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Abstract—Cooperative driving, enabled by Vehicle-to-
Everything (V2X) communication, is expected to significantly
improve the safety and efficiency of the transportation sys-
tem. Cooperative Adaptive Cruise Control (CACC), a major
cooperative driving application, has been the subject of many
studies in recent years. The primary motivation behind using
CACC is to reduce traffic congestion and improve traffic flow,
traffic throughput, and highway capacity. Since the information
flow between cooperative vehicles can significantly affect the
dynamics of a platoon, the design and performance of con-
trol components are tightly dependent on the communication
component performance. In addition, the choice of Information
Flow Topology (IFT) can affect certain platoon’s properties such
as stability and scalability. Although cooperative vehicles’ per-
ception can be expanded to multiple predecessors’ information
by using V2X communication, the communication technologies
still suffer from random loss. Therefore, cooperative vehicles
are required to predict each other’s behavior to compensate
for the effects of non-ideal communication. The notion of
Model-Based Communication (MBC) was proposed to enhance
cooperative vehicle’s perception under non-ideal communication
by introducing a new flexible content structure for broadcasting
joint vehicle’s dynamic/driver’s behavior models. By utilizing
a non-parametric (Bayesian) modeling scheme, i.e., Gaussian
Process Regression (GPR), and the MBC concept, this paper
develops a discrete hybrid stochastic model predictive control
approach and examines the impact of communication losses and
different information flow topologies on the performance and
safety of the platoon. The results demonstrate an improvement
in response time and safety using more vehicles’ information,
validating the potential of cooperation to attenuate disturbances
and improve traffic flow and safety.

Index Terms—Cooperative Adaptive Cruise Control, Stochas-
tic Model Predictive Control, Non-parametric Bayesian In-
ference, Gaussian Process, Non-ideal Communication, Model-
Based Communication

I. INTRODUCTION

The main goal of cooperation in highway driving is to
ensure that all vehicles in a lane move at the same speed
while maintaining a desired small formation geometry, the
engine/brake input is smooth, and acceleration remains within
a reasonable and comfortable range. The desired formation
geometry is specified by a desired inter-vehicle gap policy.
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Fig. 1: A representation of the communication topology.
Dashed lines show the information flow among vehicles,
and d,, shows the distance between n'" vehicle and its
predecessor.

The cooperative driving with constant spacing policy, called
platooning, mandates vehicles to maintain a constant distance
from their immediate predecessor. However, for the Cooper-
ative Adaptive Cruise Control (CACC), a constant headway
time gap policy is considered, in which the desired following
distance is proportional to the speed of the vehicle; the higher
the speed, the larger the distance. CACC and platooning
have the potential to increase the highway capacity when
they reach a high market penetration. Studies have shown
that a car with a velocity of 80km/h following only one
predecessor at 25m achieves a 30% reduction in aerodynamic
drag, and a 40% reduction can be attained by following
two predecessors. Improvement in traffic flow for a high
market penetration rate is noticeable for platoons as small
as three cars. If all passenger cars form vehicle platoons, a
200% growth in the road capacity can be achieved [1]. It is
shown that platooning is more sensitive to communication
losses compared to the CACC, mainly due to its very close
coupling between vehicles [2], [3]. Even though platooning is
more sensitive to communication losses, its implementation
is stable using Cellular Vehicle-To-Everything (C-V2X) [4].
Connected and Autonomous Vehicles (CAVs) are required to
frequently broadcast their dynamic and kinematic informa-
tion over the wireless channel. The concept of information
sharing among vehicles results in a level of situational aware-
ness for any vehicle and makes it aware of its surrounding
environment, crucial for the cooperative safety applications
to function properly [5]. Although the cooperative vehicles’
perception can be expanded to multiple predecessors’ infor-
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mation by using Vehicle-to-Vehicle (V2V) communication,
these technologies still suffer from scalability issues, espe-
cially in congested scenarios. In addition, as a result of packet
loss, wireless channels create random link interruption and
changes in the network connection. Therefore, it is required
for the cooperative vehicles to predict each agent’s behavior
to compensate for packet loss or latency caused by having
non-ideal communication.

