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Abstract—Language-guided smart systems can help to design
next-generation human-machine interactive applications. The
dense text description is one of the research areas where systems
learn the semantic knowledge and visual features of each video
frame and map them to describe the video’s most relevant
subjects and events. In this paper, we consider untrimmed
sports videos as our case study. Generating dense descriptions
in the sports domain to supplement journalistic works without
relying on commentators and experts requires more investigation.
Motivated by this, we propose an end-to-end automated text-
generator, SpecTextor, that learns the semantic features from
untrimmed videos of sports games and generates associated
descriptive texts. The proposed approach considers the video as
a sequence of frames and sequentially generates words. After
splitting videos into frames, we use a pre-trained VGG-16 model
for feature extraction and encoding the video frames. With
these encoded frames, we posit a Long Short-Term Memory
(LSTM) based attention-decoder pipeline that leverages soft-
attention mechanism to map the semantic features with relevant
textual descriptions to generate the explanation of the game.
Because developing a comprehensive description of the game
warrants training on a set of dense time-stamped captions,
we leverage two available public datasets: ActivityNet Captions
and Microsoft Video Description. In addition, we utilized two
different decoding algorithms: beam search and greedy search and
computed two evaluation metrics: BLEU and METEOR scores.

Index Terms—Sports Journalism, Semantic Knowledge,
LSTM, Soft-Attention Mechanism, Beam Search, Greedy Search,
Human-Machine Interactive Applications

I. INTRODUCTION

With the influx of the information era, different disci-

plines are looking to capitalize on the capacities of data

and technology; sports are no exception. Though analysts

have been tracking team and player statistics for decades, the

development of new technologies has reshaped what data is

collected, how that data is collected, and what applications it

can be used for. The growing applications of sports analytics

range from player tracking as a means to increase player

performance to annotation of sports clips [1], [2]. There

are a number of underdeveloped areas in sports analytics,

including sports journalism, which is still heavily dependent

on the observations and explanations of a game from experts

and commentators. Nevertheless, the field continues to make

strides and reshape various sports at all levels of play.

*These authors contributed equally to this work

In a similar trajectory, the information era has also seen the

rise of machine learning techniques, and with it a growing

intersection between the fields of Computer Vision (CV) and

Natural Language Processing (NLP). This intersection in-

cludes tasks such as video/image captioning that aim to take in

a visual input and utilize natural language to describe different

features or actions from that input. Adding complexity to the

task of video captioning, numerous works attempt to create

dense captions. The difference between dense and traditional

captioning arises from the specificity and level of detail present

in each. Where a traditional video caption may succinctly

explain the events of a scene, almost as if to summarize it,

a dense caption aims to describe all of the individual actions

within a series of events.
Due to the fast-paced nature of sports, dense description is

required to get a thorough understanding of the game. Previous

works related to sports specific captioning tend to generate

dense captions, for dense captions provide an opportunity for a

more in-depth explanation of the events in the game. In [3], [4]

both emphasize dense and fine-grained captions to elaborate

upon sports video. Though both take a multimodal approach

to generating viable and detailed captions, [4] applies a soft

attention mechanism prior to the LSTM layers in the decoding

module. In [5] developed this form of attention which has

been widely adopted as a means for increasing video/image

captioning. Similarly, in [2] demonstrates a multi event-level

approach to developing explanations of sports videos. That

said, [2], just like many other captioning works, does not

aim to develop dense captions; rather, it annotates the sports

videos with distinguishing events that set individual actions

apart from each other. These works build upon a set of CV-

NLP tasks, in which models translate the video to a varying

length text format and demonstrate the merits of CV in sports.
In this work, we aim to create a framework that can

understand video of sports games and generate dense text

descriptions about the game’s actions to aid the field of sports

journalism. Furthermore, we postulate an end-to-end attention

approach centered application: generating dense sports cap-

tioning for aiding sports journalists from gameplay footage.
Below are the overall contributions of this work:

• SpecTextor: an end-to-end encoder-decoder framework
with a soft attention mechanism for the generation of
dense captions. The soft-attention mechanism captures
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the region of interest (ROI) from each frame. We train
this model to create dense, event-heavy gameplay expla-
nations within sports videos.

