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Abstract. We study the problem of finding the Löwner–John ellipsoid (i.e., an ellipsoid
with minimum volume that contains a given convex set). We reformulate the problem as a
generalized copositive program and use that reformulation to derive tractable semidefinite
programming approximations for instances where the set is defined by affine and quadratic
inequalities. We prove that, when the underlying set is a polytope, our method never
provides an ellipsoid of higher volume than the one obtained by scaling the maximum
volume-inscribed ellipsoid. We empirically demonstrate that our proposed method
generates high-quality solutions and can be solved much faster than solving the problem
to optimality. Furthermore, we outperform the existing approximation schemes in terms
of solution time and quality. We present applications of our method to obtain piecewise
linear decision rule approximations for dynamic distributionally robust problems with
random recourse and to generate ellipsoidal approximations for the set of reachable states
in a linear dynamical systemwhen the set of allowed controls is a polytope.
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1. Introduction
We consider theminimum volume ellipsoid problem (MVEP),
which can be stated as follows (Boyd and Vandenberghe
2004, Todd 2016). “Given a set P ⊂ RK, find an ellipsoid
Emve with minimum volume that contains P.” In this
paper, we focus on sets P that satisfy the following
assumption.

Assumption 1. The set P is compact, convex, and full-
dimensional.

Compactness guarantees the existence of a bounding
ellipsoid. The convexity assumption is made without
loss of generality; if the set is not convex, then we can
instead consider its convex hull without affecting Emve. If
P is not full-dimensional, then the ellipsoid Emve is
degenerate with zero volume. For sets P satisfying
Assumption 1, such an ellipsoid, also known as the
Löwner–John ellipsoid, is unique and affine invariant,
making it an attractive outer approximation of P (Boyd
and Vandenberghe 2004, section 8.4.1). The MVEP arises
in many applications studied in the literature. Several
authors discuss outer ellipsoidal approximations for the
set of reachable points in control systems (KurzhanskiK%
and Vályi 1997, Calafiore and El Ghaoui 2004), as it is

easier to check whether a point lies in an ellipsoid than
in the comparatively complicated reachable set. Rimon
and Boyd (1997) advocate the use of Emve for collision
detection in robotics. Here, one checks whether the
ellipsoids intersect as opposed to the sets that they
approximate. Other applications of the MVEP include
outlier detection (Silverman and Titterington 1980,
Ahipaşaoğlu 2015), pattern recognition (Glineur 1998),
computer graphics (Eberly 2001), and facility location
(Elzinga and Hearn 1974). We refer the reader to Henk
(2012) for an excellent article about the lives of the
eponymous researchers Karel Löwner and Fritz John; the
history of the MVEP, which dates back to late 1930s; and
some important properties of Löwner–John ellipsoids.

For some sets P, it is possible to identify Emve in
polynomial time. For example, if P is defined as
the convex hull of a finite number of points, then the
complexity of finding Emve is polynomial in the prob-
lem size (Khachiyan 1996, Sun and Freund 2004).
When P is a union of ellipsoids, one can employ the S
lemma to compute Emve in polynomial time (Yildirim
2006). However, excluding these special cases, finding
Emve is, in general, a difficult problem. For example, if
P is a polytope defined by affine inequalities or
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if P is an intersection of ellipsoids, then finding Emve
is NP hard (Freund and Orlin 1985, Boyd and
Vandenberghe 2004).

Gotoh and Konno (2006) present a constraint generation
approach to solve the MVEP exactly when P is a
polytope defined by affine inequalities. The method
starts with a collection of points contained in P and
finds the ellipsoid of minimum volume containing
those points. Then, feasible points lying outside the
current ellipsoid are successively generated, and the
ellipsoid is updated to include the new point, until a
desired optimality tolerance is reached. However, gen-
erating a point that lies in P but outside the current
candidate ellipsoid at each iteration is very slow, as
it entails solving a nonconvex optimization problem.
Therefore, this approach is computationally expensive,
and one has to resort to approximation schemes.

One popular approximation method for the MVEP is
based on identifying and scaling the maximum volume-
inscribed ellipsoid (MVIE; i.e., the ellipsoid with maximum
volume contained in P). In particular, it is known that
scaling the MVIE around its center by a factor of K results
in an ellipsoid that contains P, thereby serving as an
approximation of Emve (John 2014). Moreover, the MVIE
can be found in polynomial time if P is defined by affine
and quadratic inequalities (Khachiyan and Todd 1993).
However, this technique, which we refer to as the scaled
maximum volume-inscribed ellipsoid (SMVIE) approach,
produces highly suboptimal ellipsoids because of the
scaling factor K. Another method for approximating the
MVEP utilizes the well-known S procedure. Boyd et al.
(1994) discuss the application of the S procedure to
generate approximations for the MVEP when P is either
an intersection or a Minkowski sum of ellipsoids. Finally,
in a recent paper, Zhen et al. (2021) study approximations
to uncertain second-order cone programs and demon-
strate how this framework can be exploited to derive an
approximation to the MVEP.

