

Digital Keying Enabled by Reconfigurable 2D Modulators

Sarbashis Das and Saptarshi Das*

Energy, area, and bandwidth efficient communication primitives are essential to sustain the rapid increase in connectivity among internet-of-things (IoT) edge devices. While IoT edge-sensing, edge-computing, and edge-storage have witnessed innovation in materials and devices, IoT edge communication is yet to experience such transformation. The aging silicon (Si)-based complementary metal–oxide–semiconductor (CMOS) technology continues to remain the mainstay of communication devices where they are used to implement amplitude, frequency, and phase shift keying (amplitude-shift keying [ASK]/frequency-shift keying [FSK]/phase-shift keying [PSK]). Keying allows digital information to be communicated over a radio channel. While CMOS-based keying devices have evolved over the years, their hardware footprint and energy consumption are major concerns for resource constrained IoT communication. Furthermore, separate circuit designs and hardware elements are needed for each keying scheme and achieving multibit modulation to improve bandwidth efficiency remains a challenge. Here, a reconfigurable modulator is introduced that exploits unique ambipolar transport and programmable Dirac voltage in ultrathin MoTe₂ field-effect transistors to achieve ASK, FSK, and PSK modulation. Furthermore, by integrating two programmed MoTe₂ field-effect transistors, multibit data modulation is demonstrated, which improves the bandwidth efficiency by 200%. Finally, a frequency quadrupler is also realized exploiting the unique “double-well” transfer characteristic.

1. Introduction

Digital modulation or keying is the cornerstone of modern communication and plays an indispensable role in wired and wire-

less data transmission between consumer devices, appliances, and back-end infrastructure in today's world. Various types of keying exist including the most basic amplitude-shift keying (ASK), frequency-shift keying (FSK), and phase-shift keying (PSK).^[1] Each keying scheme requires a specific modulator circuit and silicon-based complementary metal–oxide–semiconductor (CMOS) technology is most commonly used to design such modulators. For example, the well-known 555 timer circuit is used to implement binary ASK and FSK although other modulator designs exist. Over the years CMOS circuits used in ASK,^[2–5] FSK,^[6,7] and PSK^[8] have evolved to become more efficient and adaptable to a wide variety of applications ranging from wearable electronics to space electronics. However, achieving multibit keying to improve bandwidth efficiency remains a hardware challenge. One approach is to combine two or more keying schemes, for example, amplitude and phase shift keying (APSK), where both the amplitude and the phase of the radio wave is modulated. However, it comes at the cost of increased complexity

and energy expenditure for the modulator circuit.^[9] Therefore, in the current era of internet of things (IoT) where the number of interconnected edge devices is rapidly increasing, the need for innovation in low-power and compact modulators that offer high bandwidth efficiency is urgent and immediate.

In recent years, there has been an increased focus on utilizing novel materials and device properties to implement complex functionalities in hardware. Examples include acceleration of image processing algorithms exploiting the vector matrix multiplication capability of memristor-based crossbar arrays,^[10,11] probabilistic neural networks using Gaussian synapses enabled by heterointegration of 2D semiconductors,^[12] collision avoidance using in-sensor compute functionality of photosensitive monolayer 2D field-effect transistors (FETs),^[13] and biomimetic audiomorphic computation using novel split-gate transistor designs.^[14] However, the field of digital communication has, so far, not witnessed this kind of an effort leaving a large scope for innovations to improve the area, energy, and bandwidth efficiency of digital modulators.

In this work, we demonstrate a low-power, reconfigurable, and compact modulator based on molybdenum ditelluride (MoTe₂) field-effect transistor (FET). MoTe₂ is a 2D transition metal dichalcogenide (TMD) material. TMDs have the general formula MX₂ where M is the metal atom (M = Mo, W) and

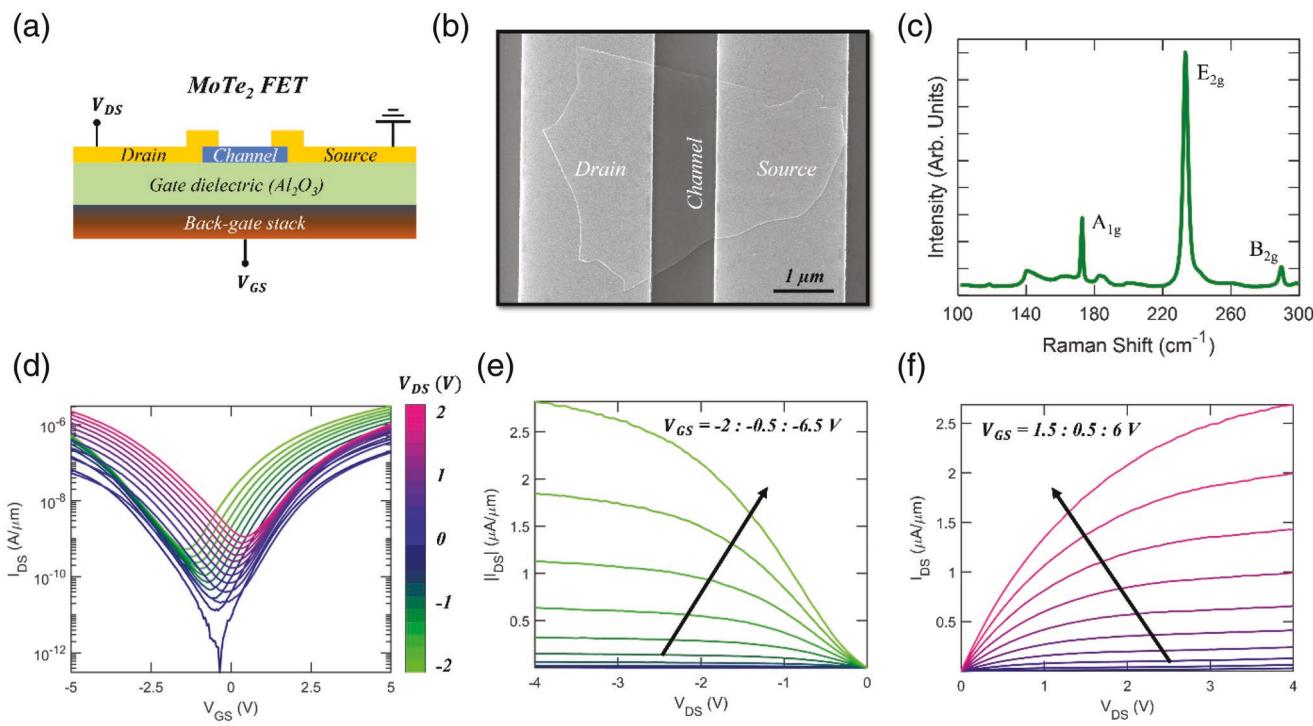
S. Das, S. Das
Electrical Engineering
Pennsylvania State University
University Park, PA 16802, USA
E-mail: sud70@psu.edu

S. Das
Engineering Science and Mechanics
Pennsylvania State University
University Park, PA 16802, USA

S. Das
Material Research Institute
Pennsylvania State University
University Park, PA 16802, USA

S. Das
Materials Science and Engineering
Pennsylvania State University
University Park, PA 16802, USA

 The ORCID identification number(s) for the author(s) of this article can be found under <https://doi.org/10.1002/adma.202203753>.


