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Abstract—Cooperative driving relies on communication among
vehicles to create situational awareness. One application of
cooperative driving is Cooperative Adaptive Cruise Control
(CACC) that aims at enhancing highway transportation safety
and capacity. Model-based communication (MBC) is a new
paradigm with a flexible content structure for broadcasting
joint vehicle-driver predictive behavioral models. The vehicle’s
complex dynamics and diverse driving behaviors add complexity
to the modeling process. Gaussian process (GP) is a fully data-
driven and non-parametric Bayesian modeling approach which
can be used as a modeling component of MBC. The knowledge
about the uncertainty is propagated through predictions by
generating local GPs for vehicles and broadcasting their hyper-
parameters as a model to the neighboring vehicles. In this re-
search study, GP is used to model each vehicle’s speed trajectory,
which allows vehicles to access the future behavior of their
preceding vehicle during communication loss and/or low-rate
communication. Besides, to overcome the safety issues in a vehicle
platoon, two operating modes for each vehicle are considered; free
following and emergency braking. This paper presents a discrete
hybrid stochastic model predictive control, which incorporates
system modes as well as uncertainties captured by GP models.
The proposed control design approach finds the optimal vehicle
speed trajectory with the goal of achieving a safe and efficient
platoon of vehicles with small inter-vehicle gap while reducing the
reliance of the vehicles on a frequent communication. Simulation
studies demonstrate the efficacy of the proposed controller
considering the aforementioned communication paradigm with
low-rate intermittent communication.

Index Terms—Cooperative adaptive cruise control, Model
predictive control, Hybrid stochastic automata, Non-parametric
Bayesian inference, Gaussian process, Model-based communica-
tion

I. INTRODUCTION

Adaptive cruise control (ACC) is a radar-based system, which

is designed to enhance driving comfort and safety by adjusting

a vehicle’s speed to match the speed of the preceding vehicle.

However, ACC only has a small impact on the highway

capacity [1]. The objective of cooperation in a highway

scenario is to ensure that all vehicles in a lane move at the

same speed while maintaining a desired formation geometry,

which is specified by a desired inter-vehicle gap policy. The

cooperative driving with constant spacing policy, which is

called platooning, makes vehicles maintain a constant distance

from their immediate predecessor while for the cooperative

adaptive cruise control (CACC) constant time headway gap is

used, in which the desired following distance should be pro-

portional to the speed of the vehicle; the higher the speed, the

Fig. 1. A simple representation of the system model. The distance between
vehicle i and vehicle i−1 is denoted by di, and xi is the location of the rear
bumper of the ith vehicle. Vehicle i receives data from its preceding vehicle
through wireless communication.

larger the distance. CACC and platooning have the potential to

increase the highway capacity when they reach a high market

penetration [2]. It is shown that platooning is more sensitive

to communication losses than the CACC is, mainly due to its

very close coupling between vehicles [3].

Model-based communication (MBC) is a recently-explored

communication scalability solution, which has shown a

promising potential to reduce the channel congestion [4].

The fundamental intention behind the MBC scheme is to

utilize a more flexible content structure for the broadcast

packets based on the joint vehicle-driver predictive behav-

ioral models in comparison with the Basic Safety Message

(BSM) content structure defined by J2735 standard. MBC can

potentially shrink the payload size by extracting an abstract

representation of the vehicle’s state. In addition, it reduces

the transmission rate by enabling the recipient vehicles to

predict their neighbors mobility more accurately for a longer

future time horizon. As a result of reduced load, the MBC

experiences lower rate of packet collision compared to its

baseline counterpart in different traffic densities [5], [6]. MBC

can utilize different methods of modeling vehicle movement

behavior. Non-parametric Bayesian inference techniques, par-

ticularly Gaussian Processes (GPs) are among the promising

methods for analytically tractable modeling of joint vehicle-

driver behavior, which at the same time is not limited to some

certain criteria. The driver behavioral models are functions

of different factors such as the driver’s personal driving style,

road traffic, weather condition, etc. Therefore, movement mod-

els may become very complex. Gaussian process regression

is a powerful non-parametric tool used to infer values of an

unknown function given previously collected measurements

[7]. In this work, we intend to use the Gaussian process

regression to derive the model of the remote vehicle and its

driver as a unique object. In addition to exhibiting very good
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generalization properties, a major advantage of GPs is that they

come equipped with a measure of model uncertainty, making

them particularly beneficial for safety critical applications.