Several authors have identified sufficient conditions
under which a convex set contains another convex set.
Helton et al. (2013) discuss sufficient conditions,
which guarantee that a semidefinite-representable set
contains another such set. Kellner et al. (2013) provide
slightly improved sufficient conditions compared
with the ones in Helton et al. (2013). Although these
articles do not focus on the MVEP specifically, their
results can be used to approximate Emve if P is
semidefinite representable (see Appendix B). To the
best of our knowledge, there are no results that
provide a finite system of constraints that are neces-
sary and sufficient to ensure that an ellipsoid contains
another set. This gap in knowledge is our main focus.

In this article, we prove that checking whether an
ellipsoid contains P is equivalent to solving a finite-
dimensional generalized copositive (GC) feasibility prob-
lem. We use this result to reformulate the MVEP exactly

as a GC program. This representation of the MVEP
enables us to leverage state-of-the-art approximation
schemes available for GC programming problems. In
particular, GC programs yield a hierarchy of optimiza-
tion problems, which provide an increasingly tight
restriction to the original problem (Parrilo 2000, Las-
serre 2001, Zuluaga et al. 2006). Although our exact
reformulation holds for any P satisfying Assumption 1,
we focus primarily on developing approximations in
the case where P is defined by affine and convex
quadratic inequalities. We demonstrate that, for these
sets, the resulting approximation can be formulated as a
semidefinite program (SDP), which can be solved in
polynomial time. Because these SDPs are restrictions
of the GC reformulation, they provide a feasible
ellipsoid that contains P. There has been previous
work on developing exact copositive programming
reformulations for otherwise difficult problems and
using those reformulations to generate tractable
approximations (Natarajan et al. 2011, Bomze 2012,
Burer 2012, Burer and Dong 2012, Hanasusanto and
Kuhn 2018, Prasad and Hanasusanto 2018, Mittal
et al. 2020). Our results add to this literature by
demonstrating the ability of generalized copositive
programs to exactly model the MVEP.

We demonstrate the utility of our approximations to
the MVEP in two applications. First, we consider a two-
stage distributionally robust optimization (DRO) prob-
lem with random recourse. Such a problem is NP hard
even in the absence of random recourse (Bertsimas et al.
2010). Bertsimas and Dunning (2016) study a piecewise
static (PWS) decision rules approximation for the case of
dynamic robust optimization, which leads to a tractable
reformulation. Although they do not consider a DRO
model, this approach can be extended to such a setting.
In contrast, we focus on piecewise linear decision (PLD)
rules approximation. In the presence of random re-
course, finding the optimal PLD rule is NP hard,
although feasible PLD rules can be obtained using the S
procedure. Unfortunately, these decision rules are often
of poor quality. The effectiveness of the S procedure in
finding good PLD rules can be improved by considering
an ellipsoid that contains the support set (i.e., the set of
allowed values for the uncertain parameters). In the
context of an inventory management problem, we show
that the size of this ellipsoid can have a large effect on
the quality of the PLD rules. We also demonstrate that
the PLD rules generated using our method significantly
outperform the piecewise static decision rules. Second,
we utilize our method to generate high-quality ellipsoi-
dal approximations to the set of reachable states in a
linear dynamical system when the control set (i.e., the set
of allowed controls) is a polytope. This complements the
existing schemes that provide similar approximations
when the control set is an ellipsoid (KurzhanskiK% and
Vályi 1997, Calafiore and El Ghaoui 2004).
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We summarize the main contributions of the article.
1. We provide necessary and sufficient finite-

dimensional conic inequalities that certify whether an
ellipsoid contains a set P satisfying Assumption 1. We
use these conditions to derive a generalized copositive
reformulation of the MVEP.

2. When P is defined by affine and convex quadratic
inequalities, we derive a tractable SDP restriction to the
GC reformulation, which results in a feasible ellipsoid
that contains P. We prove that the volume of the
resulting ellipsoid never exceeds that of the SMVIE
approach. To the best of our knowledge, our approxi-
mation is the first one to have this property. We further
show that the ratio of the volume of the SMVIE to the
volume of the ellipsoid generated by our method can be
arbitrarily high. We also prove that both the S proce-
dure (Boyd et al. 1994, section 3.7) and the approxima-
tion suggested by Zhen et al. (2021) never generate
ellipsoids of lower volumes than the SMVIE approach.

3. We demonstrate through extensive numerical
experiments that our method is significantly faster than
solving the problem to optimality using the constraint
generation technique of Gotoh and Konno (2006). The
experiments further indicate that our method signifi-
cantly outperforms the SMVIE approach in terms of
solution quality. Also, our method outperforms the
scheme that utilizes the sufficient conditions of Kellner
et al. (2013) in terms of both solution time and quality.

4. We present two important applications of our
approach. First, we exploit the bounding ellipsoids to
obtain improved decision rule approximations to two-
stage DRO models with random recourse, which have
resisted effective solution schemes so far. Second, we
provide ellipsoidal approximations for the set of reach-
able states in a linear dynamical system when the control
set is a polytope.

This article is organized as follows. In Section 2, we
describe the MVEP and reformulate it as an equivalent
GC program. In Section 3, we use that reformulation to
derive a tractable SDP that generates a near-optimal
approximation to Emve when the set is defined by affine
and quadratic inequalities. In Section 4, we explain the
application of our approach for obtaining improved
decision rules approximation for a two-stage DROmodel
with random recourse. In Section 5, we present numerical
experiments comparing the volumes of the ellipsoids
generated by our method against those found using other
approaches. We also demonstrate the efficacy of our
approach in solving a distributionally robust inventory
management problem. Finally, we conclude in Section 6.
Auxiliary proofs and additional numerical experiments
can be found in the e-companion to the paper.

