of
obtaining 1" in the bit-stream, i.e., p, as a function of V1. As expected, if
V7 istoo low, then almost all V values translate into Vy, = 0 V, which
is reflected as near zero p,. Similarly, if V|; is too high, then almost all
V ye values translate into Vy; =2V, leading to p, = 1. Between these two
extremes, p, increases monotonically with V ;. This clearly shows that
we are able to convert the cycle-to-cycle random conductance fluc-
tuations in 2D memtransistor into s-bits with reconfigurable p, values
that lie between [0,1] using the described circuit.

Note that the cycle-to-cycle variation in the programming of 2D
memtransistors will lead to fluctuations in the threshold voltage
(V) of MT¢ and hence in V,; of the thresholding inverter and p,
for the s-bit-stream. Supplementary Fig. S6a-b, respectively, show
the distribution of V, and V,; when MT is subjected to 50 pro-
gram/erase/read cycles with Vp =-7V, V=10V, and 7, =100 ps.
The means and standard deviations were found to be -0.04 V and
0.08V for Vy,, respectively, and 0.14V and 0.08V for V,;,
respectively. Therefore, p, will not be perfectly deterministic;
instead there will be a small uncertainty in its value, which is
represented using the uncertainty band in Fig. 3n. Next, to assess
randomness, we utilized the s-bit generator to generate 10* random
bits using the same programming and erasing voltage pulses of
Vg=10Vand Vp=-7V, respectively, at 7, =100 ps. Supplementary
Fig. S7 shows the results of eight of the statistical tests developed
by the National Institute of Standards and Technology (NIST)
performed on these 10* bits. According to the test protocol, the bit-
streams are considered random only if the p-value is greater than
0.01 with the null hypothesis that the sequence is random with 99%
confidence level. The NIST test results confirm that the s-bits gen-
erated are truly random.

The rough estimate of the energy expenditure for s-bit generation
(E,_p;) was calculated using Eq. (5).

Es pie=Co (V% VRt V%)D) + (Inwa) Voo Tk )
1 n
(Inna) = n Z Ininai (6)
i=1
Co=EoEx WL/t s (7)

In Eq. (5), Vp, V¢, Vi, and Vp, are the program, erase, read, and
supply voltages, respectively. C;=10™F is the gate capacitance,
£,=8.85x10"2F/m is the vacuum permittivity, and &,,=10 and
t,x =50 nm are, respectively, the relative permittivity and thickness of
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measured using V5 = 0 V. d Circuit diagram and e corresponding optical image for
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readout at node N5, i.e., V5. h Distribution of Vs over 200 7, follows a random
Gaussian distribution with a mean (i) of 0.40V and a standard deviation (o} s)
of 0.02V.iOutput, V), of an inverting amplifier constructed using MT3 and MT4
asafunction of the input, Vs, with again of -24. j V4 corresponding to Vs shown
in g. k Distribution of V, follows a random Gaussian distribution with a mean
(uyns) of 0.99 V and a standard deviation (oyys) of 0.41V.1Output, V), of a
thresholding inverter constructed using MT5 and MT6 as a function of the input,
Ve, for different inversion threshold, V7. m V,; corresponding to V, shown in
i for different V,;. n Probability of obtaining ‘1’ in the bit-stream (p;) as a function
of V.

Al,O3; W =5um and L =1um are, respectively, the channel width and
length of the 2D-memtransistor. (/y;y, ) is the average current flowing
through the s-bit generator circuit, i.e., the total current through the
voltage divider, inverting amplifier, and threshold inverter during each
7.~ We have used n=200 to calculate the average current per

