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Abstract—Cooperative driving, enabled by Vehicle-to-
Everything (V2X) communication, is expected to significantly
improve the safety and efficiency of the transportation sys-
tem. Cooperative Adaptive Cruise Control (CACC), a major
cooperative driving application, has been the subject of many
studies in recent years. The primary motivation behind using
CACC is to reduce traffic congestion and improve traffic flow,
traffic throughput, and highway capacity. Since the information
flow between cooperative vehicles can significantly affect the
dynamics of a platoon, the design and performance of con-
trol components are tightly dependent on the communication
component performance. In addition, the choice of Information
Flow Topology (IFT) can affect certain platoon’s properties such
as stability and scalability. Although cooperative vehicles’ per-
ception can be expanded to multiple predecessors’ information
by using V2X communication, the communication technologies
still suffer from random loss. Therefore, cooperative vehicles
are required to predict each other’s behavior to compensate
for the effects of non-ideal communication. The notion of
Model-Based Communication (MBC) was proposed to enhance
cooperative vehicle’s perception under non-ideal communication
by introducing a new flexible content structure for broadcasting
joint vehicle’s dynamic/driver’s behavior models. By utilizing
a non-parametric (Bayesian) modeling scheme, i.e., Gaussian
Process Regression (GPR), and the MBC concept, this paper
develops a discrete hybrid stochastic model predictive control
approach and examines the impact of communication losses and
different information flow topologies on the performance and
safety of the platoon. The results demonstrate an improvement
in response time and safety using more vehicles’ information,
validating the potential of cooperation to attenuate disturbances
and improve traffic flow and safety.

Index Terms—Cooperative Adaptive Cruise Control, Stochas-
tic Model Predictive Control, Non-parametric Bayesian In-
ference, Gaussian Process, Non-ideal Communication, Model-
Based Communication

I. INTRODUCTION

The main goal of cooperation in highway driving is to

ensure that all vehicles in a lane move at the same speed

while maintaining a desired small formation geometry, the

engine/brake input is smooth, and acceleration remains within

a reasonable and comfortable range. The desired formation

geometry is specified by a desired inter-vehicle gap policy.

This research was supported by the National Science Foundation under
grant numbers CNS-1932037 and CNS-1931981.

Fig. 1: A representation of the communication topology.

Dashed lines show the information flow among vehicles,

and dn shows the distance between nth vehicle and its

predecessor.

The cooperative driving with constant spacing policy, called

platooning, mandates vehicles to maintain a constant distance

from their immediate predecessor. However, for the Cooper-

ative Adaptive Cruise Control (CACC), a constant headway

time gap policy is considered, in which the desired following

distance is proportional to the speed of the vehicle; the higher

the speed, the larger the distance. CACC and platooning

have the potential to increase the highway capacity when

they reach a high market penetration. Studies have shown

that a car with a velocity of 80km/h following only one

predecessor at 25m achieves a 30% reduction in aerodynamic

drag, and a 40% reduction can be attained by following

two predecessors. Improvement in traffic flow for a high

market penetration rate is noticeable for platoons as small

as three cars. If all passenger cars form vehicle platoons, a

200% growth in the road capacity can be achieved [1]. It is

shown that platooning is more sensitive to communication

losses compared to the CACC, mainly due to its very close

coupling between vehicles [2], [3]. Even though platooning is

more sensitive to communication losses, its implementation

is stable using Cellular Vehicle-To-Everything (C-V2X) [4].

Connected and Autonomous Vehicles (CAVs) are required to

frequently broadcast their dynamic and kinematic informa-

tion over the wireless channel. The concept of information

sharing among vehicles results in a level of situational aware-

ness for any vehicle and makes it aware of its surrounding

environment, crucial for the cooperative safety applications

to function properly [5]. Although the cooperative vehicles’

perception can be expanded to multiple predecessors’ infor-
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mation by using Vehicle-to-Vehicle (V2V) communication,

these technologies still suffer from scalability issues, espe-

cially in congested scenarios. In addition, as a result of packet

loss, wireless channels create random link interruption and

changes in the network connection. Therefore, it is required

for the cooperative vehicles to predict each agent’s behavior

to compensate for packet loss or latency caused by having

non-ideal communication.

Information exchange for creating situational awareness is

the backbone of distributed systems that rely on commu-

nication. The information exchange flow defines how the

vehicles in a platoon exchange information with each other.