1.1. Preliminaries
1.1.1. Notation. For a positive integer I, we use [I] to
denote the index set {1, 2, : : : , I}. We denote the vector

of ones by e and the identity matrix by I; their dimensions
will be clear from the context. We use RK(RK

+) to denote
the set of (nonnegative) vectors of length K and SK(SK+) to
denote the set of all K × K symmetric (positive semi-
definite) matrices. In addition, SK++ represents the set of
positive definite matrices. The functions tr(·) and det (·)
denote the trace and the determinant of the input matrix,
respectively. We define Diag(v) as a diagonal matrix with
vector v on its main diagonal. The symbols ‖v‖1 and ‖v‖
denote the ℓ1 norm and ℓ2 norm of vector v, respectively.
The vertical concatenation of two scalars or vectors u and
v is denoted by [u;v]. For a matrix M ∈ RI×J, we use
M:j ∈ RI to denote its jth column and Mi: ∈ RJ to denote
the transpose of its ith row. We represent the interior
and the conic hull of a set S by int(S) and cone(S),
respectively.

1.1.2. Generalized Copositive Matrices. We use C(K)
to denote the set of generalized copositive matrices
with respect to cone K ⊆ RK (i.e., C(K) � {M ∈ SK :
x�Mx ≥ 0 ∀x ∈K}). The set of copositive matrices is a
special case of such a set when K � RK

+. We use C∗(K) to
denote the set of generalized completely positive matri-
ces with respect to cone K (i.e., C∗(K) � {M ∈ SK :
M �∑

i∈[I]xix
�
i ,xi ∈K}), where I is a positive integer.

The cones C(K) and C∗(K) are duals of each other
(Sturm and Zhang 2003). For any P,Q ∈ SK and cone
C̄ ⊆ SK, the conic inequality P�C̄Q indicates that P−Q
is an element of C̄. We drop the subscript and simply
write P�Q, when C̄ � SK+. Finally, the relation M
C(K)0
indicates that M is strictly copositive (i.e., x�Mx > 0 for
all x ∈K,x≠ 0).

1.1.3. Ellipsoids. We define E(A,b) � {x ∈ RK : ‖Ax
+b‖2 ≤ 1} as an ellipsoid with parameters A ∈ SK++ and
b ∈ RK. The volume of E(A,b), denoted by
Vol(E(A,b)), is proportional to det (A−1) � 1=det (A). In
this paper, we drop the proportionality constant and
say that Vol(E(A,b)) � 1=det (A); because we use the
volume as a metric for comparing different ellipsoids,
doing so does not affect the results. We define the
radius of a K-dimensional ellipsoid as Vol(·)1=K; this
metric is proportional to the radius of a sphere with
the same volume as that of the ellipsoid. Finally, we
say the two ellipsoids are equal (i.e., E(A1,b1) �
E(A2,b2)) if and only if A1 � A2 and b1 � b2.

2. Generalized Copositive Reformulation
In this section, we develop a generalized copositive
reformulation for the MVEP. It is well known that
Emve � E(A,b) if and only if (A,b) is the unique
optimal solution to the following semiinfinite convex
optimization problem (Todd 2016):

(MVE)

minimize −logdet (A)
subject to A ∈ SK, b ∈ RK, Z(A,b) ≤ 1,

Mittal and Hanasusanto: MVE via Copositive Programming
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where

Z(A,b) � sup
x∈P

‖Ax+ b‖2 � sup
x∈P

x�A2x+ 2b�Ax+ b�b{ }:
(1)

The objective function of (MVE) minimizes the
logarithm of the volume, which implicitly restricts A
to be positive definite. Minimizing the logarithm of
the volume makes the objective function convex in A.
The constraint Z(A,b) ≤ 1 forces every element of P to
lie inside the ellipsoid. We are now ready to present
the main result of this section, where we derive
necessary and sufficient conditions for certifying
whether an ellipsoid contains another set.

Theorem 1. Let P be a set satisfying Assumption 1. Let
the cone K ⊆ RK+1 be defined as

K � cone {[x;1] : x ∈ P}( ): (2)

If A ∈ SK++ and b ∈ RK, then the ellipsoid E(A,b) contains
P if and only if there exist F ∈ SK, g ∈ RK, h ∈ R, such that

F g
g� h− 1

[ ]
�C(K) 0 and

F g A
g� h b�
A b I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0: (3)

Before proving Theorem 1, we discuss its implica-
tions. The theorem implies that the constraint
Z(A,b) ≤ 1 in (MVE) can be replaced by the con-
straints in (3). Therefore, Emve � E(A,b) is the mini-
mum volume ellipsoid if and only if (A,b,F,g,h) is the
unique optimal solution to the following generalized
copositive program:

minimize −logdet (A)
subject to A ∈ SK, b ∈ RK, F ∈ SK, g ∈ RK, h ∈ R,

(3) holds:
(4)

Remark 1. In this article, we refer to a problem with
−logdet (·) minimization objective and semidefinite
(copositive) constraints as a “semidefinite (copositive)
program,” albeit with a slight abuse of terminology.
The reason is that minimization of −logdet (·) is
equivalent to minimization of −(det (·))1=K; the latter
can be reformulated as a problem with linear objective
and additional semidefinite inequality constraints
(see, e.g., Ben-Tal and Nemirovski 2001, section 4.2).
Some modeling frameworks, like YALMIP (Löfberg
2004), that we use for our experiments automatically
carry out this conversion before sending the problem
to the solver.