The GP-based MBC module trains the GP based on the last

received information. This procedure results in generating

a new situational awareness messages which carry the last

updated abstract model of the vehicle’s state.

The main goal of the V2V communications is to enable

every vehicle in a Vehicular Ad-hoc NETwork (VANET) to

frequently inform the surrounding vehicles about its most

recent dynamic states. However, its performance degrades

with channel load increase (i.e., high number of surrounding

vehicles). Due to safety reasons, CACC methods should be

robust against packet loss and communication failure [8].

CACC would degrade to ACC if no action is taken to com-

pensate for packet losses [9]. According to [10], three general

solutions are available to cope with the safety problem during

communication failure:

• Improving the communication protocol (e.g., see [11]);

• Increasing the vehicle headway during failure (e.g., see

[12]);

• Adapting CACC algorithms to cope with the safety

problem (e.g., using a model predictive control approach).

The method proposed in this work aims at improving the

robustness of the controller to the communication losses, and

successfully operating in low-rate communication scenarios.

The method proposed in this paper fuses the first and third so-

lutions by taking advantage of two important factors, namely,

model-based communication and emergency braking.

In this paper, the CACC design problem consists of two op-

erating modes for each vehicle: free following and emergency

braking. In free following mode, each vehicle simply follows

its preceding vehicle while the vehicle in the emergency brak-

ing mode performs hard braking to avoid possible collision and

preserve safety. These operating modes add binary variables

to the system, and MBC contains stochastic information about

preceding vehicle speed profile. To formulate the underlying

problem, a hybrid stochastic model is needed. Hence, discrete

hybrid stochastic automata, introduced initially in [13] suits

the aforementioned stochastic system with both continuous

and discrete variables. Finally, each vehicle employs Model

Predictive Control (MPC) to optimize their speed trajectory

considering system constraints. By employing MBC, during

communication loss and low-rate communication, CACC will

not degrade to ACC since the preceding vehicle trajectory

can be produced through GP-based MBC, which assures

the efficacy and the safety of the system even with a low

communication rate.

The contributions of the paper are as follows. The paper

fuses model-free and model-based communication paradigms

to assure the CACC safety and performance during com-

munication losses. At each successful communication event,

vehicles directly share their future speed profile, and they also

share/update a model which allows vehicles to predict their

preceding vehicle’s behavior so that each autonomous vehicle

is able to plan its speed profile properly. Besides, integrating

two operating modes (namely free following and emergency

braking) improves safety while avoiding unnecessary braking

through penalizing excessive braking.

The rest of the paper is organized as follows. The system

model and Gaussian process are described in Section II.

System model considering constraints and operating modes are

presented in mixed logical dynamical from in Section III. The

underlying MPC problem is then explained in Section IV. The

performance of the proposed controller is evaluated through

simulation studies in section V, and concluding remarks are

finally made in Section VI.

II. PRELIMINARIES AND SYSTEM MODEL

This section first provides a state-space representation of the

vehicle model used for the purpose of CACC design. Then,

an introduction to Gaussian processes is given.

A. System Model

In this paper, we aim at designing controllers for CACC

that build a string stable vehicle platoon with longitudinal

movement while reducing the reliance of the system on fre-

quent communication. For safety reasons, emergency braking

is taken into account to avoid possible collisions that might

occur due to the sudden changes in the preceding vehicle’s

speed or random packet loss. The CACC enables reducing the

distance between CAVs in a platoon thereby increasing the

road capacity while preserving safety.