The available information to each controller is often limited

to a neighboring region because of the range limitation of

sensing and communication systems. As a result, controllers

use only local information to achieve a global performance

for the platoon. It has been also shown that the time-headway

can be minimized using multiple predecessors’ information

in the local controller [6]–[10].

Model-Based Communication (MBC) is a recently-

explored communication scalability solution, which has

shown promising potential to reduce channel congestion [11].

The fundamental intention behind the MBC scheme is to

utilize a more flexible content structure for broadcasting

packets consisting of the joint vehicle/driver behavioral mod-

els’ parameters in comparison with the Basic Safety Message

(BSM) content structure defined by the J2735 standard. For

utilizing the MBC scheme, different modeling methods can

be considered to represent the vehicle’s movement behavior.

Non-parametric Bayesian inference techniques, particularly

Gaussian Processes (GPs) are amongst the promising meth-

ods for analytically tractable modeling of joint vehicle’s

dynamic/driver’s behavior. In addition to exhibiting very

good generalization properties, a major advantage of GPs

is that they come equipped with a measure of model uncer-

tainty, making them particularly beneficial for safety-critical

applications. The driver behavioral models are functions of

different factors such as the driver’s driving style, road traffic,

weather condition, etc. Therefore, movement models may

become very complex. In this research study, a Gaussian

Process Regression (GPR) method is used to model coop-

erative vehicles’ velocity trajectories, which allows them to

predict the future behavior of their preceding vehicles during

communication loss [12].

Cooperative applications need an efficient controller to

consider the computational cost and ensure driving comfort

and high responsiveness. The advantage of Model Predictive

Control (MPC) is that it can realize high control performance

since all constraints for these applications can be explicitly

dealt with through solving an optimization problem. This

paper takes advantage of a discrete hybrid stochastic model

predictive control, which incorporates system modes as well

as uncertainties captured by GP models. As a safety metric

in a vehicle platoon, two operating modes for each vehicle

are considered; free following and emergency braking. The

proposed control design approach finds the vehicle’s optimal

velocity trajectory to achieve a safe and efficient platoon of

vehicles with a small inter-vehicle gap while reducing the

impact of packet loss.

Sudden dynamic changes of vehicles, e.g., hard-braking

or shock waves, are the cause of start-and-stop dynamics,

which, besides disrupting traffic flow, can lead to accidents

[13], [14]. Traffic shock waves represent a threat in terms of

safety and can cause chain collisions when the drivers are

distracted or do not respect safety distances. We use a shock

wave velocity profile in our simulation studies to examine

the effect of Information Flow Topology (IFT) and random

packet losses on the safety of a platoon of homogeneous

vehicles moving in a rigid formation in shock wave scenarios.

We use 0.6s headway gap compared to previous works

(varying from 0.8s to 1.2s). In our experiments, we study

the effect of accessing the information of r leading vehicles.

In other words, the ego vehicle can only use information

from the r preceding vehicles in the platoon (r-look-ahead)

as shown in Fig. 1 for three-look-ahead vehicles. The results

show an improvement in response time and reducing the

duration of emergency braking, demonstrating the potential

of cooperation to attenuate disturbances and improve traffic

flow.

II. STOCHASTIC MODEL-BASED COMMUNICATION

As discussed in Section I, the collective behavior of the

platoon is not only dependent on the local controller design

but also tightly coupled with the availability and accuracy

of the predecessor vehicles’ information at each member of

the platoon [15]. In particular, the stability and scalability of

the platoon are dependent on the IFT. To study the effect of

IFT on platoon behavior, in this paper, we have considered

the r-look-ahead directional topology. The GP-based MBC

trains the GP regression model based on the most recent

observed information. This procedure results in generating

new situational awareness messages which carry the latest

updated abstract model of the vehicle’s state.

In this paper, we consider the velocity time-series of

each cooperative vehicle, vn(t), to be a Gaussian process

defined by the mean function mn(t) and the covariance

kernel function κn(t, t
′) as

vn(t) ∼ GP (mn(t), κn (t, t
′)) . (1)