Next, we present the following technical lemmas,
which are needed for the proof of Theorem 1.

Lemma 1. Let K be the cone defined in (3). If [x;τ] ∈K,
then τ ≥ 0. Furthermore, τ � 0 only if x � 0.

Proof. From the definition of K, there exist points xs ∈
P and coefficients λs ≥ 0, s ∈ [S], such that [x;τ] �∑

s∈[S]λs[xs;1]. By comparing the last element, we get
τ � ∑

s∈[S]λs ≥ 0 because λs ≥ 0. In addition, τ � 0
implies that λs � 0 for all s ∈ [S], which further implies
that x � 0. w

Lemma 2. The cone K defined in (2) is proper.

Proof. The compactness of P implies that K is convex
and closed. Because P has nonempty interior, any
point x in the interior of P yields a point [x;1] in the
interior of K; therefore, K has nonempty interior.
Finally, to see that K is pointed, let [x;τ] ∈K and
−[x;τ] ∈K. Using Lemma 1, we have that τ ≥ 0 and
−τ ≥ 0, which implies that τ � 0. Again using
Lemma 1, we get that [x;τ] � 0, which implies that K
is pointed. w

Lemma 3. Let M ∈ SK be a symmetric matrix and S ⊆ RK

be a set with nonempty interior. If v�Mv � 0 for all v ∈ S,
thenM � 0.

Proof. Let λ be an eigenvalue of M and q be the
corresponding eigenvector of unit length. Because S
has nonempty interior, for any v ∈ int(S), there exists
τ̄ > 0 such that v+ τq ∈ S for all τ ∈ [0, τ̄]. Therefore,
(v+ τq)�M(v+ τq) � 0 for all τ ∈ [0, τ̄]: Furthermore,

(v+ τq)�M(v+ τq) � v�Mv+ 2τq�Mv+ τ2q�Mq

� 2τλq�v+ τ2λq�q � λτ(2q�v+ τ):

Thus, λτ(2q�v+ τ) � 0 for all τ ∈ [0, τ̄]. Because the
term τ(2q�v+ τ) is quadratic in the scalar τ, it cannot
be zero for more than two values of τ. This implies
that the previous equality holds for all τ ∈ [0, τ̄] only if
λ � 0. Therefore, any eigenvalue of M is zero, which
implies thatM � 0. w

Lemma 4. Let K be the cone defined in (2). There exist
X ∈ SK and x ∈ RK such that

X x
x� 1

[ ]

C∗(K) 0:

Proof. We start by showing that C(K) is pointed. Let
M ∈ SK+1 be such that M ∈ C(K) and −M ∈ C(K). For
this choice of M, for all x ∈K, we have that x�Mx ≥ 0
and −x�Mx ≥ 0, which imply that x�Mx � 0 for all
x ∈K. Because K has nonempty interior (by Lemma 2),
Lemma 3 implies that M � 0. Therefore, C(K) is point-
ed, which implies that its dual cone, C∗(K), has
nonempty interior (Boyd and Vandenberghe 2004,
section 2.6.1). ConsiderM ∈ int(C∗(K)). The matrixM is
positive definite (see the discussion below corollary 8.1
in Burer 2012); therefore, any element on its diagonal,
which includes the bottom right component, is strictly
positive. By scaling M such that the bottom right
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component is one, we get another matrix in the interior
of C∗(K). Hence, the lemma holds. w

The following lemma is an extension of another
recently proved result found in Mittal et al. (2020,
lemma 4).

Lemma 5. Let M ∈ SK be a symmetric matrix and A ∈
RJ×K be an arbitrary matrix. Then, for any proper cone
K ⊂ RK, the inequality M �C(K) A�A is satisfied if and
only if there exists a matrix H ∈ SK+ such that

M �C(K) H and H A�
A I

[ ]
� 0: (5)

Proof (⇒). The statement holds immediately by
setting H � A�A.

(⇐) Assume that there exists such a matrix H ∈ SK+. By
the Schur complement, the second inequality in (5) implies
that H �A�A, which in turn, implies that H �C(K)A�A
(because SK+ ⊆ C(K) for any K). Combining this with the
first inequality in (5) implies thatM �C(K)A�A. w

We now return to the proof of Theorem 1.