Information exchange for creating situational awareness is
the backbone of distributed systems that rely on commu-
nication. The information exchange flow defines how the
vehicles in a platoon exchange information with each other.
The available information to each controller is often limited
to a neighboring region because of the range limitation of
sensing and communication systems. As a result, controllers
use only local information to achieve a global performance
for the platoon. It has been also shown that the time-headway
can be minimized using multiple predecessors’ information
in the local controller [6]-[10].

Model-Based Communication (MBC) is a recently-
explored communication scalability solution, which has
shown promising potential to reduce channel congestion [11].
The fundamental intention behind the MBC scheme is to
utilize a more flexible content structure for broadcasting
packets consisting of the joint vehicle/driver behavioral mod-
els’ parameters in comparison with the Basic Safety Message
(BSM) content structure defined by the J2735 standard. For
utilizing the MBC scheme, different modeling methods can
be considered to represent the vehicle’s movement behavior.
Non-parametric Bayesian inference techniques, particularly
Gaussian Processes (GPs) are amongst the promising meth-
ods for analytically tractable modeling of joint vehicle’s
dynamic/driver’s behavior. In addition to exhibiting very
good generalization properties, a major advantage of GPs
is that they come equipped with a measure of model uncer-
tainty, making them particularly beneficial for safety-critical
applications. The driver behavioral models are functions of
different factors such as the driver’s driving style, road traffic,
weather condition, etc. Therefore, movement models may
become very complex. In this research study, a Gaussian
Process Regression (GPR) method is used to model coop-
erative vehicles’ velocity trajectories, which allows them to
predict the future behavior of their preceding vehicles during
communication loss [12].

Cooperative applications need an efficient controller to
consider the computational cost and ensure driving comfort
and high responsiveness. The advantage of Model Predictive
Control (MPC) is that it can realize high control performance
since all constraints for these applications can be explicitly
dealt with through solving an optimization problem. This
paper takes advantage of a discrete hybrid stochastic model
predictive control, which incorporates system modes as well
as uncertainties captured by GP models. As a safety metric
in a vehicle platoon, two operating modes for each vehicle
are considered; free following and emergency braking. The
proposed control design approach finds the vehicle’s optimal
velocity trajectory to achieve a safe and efficient platoon of
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vehicles with a small inter-vehicle gap while reducing the
impact of packet loss.

Sudden dynamic changes of vehicles, e.g., hard-braking
or shock waves, are the cause of start-and-stop dynamics,
which, besides disrupting traffic flow, can lead to accidents
[13], [14]. Traffic shock waves represent a threat in terms of
safety and can cause chain collisions when the drivers are
distracted or do not respect safety distances. We use a shock
wave velocity profile in our simulation studies to examine
the effect of Information Flow Topology (IFT) and random
packet losses on the safety of a platoon of homogeneous
vehicles moving in a rigid formation in shock wave scenarios.
We use 0.6s headway gap compared to previous works
(varying from 0.8s to 1.2s). In our experiments, we study
the effect of accessing the information of r leading vehicles.
In other words, the ego vehicle can only use information
from the r preceding vehicles in the platoon (r-look-ahead)
as shown in Fig. 1 for three-look-ahead vehicles. The results
show an improvement in response time and reducing the
duration of emergency braking, demonstrating the potential
of cooperation to attenuate disturbances and improve traffic
flow.

II. STOCHASTIC MODEL-BASED COMMUNICATION

As discussed in Section I, the collective behavior of the
platoon is not only dependent on the local controller design
but also tightly coupled with the availability and accuracy
of the predecessor vehicles’ information at each member of
the platoon [15]. In particular, the stability and scalability of
the platoon are dependent on the IFT. To study the effect of
IFT on platoon behavior, in this paper, we have considered
the r-look-ahead directional topology. The GP-based MBC
trains the GP regression model based on the most recent
observed information. This procedure results in generating
new situational awareness messages which carry the latest
updated abstract model of the vehicle’s state.