A CACC system with Nv vehicles is considered here, and

the index i ∈ {0, 1, . . . , Nv − 1} is used to represent the ith

vehicle with i = 0 being the leader vehicle. The distance

between ith vehicle and its preceding vehicle at time t is

denoted by di(t) (see Fig. 1) and defined as

di(t) = xi−1(t)− xi(t)− li, (1)

where xi and li are the location of the ith vehicle rear bumper,

and the length of the ith vehicle, respectively. Hence, the

desired spacing policy for vehicle i shown by d∗i (t) can be

defined as

d∗i (t) = τ vi(t) + dsi , (2)

where vi(t) is the vehicle speed at time t, τ is the time gap,

and dsi is the stand still distance. Using constant time headway

gap as in (2) improves string stability and safety [14]. The

difference between the distance and its desired value is defined

as

∆di(t) = di(t)− d∗i (t), (3)

and speed difference between the ith vehicle and its preceding

vehicle is considered as ∆vi(t) = vi−1(t)−vi(t) and therefore

∆ḋi(t) = ∆vi(t)−τ ai(t) and ∆v̇i(t) = ai−1(t)−ai(t), where

ai(t) is the acceleration of the ith vehicle at time t. Let us

consider a linear model for the ith vehicle as

ȧi(t) = −fiai(t) + fiui(t), (4)

18Authorized licensed use limited to: University of Georgia. Downloaded on December 30,2022 at 15:55:20 UTC from IEEE Xplore.  Restrictions apply. 



where the constant fi represents drive-line dynamics and its

unit is s−1. State-space representation of the given system for

the ith vehicle is as follows

ẋi(t) = Ai xi(t) +Bi ui(t) +Dai−1(t)

=





0 1 −τ
0 0 −1
0 0 −fi



xi(t) +





0
0
fi



ui(t) +





0
1
0



 ai−1(t) (5)

where xi(t) = [∆di(t) ∆vi(t) ai(t)]
T . For the leader (i = 0),

ai−1(t) in (5) can be assumed to be zero.

Using forward-time approximation for the first-order deriva-

tive, (5) can be written in discrete-time form. The discrete-time

state space model for each follower is as follows

xi(k+1) = (I+ts Ai)xi(k)+ts Bi ui(k)+ts Dai−1(k)
(6)

where I is the identity matrix and ts is the sampling time.

B. Gaussian Process

A Gaussian process is a collection of random variables,

any finite number of which have a joint Gaussian distribu-

tion. Gaussian process regression (GPR) is a non-parametric

Bayesian approach to provide uncertainty measurements on

the predictions. A Gaussian process is completely specified

by its mean function and covariance function, which is called

the kernel function in the GP context and defines the trend

of target function based on the similarity pattern among the

observed values. We define mean function m(t) and the kernel

function k(t, t′) of a real process V(t) as

m(t) = E[V(t)] (7)

k (t, t′) = E [(V(t)−m(t)) (V (t′)−m (t′))] (8)

and write the Gaussian process as

V(t) ∼ GP (m(t), k (t, t′)) . (9)

Different vehicle dynamics can be considered as separate

time series which should be regressed using an appropriate

supervised learning method. The regression problem here is

equivalent to inferring the characteristics of the unknown target

functions which have generated these time series. In our case,

the random variables represent the speed of the vehicle at time

t. We are interested in incorporating the knowledge that the

training data provides about the function and its future values.

The joint distribution of the past values, V , and the future

values V∗ according to the prior is
[

V
V∗

]

∼ N

(

0,

[

K(t, t) K (t, t∗)
K (t∗, t) K (t∗, t∗)

])

. (10)

If there are n training points and n∗ test points, then

K(X,X∗) denotes the n× n∗ covariance matrix evaluated at

all pairs of training and test points, and similarly for the other

entries K(X,X), K(X∗, X∗) and K(X∗, X). To get predic-

tions at unseen time of interest t∗, the predictive distribution

can be calculated by weighting all possible predictions by their

calculated posterior distribution or in probabilistic terms

V∗ | t∗, t,V ∼ N
(

K (t∗, t)K(t, t)−1V,

K (t∗, t∗) −K (t∗, t)K(t, t)−1K (t, t∗)
)

.
(11)

Function values V∗ (corresponding to test inputs t∗) can be

sampled from the joint posterior distribution by evaluating the

mean and covariance matrix from (11).