Proof of Theorem 1. The set P can be expressed in
terms of the cone K as P � {x ∈ RK : [x;1] ∈K}: There-
fore, we can write (1) as

Z(A,b) � sup
[x;1]∈K

x�A2x+ 2b�Ax+ b�b: (6)

The Optimization Problem (6) is equivalent to the
following completely positive program (Burer 2012):

Z(A, b) � sup tr(A2X) + 2b�Ax + b�b
s:t: x ∈ RK, X ∈ SK,

X x
x� 1

[ ]
�C∗(K) 0:

(7)

The dual of this completely positive program can be
written as

Zd(A, b) � inf
ρ∈R ρ

s:t: −A2 −Ab
−b�A ρ − b�b

[ ]
�C(K) 0:

(8)

Using Lemma 4, we conclude that a Slater point exists
in the Optimization Problem (7). Hence, strong duality
holds, and Z(A,b) � Zd(A,b). Furthermore, there exists
a dual feasible solution, which attains the value Z(A,b),
because a Slater point exists in the Primal Problem (7)
(Ben-Tal and Nemirovski 2001, theorem 1.4.2). Using
these facts, we have that Z(A,b) ≤ 1 if and only if there
exists a feasible solution to Problem (8) whose objective
function value is at most one. Therefore, Z(A,b) ≤ 1 if
and only if there exists ρ ≤ 1 such that

−A2 −Ab
−b�A ρ− b�b

[ ]
�C(K) 0,

which in turn, holds if and only if

−A2 −Ab
−b�A 1− b�b

[ ]
�C(K) 0,

or equivalently,

0 0
0 1

[ ]
�C(K) A b

[ ]� A b
[ ]

: (9)

The Conic Inequality (9) has nonlinearity because of the
terms involving the product of the decision variables A
and b. However, by Lemma 5, this constraint is satisfied
if and only if there exist variables F ∈ SK, g ∈ RK, and
h ∈ R such that the Constraints (3) hold. Therefore, the
constraint Z(A,b) ≤ 1 is equivalent to Constraints (3).
Hence, the claim follows. w

Theorem 1 implies that Emve can be found by solving
the GC Program (4), which is difficult in general. In the
next section, we discuss tractable approximations of (4)
for special cases of P. However, before doing so, we
provide some generalizations to the GC reformulation (4).

Remark 2 (Affine Mapping of a Set). Let P ⊆ RK be a set
satisfying Assumption 1. Let P̄ � CP + d � {Cx+ d :
x ∈ P} ⊂ RJ be an affine mapping of P, where C ∈ RJ×K
and d ∈ RJ. In order to obtain conditions for an
ellipsoid to contain P̄ , note that Z(A,b) �
supx∈P‖A(Cx+ d) + b‖2: Following the steps of the
proof of Theorem 1, we can see that if A ∈ SJ++ and
b ∈ RJ, then the ellipsoid E(A,b) contains P̄ if and only
if there exist F ∈ SK, g ∈ RK, h ∈ R, such that

F g
g� h− 1

[ ]
�C(K) 0 and

F g (AC)�
g� h (Ad+ b)�
AC Ad+ b I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0,

where K � cone {[x;1] : x ∈ P}( ):
Remark 3 (Union of Sets). Let P �⋃

ℓ∈[L]Pℓ, where the
set Pℓ satisfies Assumption 1 for all ℓ ∈ [L]. The set P
does not satisfy Assumption 1 because it may not be
convex. However, it is possible to extend Theorem 1
to this case as follows. Note that an ellipsoid contains
the union of sets if and only if it contains every set.
We can apply Theorem 1 to every set Pℓ to arrive at
the fact that ellipsoid E(A,b) contains P if and only if
there exist Fℓ ∈ SK, gℓ ∈ RK, hℓ ∈ R ∀ℓ ∈ [L], such that

Fℓ gℓ
g�ℓ hℓ − 1

[ ]
�C(Kℓ) 0 and

Fℓ gℓ A
g�ℓ hℓ b�
A b I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0 ∀ℓ ∈ [L],

where Kℓ � cone {[x;1] : x ∈ Pℓ}( ), ℓ ∈ [L].
Remark 4 (Minkowski Sum of Sets). For all ℓ ∈ [L], let
the set Pℓ satisfy Assumption 1 and Kℓ be the
corresponding cone defined as in (3). Let P �∑

ℓ∈[L]xℓ : xℓ ∈ Pℓ ∀ℓ ∈ [L]{ }
be the Minkowski sum of

these sets. Although P satisfies Assumption 1, it might
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not have a polynomial-sized representation. As an
example, if every Pℓ is a polytope, then P is a
polytope defined by constraints whose number can
potentially grow exponentially with L. However, we
can still reformulate (MVE) for P as a GC program of
polynomial size as follows. Observe that

Z(A,b) � sup
xℓ∈Pℓ∀ℓ∈[L]

∑
ℓ∈[L]

xℓ
( )�

A2
∑
ℓ∈[L]

xℓ
( )

+2b�A
∑
ℓ∈[L]

xℓ
( )

+b�b
{ }

� sup
x�[x1 ;x2 ;⋯;xL],
xℓ∈Pℓ∀ℓ∈[L]

x�ÃÃ
�
x+2b�Ã�

x+b�b
{ }

,

where Ã � A A : : : A
[ ]� ∈ RLK×K: By defining the

cone K as

K � {[x1;x2;⋯;xL;τ] ∈ RLK+1 : [xℓ;τ] ∈Kℓ ∀ℓ ∈ [L]}
and repeating the steps in the proof of Theorem 1, we
arrive at the fact that ellipsoid E(A,b) contains P if
and only if there exist F ∈ SLK, g ∈ RLK, h ∈ R such that

F g
g� h− 1

[ ]
�C(K) 0 and

F g Ã
g� h b�

Ã
�

b I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0:

In the previous three remarks, minimizing the function
−logdet (A) subject to the corresponding constraints
leads to a GC reformulation of (MVE).