• We employed ActivityNet Captions and MSVD datasets,
two publicly available dense and non-dense captioning
for the subjects (activities, objects, sports, etc.). The moti-
vation for employing the MSVD dataset is to demonstrate
the generalizability and robustness of the SpecTextor
framework as it covers a vast range of subjects and for
ActivityNet dataset, solely considered sports-based activ-
ities videos. We evaluate using two decoding algorithms,
greedy and beam search, on two evaluation metrics:
BLEU (1-4) and METEOR (Metric for Evaluation for
Translation with Explicit Ordering) scores.

The remaining of the paper follows the following order. In

Section II, we discuss developments and applications related to

the field of sports analytics as well as numerous works related

to natural language processing in human activity and sports

video analytics. Section III explains our model architecture

and the various modules implemented. We expand upon our

methodology in Section IV, and we explain both the pre-

processing phase and experimental setup to test our model

in Section V. Finally, we discuss and enumerate the results

of our various benchmark metrics in Section VI and discuss

the rationale behind our results before concluding and future

work in Sections VII and VIII, respectively.

II. RELATED WORKS

This section highlights the related work applied methodolo-

gies into two categories: sports analytics and natural language

processing in human activity and sports video analytics. We

mainly focus on summarizing the difference between the

existing approaches to the proposed framework.

A. Sports Analytics (SA)

Recent developments in machine learning have made visual

input, a readily available form of data, powerful for in-

depth sports analysis. The following works demonstrate the

various merits and applications of machine learning principles

within the discipline of sports analytics. Accuracy and error

estimation are sports principles that can elevate a player’s

performance in the game. In [6], analyzes the accuracy by

which an individual performs a particular movement. The work

extracts visual features from images and develops an associ-

ated scoring metric for evaluating these features in contrast

to the target pose. In addition to form analysis, teams and

players alike benefit from understanding and mapping player

movements. In [1] tracks the positions of players in indoor

sports and develops an application for player level movement

statistics based on computer vision, template matching, and

partitioning algorithms. In [7] though specific to squash,

leverages broadcast video inputs and pose estimation/computer

vision to track the kinematics of players. Due to developments

in motion analysis, teams and individuals can improve their

performance by learning from in-depth analysis of games.

Expanding on the performance benefits of machine learning

and CV in sports analytics, we note health benefits and

automation applications from computer vision in sports. Player

safety is a major concern of sports institutions, and [8] com-

bines VGG-19 features and wearable sensor data to construct

a framework for posture analysis with applications to reducing

injuries caused by high-risk postures. Building off of a desire

for automation in sports analytics, in [2] introduces a three-

level framework dependent on time-specific video segments,

frame-level object detection, and frame-level pose modeling to

develop annotations of racket sports from gameplay footage

automatically. Our work aims to address the sub-discipline

of sports journalism and aid journalists in sports analysis via

dense descriptions of sports games from game footage.

B. Natural language processing in human activity and sports
video analytics

In this section, we look at past works in video captioning.

Recently, numerous papers have developed architectures and

methods for natural video captioning.

Though we do not take a multimodal approach, a number

of multimodal studies use mechanisms and datasets similar to

our own. [9] tests a novel multimodal fusion mechanism based

on attention, taking audio as well as visual inputs from video.

The domain of multimodal captioning [4], emphasizes vol-

leyball video captioning and implements an encoder-decoder

architecture with soft-attention similar to our own but requires

multimodal input data consisting of pose modeling, trajectory

mapping, and group relationships extracted from videos. In

addition, [4] trains and evaluates on MSVD, ActivityNet Cap-

tions, MSR-VTT [10], and Sports Video Captioning Dataset-

Volleyball (SVCDV), a novel dataset made for the paper. [3]

similarly uses a multimodal approach, accounting for skeleton

modeling, costly pixel-by-pixel segmentation, and relationship

modeling between players. These modalities are parsed from

convolutional neural networks but encoded using multiple sets

of LSTMs. These papers generate dense captions on sports

videos, similar to our work but with different inputs and

architectures. In addition, we are employing the same datasets,

MSVD and ActivityNet Captions datasets.