DOI: 10.1002/adma.202203753

X is the chalcogen atom (X = S, Se, Te). MoTe₂ is semiconducting in the 2H phase and has a direct bandgap of 1.1 eV when thinned down to a monolayer.^[15] When used as the channel in a FET, MoTe₂ shows ambipolar transport characteristics which can be tuned by charge-transfer,^[16] laser,^[17,18] or UV irradiation.^[19] MoTe₂ has been used as an ambipolar FET for inverter and amplifier circuits,^[20–22] as a PN diode for on-chip optoelectronics,^[23] and as a photodetector for silicon photonic integrated circuits.^[24,25] Consistent with previously published work, our MoTe₂ FETs demonstrate ambipolar transport, i.e., the presence of both electron and hole conduction and also utilize a gate stack, which allows analog and nonvolatile programming of the Dirac voltage. Exploiting these unique properties, we have been able to achieve ASK, FSK, and PSK modulation schemes using a single MoTe₂ FET greatly reducing the energy and area overhead compared to state-of-the-art implementations using silicon CMOS-based circuits. Additionally, using a pair of programmed MoTe₂ FETs with different Dirac voltages, we have been able to demonstrate up to 3-bit ($M = 8$) modulation using a combination of ASK, FSK, and PSK schemes to enhance the bandwidth efficiency. Furthermore, our modulator can also be used as a frequency quadrupler. Our demonstration of multipurpose MoTe₂-based modulators highlight the importance of material

and device level innovations as the driver for energy-, area-, and bandwidth-efficient IoT edge communication.

2. Digital Keying using Ambipolar Characteristics

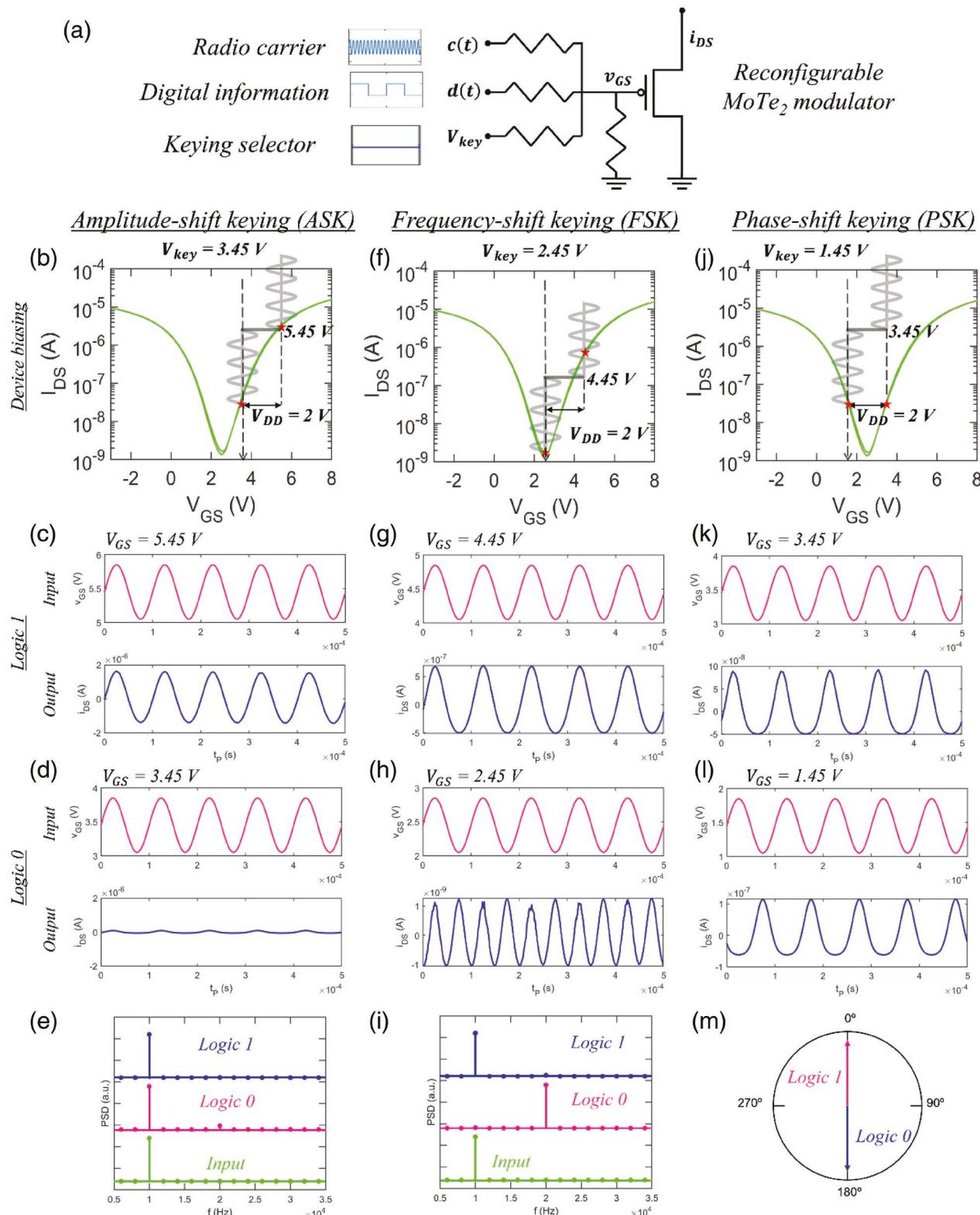
Figure 1 explains the operation of ambipolar MoTe₂ FETs. As shown in Figure 1a, the channel is formed by a flake of multilayer molybdenum ditelluride (MoTe₂) which is a 2D transition metal dichalcogenide (TMDC). The gate dielectric is 50 nm of Al₂O₃. The back-gate stack of this modulator utilizes Pt/TiN/ p⁺⁺ Si layers which allow reconfigurability via nonvolatile programmability of the threshold voltage, as will be explained later. The degenerately doped (p⁺⁺) silicon forms the back-gate contact. The source and drain contacts are formed by a Ni (40 nm)/Au (30 nm) metal stack. Details about the fabrication and characterization processes of these devices can be found in the Experimental Section. Figure 1b shows the scanning electron microscopy (SEM) image of the as-fabricated device, taken from a top-down view, where the outline of the MoTe₂ flake is clearly visible underneath the source/drain contacts. Atomic force microscopy (AFM) scan of the MoTe₂ flake revealed the thickness to be ≈ 10 nm (around 15 monolayers). Figure 1c shows the Raman spectroscopy performed on the MoTe₂ flake.

Figure 1. Ambipolar transport in MoTe₂ field-effect transistor (FET). a) Schematic of a 2D FET with ≈ 10 nm (multilayer) molybdenum ditelluride (MoTe₂) as the semiconducting channel, Ni as the source/drain contacts, and 50 nm Al₂O₃ as the gate dielectric layer. The back-gate electrode comprises Pt/TiN/ p⁺⁺-Si layers. The back-gate stack also offers analog and nonvolatile programming capability for the MoTe₂ FET. b) Top-down scanning electron microscopy (SEM) image of the MoTe₂ FET with c) Raman spectroscopy performed on the MoTe₂ flake. The prominent peak of the E_{2g} mode is found to be at 233 cm⁻¹ while the weaker A_{1g} mode has a peak at 172 cm⁻¹ and the B_{2g} peak is at 289 cm⁻¹, confirming that the flake is multilayer and in the semiconducting 2H phase. d) Transfer characteristics, i.e., the source-to-drain current (I_{DS}) versus source-to-gate voltage (V_{GS}) for different source-to-drain voltage (V_{DS}) for the MoTe₂ FET measured under vacuum ($\approx 10^{-6}$ Torr). MoTe₂ FET shows ambipolar transport, i.e., the presence of distinct electron and hole branches. The inflection point where I_{DS} is minimum is referred to the Dirac point and the corresponding values of gate voltage and drain current are denoted by V_{Dirac} and I_{Dirac} respectively. e,f) Output characteristics of the MoTe₂ FET for positive (e) and negative (f) values of V_{GS} and V_{DS} . The n-branch current goes up to 2.6 μ A μ m⁻¹ for $V_{DS} = 4$ V and $V_{GS} = 6$ V, while the p-branch current goes up to 2.7 μ A μ m⁻¹ for $V_{DS} = -4$ V and $V_{GS} = -6.5$ V.