3. Tractable Approximations for Polytopes
In this section, we use the reformulation (4) to present
tractable semidefinite programming approximations
for (MVE) in the case where the set P is a polytope
defined as

P � x ∈ RK : Sx ≤ t
{ }

, (10)

where S ∈ RJ×K and t ∈ RJ. We start with our proposed
approximation and then present theoretical compari-
sons with alternative approaches to approximate Emve.

Theorem 2. Let P be a polytope defined as in (10) that
satisfies Assumption 1. Consider any A ∈ SK++ and b ∈ RK.
Then, an ellipsoid E(A,b) contains P if there exist N ∈
RJ×J

+ , F ∈ SK, g ∈ RK, h ∈ R such that

F g
g� h−1

[ ]
�− −S�

t�

[ ]
N −S t
[ ]

, and
F g A
g� h b�
A b I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦� 0:

(11)

Proof. For the polytope P, the cone K defined in (2)
can be written as K � [x;τ] ∈ RK+1 : τ ≥ 0, Sx ≤ τt

{ }
:

We show that the Constraints (11) imply the Con-
straints (3). Because the second constraints in (11) and
(3) are the same, we show that the first constraint of (11)
implies the generalized copositive constraint in (3),

which proves our claim. For any [x;τ] ∈K, we have that

x
τ

[ ]� F g
g� h− 1

[ ]
x
τ

[ ]
≤ − x

τ

[ ]� −S�
t�

[ ]
N −S t
[ ] x

τ

[ ]
� −(τt− Sx)�N(τt− Sx) ≤ 0,

where the first inequality follows from the first semi-
definite inequality in (11) and the final inequality
holds because N ≥ 0 and τt− Sx ≥ 0. Thus,

F g
g� h− 1

[ ]
�C(K) 0:

Hence, the claim follows. w

Theorem 2 provides a way to approximate (MVE).
We choose the ellipsoid with minimum volume among
those that satisfy the conditions of Theorem 2. This can
be achieved by solving the following tractable SDP:

minimize −logdet (A)
subject to A ∈ SK, b ∈ RK, N ∈RJ×J

+ , F ∈ SK, g ∈ RK, h ∈ R,
(11) holds:

(12)

If (A,b,N,F,g,h) is an optimal solution to (12), then
we propose the use of the ellipsoid Esdp � E(A,b) as an
approximation of Emve.

Next, we present a theoretical comparison of the quality
of Esdp with the other methods of approximating Emve.
For the theoretical analysis, it is convenient to combine the
two semidefinite inequalities of (11) using the Schur
complement andwrite (12) equivalently as follows:

minimize −logdet(A)
subject to A∈SK, b∈RK,N ∈RJ×J

+ ,
A
b�
[ ]

A b
[ ]

�
0 0
0 1

[ ]
− −S�

t�

[ ]
N −S t
[ ]

:

(13)

First, we compare Vol(Esdp) with the volume of the
ellipsoid obtained by scaling the maximum volume-
inscribed ellipsoid by a factor of K. We denote the
latter ellipsoid by Esmvie. In Theorem 3, we show that
the volume of Esdp cannot exceed the volume of Esmvie.
We begin with the following lemmas, which we use
for proving Theorem 3.

Lemma 6. Let P be a polytope defined as in (10) that
satisfies Assumption 1. The optimal value of the following
optimization problem is equal to log (Vol(Esmvie)):

minimize Kρ�t−K− logdet −1
2
S�K+K�S( )

( )
subject to K ∈RJ×K, ρ∈RJ,

S�ρ� 0,
‖Kj:‖ ≤ρj ∀j∈ [J]:

(14)

Proof. It is known that Esmvie � {Bu+ d : ‖u‖ ≤ 1} if
and only if B and d are optimal in the following
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problem (see, e.g., Boyd and Vandenberghe 2004,
section 8.4.2):

maximize Klogdet (B)
subject to B ∈ SK, d ∈ RK

‖BSj:‖ + S�j: d ≤ tj ∀j ∈ [J]:
(15)

The objective function of (15) equals the logarithm of
Vol(Esmvie). The dual of (15) is given by (14). A Slater
point can be constructed in the primal problem (15) as
follows. Consider a feasible solution where B � κI and d
is any point in the interior of P. By choosing a sufficiently
small κ, the inequalities in (15) can be made strict.
Therefore, strong duality holds, and the objective function
of (14) is equal to the logarithm of Vol(Esmvie). w

Lemma 7 (Horn and Johnson 1990, theorem 7.8.7). If
M 2 RK�K is a square matrix with real entries such that
MM> � 0, then

det
1
2
M +M�( )

( )
≤ det (M):

