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AbstractÐThis paper presents a stochastic and predictive
control design approach for connected and automated vehicles
(CAVs) in a mixed-autonomy traffic environment, where CAVs
are able to react properly to uncertain maneuvers of human-
driven vehicles (HVs). The proposed fully-automated cooperative
adaptive cruise control (CACC) design leverages a discrete hybrid
stochastic model predictive controller that automatically deter-
mines the vehicle’s operating mode based on onboard sensors
data and information received through vehicle-to-vehicle (V2V)
communication. Operating modes include free following, warn-
ing, danger, emergency braking, and lane change. Although the
controller mainly focuses on maintaining the desired velocity and
distance among CAVs, it also allows HVs to perform lane-change
maneuvers and merge into the platoon’s lane when needed. In
response to an HV’s position in the lane and its probabilistic
behavior, the controller may switch the CAV’s operating mode
to react accordingly. Considering free-following and emergency-
braking modes leads to efficient and safe autonomous driving.
Switching between warning, danger, and lane-change modes
along with adjusting the steering angle to perform a lane-change
maneuver, when needed, robustifies the platoon’s performance
against unexpected human-driven vehicle maneuvers. Simulation
studies are conducted to validate the efficacy of the proposed
control design approach. The performance of the proposed
control design approach is also compared to a switching control
using simulation studies.

Index TermsÐCooperative adaptive cruise control, connected
and automated vehicles, model predictive control, discrete hybrid
stochastic automata, automated lane change, mixed-autonomy

I. INTRODUCTION

Car accidents account for numerous injuries and deaths, most

of which are resulted from human errors and can be avoided by

leveraging autonomous driving systems [1]. Modern vehicles

are equipped with different driver assistance systems that

are capable of improving the traffic network by increasing

the road capacity and facilitating driving [2]. By increasing

the popularity and demand for autonomous vehicles, vehicle

platooning in highways and roads would be a possible solution

to increase the efficiency and safety of the traffic system. The
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main goal in the longitudinal vehicle platoon control is to

enhance performance while preserving safety.

Lane change is a common driving maneuver performed

for different reasons, such as approaching a specific exit or

passing a slow-moving vehicle. Inappropriate lane change

would result in fatal accidents. The acquisition of onboard

sensors data and the information received through vehicle-

to-vehicle (V2V) communication would facilitate safety and

comfort during a lane-change maneuver [3]. According to [4],

an automated lane-change maneuver consists of three stages:

decision making (e.g., see [3], [5], [6]), trajectory planning

(e.g., see [7], [8]), and control (e.g., see [3], [8]). A Vehicle

needs to decide when and how to perform the lane change,

and the controller is responsible for tracking the expected

trajectory.

Numerous researchers have concentrated on the problem

of trajectory planning and control for a safe and efficient

lane-change maneuver for autonomous vehicles [1]. The study

in [8] presents a collision-free trajectory planning and track-

ing approach incorporating data collected using sensors and

V2V communication. Authors in [9] proposed a lane-change

scheduling for a single autonomous vehicle (AV) in a vehicle

network consisting of human-driven vehicles (HVs). The goal

is for the AV to perform a lane change while not disturbing

the moving traffic as far as possible. In [4], a three-layer

trajectory planner is presented, in which the first planner

(layer) generates a trajectory with some assumptions; when

those assumptions are violated, it uses the next trajectory

planner (layer) to preserve safety. Authors in [3], proposed a

cooperative lane-change method where vehicles communicate

with others if a vehicle intends to perform a lane change. The

method proposed in [10] allows vehicles to merge to the main

road easily as they cooperate with the vehicles already driving

on the main road through V2V communication. Authors in

[11] presented an approach to adapt AVs’ behavior on the

main road to facilitate the possible merging of other vehicles.

Communication among vehicles allows cooperative maneu-

vers and collective awareness. Longitudinal control approaches

can be categorized into five groups based on the use of external

information: predictive cruise control, adaptive cruise control,

urban cruise control, cooperative adaptive cruise control, and

connected cruise control [12]. Wireless communication among

vehicles enables cooperative adaptive cruise control (CACC),

which allows vehicles to safely move close to their preceding
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vehicle. Although the primary goal of CACC was to comfort

the driving experience, it has proven to improve the traffic

system [13]. CACC approaches can be divided into two cat-

egories: state feedback control methods (e.g., [14]±[17]), and

constrained optimization methods which have more recently

evolved to model predictive control (MPC) (e.g., [18]±[20]).

State feedback-based methods enable explicit system stability

analysis while constrained optimization methods allow consid-

ering multiple performance indices subject to hard constraints

on the system dynamics and physical limitations of the vehicle

[18]. Traditional MPC schemes are formulated in a centralized

setting. However, due to the practical limitations for gathering

data and the large size of the optimization problem, distributed

MPC has emerged to address the limitations of centralized

methods [21].

A merging assistant method aiming at improving traffic flow

in mixed autonomy is introduced in [22], where the traffic

includes HVs and CACC-equipped vehicles in the main lane,

while the vehicles on the ramp are HVs. It is assumed that if

the CAV’s preceding vehicle is an HV, the CAV’s controller

degrades to adaptive cruise control. For the CACC problem

in [23], the platoon leader uses hidden Markov models to

detect possible danger in front of it (an adjacent vehicle’s

cut-in maneuver) and employs that information for its MPC

design to act accordingly. Authors in [24] proposed a hybrid

MPC scheme including three operating modes for connected

and automated vehicles (CAVs) in a platoon to accommodate

a number of CAVs in the adjacent lane when performing

a lane-change maneuver. A CAV (or a number of CAVs)

communicates with the vehicles in the platoon in the target

lane so that the platoon makes enough space for a safe and

smooth lane change.