Unimodal works also provide insights into methods for

captioning. In [11] proposes using hierarchical reinforcement

learning on unimodal visual inputs to generate fine-grained de-

scriptions. Aligning more similarly with our architecture, [12],

though not focused on sports or dense/fine-grained captioning,

utilizes a single modality to extract frame features. While [12]

uses InceptionResNet-v2 as the pre-trained feature extrac-

tion model, we utilize VGG-16. Considering these various

architectures and tasks, we utilize the unimodal input of

semantic representations following by LSTMs layers with

a soft-attention decoder to provide a novel application for

creating dense sports descriptions.

III. OVERALL ARCHITECTURE

In this section, we will enumerate and discuss the overall

architecture of the SpecTextor framework. As seen in Figure
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Fig. 1: An end-to-end automated text generator constitutes the encoder and soft attention-based decoder modules. We considered

VGG-16 pre-trained architecture on the ImageNet dataset for the feature extraction module. Moreover, we considered dense

and three LSTM layers for the encoder and decoder modules, respectively.

1, we use an encoder-decoder based architecture. Our encoder

takes in a sequence of frames and processes them through a

pre-trained VGG-16 model. This model consists of numerous

convolutional neural networks followed by ReLU operations

and max-pooling blocks. This feature vector is passed through

the second part of the encoder, a trainable, fully connected

layer. This layer allows the encoder to learn during back-

propagation without retraining the parameters of the VGG-16

model. This layer presents us with semantic representations of

the various video frames.
We utilize this set of semantic representations from each

frame in the soft attention mechanism of the decoder. For

each iteration of the LSTM block, we feed in the one-hot

encoding index of the input word. This one-hot encoding is

then manifested as a word embedding. The output of the

soft attention mechanism is concatenated to this embedding

vector prior to being run through the three LSTM layers in

the LSTM block. Per iteration of the LSTM, the soft attention

mechanism takes in the entire set of semantic representations

and the decoder’s hidden state to develop its output. Upon

ending one iteration of the LSTM block, the decoder has

produced a hidden state matrix and cell state matrix, as well

as a vector of the vocabulary size in which each element refers

to the likelihood of each word in the vocabulary, is the next

word. This vector is used to determine the next word, which

then provides new input for the next iteration of the decoder.

Furthermore, the initial input to the LSTM block is a ”Start

of Sentence” (SOS) token, and the final output should be an

”End of Sentence” (EOS) token. However, it will also stop if it

reaches the maximum caption length, which varies depending

on the dataset.

IV. METHODOLOGY

In this section, we discuss and highlight the overall proposed

pipeline. We discuss the uses of the different components of

the architecture as well as what each piece provides and its

role in the translation from video to captions. We discuss the

three primary modules for feature extraction, attention/ROI

weighting, and sequence generation.

A. Encoder:Feature Extraction Module

The encoder consists of two primary components. First is

the pre-trained VGG-16 model. Utilizing a well-known pre-

trained feature extraction model such as VGG-16 allows for

faster model adjustment, consistent feature outputs, and faster

training. VGG-16 pipeline outputs a 4096 element vector per

input frame. These vectors are passed to a trainable dense

layer. This dense layer utilizes the feature vectors output

by VGG-16 and adjusts the values to fit the model’s needs.

Because we do not retrain VGG-16, the final dense layer, post

feature extraction, is crucial for translating the features into

the optimal form for the decoder.

B. Soft-Attention Module

The soft attention module is a part of the decoder module.

It takes in the features extracted from the encoder as well as

the current decoder hidden state. The hidden state provides a

guide for what features within the frames to emphasize for

evaluation in the LSTM layers. This module satisfies the need

for cohesion from word to word, adding weight to particular

features based on previously generated words.

Mathematically, we computed the soft-attention score by

assuming the weighted features for the LSTM be: x1, x2,

x3, x4,...,xn and each denotes a sub-section of an image or

a frame. To compute a attention score Si to measure how

much attention for xi, we assumed context/hidden states from

LSTM layers as C = ht−1.