We are interested in incorporating the knowledge that the ob-

served velocity data provides about the underlying function,

vn(t), and its future values. Assuming that for each coopera-

tive vehicle, the mean of the process is zero, mn(t) = 0,

the covariance kernel is a Radial Basis Function (RBF),

and the measurement noises are independent and identically

distributed with the Gaussian distribution N (0, γ2
n,noise),

the covariance matrix of the observed velocity of the nth

cooperative vehicle is

Kn(t, t) = Kn
r + γ2

n,noiseI

[Kn
r ]ij = κn(ti, tj),

(2)
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Fig. 2: Block diagram of networking and control modules in each member of the platoon. Ego vehicles will receive

information from preceding vehicles upon successful communication or will update the information with the stochastic

model estimator when the packet is lost. Hybrid stochastic MPC will use the information from the networking module for

control purposes. Finally, the control module will pass the current states and velocity predicted values to the networking

module for broadcasting.

where I denotes the identity matrix of dimension equal to

the size of the training (measured) data, and κn(ti, tj) can

be calculated using the RBF definition as

κn(t, t
′) = exp(−

||t− t′||2

2γ2
n

). (3)

Using the aforementioned assumptions, the joint distribution

of the past observed values, Vobs
n , and the future values V∗

n,

can be represented as
[

Vobs

n

Vn
∗

]
∼ N

(
0,

[
Kn(t, t) Kn

r (t, t∗)
Kn

r (t∗, t) Kn
r (t∗, t∗)

])
, (4)

where t and t
∗ denote the sets of observation and future value

time stamps, respectively, and Kn(., .) and Kn
r (., .) can be

obtained from (2). Therefore, the predictive distribution of

future velocity values, V∗

n, conditioned on having observed

velocity values Vobs
n at time stamps t can be derived as

(
Vn

∗ | t∗, t,Vobs

n

)
∼ N (µ∗

n,Σ
∗

n),

µ∗

n = Kr
n[(t

∗, t) |αn]K
−1
n [(t, t)|αn]V

obs

n
,

Σ∗

n = −Kr
n[(t

∗, t) |αn]K
−1
n [(t, t)|αn]K

r
n[(t, t

∗) |αn]

+Kr
n[(t

∗, t∗) |αn]. (5)

Upon each transmission opportunity, each cooperative vehicle

uses its 5 most recent velocity observations, measured at

equally-distanced 100ms time intervals, to train a GP model

and obtain the set of parameters αn = {γn, γn,noise}. For

this purpose, the Leave-One-Out Cross Validation has been

considered. Assuming that the ith velocity observation, vi, is

left out, the log probability of observing vi given the rest of

the observations, (V−i), can be represented as

log p (vi | t,V−i, α) = −
1

2
log σ2

i −
(vi − µi)

2

2σ2
i

−
1

2
log 2π,

(6)

where µi and σi can be obtained from (5). Defining

the cross validation objective function as the sum of

the log-likelihoods over all most recent observations, i.e.,

L(t,V, α) =
∑5

i=1
log p (vi | t,V−i, α), the optimal parame-

ters α∗

n = {γ∗

n, γ
∗

n,noise} can be obtained using the conjugate

gradient optimization method as proposed in [16]. Upon

receiving a packet, the receiving vehicle will use the newly

received information for local control. Otherwise, in the case

of packet loss, the cooperative vehicle will use the previously

received GP model to predict the velocity of the transmitting

vehicle until receiving a new packet from it using (5).

In addition, the position of the transmitting vehicle is

predicted using

x̄n (t
∗) = xn (t0) +

∫∫ t∗

t0

ṽP(ṽ)dtdṽ, (7)

where P (ṽ) is the predictive distribution of transmitting

vehicle’s velocity presented by (5). Therefore, in the case

of packet loss, these predicted values will be used for local

control.

III. VEHICLE MODEL AND STOCHASTIC MODEL

PREDICTIVE CONTROL DESIGN APPROACH

In this section, the vehicle model and the model predictive

control design are explained.

A. Vehicle Model

In this study, we consider a platoon of Nv vehicles, where

n ∈ {0, 1, . . . , Nv} denotes the nth vehicle in the platoon,

and n = 0 represents the platoon leader. As shown in Fig. 1,

dn denotes the gap between nth and (n− 1)th vehicles and

is defined as

dn = xn−1 − xn − lvn, (8)

where xn and lvn are the longitudinal location of nth vehicle

rear bumper and the vehicle length, respectively. Using time

headway gap policy, the desired spacing policy defined as

d∗n(t) = τn vn(t) + dsn. (9)

In (9), vn is the velocity of the nth vehicle, τn is the time

gap, and dsn represents the standstill distance. The difference
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between the gap and its desired value is defined as ∆dn(t) =
dn(t)−d∗n(t), and the velocity difference between nth vehicle

and its predecessor is defined as ∆vn(t) = vn−1(t)− vn(t).
Hence, ∆ḋn turns into ∆ḋn(t) = ∆vn(t) − τn an(t) and