In the existing literature, lane-change maneuvers have been

investigated from different viewpoints, namely how an AV

performs a collision-free lane change and how an AV or a

platoon of CAVs react when an adjacent vehicle decides to

change its lane to robustify the traffic flow against lane-change

maneuvers. However, the problem of robustifying cooperative

driving against HVs’ maneuvers and maintaining the desired

formation and spacing among vehicles in CACC and platoon-

ing in the mixed autonomy is not properly addressed. To

this aim, this paper extends the controller design approach

proposed in [25] by integrating five operating modes, namely

free following, warning, danger, emergency braking, and lane

change, into a stochastic hybrid MPC scheme for the CACC

applications. The controller mainly focuses on maintaining the

desired velocity and distance among CAVs while allowing

HVs to perform lane change and merge into the platoon’s lane

when needed. In response to an HV’s location and probabilistic

behavior, the controller may switch the CAV’s operating mode

to react accordingly. This fully automated approach results

in keeping the behavior of the CAVs in the platoon close to

the desired case where the traffic environment is not fully

automated.

The following summarizes the contributions of the paper.

This work presents a fully automated CACC design in the

mixed autonomy by leveraging a discrete hybrid stochastic

model predictive controller that automatically determines the

Fig. 1: Vehicle’s bicycle model.

vehicle’s operating mode based on the onboard sensors data

and the information received through V2V communication.

Considering free-following and emergency-braking modes

leads to efficient and safe autonomous driving. The controller’s

capability to automatically switch between warning, danger,

and lane-change modes, as well as adjust the steering angle to

perform a lane-change maneuver when needed, robustifies the

platoon performance against unexpected human-driven vehicle

maneuvers.

The remainder of the paper is organized as follows. In Sec-

tion II, the system model and a brief introduction to discrete

hybrid stochastic automata are presented. System equations,

system constraints, and operating modes are presented in

mixed logical dynamical form in Section III. Section IV

elaborates on the proposed model predictive control design

scheme. Simulation results and evaluation of the proposed

controller’s performance are provided in Section V. Finally,

concluding remarks are made in Section VI.

II. PRELIMINARIES

This section describes the dynamic model of vehicles con-

sidered in this study and reviews the stochastic and hybrid

framework with which the control design problem is formu-

lated.

A. Description of the System Model

In this work, autonomous vehicles’ longitudinal and lateral

movements are studied. The goal of each vehicle in lon-

gitudinal movement is to reach a relatively small headway

while preserving safety during sudden changes in the platoon,

e.g., sudden deceleration or sudden lane change performed by

adjacent HVs. When an HV enters the CAVs’ platoon, CAVs

may require a lane change to pass the interrupting HV and

achieve their desired distance from their predecessor.

A linear kinematic bicycle model is considered integrating

each vehicle longitudinal and lateral movements. According

to Fig. 1, the ith vehicle’s bicycle model is represented as

Ẋ
m
i (t) =





ẋi(t)
ẏi(t)

θ̇i(t)



 =





cos(θi(t))
sin(θi(t))
uϕ
i (t)



 vi(t),

uϕ
i (t) =

tan(ϕi(t))

lwi
,

(1)
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where xi and yi indicate the vehicle’s longitudinal and lateral

location from a specified reference, respectively, ϕi is steering

angle, θi is the vehicle’s body angle with the X-axis, vi is the

vehicle’s velocity, and the input uϕ
i denotes the steering rate.

If θi remains small (|θi| << 1), then differential equations in

(1) can be rewritten as

Ẋ
m
i (t) ≈





1
θi(t)
uϕ
i (t)



 vi(t). (2)

Two assumptions are made to get rid of the nonlinear differ-

ential equations in (2) (these assumptions are later used for

solving the MPC problem) which are as follows

θ̇i(t) ≈ u2(t) vi(t0),

ẏi(t) ≈ θ(t) vi(t0),

∀ t0 ≤ t ≤ t0 + tN ,

(3)

where t0 defines current time and tN is the prediction horizon.

Finally, (1) turns into

Ẋ
m
i (t) ≈





vi(t)
θi(t) vi(t0)
uϕ
i (t) vi(t0)



 . (4)

A CACC system with Nv CAVs is considered in this paper,

where i ∈ {0, 1, . . . , Nv−1} represents the ith vehicle (CAVi),

and i = 0 is the leader vehicle. The distance between ith

vehicle and its preceding vehicle at time t is denoted by di(t)
and defined as

di(t) = xi−1(t)− xi(t)− lvi , (5)

where xi and lvi are the longitude of the ith CAV’s rear

bumper, and the length of the ith vehicle, respectively. A fixed

time headway gap spacing policy, which can improve the string

stability and safety [26], is considered as follows

d∗i (t) = Ti vi(t) + d0i , (6)

where Ti is the time gap, and d0i is the standstill distance. The

difference between the gap and its desired value is defined

as ∆di(t) = di(t) − d∗i (t), Hence, ∆ḋi turns into ∆ḋi(t) =
vi−1(t) − vi(t) − Ti ai(t), where ai denotes the acceleration

of the ith vehicle. By taking the driveline dynamics τi into

account, the derivative of the acceleration for vehicle i is

ȧi(t) = − 1
τi
ai(t)+

1
τi
ua
i (t), where ua

i (t) acts as the vehicle’s

acceleration input.

By considering xi(t) = [∆di(t) yi(t) θi(t) vi(t) ai(t)]
T

as the state vector, the state-space representation for CAVi

becomes

ẋi(t) =













∆ḋi(t)
ẏi(t)

θ̇i(t)
v̇i(t)
ȧi(t)













= Ai xi(t) +Bi ui(t) + Ci vi−1(t)

=













0 0 0 −1 −Ti

0 0 vi(t0) 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 −1/τi

























∆di(t)
yi(t)
θi(t)
vi(t)
ai(t)













+













0 0
0 0
0 vi(t0)
0 0

1/τi 0













[

ua
i (t)

uϕ
i (t)

]

+













1
0
0
0
0













vi−1(t). (7)

For the leader vehicle (i = 0), the term vi−1(t) in (7)

is replaced by its desired speed trajectory. Using forward-

time approximation for the first-order derivative, (7) can be

expressed in discrete time as

xi(k+1) = (I+ts Ai)xi(k)+ts Bi ui(k)+ts Ci vi−1(k), (8)

where I is the identity matrix and ts is the sampling time.