In this paper, we consider the velocity time-series of
each cooperative vehicle, v, (), to be a Gaussian process
defined by the mean function m,(t) and the covariance
kernel function ., (¢,t') as

v (t) ~ GP (M (t), K (£, 1)) (1)
We are interested in incorporating the knowledge that the ob-
served velocity data provides about the underlying function,
vp(t), and its future values. Assuming that for each coopera-
tive vehicle, the mean of the process is zero, m,(t) = 0,
the covariance kernel is a Radial Basis Function (RBF),
and the measurement noises are independent and identically
distributed with the Gaussian distribution N'(0, 72, ;sc)s
the covariance matrix of the observed velocity of the nt"
cooperative vehicle is

Kn(t7t) = K7n + Vi,noisel

(2)
(K ij = kn(tistg),
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Fig. 2: Block diagram of networking and control modules in each member of the platoon. Ego vehicles will receive
information from preceding vehicles upon successful communication or will update the information with the stochastic
model estimator when the packet is lost. Hybrid stochastic MPC will use the information from the networking module for
control purposes. Finally, the control module will pass the current states and velocity predicted values to the networking

module for broadcasting.

where I denotes the identity matrix of dimension equal to
the size of the training (measured) data, and x,(¢;,t;) can
be calculated using the RBF definition as

||t — t’llz)
2y
Using the aforementioned assumptions, the joint distribution
of the past observed values, V,‘;bs, and the future values V).,
can be represented as
Vobs K™(t,t) KP(tt*)
[ Va ] ~N <°’ [ Kn(¢*,t) Kr(ener) | )0 @
where t and t* denote the sets of observation and future value
time stamps, respectively, and K™(.,.) and K"(.,.) can be
obtained from (2). Therefore, the predictive distribution of

future velocity values, V, conditioned on having observed
velocity values Vo at time stamps ¢ can be derived as

fin(t,t) = exp(— 3)

(Va" 166, V80%) ~ N (7 20,
i = I ) ol G (8 D] V2P,
Zi = — K 8) o K (D) el K72 8) o]

+ K[ 87) o). (5)

Upon each transmission opportunity, each cooperative vehicle
uses its 5 most recent velocity observations, measured at
equally-distanced 100ms time intervals, to train a GP model
and obtain the set of parameters a,, = {Vn,VYn,noise}. FOr
this purpose, the Leave-One-Out Cross Validation has been
considered. Assuming that the i" velocity observation, v;, is
left out, the log probability of observing v; given the rest of
the observations, (V_;), can be represented as

Vi — Wi 2 1
(20.:;> - 5 log 27'(',
(6)
where p; and o; can be obtained from (5). Defining
the cross validation objective function as the sum of

the log-likelihoods over all most recent observations, i.e.,

1
logp (v | t,V_,a) = —510g0¢2 -
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L(t,V,a) = Zle logp (v; | t,V_;, @), the optimal parame-
ters a;, = {7,V noise ) €an be obtained using the conjugate
gradient optimization method as proposed in [16]. Upon
receiving a packet, the receiving vehicle will use the newly
received information for local control. Otherwise, in the case
of packet loss, the cooperative vehicle will use the previously
received GP model to predict the velocity of the transmitting
vehicle until receiving a new packet from it using (5).

In addition, the position of the transmitting vehicle is
predicted using

-

Tpn () =z, (L) + // 0 P(0)dtdv, @)
to

where P(?) is the predictive distribution of transmitting

vehicle’s velocity presented by (5). Therefore, in the case

of packet loss, these predicted values will be used for local

control.

III. VEHICLE MODEL AND STOCHASTIC MODEL
PREDICTIVE CONTROL DESIGN APPROACH

In this section, the vehicle model and the model predictive
control design are explained.