Si = tanh(WcC +Wxxi) = tanh(Wcht−1 +Wxxi) (1)

We pass Si to a softmax layer for normalization to compute

weights αi, where αi softmax (S1, S2, S3, Sn). with softmax,

αi, adds up to 1. We computed a weighted average for each

features (x1, x2, x3, x4,...xn)

Z =

i∑
aixi (2)

At last, we will use Z in place of x as the LSTM features.
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C. LSTM-based Decoder Module

The RNN-based decoder takes in a concatenated vector of

attention-applied features and the embedded version of the

input token. It processes this input in a 3-layers of LSTM. The

motivation for employing three layers of LSTMs is because

it obtains a better semantic knowledge and also reduces the

computational complexity and time required to produce the

”scene descriptions” for each frame. It determines both the

hidden states for the next iteration and a probability vector

representing the likelihood that each word in the vocabulary

is the following word in the output sequence. The hidden

states are passed into the next iteration of the decoder, but the

probability vector is used to determine the generated sequence

of words. These output vectors are compared to the ground

truth words during training to calculate the loss and update the

model via back-propagation. However, we utilize two different

methods to determine which sequence to output as the final

predicted sequence in evaluation. In one method, we utilize

a Greedy Search decoding method. The highest probability

index from the output vector is taken as the prediction and

translated into its one-hot encoded corresponding word. This

method repeats generating the output sequence word by word.

Alternatively, we use the Beam Search method for decoding

the LSTM output. This requires considering conditional proba-

bilities of entire sequences and picking the sequence with the

highest conditional probability where the candidates for the

sequences are determined to be a set of k candidates who have

the highest conditional probability at each LSTM iteration.

This cycle continues for the maximum length of the caption

and determines the final sequence upon completion.

For generation one word at a time, we start the text with an

”SOS” token:

Next Word = f (image, last word) (3)

Mathematically, replace the image x in LSTM decoder

model:

ht = f (last word, x, ht−1) (4)

X is the frame or image and ht is the hidden state to predict

the next word at the time step t. Furthermore, we continue until

we predict the ”EOS” token. As the soft attention we will

replace the generalized frame or image with a more attention

on region-of-interest (ROI).

Next Word = g(ht) (5)

ht = f (last word, attention(x, ht−1), ht−1) (6)

The attention module generates the most important features

representing the ROI in the frame/image.

V. EXPERIMENTATION PIPELINE

The experiments were conducted on a Linux server which

housed an Intel i7-6850K CPU, 4x NVIDIA GeForce GTX

1080Ti GPUs and 64GB RAM. All the codes for data prepro-

cessing and deep learning mechanisms were implemented with

Python. Deep learning pipelines were implemented using Py-

Torch libraries. In addition, we used OpenCV and Matplotlib

libraries in Python for frame retrieval and plotting. Because of

the various sizes of the clips between the two datasets, we used

28 frames per MSVD video and 100 frames per ActivityNet

Captions video. The overall framework constitutes 3 LSTM

layers with 256 memory cells with a dropout ratio of 0 .1 for

each layer. In addition, we employed an Adam optimizer with

a learning rate equal to 0 .0001 with a batch size of 16 .

A. Dataset Description

• ActivityNet Captions Dataset [13] [14]: is introduced

for dense captioning sequential events and actions. It

contains 27,801 videos with 849 hours and more than

100k sentences collected from the ActivityNet dataset.

The average length of videos is ≈ 10 minutes, and also

each sentence covers a unique segment of the video to

describe multiple events concurrently. Each sentence has

an average length of 13.48 words, following a relatively

normal distribution throughout the dataset. For the ex-

perimentation, we select a subset from the ActivityNet

dataset, which is comprised of sports activities videos*

and split it into training, validation and testing sets of 300,

70 and 30 videos, respectively, from the various sports.

• Microsoft Video Description Dataset (MSVD) [15]:

contains a pool of 1,970 short videos collected from

YouTube. Each video describes a single activity in a

wide range of subjects (actions, sports, etc.). The dataset

comprises 80,839 sentences, and each sentence has about

8 words. We select 1,200 videos as the training set, 100

for validation and 670 as the testing set following the

same setting employed in [15].