Theorem 3. If P is a polytope defined as in (11), then
Vol(Esdp) ≤ Vol(Esmvie).
Proof. By Lemma 6, the logarithm of the volume of
Esmvie is equal to the optimal value of (14). We can
compare the volumes of Esdp and Esmvie by comparing the
optimal values of the Minimization Problems (13) and
(14). To prove the theorem, we show that any feasible
solution in (14) can be used to construct a feasible solution
to (13) with the same or lower objective function value. To
this end, consider a solution (K,ρ), which satisfies the
constraints of (14). Define κ � exp (1− ρ�t). Also, let
K�S �UΣV� be the singular value decomposition of
K�S, where U,V ∈ RK×K are orthonormal matrices, and
Σ ∈ SK is a diagonal matrix. We note for later use that
det (K�S) � det (U)det (Σ)det (V�) � det (Σ). Consider
the following solution to (13):

A � κVΣV�, b � κVU�K�t, N � κ2 ρρ� −KK�( )
: (16)

We demonstrate that this solution satisfies the con-
straints of (13). Note that

A2 � κ2VΣV�VΣV� � κ2VΣU�UΣV� � κ2S�KK�S

because V�V �U�U � I. Similarly, Ab � κ2S�KK�t,
and b�b � κ2t�KK�t. Therefore,

−S�
t�

[ ]
N −S t
[ ] � S�NS −S�Nt

−t�NS t�Nt

[ ]
� κ2 S� ρρ� −KK�( )

S −S� ρρ� −KK�( )
t

−t� ρρ� −KK�( )
S t� ρρ� −KK�( )

t

[ ]
� κ2 −S�KK�S S�KK�t

t�KK�S (ρ�t)2 − t�KK�t

[ ]
� 0 0

0 (κρ�t)2
[ ]

− A2 Ab
b�A b�b

[ ]
,

where the third equality follows from the constraint
S�ρ � 0. We claim that (κρ�t)2 ≤ 1. To see this, first
note that because the polytope P is nonempty, by
Farkas’ lemma any vector ρ satisfying S�ρ � 0 and ρ ≥
0 also satisfies ρ�t ≥ 0. Second, using the inequality
exp (ν) ≥ 1+ ν with ν � ρ�t− 1, we get that κ−1 �
exp (ρ�t− 1) ≥ ρ�t, which implies that κρ�t ≤ 1.
Combining these two inequalities, we get that
0 ≤ κρ�t ≤ 1, which implies that (κρ�t)2 ≤ 1. Therefore,
we have that

A
b�
[ ]

A b
[ ] � 0 0

0 (κρ�t)2
[ ]

− −S
t

[ ]
N −S t
[ ]

�
0 0
0 1

[ ]
− −S

t

[ ]
N −S t
[ ]

:

Next, because N � κ2 ρρ� −KK�( )
, we have that Nij �

κ2 ρiρj −K�
i:Kj:

( )
≥ κ2 ρiρj − ‖Ki:‖ ‖Kj:‖

( )
≥ 0, where the

two inequalities follow from Cauchy–Schwarz and
the constraint ‖Kj:‖ ≤ ρj, respectively. Therefore, N ≥ 0.
Next, we compare the objective values. Note that

−logdet (A) � −logdet (κVΣV�)
� −log (κKdet (VΣV�))
� −Klog (κ) − log (det (V)det (Σ)det (V�)
� K(ρ�t− 1) − logdet (K�S) ≤ K(ρ�t− 1)

−logdet 1
2
(K�S+ S�K)

( )
,

where the final inequality follows from Lemma 7.
Hence, the feasible solution (16) gives a lower objec-
tive function value. Thus, the claim follows. w

Corollary 1. If the polytope P is a simplex, then
Emve � Esdp � Esmvie.

Proof. It is known that Emve � Esmvie, if the set P is a
simplex (Boyd and Vandenberghe 2004, section 8.4.1).
Therefore, Vol(Esmvie) � Vol(Emve), which implies that
Vol(Esdp) � Vol(Emve). Because of the uniqueness of
the minimum volume ellipsoid, we get that
Esdp � Emve. w

In the next example, we demonstrate that the differ-
ence between the volumes of the ellipsoids Esdp and
Esmvie can be arbitrarily large.

Example 1 (Chipped Hypercube). Consider the poly-
tope: P � {x ∈ RK : 0 ≤ x ≤ e,e�x ≤ ���

K
√ } formed by add-

ing one constraint to the unit hypercube. This polytope
forms a special case of (11) with S � I; −I; e�[ ], and t �
e; 0;

���
K

√[ ]
: Let R mve, R smvie, and R sdp be the radii

(defined in Section 1.1) of the ellipsoids Emve, Esmvie, and
Esdp, respectively. In the e-companion, we prove that
R sdp �O K1=4( ) and R smvie �Θ K1=2( ). Therefore, R smvie
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grows at a strictly faster rate with the dimension K
than R sdp. This example demonstrates that the ratio
R smvie=R sdp can be arbitrarily high, if a large-enough
K is chosen. We compute the three radii for K � 2 to K
� 50 and plot the values in Figure 1(b). We observe
that R mve is very close to R sdp, and the two appear to
be growing at the same rate with K. Figure 1(a) shows
the ellipsoids generated by the three methods for K �
2.