The prominent peak of the E_{2g} mode is found to be at 233 cm^{-1} while the weaker A_{1g} mode has a peak at 172 cm^{-1} and the B_{2g} peak is at 289 cm^{-1} , confirming that the flake is multilayer and in the semiconducting 2H phase.^[26]

Figure 1d shows the transfer characteristics, i.e., the source-to-drain current (I_{DS}) versus source-to-gate voltage (V_{GS}) for different source-to-drain voltage (V_{DS}) of a representative MoTe_2 FET in the logarithmic scale at room temperature measured under vacuum ($\approx 10^{-6}$ Torr). The V_{GS} runs from -5 to 5 V while the V_{DS} is from -2 to 2 V. The MoTe_2 FET shows ambipolar transfer characteristics as indicated by the I_{DS} which has distinct electron and hole branches for positive and negative values of V_{GS} respectively. The inflection point, where I_{DS} is minimum is referred to as the Dirac voltage (V_{Dirac}) and the minimum current is referred to as Dirac current, I_{Dirac} . The position of V_{Dirac} and the magnitude of I_{Dirac} depends on the relative position of the conduction and valence band of MoTe_2 and the Fermi level of the metal contact. Given that both electron and hole conduction are observed in MoTe_2 , it can be ascertained that the Fermi level of our Ni contact is aligned to the middle of the bandgap of MoTe_2 , which is consistent with other reports from the literature.^[27] Applying positive and negative values of V_{GS} will lead to injection of carriers into the conduction and the valence bands respectively, as shown using the energy band diagrams in Figure S1 (Supporting Information). Figure 1e,f shows the output characteristics, i.e., I_{DS} vs V_{DS} for positive and negative V_{GS} values, respectively. In Figure 1e, for $V_{DS} = 4$ V, and $V_{GS} = 6$ V, the n-branch current reaches up to $2.6\text{ }\mu\text{A }\mu\text{m}^{-1}$. Similarly, in Figure 1f, for $V_{DS} = -4$ V and $V_{GS} = -6.5$ V, the p-branch current reaches up to $2.7\text{ }\mu\text{A }\mu\text{m}^{-1}$. Current saturation is observed for both the n- and the p-branch.

Figure 2 demonstrates the working of the MoTe_2 FET as a reconfigurable modulator to implement ASK, FSK, and PSK. For all three types of modulation, the analog carrier is a sinusoidal wave, while the data to be transmitted is digital. Figure S2 (Supporting Information) shows how ASK, FSK, and PSK modulated waveforms can be generated by mixing the analog carrier and the digital data. Figure 2a shows the circuit diagram for the implementation of ASK, FSK, and PSK using the ambipolar MoTe_2 FET. The input signal (v_{GS}), which is the superposition of the carrier wave, $c(t)$, digital data, $d(t)$, and the constant bias, V_{key} , is applied to the gate terminal of the MoTe_2 FET, whereas the drain current gives the modulated output waveform as i_{DS} . As we will discuss below, V_{key} allows switching between various modulation schemes exploiting the unique ambipolar transfer characteristics of the MoTe_2 FET. Also note that, we have used a sinusoidal signal of amplitude 400 mV and frequency 10 kHz as $c(t)$, whereas for $d(t)$, logic levels "0" and "1" are represented by 0 V and $V_{DD} = 2\text{ V}$, respectively.


For ASK, we use $V_{\text{key}} = 3.45\text{ V}$, which shifts the logic levels "0" and "1" to $V_{GS} = 3.45\text{ V}$ and 5.45 V , respectively, as shown in Figure 2b. Note that the slopes of the transfer characteristics or the transconductance (g_m) values of the MoTe_2 FET are different at these two operating V_{GS} . For example, $g_m = 3.53\text{ }\mu\text{S}$ at $V_{GS} = 5.45\text{ V}$ and $g_m = 118\text{ nS}$ at $V_{GS} = 3.45\text{ V}$. This leads to different amplitude of $i_{DS}(t)$ for the same $c(t)$ but different $d(t)$ corresponding to the logic levels "1" and "0", which represents the ASK modulation as shown in Figure 2c,d, respectively.

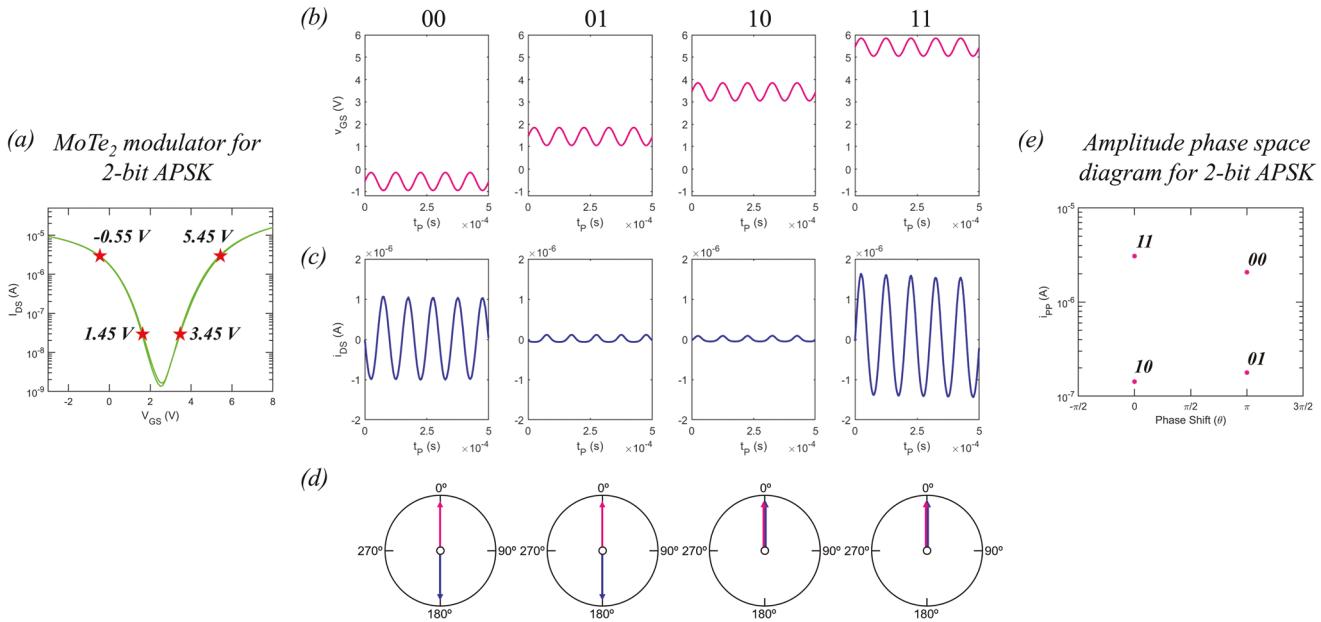
Note that, we chose V_{key} such that the device operates in the n-branch of the transfer characteristics, where an increase in V_{GS} leads to an increase in the I_{DS} and vice versa making sure that g_m is positive and $i_{DS}(t)$ is in-phase with $c(t)$. Figure 2e shows the power spectral density (PSD) of $c(t)$ and $i_{DS}(t)$ corresponding to both logic levels obtained by taking the fast Fourier transform (FFT) of Figure 2c,d. Note that the frequency of $i_{DS}(t)$ remains the same as $c(t)$. Furthermore, the amplitude of higher harmonics is insignificant indicating near linear device operation. Figure S3a,b (Supporting Information), respectively, show an example of a binary input bitstream fed into the MoTe_2 FET-based modulator and the corresponding output signal that follows ASK modulation.