We choose the most commonly used kernel in machine

learning which is the Gaussian form radial basis function

(RBF) kernel. It is also commonly referred to as the expo-

nentiated quadratic or squared exponential kernel. The ker-

nel’s parameters are estimated using the maximum likelihood

principle. The advantage of GP is its capability to substan-

tially increase the forecasting accuracy over longer prediction

horizons without reception of new raw information or model

updates during a certain period. The computational complexity

of a GP regression strongly depends on the number of data

points N . Training window size has been set to 5 latest equally

spaced (last 0.5 second) observed/received speed samples in

time.

III. VEHICLE MODEL AND CONSTRAINTS IN MIXED

LOGICAL DYNAMICAL FORM

According to [13], a stochastic system with both binary and

continuous/discrete-time variables and inputs can be modeled

using a discrete hybrid stochastic automata (DHSA) which

consists of four components: a switched affine model, an

event generator, a mode selector, and a finite state machine.

Representing a system in DHSA is explained in details in [13].

CACC problem in this paper consists of two operating modes:

free following and emergency braking. The system is modeled

using DHSA in which the uncontrollable events are defined in

terms of uncertainty in speed prediction using GP regression.

Then, DHSA is presented in mixed logical dynamical (MLD)

form [15], and finally, mixed-integer quadratic programming

is employed to find optimal control input(s). In the remainder

of this section, system inequalities in the form of an MLD are

derived.

The constraints on the system include bounds on the accel-

eration, input, road speed limit, and distance between vehicles

(note that a negative distance implies collision and therefore

should not occur). The following inequalities should always

hold true

amin
i ≤ ai(k) ≤ amax

i , (12a)

umin
i ≤ ui(k) ≤ umax

i , (12b)

vi(k) ≤ vmax, (12c)

di(k) > 0. (12d)

Besides, for passenger comfort, system input changes are

bounded as follows

ts u
min
i ≤ u(k + 1)− u(k) ≤ ts u

max
i . (13)
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To determine the mode of the system, the auxiliary binary

variable ξei (k) is considered such that

ξei (k) = 1 ⇐⇒ Emergency braking constraint is activated.

First, emergency braking constraint needs to be defined. Here,

for safety purpose and collision avoidance, a constraint is

considered such that if ∆di(k) goes below a fixed level

( d ), ith vehicle should brake with the minimum possible

acceleration (ui(k) = umin
i ), thereby

∆di(k) + d ≤ 0 ⇐⇒ ξei (k) = 1, (14)

which can be described in MLD form using the following

inequalities

∆di(k) + d ≤ bei [1− ξei (k)],

∆di(k) + d ≥ ε+ ξei (k)[b
e
i − ε],

(15)

where ε is the machine precision, and

bei ≤ ∆di(k) + d ≤ bei .

Next, to enforce hard braking, an upper bound constraint

on ui(k) is added such that

ui(k) ≤ ξei (k)u
min
i + [1− ξei (k)]u

max
i . (16)

Thus, as far as the system operates in the free following mode,

the upper bound on input is umax
i . However, when emergency

braking mode is activated, the upper bound becomes umin
i .

Since the emergency braking mode forces the input ui(k) =
umin
i , the speed of the vehicle may become negative. To handle

this issue, the constraint vi(k) ≥ 0 is added to the system.