T =100 ps based on the experimental measurements. Since most of
the memtransistors operate in their respective subthreshold regimes,
the extracted (/yy,) is ~1.5nA as shown in Supplementary Fig. S8. As
such, the second term in Eq. (5) accounts for ~0.3 pJ, whereas the first
termin Eq. (5) accounts for -2 pJ. This results in £,_;= 2 p)/clock-cycle,
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Fig. 4 | Hardware implementation of BN. a Circuit schematic for hardware
implementation of a BN using three s-bit generators and one 2x1 MUX. The MUX
consists of one inverter and three 2-input NAND gates. b Optical image and cor-
responding circuit configuration of a 2-input NAND gate comprising 3 memtran-
sistors (MT1, MT2, and MT3) connected in series, with MT1 serving as the
depletion load. ¢ Input waveforms, V3 and V,,, which are applied to the local
back-gate terminals of MT2 and MT3 at nodes N5 and N,, respectively, and the
corresponding output waveform, Vy,, which is obtained at node N,. d Optical
image and e corresponding circuit configuration for hardware implementation of a
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2-node BN consisting of 3 s-bit generators and a 2x1 MUX for a total of 29 mem-
transistors. The V,; values for the s-bit generators for X; and X, can be pre-
programmed using the CPT for the nodes A and B. f Representative stochastic bit-
streams for the random variables A, X;, and X, with P(A) = 0.28, P(X;) = P(B/A)
=0.50,and P(X,) = P(B /AC) =0.56. g Correlation coefficient (CC) values between
A, X1, and X, confirm mutual independence of the s-bit generator modules.

h Stochastic bit-streams obtained at the output node, B. The measured and
expected values for P(B) are 0.56 and 0.54, respectively.

which supports our claim of energy efficient s-bit generation. Also note
that since each memtransistor has an active device area of ~5um?,
excluding the large contact pads used for probing, the active footprint
for the s-bit generator is ~-30 um?. Since monolayer 2D materials offer
aggressive dimensional scalability, it is possible to reduce the footprint
of s-bit generators even further. Nevertheless, the use of only 6
memtransistors is the key towards the realization of area and energy
efficient s-bit generator circuits.

2D memtransistor-based digital circuits and BN implementation
As described earlier, stochastic multiplexers (MUXs) can be used for
computing the marginal probability values at any BN node. Figure 4a
shows the circuit configuration of a 2x1 MUX which consists of one
inverter and three 2-input NAND gates. Figure 4b shows the optical
image and corresponding circuit configuration of a 2-input NAND gate
comprising 3 memtransistors (MT1, MT2, and MT3) connected in
series, with MT1 serving as the depletion load. The supply voltage,
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Vpp =2V, is applied to the drain terminal of MT1 at node N;, whereas
the source terminal of MT3, i.e., node N, is kept grounded. Figure 4c
shows the input waveforms, V,; and V,,, which are applied to the
local back-gate terminals of MT2 and MT3 at nodes N; and N,,
respectively, and the corresponding output waveform, V,,, which is
obtained at node N,. Clearly, the circuit operates as a NAND gate.

Figure 4d, e, respectively, show the optical image and corre-
sponding circuit configuration for hardware implementation of a
2-node BN consisting of 3 s-bit generators and a 2 x 1 MUX for a total of
29 memtransistors. The V| values for the s-bit generators generating
X; and X, can be pre-programmed corresponding to the CPT for the
nodes A and B of the 2-node BN. Figure 4f shows the representative
stochastic bit-streams for the random variables A4, X;, and X, with P(A)
=028, P(X,) = P(B/A) =050, and P(X,) = P(B/A) = 0.56. Note that
accurate estimation of P(B) requires that the stochastic input variables
to the MUX, ie., A, X;, and X,, must be mutually independent. Fig-
ure 4g shows the correlation coefficient (CC) between these three
variables. The CC values were found to be close to zero, which con-
firms mutual independence of the s-bit generator modules. Figure 4h
shows the stochastic bit-streams obtained at the output node, B. The
measured and expected values for P(B) are 0.56 and 0.54, respectively.
Supplementary Fig. S9 shows the results for three more sets of mea-
surements. In all instances, we found that our 29 memtransistor
module is able to demonstrate a 2-node BN with relatively high accu-
racy. The rough estimate of the energy expenditure for our hardware
BN implementation is miniscule at -1.2 nJ when 200 7, are used.
Certainly, the energy expense can be further reduced by shortening
the length of the s-bit streams at the cost of reduced precision. Sup-
plementary Fig. S10 shows the numerical simulation of the error in
expected values for P(B) as a function of the bit-length of the s-bit
stream for the inputs P(A), P(B/A), and P(B/A°). The percentage error
increases significantly with the reduction in bit-length of the s-bit
streams.