B. Introduction to Discrete Hybrid Stochastic Automata

Discrete hybrid stochastic automata (DHSA) models a

stochastic system including binary and continuous variables.

According to [27], a DHSA consists of four components:

1) a switched affine system described by linear difference

equations:

xc(k + 1) = Ai(k)xc(k) +Bi(k)uc(k) + fi(k)(k), (9)

where i(k) is the mode of the system, xc(k) is the vector

of continuous states, and uc(k) is the vector of continuous

inputs. In the CACC application, the switched affine

system represents the vehicle’s state-space equations.

2) an event generator which generates a binary output

δe(k) = fEG(xc(k), uc(k)) such that

fEG(xc, uc) = 1 ⇐⇒ He xc + Je uc +Ke ≤ 0, (10)

where He, Je, and Ke are constant matrices representing

state weights, input weights, and bias in linear event

generator inequalities, respectively. Event generators im-

pact the operating mode of the system. In our CACC

formulation, it is assumed that each vehicle has five oper-

ating modes, namely free following, warning, emergency

braking, danger, and lane change. The event generators

for the aforementioned modes are explained in the next

section.

3) a mode selector that defines the mode of the system using

the following equation

i(k) = fMS(xb(k), ub(k), δe(k)), (11)

where fMS is a Boolean function, and xb(k) and ub(k)
are vector of binary states and binary inputs, respectively.
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4) a finite state machine (FSM) that represents the stochastic

transition from a binary state vector to another one and

is described by

P [xb(k + 1) = x̂b] = fsFSM (xb(k), ub(k), δe(k), x̂b),

where P denotes the probability. If P [xb(k+1)] is non-

zero, then the transition is enabled for (ub(k), δe(k)).
Besides, if more than one transition are enabled

for (ub(k), δe(k)), they are called conflicting on

(xb(k), ub(k), δe(k)). In our CACC problem, the unpre-

dictable behavior of HVs, namely lane change, builds the

finite state machine.

In DHSA, the stochastic finite state machine can be re-

placed using a set of auxiliary binary variables wi(k) called

uncontrollable events. Hence, a DHSA can be converted

to discrete hybrid automata with uncontrollable events. The

uncontrollable events for l− 1 possible transitions are defined

as (for i = 1, ..., l − 1)

P [wi = 1] = pi = fsFSM (xb(k), ub(k), δe(k), x̂b) (12)

which means that the ith transition (xb, ub, δe) → x̂b happens

if and only if wi = 1. Besides, wl = 1 means that the

transition is deterministic. If Ws represents the indices of

the conflicting transitions on xb(k), ub(k), δe(k), the following

equality should hold for Ws

∑

i∈Ws

wi(k) = 1. (13)

If π(k) defines the probability of the transition occurred by

w(k), the probability of a trajectory can be calculated using

π(wi) =
N−1
∏

k=0

π(k), (14)

where wi is the vector of all uncontrollable events. By defining

new auxiliary variables, a DHSA can be represented in the

mixed logical dynamical (MLD) form [28]. Furthermore, (14)

can be rewritten in logarithmic form as

ln(π(wi)) =

N−1
∑

k=0

l
∑

i=1

wi(k) ln(pi). (15)

For eliminating trajectories with small probability, the fol-

lowing chance constraint is added to the system

ln(π(wi)) ≥ ln(p̃), (16)

where 0 ≤ p̃ ≤ 1 is the probability bound. Hence, the cost

function for a DHSA can be defined as

J(u,w, r, x(0)) = Jp − qp ln(π(w)), (17)

where u is the vector of system inputs (within the prediction

horizon), r is the vector of desired outputs, Jp is the perfor-

mance index that can be chosen to be the l2 or l∞ norm,

− ln(π(w)) is the probability cost, and the constant qp ≥ 0 is

the probability cost weight. The goal here is to minimize (17)

subject to the system dynamics and constraints and the chance

constraint. To find the optimal control input(s), the problem

equations must first be written in the mixed logical dynamical

form. Then, the constrained optimization problem (i.e., the

model predictive control problem) will be solved using mixed-

integer programming (see [27] for details).

III. DESCRIPTION OF THE SYSTEM EQUATIONS IN MIXED

LOGICAL DYNAMICAL FORM

In this paper, the DHSA is first used to model the system, and

then the system dynamics is represented in the MLD form.

Finally, mixed-integer quadratic programming is employed to

find the optimal control input. Fig. 2 presents the proposed

controller design approach for CACC. As shown in the figure,

CAVs leverage a look-ahead communication topology, and

each CAV shares its predictive speed trajectory with a number

of its followers. The DHSA unit is used to describe each

CAV dynamics and constraints together with its five operating

modes, namely free following (FF), warning (W), danger

(D), emergency braking (E), and lane change (LC). In the

control unit, the DHSA is transformed into MLD form and

then used to solve the stochastic MPC problem. The optimal

control input is applied to the system actuator(s), and the

predictive speed trajectory is shared with follower vehicles

through V2V communication. In the remainder of this section,

some details about reformulating CAV equations in MLD form

are presented.

The constraints on the system include bounds on the accel-

eration, input, road speed limit, and distance between vehicles

(negative distance means collision and therefore, it should not

occur). Therefore, the following inequalities should always

hold true

amin
i ≤ ai(k) ≤ amax

i , (18a)

umin
i ≤ ua

i (k) ≤ umax
i , (18b)

vi(k) ≤ vmax, (18c)

di(k) > 0. (18d)

As mentioned earlier, in our CACC design, the following five

operating modes are considered with the transition diagram

shown in Fig. 2:

1) free-following mode, where each CAV attempts to keep

a desired distance from its CAV predecessors (see Figs.