∆v̇n = an−1 − an, where an denotes the acceleration of

the nth vehicle. By taking the driveline dynamics fn into

account, the derivative of the acceleration for vehicle n is

ȧn(t) = −fnan(t)+fnun(t), where un(t) acts as the vehicle

input. By considering Sn = [∆dn ∆vn an]
T as the vector

of states for nth vehicle, the state-space representation for

each vehicle is

Ṡn(t) = An Sn(t) +Bn un(t) +Dan−1(t)

=



0 1 −τn
0 0 −1
0 0 −fn


Sn(t) +



0
0
fn


un(t) +



0
1
0


 an−1(t).

(10)

For n = 0 (leader), an−1(t) is replaced by zero. The

following equation describes the discrete-time state space

model when the first-order forward time approximation is

employed

Sn(k + 1) =

(I + ts An)Sn(k) + ts Bn un(k) + ts Dan−1(k), (11)

where ts is the sampling time.

Some constraints on the system states and input are also

considered including bounds on the acceleration and input,

road speed limit, and distance between vehicles (note that a

negative distance implies collision and therefore should not

occur). The following inequalities (hard constraints) should

always hold true

amin
n ≤ an(k) ≤ amax

n , (12a)

umin
n ≤ un(k) ≤ umax

n , (12b)

vn(k) ≤ vmax, (12c)

dn(k) > 0. (12d)

Besides, for passenger comfort, system input changes are

bounded as

ts u
min
n ≤ un(k + 1)− un(k) ≤ ts u

max
n . (13)

B. Discrete Hybrid SMPC Design

Discrete hybrid stochastic automata (DHSA) models a

stochastic system with both binary and continuous/discrete-

time variables and inputs. DHSA formulation and details are

discussed in [17]. Mixed logical dynamical (MLD) form [18]

can be used to reformulate a DHSA using linear equations

and inequalities. The reformulation enables using mixed-

integer programming to find the optimal control input for

the system.

In this paper, we consider two operating modes for each

vehicle; free following mode and emergency braking mode.

In free following mode, each vehicle tries to reach its desired

spacing policy while in emergency braking mode, it uses

minimum control input and performs hard braking to avoid

any possible accident. Emergency braking mode activates

when ∆dn(k) goes below a fixed level dn; in other words,

∆dn(k)+dn ≤ 0. The operating modes add binary variables

to the system while employing GPR for predicting velocity

turns the system into a stochastic one. To represent the

system, DHSA is used, and the system is then reformulated

using MLD. The details on how to rewrite each vehicle

equations, constraints, and modes in the MLD form can be

found in [12]. After expressing the system in MLD form, the

MPC design problem for each vehicle is

min
un,wn,zn

N−1∑

k=0

[
(Sn(k)−Rn)

T Qn (Sn(k)−Rn)
]
− qn ln(π(wn))

subject to: MLD system equations,

ln(π(wn)) ≥ ln(p̃n), (14)

where un and zn are the system inputs and the vector of

auxiliary variables from k = 0 to k = N − 1, respectively,

the quadratic term in cost function is the performance index

while qn ln(π(wn)) is the probability cost, wn stands for all

the uncontrollable event variables, which are used to consider

the variance of the velocity prediction calculated using GP

in the system model, and π(wn) is the trajectory probability.

The last constraint in (14) represents the chance constraint.

Remark 1: The given MPC problem formulation uses a

one-look-ahead topology. The r-look-ahead topology can be

considered in the problem by changing the cost function in

(14) as follows.

N−1∑

k=0

[
(Sn(k)−Rn)

T Qn (Sn(k)−Rn)

+
n−1∑

i=n−r

[
cdi

(
xi(k)− xn(k)−

n∑

j=i+1

(d∗j (k) + lvj )
)2

+ cvi

(
vi(k)− vn(k)

)2]
]
− qn ln(π(wn)), (15)

where cdi and cvi are positive coefficients, and r denotes the

number of predecessors sharing information with the nth

vehicle. In (15), each vehicle tends to achieve the desired

distances from its r predecessors while adjusting its velocity

based on the predecessors’ velocity. It is noted that when

r > n (the number of predecessors is less than r), the nth

vehicle replaces r with n in (15).

Each vehicle has access to its preceding vehicle’s future

velocity trajectory through either the communication (every

tc seconds if packet loss does not occur) or the GP model

predictions (until the next successful communication event).