For FSK, we use $V_{\text{key}} = 2.45\text{ V}$, which shifts the logic levels "0" and "1" to $V_{GS} = 2.45$ and 4.45 V , respectively, as shown in Figure 2f. At $V_{GS} = 4.45\text{ V}$, the device operates in the n-branch of the transfer characteristics like in the previous case ensuring that the frequency of $i_{DS}(t)$ is same as $c(t)$ as shown in Figure 2g. However, at $V_{GS} = 2.45\text{ V}$, i.e., at the Dirac point, I_{DS} is at its minimum value. At this operating point, both increase as well as decrease in V_{GS} lead to an increase in the I_{DS} . As such the frequency of i_{DS} becomes double that of $c(t)$, akin to a full-wave rectification process as shown in Figure 2h. Figure 2i shows the PSD of $c(t)$ and $i_{DS}(t)$ corresponding to both logic levels by taking the FFT of Figure 2g,h. Clearly, logic level "1" and "0" are represented by two different frequencies validating the FSK modulation for $V_{\text{key}} = 2.45\text{ V}$. Note that due to the difference in g_m values for $V_{GS} = 4.45$ and 2.45 V , there will be an inadvertent ASK. Figure S4a,b (Supporting Information), respectively, show an example of a binary input bitstream fed into the MoTe_2 FET-based modulator and the corresponding output signal that follows FSK modulation. Due to the unwanted ASK occurring in the FSK modulated signal, the outputs for both logic levels are shown with different scale bars.

Finally, for PSK, we use $V_{\text{key}} = 1.45\text{ V}$, which shifts the logic levels "0" and "1" to $V_{GS} = 1.45$ and 3.45 V , respectively, as shown in Figure 2j. At $V_{GS} = 3.45\text{ V}$, the device operates in the n-branch of the transfer characteristics, where g_m is positive and hence $i_{DS}(t)$ is in phase with $c(t)$ as shown in Figure 2k. However, at $V_{GS} = 1.45\text{ V}$, the device operates in the p-branch of the transfer characteristics, where an increase in V_{GS} leads to a decrease in the I_{DS} and vice versa making g_m negative and hence $i_{DS}(t)$ is out of phase with $c(t)$ as shown in Figure 2l. Figure 2m shows the phase (ϕ) of $c(t)$ and $i_{DS}(t)$ corresponding to both logic levels shown in Figure 2k,l. Clearly, logic level "1" and "0" are represented by two different phases validating PSK modulation for $V_{\text{key}} = 1.45\text{ V}$. Note that the amplitude and frequency for $i_{DS}(t)$ corresponding logic level "1" and "0" remains the same owing to the symmetry in the transfer characteristics of MoTe_2 FET. Figure S5a,b (Supporting Information), respectively, show an example of binary input bitstream fed into the MoTe_2 FET-based modulator and the corresponding output signal that follows PSK modulation.

The fact that V_{key} can be adjusted to switch between different modulation schemes, greatly simplifies the hardware design for the MoTe_2 FET-based modulator when compared to silicon CMOS-based mixing circuits. Also note that the average energy consumption per bit (E_{bit}) can be estimated using Equation (1)

Figure 2. MoTe₂ FET-based reconfigurable modulator. a) Circuit schematic of the MoTe₂-FET-based modulator for ASK, FSK, and PSK. b) Modulator configuration for ASK using $V_{key} = 3.45$ V and $c(t)$ and $i_{DS}(t)$ corresponding input (v_{GS}) and output (i_{DS}) waveforms for logic “1” (c) and logic “0” (d). e) The power spectral density (PSD) of $c(t)$ and $i_{DS}(t)$ confirms the absence of frequency distortion. f) Modulator configuration for FSK using $V_{key} = 2.45$ V. Corresponding v_{GS} and i_{DS} waveforms for g) logic “1” and h) logic “0” and i) the PSD of $c(t)$ and $i_{DS}(t)$. j) Modulator configuration for PSK using $V_{key} = 1.45$ V. Corresponding v_{GS} and i_{DS} waveforms for k) logic “1” and l) logic “0” and m) the phase of $i_{DS}(t)$ in comparison to $c(t)$.

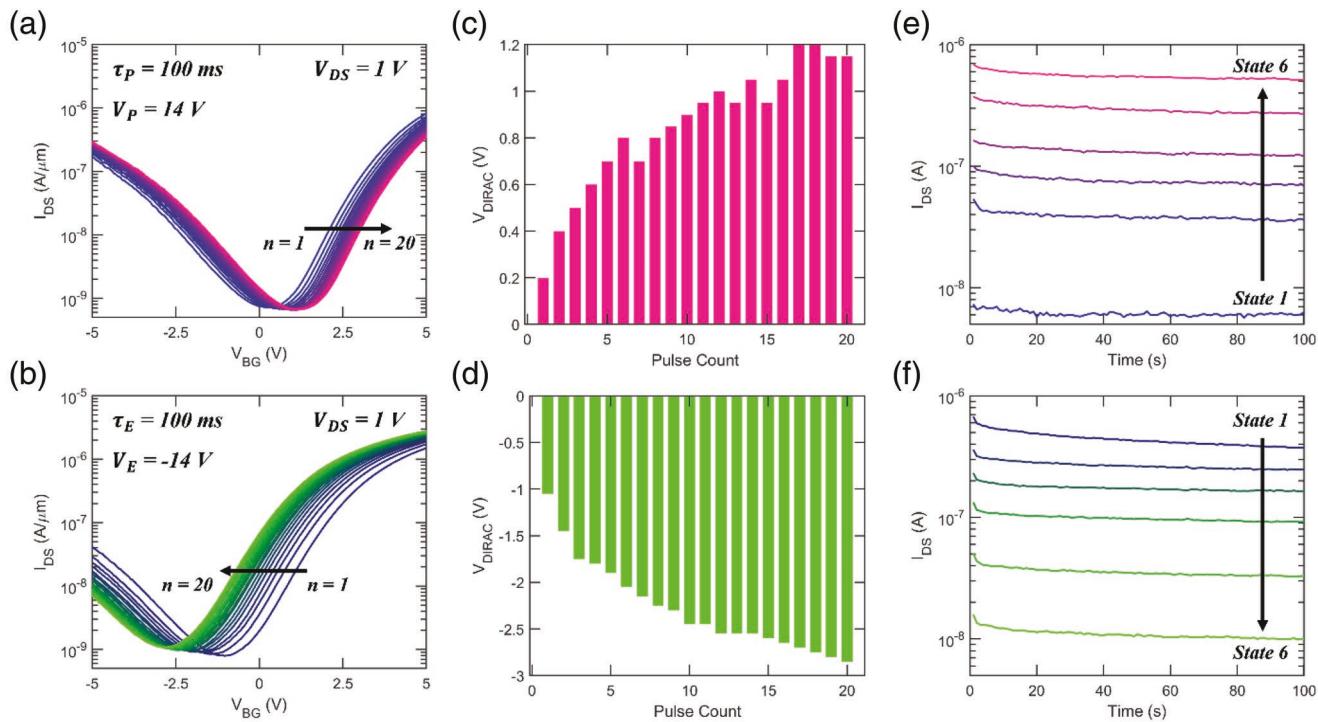

$$E_{\text{bit}} = \frac{1}{2} C_G \left[p V_{\text{key}}^2 + (1-p)(V_{\text{key}} + V_{\text{DD}})^2 \right] + \frac{\sqrt{I_{\text{DS}}^2} V_{\text{DS}}}{f_c}; C_G = \epsilon_0 \epsilon_{\text{ox}} WL / t_{\text{ox}} \quad (1)$$