3a, 3f);

2) warning mode, where the adjacent HV may change its

lane and move in front of a CAV (see Fig. 3b).

3) danger mode, where an HV is changing (or has changed)

its lane and is moving in front of the CAV (in this

case, the CAV right behind the HV adjusts its headway

according to the preceding HV’s location (see Fig. 3d));

4) emergency-braking mode, where the CAV uses maximum

feasible deceleration to avoid accident; e.g., in Fig. 3c,

the orange CAV enters the emergency-braking mode to

avoid possible crash into the black HV vehicle since the

gap between the CAV and the HV is smaller than a safe

distance;

5) lane-change mode, in which the CAV tries to overtake

an HV and reduces the distance between itself and its

preceding CAVs (see Fig. 3e).
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Fig. 2: Diagram of the proposed stochastic MPC design for CACC, in which each CAV’s model including state-space equations,

constraints, and operating modes (namely free following (FF), warning (W), danger (D), emergency braking (E), and lane change

(LC)) is described using a DHSA. The control unit translates the DHSA into MLD and employs a discrete hybrid stochastic

MPC to find the optimal control inputs. Each CAV uses the future speed profiles of its predecessors, which are received through

V2V communication, for finding its optimal control actions.

Five binary auxiliary variables representing system event

generators are defined as follows

δNi (k) = 1 ⇐⇒ free-following event is activated;

δWi (k) = 1 ⇐⇒ warning event is activated;

δDi (k) = 1 ⇐⇒ danger event is activated;

δei (k) = 1 ⇐⇒ emergency-braking event is activated;

δLi (k) = 1 ⇐⇒ lane-change event is activated.

The event generator functions are explained in detail in the

rest of this section.

1) Emergency-braking Event: For safety and collision

avoidance, the emergency-braking constraint is considered

such that if ∆di(k) goes below a fixed threshold ( di ), ith

CAV should brake with the minimum possible acceleration

(ua
i (k) = umin

i ), thereby

∆di(k) + di ≤ 0 ⇐⇒ δei (k) = 1. (19)

The condition in (19) can be described in MLD form using

the following inequalities

∆di(k) + di ≤ Me
i [1− δei (k)],

∆di(k) + di ≥ ε+ δei (k)[m
e
i − ε],

(20)

where ε is the machine precision and and me
i and Me

i are

lower and upper bounds on ∆di(k) + di, respectively. To

enforce hard braking, an upper bound constraint on ua
i (k) is

added such that

ua
i (k) ≤ δei (k)u

min
i + [1− δei (k)]u

max
i . (21)

As far as the system is operating in the free-following mode,

the upper bound on acceleration input is umax
i . However,

when the emergency-braking mode is activated, the upper

bound changes to umin
i . We assume that reverse driving is

not allowed and the speed cannot become negative. But the

emergency-braking mode forces the input ua
i (k) = umin

i and

the speed of the vehicle may become negative. To handle this

issue, the constraint vi(k) ≥ 0 is added to the system. How-

ever, this may result in contradictory constraints; vi(k) ≥ 0
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(a) Free-following mode. (b) Warning mode.

(c) Danger Mode (d) Emergency-braking mode.

(e) Lane-change mode. (f) Free-following mode.

Fig. 3: Different operating modes for the CAV shown with

orange color. The blue vehicle depicts the preceding CAV

while the black vehicle represents the adjacent HV.

while vi(k + 1) = vi(k) + ts ai(k) may become negative. To

avoid this, two new auxiliary variables δEi (k) and f1
i (k) are

considered such that

v(k) ≥ vi ⇐⇒ f1
i (k) = 1,

δei (k) = 1 and f1
i (k) = 1 ⇐⇒ δEi (k) = 1,

(22)

and (21) is rewritten as

ua
i (k) ≤ δEi (k)umin

i + [1− δEi (k)]umax
i . (23)

Equation (23) implies that when the emergency-braking event

is activated and vi(k) > vi, then the control input should be

set to its lowest value; otherwise, there is no need to enforce

the vehicle’s input to its minimum value. The statements in

(22) are described in MLD form as

vi(k)− vi ≤ Mv
i f1

i (k),

vi(k)− vi ≥ ε+ [1− f1
i (k)](m

v
i − ε),

δEi (k) ≥ δei (k) + f1
i (k)− 1,

δEi (k) ≤ δei (k),

δEi (k) ≤ f1
i (k),

(24)

where mv
i and Mv

i are lower and upper bounds on vi(k)−vi,
respectively.

2) Warning and Danger Events: Warning event occurs

whenever it is possible for an HV to change its lane and enter

into the CAVs’ platoon. For CAVi, auxiliary variable gWi (k)
is defined such that

xi(k) + lvi ≤ xh
i (k) ≤ xi−1(k)− lhi ⇐⇒ gWi (k) = 1, (25)

where xh
i (k) and lhi denote the longitude and the length of

the HV close to CAVi, respectively. If the HV passes the gap

between two CAVs without switching its lane, the warning

event terminates. Whenever the HV decides to switch the lane

and moves in front of a CAV (which can be detected through

the CAV sensors and cameras), danger event occurs. In this

case, the CAV in danger mode should adjust its headway based

on the HV position instead of the preceding CAV’s position.

Remark 1: It is noted that the transition from warning mode

to danger mode is a probabilistic event, which results from the

unpredictable HV behavior. This probability can be estimated

using the information received by CAV sensors. Since the

estimation is beyond the scope of this paper, it is assumed

that the CAV is aware of the transition probability. It is worth

noting that in our problem, uncontrollable events (wi(k)) are

the same as warning and danger event auxiliary variables

(δWi (k) and δDi (k)).