During a successful communication event, a vehicle will

share its future velocity trajectory (calculated by solving the

MPC problem) with its follower vehicles.
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(a) One-look-ahead topology (b) Nine-look-ahead topology

Fig. 5: Performance of the CACC system with 10 vehicles, T = 0.6 s, tc = 0.1 s, and PER = 0.5.

the velocity prediction errors using the MPC outputs were

derived. Fig. 3 illustrates the mean and 95th percentile of

velocity error for both schemes. It is observed that the statis-

tics for both methods are almost the same, demonstrating the

capability of GP for capturing the velocity profile.

TABLE II: Comparing the emergency braking duration (in

seconds) for Fig. 5a with one-look-ahead topology and Fig.

5b with nine-look-ahead topology. As observed, using the

information of more vehicles has led to less emergency

braking for platoon members with larger indices (i.e., the

ones further down the platoon).

Vid V1 V2 V3 V4 V5 V6 V7 V8 V9

one-look-
ahead

2.9 2.6 2.9 2.7 2.2 2.0 2.2 1.6 1.8

nine-look-
ahead

2.9 2.6 2.9 2.0 1.5 1.3 1.1 0.6 0.0

Two main objectives of CACC are smoothing the en-

gine/brake input, and keeping the acceleration in a reasonable

and comfortable range. Therefore, the duration of emergency

braking mode and smoothness of the acceleration profile

can be considered as two measures for CACC performance

evaluation. Fig. 4 shows the regulated distances, velocity

and acceleration profiles, and emergency braking status of

vehicles in a scenario with ideal communication and one-

look-ahead IFT. It is observed that having the information of

the immediate predecessor is sufficient to maintain the 0.6s

headway with smooth acceleration profiles while avoiding

the emergency braking given an ideal communication.

In reality, however, the wireless channel is lossy, and

the communication can suffer from random packet loss. As

the PER increases, it is speculated that by accessing the

information of more preceding vehicles, the platoon has

a quicker response which leads to the emergency braking

reduction. Fig. 5 illustrates the CACC performance when

communication PER is set to 0.5 for one-look-ahead and

nine-look-ahead topologies. It is observed that although the

vehicles’ accelerations similarly fluctuate in both scenarios,

using the nine-look-ahead IFT resulted in fewer emergency

braking events. Table II shows the emergency braking dura-

tion of the platoon members in the aforementioned scenarios.

It is seen that the emergency braking duration is reduced for

almost all platoon members in the nine-look-ahead topology.

This effect is more evident for the platoon members with

higher indices, i.e., the members at the tail of the platoon.

For instance, the last member of the platoon did not have

an emergency braking event in the nine-look-ahead scenario

while it stayed in the emergency braking mode for 1.8s in

the one-look-ahead scenario.

Fig. 6 shows the average sum of emergency braking

duration of all platoon members having the aforementioned

setups and 20 simulation trials. When the communication is

ideal or the PER is relatively small, accessing the information

of more predecessors does not extensively reduce the braking

emergency duration. As the PER increases, the effect of

accessing the information of more preceding vehicles on
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Fig. 6: The figure shows the average sum of emergency

braking duration for all platoon members having different

look-ahead topologies and PERs. In the case of having

semi-ideal communication, using the information of more

preceding vehicles does not lead to an evident reduction in

emergency braking. However, in normal or adverse situations,

the effect of using more vehicles information in emergency

braking duration reduction is more evident.

emergency braking reduction becomes more evident. For

instance, when PER is 0.6, the emergency braking duration

is 30% less for nine-look-ahead topology compared to one-

look-ahead IFT.

V. CONCLUSION

In this paper, we explored the performance of the vehicle

platoon with different information flow topologies, where

vehicles receive information from multiple predecessors, in

ideal and non-ideal communication setups. In addition, a

discrete hybrid stochastic MPC design was used for the

CACC application by leveraging model-based communica-

tion. It was assumed that vehicles share their future velocity

profiles, as well as an updated model for their velocity profile

by using GPR at each successful communication event. For

safety purposes, vehicles may operate in either free following

mode or emergency braking mode. The performance of the

proposed controller was evaluated through simulation studies,

which validated the efficacy of the proposed method. We have

shown that using the information of multiple predecessors

can cancel shock waves in a very effective manner. Part of our

future work will include the introduction of lane-changing

policies for platoons, as lane changing is one of the known

causes of shock waves.
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