where, C_G , $\epsilon_0 = 8.85 \times 10^{-12} \text{ F m}^{-1}$ is the vacuum permittivity, $\epsilon_{\text{ox}} = 10$, and $t_{\text{ox}} = 50 \text{ nm}$ are, respectively, the relative permittivity and thickness of Al_2O_3 , $W = 3.5 \mu\text{m}$ and $L = 1 \mu\text{m}$ are, respectively, the channel width and length of the MoTe_2 FET, and p is the probability of obtaining “1” in $d(t)$. For, $p = 0.5$, we estimated $E_{\text{bit}} \approx 70, 9$, and 7 pJ , for ASK, FSK, and PSK, respectively. Also note that the footprint of the active device is $\approx 3.5 \mu\text{m}^2$.

The MoTe_2 modulator described above can also be used for encoding 2-bit of binary data combining the ASK and the PSK schemes, which can improve the bandwidth efficiency by 100%. If we use $V_{\text{key}} = -0.55 \text{ V}$, and represent the logic levels, “00”, “01”, “10”, and “11”, using 0, 2, 4, and 6 V, respectively, then the corresponding V_{GS} values will be $-0.55, 1.45, 3.45$, and 5.45 V , respectively, as shown in Figure 3a. Figure 3b shows the input signal to the MoTe_2 FET-based modulator when the different logic levels are superimposed with $c(t)$ and Figure 3c shows the corresponding $i_{\text{DS}}(t)$. Figure 3d shows the phase for $c(t)$ and $i_{\text{DS}}(t)$. Clearly, each logic level is represented by a different point in the amplitude-phase space in Figure 3e. In other words, the same MoTe_2 FET-based modulator can be configured for APSK modulation. The above results reaffirm the design simplicity and energy, area, and bandwidth efficiency of MoTe_2 FET-based reconfigurable modulator.

3. Non-Volatile Analog Memory

Next, we show analog and nonvolatile programmability of MoTe_2 FETs, which can be used to design modulators that can


Figure 3. MoTe_2 FET-based modulator for 2-bit amplitude phase shift keying (APSK). a) Biasing of the MoTe_2 modulator to enable 2-bit APSK. Here, we use $V_{\text{key}} = -0.55 \text{ V}$, and represent the logic levels, “00”, “01”, “10”, and “11”, using 0, 2, 4, and 6 V, respectively, such that the corresponding V_{GS} values will be $-0.55, 1.45, 3.45$, and 5.45 V , respectively. b) The input signal to the MoTe_2 FET based modulator when the different logic levels are superimposed with $c(t)$ and c) the corresponding $i_{\text{DS}}(t)$. d) The phase for $c(t)$ (in pink) and $i_{\text{DS}}(t)$ (in blue). e) Each logic level is represented by a different point in the amplitude-phase space confirming APSK modulation.

encode 3-bit binary data improving the bandwidth efficiency even further. When the back-gate stack of the MoTe_2 FET is subjected to successive positive “program” (V_p) voltage pulses of amplitude 14 V and negative “erase” (V_e) voltage pulses of amplitude -14 V, each applied for $\tau_{p/e} = 100 \text{ ms}$, the transfer characteristics exhibit positive and negative shifts, respectively, as shown in Figure 4a,b, for $n = 20$ pulses. The corresponding V_{Dirac} as a function of n is shown in Figure 4c,d. The shift in the transfer characteristics can be explained using the phenomenon of charge trapping and detrapping at and near the $\text{MoTe}_2/\text{Al}_2\text{O}_3$ interface. Note that trap states can originate from defects/imperfections in the dielectric and/or adsorbed species at the

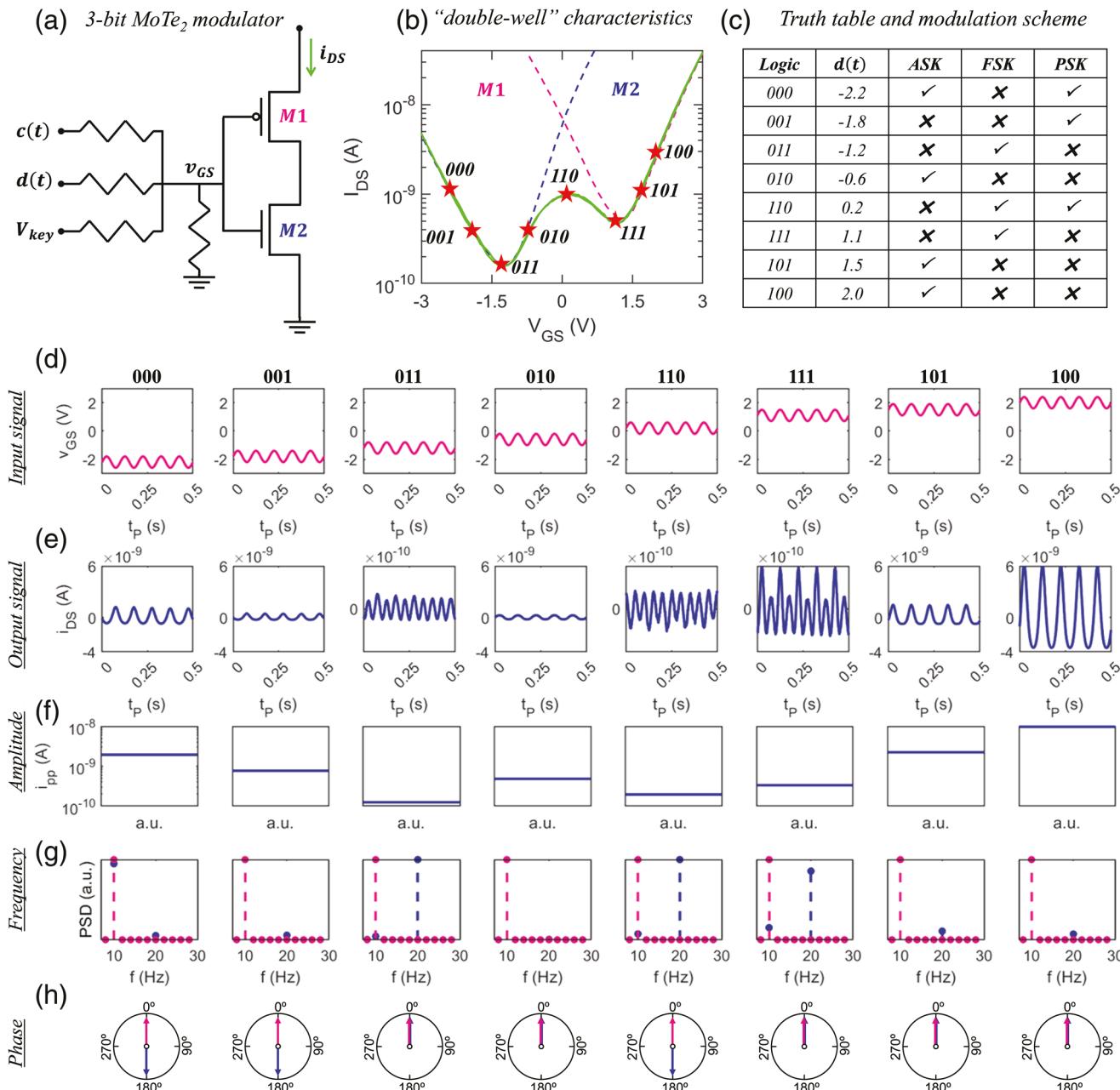
2D/dielectric interface as reported in various earlier studies.^[28–30] These states can also be engineered at desired energetic locations by introducing intentional defects in the 2D channel material.^[31,32] Carrier occupancy in these trap states follow Fermi–Dirac distribution. As illustrated using the energy band diagrams in Figure S6 (Supporting Information), at equilibrium, i.e., in the absence of any gate bias, the trap states with energy levels above the Fermi energy (E_F) are empty, whereas the ones below E_F are filled. When the MoTe_2 FET is subjected to a negative “erase” (V_e) voltage pulse, electrons are released (detrapped) from these trap states leaving them positively charged. This leads to the screening of the back-gate bias, which is reflected as a shift in the V_{Dirac} following Equation (2)