To represent the occurrence of warning and danger events

in MLD form, some inequalities are considered. Based on

the aforementioned explanations, whenever gWi (k) = 1, either

warning or danger event occurs, and hence

δWi (k) + δDi (k) = gWi (k). (26)

Besides, if the danger event activates (meaning that the HV is

entering/has entered into the CAVs’ platoon), it remains active

until the CAV switches its lane. Therefore

δDi (k) = 1 and gWi (k) = 1 → δDi (k + 1) = 1.

This relation is shown in MLD form as follows

δDi (k) + gWi (k)− 1− δDi (k + 1) ≤ 0. (27)

Danger event for CAVi occurs for one of the following two

reasons:

a) the CAV is in warning mode, and the adjacent HV begins

changing its lane and entering the CAVs’ platoon. In this

case, the following statement should hold true

δDi (k − 1) = 0 and δDi (k) = 1 → δWi (k − 1) = 1,

which means that danger event cannot be activated unless

the warning event is activated first. The aforementioned

relation turns into the following inequalities in the MLD

form

δDi (k)− δDi (k − 1)− δWi (k − 1) ≤ 0. (28)

b) CAVi is in the free-following mode, and CAVi−1 is

doing a lane change; hence, the ith CAV’s immediate

predecessor in the lane becomes an HV. In this case,

CAVi−1 announces its lane-change decision as a binary

flag (shown as gLC
i−1 in the transition diagram in Fig. 2)

to its follower CAV through communication. Hence, the

following statement should hold true

gLC
i−1(t) = 1 → δDi (t) = 1.

As shown in Fig. 2, if each of four events, including free-

following, warning, danger, and lane change occurs while

emergency-braking event is not activated, vehicle mode

switches based on the current activated event. However, due

to the importance of emergency braking for preserving safety,

this operating mode has priority over the other operating

modes.

Remark 2: When the danger event occurs, the CAV adjusts

its velocity and headway based on the HV that causes the

danger. Hence, the CAV’s distance from its preceding vehicle
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(which can be either a CAV or an HV) di(k) can be redefined

as

di(k) = (1− δDi (k))xi−1(k) + δDi (k)xh
i (k)− xi(k)− lvi ,

and ∆di(k) changes accordingly.

3) Lane-change Event: CAVs may require a lane change

to achieve their desired spacing from their predecessors after

an HV enters into the CAV platoon. Hence, when a CAV is in

danger mode, and its longitudinal distance from its preceding

CAV exceeds a predefined threshold (e.g., the threshold can be

related to the fixed time gap), the CAV should perform a lane

change to be able to accelerate and reach its desired spacing

policy; in other words,

δLi (k) = 1 ⇐⇒ xi−1(k)− xi(k)− lvi − (Ti +αi) vi(k) ≥ 0,

where αi > 0 is the threshold mentioned above. Whenever the

lane-change mode activates, the lateral reference for the CAV

changes to the desired lateral location in the adjacent lane.

To assure a collision-free lane change, CAVs should also

consider HVs in the target lane (e.g., in Fig. 3a, if the orange

CAV decides to perform a lane change, it should also take the

location and velocity of the black HV into account to avoid

possible collision). To this aim, the lane-change mode for a

CAV should not activate unless there is no vehicle in the target

lane behind the CAV or the CAV is able to preserve a minimum

distance from that vehicle during the lane-change maneuver;

the latter for CAVi is addressed using the following constraint

xi(k)− xh
i+1(k)− lhi+1(k)− βi v

h
i+1 ≥ 0,

where βi represents the minimum allowed time gap from the

rear HV in the target lane, xh
i+1, lhi+1 and vhi+1 are location,

length, and velocity of the HV in the CAV’s target lane,

respectively. It is noted that whenever the lane-change mode

activates for CAVi, danger event for that vehicle terminates.

4) Free-following Event: Free-following event for ith CAV

occurs when none of the surrounding HVs are able to enter

the CAVs fleet right in front of CAVi.

Considering the aforementioned events changes the differ-

ence equations in (8) to the following form

xi(k + 1) = (I + ts Ai)xi(k) + ts Bi ui(k)

+ ts Ci [(1− δDi (k)) vi−1(k) + δDi (k) vhi (k)], (29)

where vhi (k) is the velocity of the HV that activates danger

event for ith CAV.

For the defined problem, chance constraint is built based on

two stochastic events (HV does not switch lane with probabil-

ity Pi(k) and HV switches lane with probability 1 − Pi(k)).
Consequently, the following constraint is considered

N
∑

k=1

δWi (k) ln(Pi(k)) + gDi (k) ln(1− Pi(k)) ≥ ln(P̃i),

where δDi (k) = 1 and δDi (k − 1) = 0 ⇐⇒ gDi (k) = 1.
(30)

The new auxiliary variable gDi (k) is defined to detect when

danger event activates (which is a probabilistic event). In the

former equation, P̃i is chosen such that the trajectories with

small probability are discarded.

IV. DISCRETE HYBRID STOCHASTIC MPC DESIGN

To achieve a stable CACC design, the goal is that the distance

between CAVs converges to its desired value while vehicles

move with equal and constant speed. MPC has shown to have

the capability of controlling multi-input multi-output systems.

However, for the CACC problem, when the number of vehicles

increases, centralized MPC is not time-efficient [18]. Instead,

distributed MPC can be used to reach a string stable CACC.