However, this may result in infeasibility because of relation

of speed at time k and k + 1; vi(k) ≥ 0 while vi(k + 1) =
vi(k) + ts ai(k) may become negative. To handle this edge

case, two new auxiliary binary variables ξvi (k) and ξEi (k) are

defined, and (16) rewritten as

ui(k) ≤ [ξEi (k)]umin
i + [1− ξEi (k)]umax

i , (17)

where

v(k) < vi ⇐⇒ ξvi (k) = 0, (18a)

ξEi (k) = ξei (k) ξ
v
i (k). (18b)

This implies that if the emergency braking event is activated

but the vehicle speed is below the threshold, there is no need

to enforce the vehicle input to get to its minimum. With this

assumption and by simply choosing vi = 1m/s, this issue

is addressed. Consequently, the vehicle performs emergency

braking if and only if ξei (k) ξ
v
i (k) = 1. The statement in (18a)

in the MLD form turns into

vi(k)− vi ≤ bvi ξ
v
i (k),

vi(k)− vi ≥ ε+ [1− ξvi (k)](b
v
i − ε),

where

bvi ≤ vi(k)− vi ≤ bvi ,

while (18b) is equivalent to the following inequalities

ξEi (k) ≥ ξei (k) + ξvi (k)− 1,

ξEi (k) ≤ ξei (k),

ξEi (k) ≤ ξvi (k).

(19)

Whenever a vehicle performs emergency braking, the con-

straints for passenger comfort should be ignored. Hence, (13)

is updated as follows

(1− ξEi (k)) ts u
min
i − ξEi (k) ūi ≤ u(k + 1)− u(k),

u(k + 1)− u(k) ≤ ξEi (k) ūi + (1− ξEi (k)) ts u
max
i ,

(20)

where ūi = umax
i − umin

i .

As described earlier, each vehicle needs to access the

preceding vehicle’s future speed trajectory (or the future

acceleration profile), which is available in either of two ways;

each vehicle will receive it through communication, or the

vehicle will generate the profile using the last GP model

received from the preceding vehicle. In the case that the speed

profile is generated using GP, the variance of the GP output

should be also taken into account. Hence, the uncertain part

of the future velocity (the kernel introduced in (8)) can be

discretized to some levels {n1

i−1
(k), n2

i−1
(k), ..., n

mi−1

i−1
(k)}

with known probabilities {p1i−1
, p2i−1

, ..., p
mi−1

i−1
}. Therefore,

the preceding vehicle velocity uncertainty can be formulated

as

ηi−1(k) =
[

n1

i−1
n2

i−1
. . . n

mi−1

i−1

]











w1

i−1
(k)

w2

i−1
(k)

...

w
mi−1

i−1
(k)











,

where wj
i−1

(k) , j ∈ {1, 2, . . . ,mi−1} are auxiliary bi-

nary variables that represent uncontrollable events and

P [wj
i−1

(k) = 1] = pji−1
. Based on the above parametrization

of the uncertainty, the following equality should always hold

true
mi−1
∑

j=1

wj
i−1

(k) = 1.

Using the auxiliary variables added to the system, the

discrete-time state space model in (6) is reformulated as

xi(k + 1) =





1 ts −τ ts
0 1 −ts
0 0 1− tsfi



xi(k) +





0
0

tsfi



ui(k)

+





0
1
0



 ηi−1(k) +





0
ts
0



 ai−1(k).

(21)

If the acceleration profile is received through communi-

cation, constants nj
i−1

(k) will be simply set to zero (the

problem turns into discrete hybrid automata). Whenever GP

model is used (between communication events or during

communication loss), nj
i−1

(k) values are chosen based on

the GP output, and ai−1(k) can be easily calculated as

[v̂i−1(k + 1)− v̂i−1(k)] /ts where v̂i−1(k) is the mean of the

GP in (7).
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IV. DISCRETE HYBRID STOCHASTIC MPC PROBLEM FOR