B. Data Pre-processing

For the ActivityNet Captions dataset, we only desired the

subset of videos related to sports. We created a list of sports-

related videos from the dataset. For each video that we used,

we extracted an evenly distributed subset of frames from

the video. The feature matrix of each video has the same

dimensions, and the frames are evenly spread throughout the

video. Because of this frame sampling method, we can keep

down the computational cost of running the model while

ensuring we do not only take a clip from the start of the video.

Because MSVD was used to test generalizability, we utilized

all of the available videos. We took a subset of frames from

each video, and for each frame, we extracted features using

the VGG-16 extraction model. This leaves us with a features

vector for that frame. After doing this for all of the frames,

we stack the vectors into a matrix of ordered feature vectors.

In addition to getting these feature vectors, we also need to

set up the vocabulary and ground truth captions. The captions

associated with all of the videos in the training set of the

datasets are tokenized. Each token is given a corresponding

index. This one-hot encoding of the various tokens from the

training caption makes up the indices of the output vectors of

the proposed model. In addition to setting up the vocabulary,

*http://activity-net.org/explore.html
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TABLE I: Evaluation Metrics Scores

Decoding Search Dataset BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR

Greedy Search MSVD 0.68913 0.53379 0.39986 0.35979 0.27821
ActivityNet Captions 0.41434 0.35467 0.23980 0.18907 0.20439

Beam Search MSVD 0.64330 0.51154 0.44768 0.39972 0.29768
ActivityNet Captions 0.40678 0.33089 0.26098 0.20876 0.21967

Fig. 2: ActivityNet Captions

dataset training Loss

Fig. 3: MSVD dataset train-

ing Loss

we set up the ground truth captions for testing. This is simply

a matter of taking them from the original dataset and setting

them up in the dataloader as the associated caption (or set of

captions in the case of MSVD) for a particular features matrix.

C. Evaluation Metrics

For the evaluation of the SpecTextor framework, we uti-

lized two evaluation metrics: BLEU (Bilingual evaluation

understudy) shown in equation 7 which evaluate the close-

ness/precision of the machine translation to human reference

translation, where BP: brevity penalty, N: No. of n-grams, we

usually use unigram, bigram, 3-gram, 4-gram, wn: Weight for

each modified precision, Pn Modified precision. Another eval-

uation metric: METEOR (metric for evaluation for translation

with explicit ordering) shown in equation 10, checks sentence

alignment and word matching. It modifies the precision (P)

and recall (R) by replacing the recall with a weighted F-score

based on mapping unigram (m), c is the number of matching

chunks and penalty (Pe) for incorrect word order shown below:

BLEU = BP ∗ exp(
n=1∑

N

wn log pn) (7)

Weighted F-Score =
PR

αP + (1− α)R
(8)

Penalty (Pe) = γ(
c

m
)β ,where 0 � γ � 1 (9)

METEOR = (1− Penalty) ∗ Weighted F-Score (10)

VI. RESULTS AND DISCUSSIONS

This section highlights and enumerates our insights and

findings from the SpecTextor framework. Firstly, we utilize

the popular BLEU (1-4) and METEOR metrics to evaluate the

overall performance. The results of these metrics categorized

by two decoding search types and datasets are in Table I.