A. Vehicle Model

In this study, we consider a platoon of N, vehicles, where
n € {0,1,..., N,} denotes the n'" vehicle in the platoon,
and n = 0 represents the platoon leader. As shown in Fig. 1,
d,, denotes the gap between n'" and (n — 1) vehicles and
is defined as

®)

where ,, and [Y are the longitudinal location of n'" vehicle
rear bumper and the vehicle length, respectively. Using time
headway gap policy, the desired spacing policy defined as

4y (t) = Thon(t) + d;. ©))

In (9), v, is the velocity of the nt" vehicle, 7,, is the time
gap, and d;, represents the standstill distance. The difference

v
dn =Tn—-1 —Tn — lna
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between the gap and its desired value is defined as Ad,, () =
d,, (t)—d (t), and the velocity difference between n'” vehicle
and its predecessor is defined as Avy, (t) = vp—1(t) — v, (1).
Hence, Ad,, turns into Adn(t) = Av,(t) — 7, an(t) and
Av, = an,—_1 — a,, where a,, denotes the acceleration of
the n*" vehicle. By taking the driveline dynamics f,, into
account, the derivative of the acceleration for vehicle n is
an(t) = — fnan(t)+ frun(t), where u, (t) acts as the vehicle
input. By considering S,, = [Ad,, Av, a,]T as the vector
of states for n'” vehicle, the state-space representation for
each vehicle is

$u(t) = Ap Sp(t) + Byt (t) + D an_1(t)

01 —7, 0 0
=10 0 —=1[S,(@)+ 0] un(t)+ [1| an—1(¢).
00 _.fn fn 0

(10)

For n 0 (leader), a,—1(t) is replaced by zero. The
following equation describes the discrete-time state space
model when the first-order forward time approximation is
employed

Sp(k+1) =

(I +ts Ap) Sn(k) +ts Byun(k) +ts Dan—1(k), (11)

where t, is the sampling time.

Some constraints on the system states and input are also
considered including bounds on the acceleration and input,
road speed limit, and distance between vehicles (note that a
negative distance implies collision and therefore should not
occur). The following inequalities (hard constraints) should
always hold true

a™m < a, (k) < a™®, (12a)
U™ <y (k) < ume (12b)
vp (k) < 0™, (12¢)
dn(k) > 0. (12d)

Besides, for passenger comfort, system input changes are
bounded as

ts u'rr{n'n < un(k + 1) — Un(k) <tsupt. (13)

B. Discrete Hybrid SMPC Design

Discrete hybrid stochastic automata (DHSA) models a
stochastic system with both binary and continuous/discrete-
time variables and inputs. DHSA formulation and details are
discussed in [17]. Mixed logical dynamical (MLD) form [18]
can be used to reformulate a DHSA using linear equations
and inequalities. The reformulation enables using mixed-
integer programming to find the optimal control input for
the system.

In this paper, we consider two operating modes for each
vehicle; free following mode and emergency braking mode.
In free following mode, each vehicle tries to reach its desired
spacing policy while in emergency braking mode, it uses
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minimum control input and performs hard braking to avoid
any possible accident. Emergency braking mode activates
when Ad, (k) goes below a fixed level d,,; in other words,
Ad,,(k)+d,, < 0. The operating modes add binary variables
to the system while employing GPR for predicting velocity
turns the system into a stochastic one. To represent the
system, DHSA is used, and the system is then reformulated
using MLD. The details on how to rewrite each vehicle
equations, constraints, and modes in the MLD form can be
found in [12]. After expressing the system in MLD form, the
MPC design problem for each vehicle is

N:Liwnwz‘n,
> [(8ulk) = Ra) Qu (Su(k) = Ra)| = o In(rw(ws))
k=0

subject to: MLD system equations,

In(m(wn)) = In(pn), 14
where u,, and z, are the system inputs and the vector of
auxiliary variables from k = 0 to k = N — 1, respectively,
the quadratic term in cost function is the performance index
while g,, In(7(w,,)) is the probability cost, w,, stands for all
the uncontrollable event variables, which are used to consider
the variance of the velocity prediction calculated using GP
in the system model, and 7(w,,) is the trajectory probability.
The last constraint in (14) represents the chance constraint.

Remark 1: The given MPC problem formulation uses a
one-look-ahead topology. The r-look-ahead topology can be
considered in the problem by changing the cost function in
(14) as follows.

(Sn(k) - Rn)T Qn (Sn(k) - Rn)

N—-1
D
k=0

n—1

T2

=n—r

n

[c? (l’q(k) —xp(k) — Z (d;(k) * l}?))2

j=it1

mNM@%@fH%mmmm,ax

where ¢ and ¢! are positive coefficients, and 7 denotes the
number of predecessors sharing information with the n'"
vehicle. In (15), each vehicle tends to achieve the desired
distances from its r predecessors while adjusting its velocity
based on the predecessors’ velocity. It is noted that when
r > n (the number of predecessors is less than 7), the n'"
vehicle replaces r with n in (15).