While we have experimentally demonstrated that the distribution
of the output voltage (V,,) from the inverting amplifier follows a
Gaussian profile, it is possible that the distribution may deviate from a
perfect Gaussian distribution due to many operational reasons. This
will definitely lead to computation error. To assess the impact of a
skewed distribution on the precision of the BN, we have performed
numerical simulations assuming that V, follows the Pearson random
distribution function. Supplementary Fig. S11a shows the distribution
of V y, for different values of skewness from —1to 1 in steps of 0.5. Note
that a skewness of -1 or 1 will be a rare occurrence under most practical
circumstances. Supplementary Fig. S11b shows the corresponding p;
as afunction of V,;. As the skewness increases, the deviation of p, from
its expected value also increases. Supplementary Fig. S11c shows the
colormap of the percentage error in estimating P(B) using the BN
hardware for different skewness in the stochastic input variables X;
and X, that represent P(B/A) and P (B/AC) , respectively. As expected,
the percentage error increases with increasing skewness. Furthermore,
we have experimentally demonstrated that the distribution of the
inverting threshold voltage (V,;) exhibits a Gaussian distribution after
MT6 is subjected to 50 program/erase/read cycles with V, =7V, V[
=10V, and 7p; = 100 ps. This V,; distribution leads to a small uncer-
tainty (AP) in probability of output voltages (V ), as shown in Fig. 3n.
We have used numerical simulations to assess the impact of uncer-
tainty in obtained probabilities on the precision of the BN, where the
probability of the select line, A, remains as a constant while the
probability of both X; and X, are inflicted with AP due to cycle-to-cycle
variation in the programmed probability. Supplementary Fig. S12
shows the colormap of the percentage error in estimating P(B) using
the BN hardware for uncertainty in the stochastic input variables X;
and X, that represent P(B/A) = 0.50 and P(If/AC> =0.56, respectively,
while P(A)=0.28 and AP=0.065 . From this colormap, we can con-
clude that even if the V,; of the thresholding inverter (MT6) is inflicted

with cycle-to-cycle variation from device programming, the inaccuracy
of the 2-node Bayesian network (B=AX, +A“X,) is less than 15%. This
simulation result shows decent accuracy in hardware implementation
of the BN.

Finally, the impact of device-to-device variation on the operation
of BN is examined. Supplementary Fig. S13a shows the transfer char-
acteristics of 10 MoS, memtransistors and Supplementary Fig. S13b
shows the transfer characteristics for these 10 devices after one pro-
gramming/erasing clock cycle (V, ==7V, V=10V, and 7 =100 ps.).
The device-to-device variation translates into error in AP and impacts
the accuracy at the output of the BN. Supplementary Fig. S14 shows the
colormap of error in P(B) for P(X;)=0.5, P(X,)=0.56, and P(A)=0.28.
We have used AP =0.046 for both X; and X, inferred from Supple-
mentary Fig. S13b. From the error map, it is evident that the variation in
the programmed probability inflicted by the device-to-device pro-
gramming variation of the memtransistors resulted in a maximum
error of 8% at the output of the BN.

Discussion

In conclusion, we have exploited cycle-to-cycle variability in the pro-
grammed conductance of 2D memtransistors and transcribed the
same into s-bits with reconfigurable probability of obtaining ‘1" in the
bit-stream using a circuit that comprises only 6 memtransistors and
spends < 2 pJ per s-bit. We subsequently combined the s-bit generator
with a 2D memtransistor-based 2 x1 MUX to demonstrate hardware
implementation of a BN. The BN architecture comprises 29 mem-
transistors and requires ~ 1.2 nJ of energy for precise computation. Our
demonstration of a memtransistor-based standalone in-memory
compute fabric shows the potential for emerging 2D materials and
devices.

Methods

Fabrication of local back-gate islands

To define the back-gate island regions, a commercially-purchased
substrate (285 nm SiO, on p**-Si) was spin coated (4000 RPM for
45 s) with bilayer photoresist consisting of Lift-Off-Resist (LOR 5 A)
and Series Photoresist (SPR 3012) and baked at 185 °C for 120 s and
95°C for 60s, respectively. The bilayer photoresist was then
exposed using a Heidelburg Maskless Aligner (MLA 150) to define
the island and developed using MF CD26 microposit, followed by a
de-ionized (DI) water rinse. The back gate electrode of 20/50 nm
TiN/Pt was deposited using reactive sputtering. The photoresist was
removed using acetone and Photo Resist Stripper (PRS 3000) and
cleaned using 2-propanol (IPA) and DI water. An atomic layer
deposition (ALD) process was then implemented to grow 50 nm
Al,Oj3 across the entire substrate, including the island regions. To
access the individual Pt back-gate electrodes, etch patterns were
defined using the same bilayer photoresist consisting of LOR 5 A and
SPR 3012. The bilayer photoresist was then exposed to MLA 150 and
developed using MF CD26 microposit. The 50 nm Al,03 was sub-
sequently dry etched using a BCl; reactive ion etch (RIE) chemistry
at 5°C for 20 s, which was repeated four times to minimize heating
in the substrate. Finally, the photoresist was removed to give access
to the individual Pt electrodes.