$$\Delta V_{\text{Dirac}} = -\frac{Q_T}{C_{\text{ox}}}; C_{\text{ox}} = \frac{C_G}{WL} = \frac{\epsilon_0 \epsilon_{\text{ox}}}{t_{\text{ox}}} \quad (2)$$

where Q_T is the magnitude of effective positive charge at or near the 2D/dielectric interface. Similarly, when the MoTe_2 FET is subjected to a positive “program” (V_p) voltage pulse, electrons are

Figure 4. Analog and nonvolatile programming of MoTe₂ FET. a,b) Transfer characteristics of the MoTe₂ FET measured after the application of successive positive “program” (V_p) voltage pulses of amplitude 14 V (a) and negative “erase” (V_e) voltage pulses of amplitude -14 V (b), each for $\tau_{p/e} = 100$ ms, for $n = 20$ pulses. The corresponding V_{Dirac} as a function of n for c) programming and d) erase pulses. The shift in the transfer characteristics can be explained using the phenomenon of charge trapping and detrapping at and near the MoTe₂/Al₂O₃ interface. e,f) Nonvolatile retention of 6 representative programmed (e) and erased (f) states for 100 s.

captured back (trapped) into the trap states restoring the V_{Dirac} . Note that the number of electrons getting trapped/detrapped can be controlled by the pulse number, magnitude, and duration, which enable us to have an analog control of the V_{Dirac} of the MoTe₂ FET. Interestingly, the trapping and detrapping processes were found to be nonvolatile as shown in Figure 4e,f for 6 representative programmed and erased states for at least 100 s.


4. Multibit Keying using “Double-Well” Characteristics

As mentioned earlier, to encode 3-bit binary data, $M = 8$ unique combinations of amplitude, frequency, and phase for the output current, $i_{DS}(t)$, are required, which is difficult to achieve using the ambipolar transfer characteristics of a single MoTe₂ FET. However, when two MoTe₂ FETs, M1 and M2, that are programmed to have different V_{Dirac} are connected in series as shown in Figure 5a, the transfer characteristics change significantly as shown in Figure 5b. Note that, while there is some device-to-device variation in the V_{Dirac} for the as-fabricated MoTe₂ FETs, most of them lie within $V_{GS} -0.5$ to 0.5 V, which is insufficient for the design of the multibit modulator. Therefore, programming capability is critical to have a larger shift in V_{Dirac} for each MoTe₂ FET. The transfer characteristics of M1 are shifted to the positive side by programming with positive gate voltage pulses, while those of M2 are shifted to the negative side by using negative gate voltage pulses as shown using

the dotted lines in Figure 5b. The difference in I_{Dirac} between M1 and M2 can be ascribed to different thicknesses of the corresponding exfoliated MoTe₂ flake leading to slightly different bandgap and/or Fermi level alignment with the metal contacts. When connected in series, I_{DS} shows an asymmetric “double-well” feature over the range of the applied V_{GS} . Note that having a common back-gate means that the voltage sweeps applied to the gates of M1 and M2 are identical.

For $V_{GS} < 0$ V, M2 dominates the transfer curve since it is in a low conductance state, whereas, for $V_{GS} > 0$ V, M1 dominates the transfer curve since it is now in the low conductance state. This leads to a very interesting “double-well” transfer characteristic where there is one peak and two valleys in the values of I_{DS} . As we will elucidate next, different biasing points chosen along this highly nonmonotonic transfer characteristics can give rise to different values of amplitude, frequency, and phase for i_{DS} for the same $c(t)$, which forms the basis for multibit modulation.

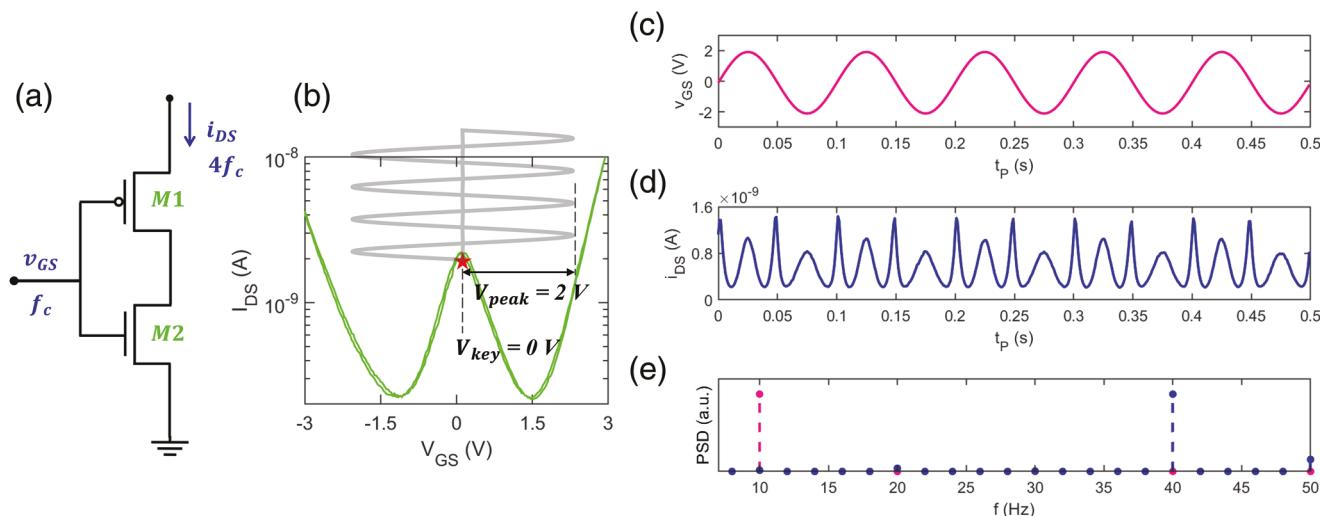

The truth table, corresponding voltage biases, and the combination of different schemes for the 3-bit modulator are shown in Figure 5c and are marked in Figure 5b. Note that we are using a Gray code to represent 3-bit binary values. Here, the binary numeral system is such that two successive values differ in only one bit, which aids in error correction in digital communication. Figure 5d,e, respectively, show the V_{GS} representing different logic levels and the corresponding modulated i_{DS} . While most of the modulations are in accordance with our previous discussion, we would like to specifically highlight the