The MPC problem for CAVi, which employs an m-vehicle-

ahead communication topology, at time t is defined as follows

min
ui,wi,zi

N−1
∑

k=0

[

(xi(k)−Ri)
T Qi (xi(k)−Ri)

−qpi [δ
W
i (k) ln(Pi) + gDi (k) ln(1− Pi)]

+

i−1
∑

j=i−m

[

cdi,j

(

xj(k)− xi(k)−

i
∑

r=j+1

(d∗r(k) + lvr )
)2

+cvi,j

(

vj(k)− vi(k)
)2]

+ cEi δEi (k)

]

,

subject to : system equations in MLD form,

chance constraints,

(31)

where ui, zi and wi are the system inputs, the vector of

auxiliary variables, and stochastic events, from k = 0 to

k = N−1, respectively. The constant qpi is the probability cost

weight, cdi,j > 0 and cvi,j are positive coefficients penalizing

the distance and speed difference between CAVi and CAVj

(j < i), cEi > 0 penalizes the occurrence of emergency

braking, and m denotes the number of predecessors sharing

information with the ith CAV. In (31), each vehicle tends to

achieve the desired distances from its m predecessors while

adjusting its velocity based on the predecessors’ velocity. It is

noted that when m > i (the number of predecessors is less

than m), CAVi replaces m with i in (31).

Each CAV sends its current speed information, and current

and predicted acceleration information every tc seconds. To

avoid unnecessary data exchange, it is assumed that tc ≥ ts.

Therefore, each vehicle uses last received data to solve (31)

until the preceding vehicle shares new information. Hence,

each vehicle solves its MPC problem every ts seconds and

finds u∗

i (k), x∗i (k), and w∗

i (k). Then, it discards w∗

i (k) and

applies u∗

i (0) to the system. Fig. 2 summarizes the details of

the proposed control scheme.

Remark 3: When a CAV enters warning mode, its predictive

trajectory can be affected by the probability cost weight

and the chance constraint. When qpi is relatively large, the

CAV’s behavior may become conservative, meaning that it

may predict that the HV would perform a lane change in the

near future (within the prediction horizon) thus increasing its

headway to avoid the possible danger.
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Fig. 4: The CAVs’ estimation of the HVs’ lane-change

probabilities in the first 10 seconds of the simulation. It is

assumed that the estimated probabilities remain the same for

the remainder of the simulation.

V. SIMULATION RESULTS

For the CACC problem, the performance of the proposed

hybrid and stochastic MPC scheme in a mixed-autonomy

traffic system including two lanes, where HVs may perform

lane change and merge into the CAVs’ platoon, is evaluated.

Parameters used in the simulation study are given in Table

I. Assuming that CAVs use a four predecessor-following

communication scheme (m = 4), Qi, cdi,j , and cvi,j used in

the simulation studies are considered as follows

Qi = diag[2.5 1 1 1 1],

cdi,i−1 = 3.5, cvi,i−1 = 0.88,

cdi,i−2 = 2.5, cvi,i−2 = 0.63,

cdi,i−3 = 1.25, cvi,i−3 = 0.31,

cdi,i−4 = 0.83, cvi,i−4 = 0.21.

In the MPC problem in (31), the vector Ri is chosen as follows

Ri =
[

0.7 δDi (k)Ti vi(0) 0 yrefi (k)

(1− δDi (k)) vi−1(k)− δDi (k) vhi (k) 0
]T

.

Such selection for Ri implies that if danger event does

not occur (or will not occur within the prediction horizon),

CAVi only considers its m predecessor CAVs’ information

for adjusting its speed. However, according to Remark 2,

the activation of danger event results in taking the distance

from the adjacent HV and the HV’s velocity into account in

finding the optimal control input. It is noted that CAVi uses

Ti(vi(k) + 0.7 vi(0)) + d0i as its desired distance from the

adjacent HV in danger mode. The underlying mixed-integer

optimization problems are solved using CVXPY package, and

Gurobi solver in Python [29]±[31]. It is noted that the average

computational time to solve the mixed-integer programming

problem, i.e., (31), using an 11th generation Intel-R CoreTM i7-

11800H @ 2.30GHz laptop is under 5ms. As mentioned ear-

lier in Remark 1, it is assumed that CAVs have an estimation of

the HVs’ lane-change probability, as shown in Fig. 4. It is also

assumed that HVs may perform lane change only once during

the simulation study. Two sets of experiments are conducted;

in the first one, performance of the proposed controller is

evaluated in a mixed-autonomy environment, including seven

CAVs and three HVs. In the second experiment, our proposed

stochastic MPC approach is compared against a switching

controller, whose structure design is described later in this

section.

TABLE I: Model and optimization parameters used in the

simulation studies.

parameter value parameter value

ts 0.1 s m 4

Ti 0.7 s τi 0.1 s

lvi 5m lhi 5m

di 2m d0i 2m

amin
i −4m/s2 amax

i 3m/s2

umin
i −4m/s2 umax

i 4m/s2

qpi , i = 1, 5 2000 qpi , ∀ i ̸= 1, 5 1

vmax 35m/s vi 1m/s

N 7 βi 0.3 s

P̂i 0.01N cEi 100

A. Evaluation of the Proposed Controller Performance

In our first set of experiments, where a mixed-autonomy

environment is studied, a platoon of seven CAVs is considered

while three HVs are assumed to move initially in the adjacent

lane next to the CAVs. The subplots showing ∆di, yi, vi, ai,
and δEi are given in Fig. 5 while the graphical representation

of the simulation at eight different moments is illustrated in

Fig. 6. The location of the vehicles at the beginning of the

simulation is shown in the first subplot. Initially, the velocity

of both HV0 and HV1 is 26m/s while the velocity of HV2

is 20m/s. HV0 performs a lane change at t = 9 s while

keeping the same speed. However, when HV1 changes its lane

at t = 12 s, it also reduces its speed to 23m/s. HV3 does

not perform a lane change. The initial velocity for all CAVs

is 20m/s while their desired velocity is 29m/s. For better

readability, the discussion about simulation results focuses on

eight critical time instants as presented in Fig. 6.

1) At t = 0s: At the beginning of the simulation, the

first, second, fourth, and sixth CAVs operate in free-following

mode, while CAV3 and CAV5 are in the warning mode.