Each vehicle has access to its preceding vehicle’s future
velocity trajectory through either the communication (every
t. seconds if packet loss does not occur) or the GP model
predictions (until the next successful communication event).
During a successful communication event, a vehicle will
share its future velocity trajectory (calculated by solving the
MPC problem) with its follower vehicles.
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TABLE I: Model and optimization parameters used in the
simulations.

parameter | value parameter | value
s 1s
N 7 t 0.1
Iy, 5m ds, 2m
d, 0.5m fn 10571
amin —4m/s? amar 3m/ s>
umin —4 m/s2 uprar 3m/.<52
Pn 0.01N an 10
20 - .
I \ean MPC
5" Percentile MPC -
15 [ |0 Mean GP 1
95" Percentile GP

Velocity Error (m/s)
s

5]
T

1 2 3 4 5 6 7
Prediction Horizon steps

Fig. 3: Mean and 95" percentile of the absolute velocity
error for GP-based prediction and MPC-based prediction
for 7-step ahead prediction horizon using nine-look-ahead
topology. Statistics for both methods are almost the same,
showing the capability of GP in capturing the velocity profile.

IV. EXPERIMENTAL SETUP AND SIMULATION RESULTS

In our experiments, we considered the Packet Error Rate
(PER) to be an independent and identically distributed (i.i.d.)
random variable and gradually changed from 0 (ideal com-
munication) to 0.6 (randomly losing 60 percent of packets)
to study the effect of communication loss on the CACC
performance. The communication rate in all experiments is
considered to be 10H z. Also, different r-look-ahead one-
directional (broadcasting) information flow topologies have
been considered for the platoon of cooperative vehicles.
For instance, if » = 1, the receiving vehicle can only
receive messages from the nearest predecessor in the platoon
(one-look-ahead); however, in other cases, each vehicle can
receive messages from several preceding vehicles in the
platoon. Simulations are conducted considering a platoon of
10 vehicles and using multiple scenarios. CVXPY package
in Python is used for implementing the optimization problem
and Gurobi optimization package is used as the solver for the
mixed-integer programming [19], [20].
The desired velocity trajectory of the leader is set as

27 t<15s,
i) =40 15s<t<30s, (16)
25  t>30s.

The parameters used in the simulations can be found in
Table 1. Each scenario takes 60s, in which the objective
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Fig. 4: Performance of the CACC with 10 vehicles, T =

0.6s, t. = 0.1s, and ideal communication with one-look-
ahead topology.

of the platoon is to maintain the desired gap time of 0.6s
with the preceding vehicle. Fig. 2 illustrates the overall
network/control architecture. After the GP parameters are
learned, the transmitting vehicle shares the model parameters
along with its history of the 5 most recent velocity measure-
ments and current position and acceleration. In addition, 7
future velocity values (parameter N in Table I) predicted
by the vehicle’s model predictive controller are included in
the transmitting packet. The cooperative vehicles update the
preceding vehicles’ information either based on the newly
received information from them or based on the GP predictive
model every 100ms. This information is fed into the hybrid
stochastic MPC for updating the control action. In addition,
the control module provides the optimal predicted states’
values of the ego vehicle. Finally, the current states and
the predicted future velocity trajectory will be passed to the
networking module for broadcasting.

In order to examine the capability of GPR in modeling
the vehicles’ velocity trajectories, first, we have designed
an experiment in which only the GP models along with the
history of the velocity data are shared amongst the vehicles.
In this setup, the MPC at each platoon member is fed with the
predicted velocities and positions of the preceding vehicles
using the shared GP models. Subsequently, the predicted
values of cooperative vehicles’ velocities for up to 7 time
instants ahead are compared to ground truth to obtain the
velocity prediction errors for different time horizons using
GPR. In addition, the same procedure has been followed by
sharing the MPC states’ predictions among the vehicles, and
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Fig. 5: Performance of the CACC system with 10 vehicles, 7'= 0.6 s, t, = 0.1 s, and PER = 0.5.

the velocity prediction errors using the MPC outputs were
derived. Fig. 3 illustrates the mean and 95" percentile of
velocity error for both schemes. It is observed that the statis-
tics for both methods are almost the same, demonstrating the
capability of GP for capturing the velocity profile.