CACC DESIGN

To achieve a string stable CACC system, xi(k) should con-

verge to zero for every follower vehicle. This implies that

the distance between ith vehicle and its preceding vehicle

converges to its desired value while vehicles move with equal

and constant speed. For the CACC design problem, when

the number of vehicles increases, centralized MPC is not

computationally efficient [16]. Besides, communication losses

would make centralized MPC unreliable and even dangerous

for such safety-critical systems. Instead, distributed MPC can

be used to reach a string stable CACC. The MPC problem for

each vehicle is formulated as follows

min
ui,wi−1,zi

N−1
∑

k=0

[

(xi(k)−Ri)
T Qi (xi(k)−Ri)

]

− qi ln(π(wi−1))

subject to: MLD system equations,

ln(π(wi−1)) ≥ ln(p̃i) (22)

where wi−1 is a vector including all uncontrollable events,

ui and zi are the system inputs and the vector of auxiliary

variables from k = 0 to k = N−1, respectively, and π(wi−1)
denotes the probability of a trajectory occurred by wi−1 (see

[13] for details).

In this paper, the CACC leverages the model-based com-

munication in which vehicles share their latest GP model

with their follower vehicle. It is assumed that each vehicle

uses a low-rate communication to share its future acceleration

profile (model-free communication) with its follower vehicle.

Consequently, every vehicle has access to its preceding vehi-

cle’s future speed trajectory through either the communication

(every tc seconds if packet loss does not occur) or the

GP model (until the next successful communication event).

Consequently, during communication loss or low-rate data

exchange, CACC will not degrade to ACC. If a vehicle uses

the GP model, its optimization problem is a discrete hybrid

stochastic MPC while if the future speed profile is received

through communication, the optimization problem turns into a

discrete hybrid MPC. For simplicity, the controller that solely

relies on the model-free communication is called DHMPC, the

controller that only relies on the model-based communication

is called DHSMPC, and the one that takes advantage of both

types of communication is named DH-DHSMPC.

V. SIMULATIONS RESULTS AND DISCUSSION

Simulations are conducted considering 10 vehicles and using

multiple scenarios. CVXPY package in Python is used for im-

plementing the optimization problem and Gurobi optimization

package is used as the solver for the mixed integer programs

[17]–[19]. The desired speed trajectory for the leading vehicle

in the simulation is considered to be

v∗
0
(t) =











27 t < 15 s,

0 15 s ≤ t < 30 s,

25 t ≥ 30 s.

(23)

Parameters used in these simulations can be found in Table

I. Three different case studies are investigated here. In the

first two case studies, the performance of the pure DHSMPC

(using GP model, solving discrete hybrid stochastic MPC)

is compared with the DHMPC (sharing future acceleration

profile through communication, solving a discrete hybrid

MPC). Finally, the performance of the DH-DHSMPC, which

leverages both model-based and model-free communication, is

compared with DHMPC when communication rate is low (1

Hz) and an iid packet loss is considered.

TABLE I
MODEL AND OPTIMIZATION PARAMETERS USED IN THE SIMULATIONS.

parameter value parameter value

N 7 ts 0.1 s

li 5m ds
i

2m

d 1m fi 10 s−1

amin

i
−4m/s2 amax

i
3m/s2

umin

i
−4m/s2 umax

i
3m/s2

p̂ 0.01N qi 10

For the DHMPC case, each vehicle employs the time-

shifted acceleration information of its preceding vehicle to

efficiently use the last received data between two successful

communication events. Assuming that the last communication

occurred at time instant k0, at k1 < k0 + N − 1, ai−1(k) in

(21) is replaced by

âi−1(k) =

{

ai−1(k) k1 ≤ k ≤ k0 +N − 1

b(k) otherwise
(24)

where b(k) can be estimated using a linear extrapolation of the

last two samples of ai−1(k). If there is a communication loss

and ith vehicle does not receive information from its preceding

vehicle, then the vehicle would resort to operating in adaptive

cruise control (ACC) mode until it receives information from

its preceding vehicle and returns back to CACC mode.