According to Remark 3, CAV5 behaves conservatively (since

qp5 = 2000 is relatively large) and expects that the HV

would perform a lane change within the prediction horizon,

thereby entering the danger mode. Hence, CAV5 increases its

distance from the preceding CAV to accommodate the possible

HV’s lane change (as shown in the first subplot in Fig. 5,

∆d5 noticeably increases at the beginning). After around one

second, its prediction about the future mode changes as its

estimation of HV2 lane-change probability changes (as shown

in Fig. 4, the estimated lane-change probability decreases over

time), and it adjusts its headway based on its desired spacing

policy d∗5. The CAVs’ headway and velocity converge to their

desired value at around t = 7 s.

2) At t = 9.3s: Based on the estimated lane-change

probability for HV0 and relatively large value for probability

cost weight qp1 = 2000, CAV1 expects that HV0 performs

a lane change. HV0 finally decides to switch its lane and

merge into the platoon at t = 9 s. The aforementioned lane

change causes CAV1 operating mode to change from warning

to danger. However, since CAV1 expected such maneuver, it
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Fig. 5: Performance of the CAVs employing the proposed

control scheme for a scenario including seven CAVs and three

HVs when the lane-change event threshold is αi = 0.25 s
(corresponding to the graphical representation in Fig. 6). From

top to bottom, the first subplot depicts ∆di; the second subplot

shows each vehicle’s lateral location; velocity and acceleration

are shown in the third and fourth subplot, respectively; the

last subplot illustrates the emergency-braking status for each

vehicle.

has already increased its distance from its preceding CAV

to accommodate the HV’s lane change, and the HV safely

switches its lane. Later at around t = 9.3 s, CAV1 enters

lane-change mode and decides to enter the left lane and to

avoid its distance from the leader going beyond the predefined

threshold (αi = 0.25 s). It is noted that when the lane change

is completed, the corresponding CAV enters the free-following

mode.

3) At t = 11.7s: As the first CAV changes its lane, CAV2

immediate predecessor in its lane becomes an HV; hence, the

second CAV also enters the danger mode and takes its distance

from the HV into account for adjusting its headway. CAV2

waits until t = 11.7 s to be able to safely change its lane and

keep its distance from the preceding CAVs close to the desired

value. Second CAV lane-change maneuver forces CAV3 to

enter the danger mode because its predecessor becomes an

HV.

4) At t = 12.3s: CAV3 assumes that the adjacent HV in

the left lane will not switch its lane. Despite the third CAV’s

assumption, HV1 suddenly decides to merge into the CAVs’

platoon at t = 12 s. This maneuver forces CAV3 to enter the

danger mode. Due to the small distance between the CAV and

the HV, CAV3 enters the emergency mode for about 0.3 s
(see the last subplot in Fig. 5). Then, the controller’s optimal

decision is to perform a lane change to bypass the HV and

keep CAV3 close to the preceding CAVs.

5) At t = 13s: As the third CAV changes its lane, CAV4

immediate predecessor in its lane becomes an HV; hence the

fourth CAV also enters the danger mode and takes its distance

from the HV into account for adjusting its headway. A few

moment later, at t = 13 s, CAV4 makes the same decision as

its preceding CAV and switches to lane-change mode.

6) At t = 13.5s: Similar to CAV4, CAV5 performs a lane

change at t = 13.5 s to keep ∆d5 close to zero.

7) At t = 13.8s: CAV6 also reacts to its predecessor’s lane

change quickly by performing a lane change at t = 13.8 s to

keep ∆d6 close to zero.

8) At t = 20s: A few seconds after all follower CAVs

changed their lane, all follower vehicles operate in free-

following mode in the left lane, and their velocity and spacing

policy converges to their desired values (see Fig. 5).

It is noted that according to Fig. 5, the proposed control

scheme is able to preserve string stability as the deviations

from the desired spacing policy do not propagate in the pla-

toon. As mentioned earlier, there exists a number of deviations

from the desired spacing policy, as well as the desired velocity

in Fig. 5, which are resulted from the lane change performed

by HVs. Furthermore, the duration and the peak of those

deviations increase as the threshold for lane-change event

(αi) increases since with larger αi, CAVs will wait longer

before they perform a lane-change maneuver to compensate for

the increased distance from their preceding CAVs. For better

illustration, a simulation for the same scenario is conducted

using αi = 0.4 s. Results shown in Fig. 7 confirm the

aforementioned statement.

B. Comparison of the Proposed Design Approach Against a

Switching Control

The performance of the proposed stochastic hybrid MPC de-

sign method is compared against a switching controller whose

structure is shown in Fig. 8. The decision-making unit chooses

the proper controller such that (based on the definitions of

different CAV operating modes in section III) if the CAV

is in free following mode, the FF-MPC is engaged; if CAV

enters the danger mode, Danger-MPC is activated; whenever

emergency braking condition is violated, EB-Controller is

engaged; finally, when the distance between two successive

CAVs increases, Lateral-MPC is used. A scenario including

three CAVs and one HV is considered with the graphical

representation shown in Fig. 9. Results for the stochastic

MPC are shown in Fig. 9a while the results for the switching

controller are depicted in Fig. 9b. The location of the vehicles

at the beginning of the simulation is shown in the first subplots

(t = 0 s). Initially, the velocity of the HV is 29m/s. It

accelerates at t = 10 s to reach 32m/s, then at t = 17 s
it reduces its speed to 29m/s. Finally, it performs a lane
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Fig. 6: The graphical representation of the simulation study for a scenario including seven CAVs and three HVs where

αi = 0.25 s. HVs in the top lane are shown in black, while after beginning a lane change, their color is changed to gray.