A higher score for each of these metrics demonstrates a

better performance of the proposed framework in generating a

caption close to the ground truth. In this table, we see two

significant trends. First, we notice that the MSVD dataset

results have higher scores than the ActivityNet Captions

dataset across all our experimental settings, regardless of the

Fig. 4: GENERATED: A man is shooting on a gun

TARGET: A man is firing two weapons

Fig. 5: GENERATED: A cat is playing with a dog

TARGET: A tortoise is playing with a cat

search algorithm. Second, Greedy Search algorithms perform

better than Beam Search on BLEU-1 and BLEU-2, but not on

BLEU-3, BLEU-4, and METEOR. From this, we glean two

significant occurring phenomena. Our first point denotes that

the proposed framework works better when generating smaller

captions. This demonstrates its potential for application or

adjustment toward providing better dense captions. Our second

point presents more information about the application of the

different decoding algorithms. On the one hand, Greedy Search

performed better on the lower n-gram BLEU metrics, denoting

it likely has better word selection. However, the higher n-

gram BLEU and METEOR scores emphasize ordering and

coherence. Such phenomena occurred due to the Beam Search

considering a number of candidate sequences and choosing the

optimal one based on conditional probability. The probability

of a given the word is heavily dependent on the rest of the

sentence. This is in contrast to the Greedy Search, which will

pick the most likely word in the decoder output at a given

time. This means that Greedy Search will have a better word

selection. This is a benefit for metrics like BLEU-1 or BLEU-

2, which only check if two sentences have the same words or

word pairs, but it is also a detriment when a sentence needs

proper ordering. Because the Beam Search will consider this

ordering, it may pick a particular word that does not have the

maximum probability in the decoder output to gain a larger

conditional probability for the sequence. Thus, it is essential

to use Beam Search rather than Greedy Search to obtain the

best caption as a coherent sequence of words.
Upon further evaluation of the Spectextor performance, we

see various learning trends as well as potential reasons for non-

Fig. 6: GENERATED: A man is playing with a rope

TARGET: This man is playing with his pet dog
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competitive evaluation scores, even on the more generalized

and traditionally captioned MSVD dataset. Figures 2 and 3,

show us the loss per epoch of the models during training

on each of the datasets. While MSVD dataset training sees

a steep learning curve early on that eventually evens out to

a more gradual rate, the ActivityNet Captions dataset sees a

constant downward trend with heavy fluctuation throughout.

Regardless of evaluation metrics, the models were learning

and approaching an optimal generation over time. In addition,

Figures 4, 5, and 6 show examples of captions generated and

target captions provided on videos from the MSVD dataset.

Among these, we get a better understanding of the above

results. Though the model trained on the MSVD dataset tends

to get the right actions and can appropriately capture the

general events of a clip, it tends to have issues with properly

identifying particular features. In the case of Figure 5, that

manifests as a tortoise being confused with a dog, and in

Figure 6, a fluffy dog being confused for rope. From this,

we conclude that a more robust semantic-based pre-trained

encoder architecture could improve the feature extraction and

results of the model.

VII. CONCLUSION

In this paper, we propose an end to end attention-based

dense text generation framework for generating dense captions

of sports videos to aid in sports journalism and other human

activities. We utilized an encoder-decoder-based framework

comprised of a soft-attention mechanism with LSTM layers

and two decoding techniques: beam and greedy search. We

experimented on two public datasets: ActivityNet Captions
and MSVD and achieves BLEU and METEOR scores of

0.64330 and 0.29768, respectively. Furthermore, we consider

two experiment settings (i) select a subset from the ActivityNet

dataset, which is comprised of sports activities videos (ii)

consider short videos with captions that covers a vast range

of subjects (actions, human, sports, etc.). SpecTextor enables

capturing temporal semantic features with relevant textual

descriptions of the subjects. Lastly, we assert that both models

were optimizing and learning during training. Some features

are misrepresented, even among the MSVD dataset, impeding

high accuracy.

VIII. LIMITATIONS AND FUTURE WORK

We would like to highlight a few limitations and the scope of

the future work. Firstly, we would like to collect our in-house

dataset with more robust and dense captions than the state-

of-the-art datasets with multiple possible captions for ground

truths aimed at the specific events better suited for sports jour-

nalism and other subjects. In addition, ActivityNet is itself a

generic dataset that only emphasizes particular parts of a video

that may not be what a journalist deems the most important

details of an event. Furthermore, using more frames from each

video would yield more temporal features and thus better input

for dense captioning. It would also be advantageous to leverage

the stronger traditional captioning of the architecture by adding

a module that divides a longer video into multiple event-

specific clips. This would allow for the model to use more

frames from clips deemed as relevant and ignore unimportant

clips. These shorter clips would take advantage of the model’s

success on the MSVD dataset. Finally, we believe the VGG-16

model may be misinterpreting the feature representation of the

videos. We want to investigate more sophisticated and robust

pre-trained models for better feature representation and minute

discrepancy: bidirectional transformers, multi-head attention

mechanisms, etc., to yield optimal and high-performance for

the human-machine interactive applications.
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