TABLE II: Comparing the emergency braking duration (in
seconds) for Fig. 5a with one-look-ahead topology and Fig.
5b with nine-look-ahead topology. As observed, using the
information of more vehicles has led to less emergency
braking for platoon members with larger indices (i.e., the
ones further down the platoon).

[ [ [e[e [ o[ ]¥]
one-look- 291 26| 29| 27|22|20|22] 16| 1.8
ahead
nine-look- | 29| 26| 29| 20| 15| 1.3 | 1.1 | 0.6 | 0.0
ahead

Two main objectives of CACC are smoothing the en-
gine/brake input, and keeping the acceleration in a reasonable
and comfortable range. Therefore, the duration of emergency
braking mode and smoothness of the acceleration profile
can be considered as two measures for CACC performance
evaluation. Fig. 4 shows the regulated distances, velocity
and acceleration profiles, and emergency braking status of
vehicles in a scenario with ideal communication and one-
look-ahead IFT. It is observed that having the information of
the immediate predecessor is sufficient to maintain the 0.6s
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headway with smooth acceleration profiles while avoiding
the emergency braking given an ideal communication.

In reality, however, the wireless channel is lossy, and
the communication can suffer from random packet loss. As
the PER increases, it is speculated that by accessing the
information of more preceding vehicles, the platoon has
a quicker response which leads to the emergency braking
reduction. Fig. 5 illustrates the CACC performance when
communication PER is set to 0.5 for one-look-ahead and
nine-look-ahead topologies. It is observed that although the
vehicles’ accelerations similarly fluctuate in both scenarios,
using the nine-look-ahead IFT resulted in fewer emergency
braking events. Table II shows the emergency braking dura-
tion of the platoon members in the aforementioned scenarios.
It is seen that the emergency braking duration is reduced for
almost all platoon members in the nine-look-ahead topology.
This effect is more evident for the platoon members with
higher indices, i.e., the members at the tail of the platoon.
For instance, the last member of the platoon did not have
an emergency braking event in the nine-look-ahead scenario
while it stayed in the emergency braking mode for 1.8s in
the one-look-ahead scenario.

Fig. 6 shows the average sum of emergency braking
duration of all platoon members having the aforementioned
setups and 20 simulation trials. When the communication is
ideal or the PER is relatively small, accessing the information
of more predecessors does not extensively reduce the braking
emergency duration. As the PER increases, the effect of
accessing the information of more preceding vehicles on
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Fig. 6: The figure shows the average sum of emergency
braking duration for all platoon members having different
look-ahead topologies and PERs. In the case of having
semi-ideal communication, using the information of more
preceding vehicles does not lead to an evident reduction in
emergency braking. However, in normal or adverse situations,
the effect of using more vehicles information in emergency
braking duration reduction is more evident.

emergency braking reduction becomes more evident. For
instance, when PER is 0.6, the emergency braking duration
is 30% less for nine-look-ahead topology compared to one-
look-ahead IFT.

V. CONCLUSION

In this paper, we explored the performance of the vehicle
platoon with different information flow topologies, where
vehicles receive information from multiple predecessors, in
ideal and non-ideal communication setups. In addition, a
discrete hybrid stochastic MPC design was used for the
CACC application by leveraging model-based communica-
tion. It was assumed that vehicles share their future velocity
profiles, as well as an updated model for their velocity profile
by using GPR at each successful communication event. For
safety purposes, vehicles may operate in either free following
mode or emergency braking mode. The performance of the
proposed controller was evaluated through simulation studies,
which validated the efficacy of the proposed method. We have
shown that using the information of multiple predecessors
can cancel shock waves in a very effective manner. Part of our
future work will include the introduction of lane-changing
policies for platoons, as lane changing is one of the known
causes of shock waves.
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