In Figs. 2-5, the first subplot shows every vehicle’s distance

from its predecessor (di(t)) while the second subplot shows

each vehicle’s velocity (vi(t)). The third subplot depicts each

vehicle’s acceleration information, and the last one shows the

emergency braking status (ξEi (t)). As shown in Fig. 2, in

the first case study, when vehicles try to keep a time gap

of 1 s, the performance of the both DHSMPC and DHMPC

is almost the same, and the vehicles do not need to perform

emergency braking, which shows the efficacy of the model-

based communication. To evaluate the performance of the

model-based communication (DHSMPC) with smaller vehicle

21Authorized licensed use limited to: University of Georgia. Downloaded on December 30,2022 at 15:55:20 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. Comparing the performance of the DHSMPC (GP-based communi-
cation) with DHMPC (model-free communication) when the time gap of 1 s
is considered. From time 0 s to 60 s, the platoon operates based on the GP
model while the environment resets at time 60 s and after that vehicles share
their speed trajectory. It is observed that the performance of both methods is
almost the same, which demonstrates the efficacy of the GP-based method.

headway, the time gap is reduced to 0.7 s in the second case

study. As shown in Fig. 3, the vehicles with the proposed com-

munication paradigm are able to safely follow their preceding

vehicle. However, compared to the model-free communication

case, vehicles need to perform emergency braking frequently

during deceleration, and there are noticeable overshoots during

acceleration in the distance/velocity profiles.

In the last simulation study, the performance of DHMPC

is compared with DH-DHSMPC. In this scenario, the time

gap is 0.7 s, and vehicles send their predictive acceleration

trajectory every 1 s (tc = 1) while the communication success

probability is 0.75. Fig. 4 shows the performance of the

DH-DHSMPC method. Since this method takes advantage of

the model-based communication, vehicles are able to operate

safely and efficiently with a low communication rate and

even in the presence of a communication failure. During the

deceleration event, a few vehicles enter the emergency braking

mode for a few seconds to assure safety. By comparing the

results in Figs. 3 and 4, it is perceived that the performance

of the DH-DHSMPC with low-rate communication is very

similar to the performance of the DH-MPC with frequent and

perfect communication (second case study). On the other hand,

as shown in Fig. 5, the DHMPC is not able to preserve the

safety of the platoon and during the sudden deceleration, the

Fig. 3. Comparing the performance of the DHSMPC (GP-based commu-
nication) with DHMPC (model-free communication) when the time gap is
0.7 s. From time 0 s to 60 s, the platoon operates using the GP model while
the environment resets at time 60 s and after that vehicles share their speed
trajectory. Although there are overshoots during acceleration in the GP-based
method and emergency braking occurs more frequently during deceleration,
the vehicles are still able to operate safely.

second follower vehicle is not able to react properly and hence

crashes into its front vehicle.

VI. CONCLUSION

In this paper, a discrete hybrid stochastic MPC design method

was proposed for CACC applications by leveraging model-

based communication. The proposed method aims at reducing

the reliance of the vehicles on communication, i.e., operating

safely during communication failure. It was assumed that

vehicles share their future acceleration profile as well as

an updated model for their speed profile (using Gaussian

process) at each successful communication event. For safety

purposes, vehicles may operate in either free following mode

or emergency braking mode. The vehicle operating mode was

chosen based on the predictive speed profile of the preceding

vehicle (either received through communication or generated

using the last GP model available). The performance of the

proposed controller was evaluated through simulation studies,

which validated the efficacy of the proposed method even with

a low-rate intermittent communication.
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Fig. 4. Performance of the DH-DHSMPC with 10 vehicles, T = 0.7 s, tc =

1 s, and communication loss with the probability of 0.25. Using the GP model
results in compensating both the low-rate communication and communication
failure.

Fig. 5. Performance of the DHMPC with 10 vehicles, T = 0.7 s, tc = 1 s,
and communication loss with the probability of 0.25. As observed, the vehicles
are not able to cope with the sudden deceleration, and an accident occurs.
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