Figure 5. 3-Bit modulation based on “double-well” characteristics of MoTe_2 FETs. a) Circuit schematic of a 3-bit modulator by integrating two MoTe_2 FETs, $M1$ and $M2$, that are programmed to have different V_{Dirac} . b) Transfer characteristics of the modulator with unique “double-well” feature. The dotted lines show the transfer characteristics of $M1$ (pink) and $M2$ (blue). For $V_{GS} < 0$ V, $M2$ dominates the transfer curve, whereas for $V_{GS} > 0$ V, $M1$ dominates the transfer curve, respectively. This leads to the asymmetric “double-well” modulator characteristic with one peak and two valleys in the values of i_{DS} . c) The truth table, corresponding voltage biases, and the combination of different schemes for the 3-bit modulator, using a Gray coding scheme. d) The input (v_{GS}) and e) the corresponding output (i_{DS}) waveforms for different logic levels. f) Peak-to-peak amplitude (i_{pp}), g) PSD pink: $c(t)$ blue: $i_{DS}(t)$, and h) phase relative to $c(t)$ for $i_{DS}(t)$ corresponding to different logic levels. Clearly, through the combination of one or more keying schemes, 3-bit modulation can be achieved based on the integration of two preprogrammed ambipolar MoTe_2 FETs.

modulation for logic level “100”, as it corresponds to $V_{GS} = 0$ V, i.e., the inflection point on the “anti-ambipolar” region of the transfer characteristics. It is similar to the logic level “010” and “101”, represented by $V_{GS} = -1.5$ and 1.1 V, respectively, which correspond to the inflection points on the two “ambipolar” regions of the transfer characteristics and therefore lead to

full-wave rectification of $c(t)$ resulting in frequency doubling in $i_{DS}(t)$. However, the $i_{DS}(t)$ corresponding to logic level “100” is out of phase when compared to $i_{DS}(t)$ corresponding to logic level, “010” and “101”. Figure 5f-h, respectively, shows the peak-to-peak amplitude (i_{pp}), PSD, and phase relative to $c(t)$ for $i_{DS}(t)$ corresponding to different logic levels. Clearly, through the

Figure 6. Frequency quadrupler based on a MoTe₂ modulator. a) Circuit schematic and b) symmetric “double-well” transfer characteristics for the MoTe₂ FETs based frequency quadrupler. Here, M1 and M2 are chosen such that their I_{Dirac} values are approximately the same. The V_{Dirac} for M1 and M2 are programmed and shifted toward positive and the negative directions, respectively. c) The input (v_{GS}) and d) the corresponding output (i_{DS}) waveforms for the frequency quadrupler. e) The PSD of $c(t)$ and $i_{DS}(t)$ confirm the successful realization frequency quadrupling.

combination of one or more keying schemes, we have been able to demonstrate a 3-bit modulator based on the integration of two preprogrammed ambipolar MoTe₂ FETs. Naturally, the modulator has a small footprint of $\approx 7 \mu\text{m}^2$, consumes minuscule energy of $\approx 70 \text{ pJ bit}^{-1}$ for keying, and offers 200% more bandwidth compared to any of the binary ASK, FSK, or PSK schemes.

Finally, we exploit the “double-well” characteristics of two integrated MoTe₂ FETs for frequency quadrupling. Note that frequency multipliers are used extensively in frequency synthesizers and communications circuits. It is often more economical to develop a lower frequency signal with low-power consumption using less expensive devices, and then use cascaded frequency multipliers to generate an output frequency in the microwave or millimeter wave range. Figure 6a shows the circuit schematic for the frequency quadrupler. In order to synthesize a frequency quadrupler, M1 and M2 are chosen such that their I_{Dirac} values are approximately the same. After programming M1 and M2 to the positive and the negative directions respectively, and using the same circuit layout as before, the resulting transfer characteristic is found to be symmetric about $V_{GS} = 0$ V as shown in Figure 6b. As has been shown previously, by choosing the DC bias, V_{Key} , at the peak or the valleys of the anti-ambipolar characteristic, a full wave rectification effect is obtained since i_{DS} swings to both the p- and the n-branches, which leads to frequency doubling. The same effect is utilized here except the sinusoidal carrier signal is of larger amplitude, $V_{pp} = 2$ V. V_{pp} is sufficiently large such that i_{DS} swings past the valleys on both the positive and the negative sides. Every time v_{GS} crosses a peak or a valley in the i_{DS} , a peak in the i_{DS} is obtained. In one complete cycle of v_{GS} , the peak and the valleys are traversed for a total of 4 times. This leads to an output current, $i_{DS}(t)$, whose frequency is quadruple of the input carrier wave, $c(t)$ as shown in Figure 6c,d. The PSD of $c(t)$ and i_{DS} are shown in Figure 6e, which further confirm the successful realization of a frequency quadrupler.

5. Conclusion

We have demonstrated a reconfigurable MoTe₂ FET as a multi-purpose modulator. The ambipolar characteristics of MoTe₂ have been harnessed to achieve ASK, FSK, and PSK modulation using a single device that greatly reduces the modulator footprint and energy consumption. We have also shown that the same MoTe₂ FET can be used for APSK modulation of 2-bit binary data improving the bandwidth efficiency by 100%. The MoTe₂ FETs also possesses arbitrarily programmable analog memory states, which can be used to adjust their Dirac voltage. By integrating two preprogrammed MoTe₂ FETs, we demonstrate unique “double-well” transfer characteristics, which can be exploited for 3-bit data modulation, increasing the bandwidth efficiency to 200%. Finally, we demonstrate a frequency quadrupler using the MoTe₂ modulator. Our work uses the unique transport characteristics of MoTe₂ FET(s) and its programmability to implement diverse digital communication primitives in a compact and reconfigurable device. This work highlights the importance of material and device level innovations to achieve energy, area, and bandwidth efficiency for emerging IoT edge communication.

6. Experimental Section

Flakes of 2H MoTe₂ were micromechanically exfoliated on the Al₂O₃/Pt/TiN/p⁺⁺ Si substrate. The source and the drain contacts were defined using electron beam lithography. First, the sample was spin coated with methyl methacrylate (MMA) followed by A3 poly(methyl methacrylate) (PMMA). Then the sample was exposed and subsequently developed by using a 1:1 mixture of MIBK and IPA for 60 s followed by IPA for 45 s. Using e-beam evaporation, 40 nm of nickel (Ni) and 30 nm of gold (Au) were deposited. Finally, liftoff was performed by immersing the sample in acetone for 30 min followed by IPA for 30 min which removed the evaporated metal from the sample except the source/drain patterns. Electrical characterization was performed under high vacuum ($\approx 10^{-6}$ Torr) using a Lakeshore CRX-VF probe-station and a Keysight B1500 parameter analyzer.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

The work was supported by Army Research Office (ARO) through Contract Number W911NF1910488.

Conflict of Interest

The authors declare no conflict of interest.

Author Contributions

S.D. conceived the idea and designed the experiments. S.D. fabricated the devices and performed the measurements. All authors contributed to the preparation of the manuscript.