Large-area monolayer MoS, film growth

Monolayer MoS, was deposited on epi-ready 2” c-sapphire substrate
by metalorganic chemical vapor deposition (MOCVD). An inductively
heated graphite susceptor equipped with wafer rotation in a cold-wall
horizontal reactor was used to achieve uniform monolayer deposition
as previously described®’. Molybdenum hexacarbonyl (Mo(CO)¢) and
hydrogen sulfide (H,S) were used as precursors. Mo(CO), maintained
at 10 °C and 650 Torr in a stainless-steel bubbler was used to deliver
1.1x107 sccm of the metal precursor for the growth, while 400 sccm
of H,S was used for the process. MoS, deposition was carried out at
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1000 °C and 50 Torr in H, ambient, where monolayer growth was
achieved in 18 min. The substrate was first heated to 1000 °C in H, and
maintained for 10 min before the growth was initiated. After growth,
the substrate was cooled in H,S to 300 °C to inhibit decomposition of
the MoS, films. More details can be found in our earlier work*> ** %,

MoS; film transfer to local back-gate islands

To fabricate the 2D memtransistors, the MOCVD-grown monolayer
MoS; film was transferred from the sapphire growth substrate to the
SiO,/p*™*-Si substrate with local back-gate islands using a PMMA
(polymethyl-methacrylate) assisted wet transfer process. First,
growth substrate was spin coated with PMMA and left to sit for 24 h
to promote PMMA/MoS, adhesion. The corners of the spin-coated
film were scratched using a razor blade and immersed inside 1M
NaOH solution kept at 90 °C. Capillary action caused the NaOH to
be drawn into the substrate/film interface, separating the PMMA/
MoS, film from the sapphire substrate. The separated film was
rinsed three times inside separate water baths and fished-out using
the SiO,/p*"-Si substrate with local back-gate islands. The substrate
was then baked at 50°C and 70°C for 10 min each to remove
moisture and promote adhesion. An acetone bath was usd to
remove the PMMA supporting layer, with a subsequent IPA bath to
remove residue.

Fabrication of 2D memtransistors

To define the channel regions for the memtransistors, the sub-
strate was spin-coated with PMMA and baked at 180 °C for 90 s. The
resist was then patterned using electron beam (e-beam) litho-
graphy and developed using a 1:1 mixture of 4-methyl-2-pentanone
(MIBK) and 2 propanol (IPA), with a subsequent IPA rinse. The
monolayer MoS, film was then etched using a sulfur hexafluoride
(SF¢) RIE chemistry at 5 °C for 30 s. Next, the sample was rinsed in
acetone and IPA to remove PMMA. To define the source and drain
contacts, sample was then spin coated with methyl methacrylate
(MMA) followed by PMMA. E-beam lithography was used to pattern
the source and drain contacts and 1:1 MIBK/ IPA was again used for
development. 40 nm of nickel (Ni) and 30 nm of gold (Au) were
deposited using e-beam evaporation. Finally, a lift-off process was
performed to remove the excess Ni/Au and resist by immersing the
sample in acetone for 30 min followed by IPA for another 30 mins.
Each island contains one memtransistor to allow for individual gate
control.

Monolithic integration

To define the connections between respective memtransistors, the
substrate was spin coated with MMA and PMMA, followed by e-beam
lithography and development using a 1:1 mixture of MIBK/IPA. E-beam
evaporation of was used to deposit 60 nm of Ni and 30 nm of Au to
form the connections. Finally, the e-beam resist was rinsed away by the
same acetone and IPA lift-off process used previously.

Electrical characterization

Electrical characterization of the fabricated devices was performed
using a Lake Shore CRX-VF probe station under atmospheric condi-
tions and with Keysight BISOOA parameter analyzer.

Data availability

The datasets generated during and/or analyzed during the current
study are available from the corresponding author on reasonable
request.

Code availability
The codes used for plotting the data are available from the corre-
sponding authors on reasonable request.
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