CAVs are shown using blue color, and after their lane-change mode activates, their color is changed to orange. At t = 0 s,

three HVs are in the top lane, and all the AVs are in the bottom lane. As CAV1 expects, at t = 9.3 s, HV0 performs a lane

change to merge into the CAVs’ platoon. Meanwhile, CAV1 observes the HV’s lane change and the controller detects that

its distance from its preceding CAV would exceed the predefined threshold; hence, it switches its lane to bypass the HV and

achieve its desired distance from its predecessor CAV. CAV2 waits until t = 11.7 s to safely change its lane and keep its

distance from the preceding CAV close to the desired value. After a few seconds, HV1 suddenly decides to merge into the

CAVs’ platoon at t = 12 s while CAV3 does not expect that behavior to increase the gap in front of it. Hence, it briefly enters

the emergency-braking mode and then changes its lane. CAV4 decides to switch to the top lane to avoid increasing its distance

from its predecessor CAV at t = 13 s. Shortly after, at t = 13.5 s, CAV5 does the same thing. At t = 13.8 s, the last CAV in

the platoon also changes its lane to keep its desired distance from its predecessor CAVs, and at t = 20 s, all follower CAVs

are in the top lane and successfully able to achieve their desired velocity and spacing policy.
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Fig. 7: Performance of the CAVs employing the proposed

controller for a scenario including seven CAVs and three HVs

when the threshold for lane-change event is αi = 0.4 s. Larger

values for αi delay the CAVs’ lane-change process, resulting

in more fluctuations in ∆di, while the desired case is to keep

∆di close to zero.

Fig. 8: Diagram of the switching control approach. The

decision-making unit chooses the proper controller among

the four available options, namely free-following MPC (FF-

MPC), danger-MPC (D-MPC), lateral-MPC (L-MPC), and

emergency-braking controller (EB-Controller).

change at t = 19 s while reducing its speed to 27m/s. The

initial velocity for all CAVs is 20m/s while their desired

velocity is 29m/s. For a better readability, the discussion

about simulation results focuses on five time instants as

presented in Fig. 9. It is noted that for the stochastic MPC,

qp1 = qp2 = 2, 000 is considered.

1) At t = 0 s: At the beginning of the simulation, for the

stochastic MPC (Fig. 9a), all CAVs operate in free-following

mode. The decision-making unit for all CAVs for the switching

control chooses FF-MPC at this moment.

2) At t = 10 s: According to Remark 3, CAV2 behaves

conservatively (since qp2 = 2, 000 is relatively large) and

expects that the HV would perform a lane change within

the prediction horizon, thereby entering the danger mode.

Hence, CAV2 increases its distance from the preceding CAV to

accommodate the possible HV’s lane change. However, there

is no change in the decision of the switching control compared

to t = 0 s. At this moment, the HV accelerates to pass CAV1

and possibly changes its lane afterward.

3) At t = 18.9 s: The stochastic MPC for CAV1 decides

to increase the CAV’s headway to accommodate the HV’s

possible lane change (Fig. 9a). However, the switching control

approach does not make a new action and operates the same

as the previous steps (e.g., t = 10 s). It is noted that the

longitudinal distance between CAV1 and the HV for the

stochastic MPC is noticeably larger than the switching control

method at this moment.

4) At t = 19.7 s: As shown in Fig. 9, at t = 19.7 s,

the HV performs a lane change, and both controllers decide

that CAV1 should perform a lane-change maneuver in re-

sponse to the HV’s behavior. However, there is a noticeable

difference in the lane change maneuver when comparing the

two controllers. While the stochastic MPC performs a safe

lane-change maneuver with an acceptable headway from the

HV, in the switching control method, CAV1 crosses the lane

with only a few centimeters distance from the HV, which is

a near-accident case thereby violating safety standards (e.g.,

maintaining a minimum required headway).

5) At t = 25 s: A few seconds after both follower CAVs

changed their lane, their velocity and spacing policy converges

to their desired values, resulting in similar performance for

both controllers.

VI. CONCLUSION

In this paper, a stochastic MPC design method has been devel-

oped based on a discrete hybrid stochastic model for CACC

applications aiming at safe and efficient platooning in a mixed-

autonomy traffic environment. It is assumed that each CAV can

measure distance from its immediate predecessor, as well as

the predecessor’s velocity. It is also assumed to have access,

through communication, to a limited number of predecessors’

locations, speed, and predictive speed profile. Since vehicles

do not need other vehicles’ models, the proposed MPC design

method can be applied to a heterogeneous fleet of vehicles

in the platoon. The proposed MPC scheme integrates five

operating modes for each vehicle: free following, warning,

danger, emergency braking, and lane change, to adapt the

CAV’s behavior based on the HVs maneuvers. Each CAV’s

operating mode is chosen based on the predictive information

it receives from its predecessors and the estimated behavior of

surrounding HVs. Introducing free-following and emergency-

braking modes leads to an efficient and safe autonomous

driving. Switching between warning, danger, and lane-change

modes maintains the platoon’s behavior close to the desired

performance during unexpected human-driven vehicle maneu-

vers. The proposed stochastic controller is also shown to
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(a) Performance of the proposed stochastic MPC approach
for the second scenario. Although the proposed MPC method
may result in unnecessary maneuvers (e.g., CAV2 temporar-
ily increases its headway to make room for a possible HV
lane-change maneuver that did not occur), its predictive
behavior and reactions based on stochastic mode transition
preserve safety for CAV1.

(b) Performance of the switching control approach for the
second scenario. In this case, CAV2 does not make any extra
maneuver while the HV moves in the adjacent lane. However,
this control approach can barely preserve safety during the
HV’s lane-change maneuver as CAV1 longitudinal distance
from the HV is a few centimeters since this approach does
not react based on stochastic events.

Fig. 9: The graphical representation of the simulation study for the second scenario including three CAVs and one HV where

αi = 0.25 s.

successfully counteract the effect of sudden HV maneuvers

and lane change by providing a smooth acceleration profile.

The comparison between the performance of the proposed

stochastic MPC and a switching control further illustrates the

benefits of the proposed approach.
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