Data Availability Statement

The data that support the findings of this study and the codes used for plotting the data are available from the corresponding author upon reasonable request.

Keywords

ambipolar transport, digital modulators, double-well characteristics, MoTe₂ field-effect transistors

Received: April 26, 2022

Revised: August 21, 2022

Published online:

- [1] F. Xiong, *Digital Modulation Techniques*, Artech House Telecommunications Library, Artech House, Inc, XX **2006**.
- [2] X. Huang, P. Harpe, X. Wang, G. Dolmans, H. de Groot, in **2010 IEEE Radio Frequency Integrated Circuits Symp.**, IEEE, Piscataway, NJ, USA **2010**, pp. 263–266.
- [3] G. Gudnason, in **Proc. of the 26th European Solid-State Circuits Conf.**, IEEE, Piscataway, NJ, USA **2000**, pp. 385–388.
- [4] H. Yu, R. Bashirullah, in **IEEE Custom Integrated Circuits Conf.**, Vol. **2006**, IEEE, Piscataway, NJ, USA **2006**, pp. 249–252.
- [5] H. Zong, J. Shen, S. Liu, M. Jiang, Q. Ban, L. Tang, F. Meng, X. Wang, in **2011 9th IEEE Int. Conf. on ASIC**, IEEE, Piscataway, NJ, USA **2011**, pp. 637–640.
- [6] M. S. Jahan, J. Langford, J. Holleman, in **2015 IEEE Radio Frequency Integrated Circuits Symp. (RFIC)**, IEEE, Piscataway, NJ, USA **2015**, pp. 163–166.
- [7] M. Lont, D. Milosevic, A. van Roermund, G. Dolmans, in **2011 IEEE Radio Frequency Integrated Circuits Symp.**, IEEE, Piscataway, NJ, USA **2011**, <https://doi.org/10.1109/RFIC.2011.5940697>.
- [8] M. R. Yuce, W. Liu, *IEEE Trans. Veh. Technol.* **2005**, *54*, 2074.
- [9] C. Thomas, M. Weidner, S. Durrani, *IEEE Trans. Commun.* **1974**, *22*, 168.
- [10] M. Hu, C. E. Graves, C. Li, Y. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, J. P. Strachan, *Adv. Mater.* **2018**, *30*, 1705914.
- [11] C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song, N. D'AjVila, C. E. Graves, Z. Li, J. P. Strachan, P. Lin, Z. Wang, M. Barnell, Q. Wu, R. S. Williams, J. J. Yang, Q. Xia, *Nat. Electron.* **2018**, *1*, 52.
- [12] A. Sebastian, A. Pannone, S. Subbulakshmi Radhakrishnan, S. Das, *Nat. Commun.* **2019**, *10*, 4199.
- [13] D. Jayachandran, A. Oberoi, A. Sebastian, T. H. Choudhury, B. Shankar, J. M. Redwing, S. Das, *Nat. Electron.* **2020**, *3*, 646.
- [14] S. Das, A. Dodda, S. Das, *Nat. Commun.* **2019**, *10*, 3450.
- [15] C. Ruppert, B. Aslan, T. F. Heinz, *Nano Lett.* **2014**, *14*, 6231.
- [16] Y. Ju Park, A. K. Katiyar, A. T. Hoang, J. H. Ahn, *Small* **2019**, *15*, 1901772.
- [17] Y. Ke, X. Song, D. Qi, J. Liu, Q. Hao, Z. Wang, S. Tang, W. Zhang, *Adv. Electron. Mater.* **2020**, *6*, 2000532.
- [18] X. Liu, A. Islam, N. Yang, B. Odhner, M. A. Tupta, J. Guo, P. X.-L. Feng, *ACS Nano* **2021**, *15*, 19733.
- [19] E. Wu, Y. Xie, J. Zhang, H. Zhang, X. Hu, J. Liu, C. Zhou, D. Zhang, *Sci. Adv.* **2019**, *5*, eaav3430.
- [20] Y.-F. Lin, Y. Xu, S.-T. Wang, S.-L. Li, M. Yamamoto, A. Aparecido-Ferreira, W. Li, H. Sun, S. Nakaharai, W.-B. Jian, K. Ueno, K. Tsukagoshi, *Adv. Mater.* **2014**, *26*, 3263.
- [21] C. Pan, Y. Fu, J. Wang, J. Zeng, G. Su, M. Long, E. Liu, C. Wang, A. Gao, M. Wang, Yu Wang, Z. Wang, S.-J. Liang, Ru Huang, F. Miao, *Adv. Electron. Mater.* **2018**, *4*, 1700662.
- [22] S. Larentis, B. Fallahazad, H. C. P. Movva, K. Kim, A. Rai, T. Taniguchi, K. Watanabe, S. K. Banerjee, E. Tutuc, *ACS Nano* **2017**, *11*, 4832.
- [23] C. Zhu, X. Sun, H. Liu, B. Zheng, X. Wang, Y. Liu, M. Zubair, X. Wang, X. Zhu, D. Li, A. Pan, *ACS Nano* **2019**, *13*, 7216.
- [24] Ya-Q Bie, G. Grossi, M. Heuck, M. M. Furchi, Y. Cao, J. Zheng, D. Bunandar, E. Navarro-Moratalla, L. Zhou, D. K. Efetov, T. Taniguchi, K. Watanabe, J. Kong, D. Englund, P. Jarillo-Herrero, *Nat. Nanotechnol.* **2017**, *12*, 1124.
- [25] R. Maiti, C. Patil, M. A. S. R. Saadi, T. Xie, J. G. Azadani, B. Uluutku, R. Amin, A. F. Briggs, M. Miscuglio, D. Van Thourhout, S. D. Solares, T. Low, R. Agarwal, S. R. Bank, V. J. Sorger, *Nat. Photonics* **2020**, *14*, 578.
- [26] R. Saito, Y. Tatsumi, S. Huang, X. Ling, M. Dresselhaus, *J. Phys.: Condens. Matter* **2016**, *28*, 353002.
- [27] D. S. Schulman, A. J. Arnold, S. Das, *Chem. Soc. Rev.* **2018**, *4*, 3037.
- [28] A. J. Arnold, A. Razavieh, J. R. Nasr, D. S. Schulman, C. M. Eichfeld, S. Das, *ACS Nano* **2017**, *11*, 3110.
- [29] Y. Yu Illarionov, G. Rzepa, M. Waltl, T. Knobloch, A. Grill, M. M. Furchi, T. Mueller, T. Grasser, *2D Mater.* **2016**, *3*, 035004.
- [30] Y. Yu Illarionov, T. Knobloch, M. Waltl, G. Rzepa, A. Pospischil, D. K. Polyushkin, M. M. Furchi, T. Mueller, T. Grasser, *2D Mater.* **2017**, *4*, 025108.
- [31] J. Jiang, C. Ling, T. Xu, W. Wang, X. Niu, A. Zafar, Z. Yan, X. Wang, Y. You, L. Sun, J. Lu, J. Wang, Z. Ni, *Adv. Mater.* **2018**, *30*, 1804332.
- [32] S. Das, A. Sebastian, E. Pop, C. J. McClellan, A. D. Franklin, T. Grasser, T. Knobloch, Y. Illarionov, A. V. Penumatcha, J. Appenzeller, Z. Chen, W. Zhu, I. Asselberghs, L.-J. Li, U. E. Avci, N. Bhat, T. D. Anthopoulos, R. Singh, *Nat. Electron.* **2021**, *4*, 786.