Next, we present the comparison of Vol(Esdp) with
the volume of the ellipsoid provided by the S proce-
dure described in Appendix A. However, the applica-
tion of S procedure requires an ellipsoidal constraint
in addition to the affine inequalities that define the
polytope P (see Remark A.1 in Appendix A). This can
be achieved by using any ellipsoid E(Q,q) � {x ∈ RK :
‖Qx+ q‖2 ≤ 1} that contains the polytope P and add-
ing ‖Qx+ q‖2 ≤ 1 as a redundant constraint in the
definition of P. The ellipsoid E(Q,q) already serves as
an approximation of Emve. We can then apply the S
procedure in the hope of finding an ellipsoid with
lower volume; we use Esproc to denote this ellipsoid.
However, in Proposition 1, we show that if the center
of E(Q,q) lies inside P, then applying the S procedure
provides no improvement and in fact, returns the
ellipsoid Esproc � E(Q,q) as its unique optimal solu-
tion. This result is counterintuitive because the S
procedure has been successfully applied in cases
where P is defined as either the intersection or
Minkowski sum of ellipsoids. Furthermore, if
E(Q,q) � Esmvie is used in the redundant quadratic
constraint, then Proposition 1 implies that the S
procedure does not improve upon Esmvie because the

center of Esmvie lies inside P. In that case,
Vol(Esdp) ≤ Vol(Esmvie) � Vol(Esproc).
Proposition 1. Let P be a polytope defined as in (10)
that satisfies Assumption 1, and let E(Q,q) � {x ∈ RK :
‖Qx+ q‖2 ≤ 1} be an ellipsoid containing P such that the
center of E(Q,q) lies inside P. Then, for the set {x ∈ RK :
Sx ≤ t, ‖Qx+ q‖2 ≤ 1}, we have that Esproc � E(Q,q).
Proof. See the e-companion. w

Finally, in Zhen et al. (2021), the authors present the
following result, which can be used to approximate
(MVE).

Lemma 8 (Zhen et al. 2021, lemma 1). Consider a
polytope P defined as in (10). Then, Z(A,b) ≤ 1 if there
exist V ∈ RJ×M and v ∈ RJ such that

‖V�t+ b‖ + t�v ≤ 1,
A � V�S,
S�v � 0,
‖V j:‖ ≤ vj, ∀j ∈ [J]:

(17)

Substituting these conditions for the constraint
Z(A,b) ≤ 1 in (MVE) yields the following conservative
approximation:

minimize −logdet (A)
subject to A ∈ SK, b ∈ RK, V ∈ RJ×K, v ∈ RJ,

(18) holds:
(18)

We denote the ellipsoid generated using this approach
by Ezrh. In the following proposition, we show that
Vol(Ezrh) is never lower than Vol(Esmvie). Thus, by
Theorem 3, Vol(Ezrh) ≥ Vol(Esdp).

Figure 1. Chipped Hypercube Example

(a) (b)

Notes. (a) The ellipsoids generated by the exact method and the two approximation methods for K � 2. (b) Radii (i:e:,Vol(·)1=K) of the ellipsoids
generated by the three methods for different dimensions K.
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Proposition 2. Vol(Ezrh) ≥ Vol(Esmvie).
Proof. See the e-companion. w

3.1. Sets with Quadratic Constraints
Next, we provide a semidefinite programming ap-
proximation to (MVE) when the set P is defined by
affine, as well as quadratic inequalities. This general-
izes the approximation (12) developed for the case of
a polytope. Specifically, we consider the following set:

P � x ∈ RK : Sx ≤ t, ‖Qix+ qi‖2 ≤ 1 ∀i ∈ [I]
{ }

, (19)

where S ∈ RJ×K, t ∈ RJ, Qi ∈ SK, and qi ∈ RK. In the next
theorem, we derive sufficient conditions that an ellip-
soid E(A,b) contains the set P defined as in (19).

Theorem 4. LetthesetP be defined as in (19). Consider any
A ∈ SK++ and b ∈ RK. Then, an ellipsoid E(A,b) contains P
if there exist N ∈ RJ×J

+ , F ∈ SK, g ∈ RK, h ∈ R, λi ≥ 0 ∀i ∈
[I], αij ∈ RK,κij ∈ R ∀i ∈ [I] ∀j ∈ [J] such that

‖αij‖ ≤ κij ∀i ∈ [I] ∀j ∈ [J],
F g
g� h− 1

[ ]
�− S�NS +∑

i∈[I]
λiJi −

∑
i∈[I], j∈[J]

Mij(αij,κij),
F g A
g� h b�
A b I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0,

(20)

where

S � −S t
[ ] ∈ RJ×(K+1), Ji � Q2

i Q�
i qi

q�i Qi q�i qi − 1

[ ]
∈ SK+1 ∀i ∈ [I], and

Mij(α,κ) �
−1
2
Sj:α�Qi +QiαS

�
j:

( ) 1
2
tjQiα− (α�qi + κ)Sj:
( )

1
2
tjQiα− (α�qi + κ)Sj:
( )� (α�qi + κ)tj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∀i ∈ [I] ∀j ∈ [J]:
Proof. For the set P, the cone K as defined as in (2)
can be written as

K� [x;τ]∈RK+1 : τ≥0,Sx≤τt, ‖Qix+τqi‖2≤τ2 ∀i∈[I]
{ }

:

We show that the Conditions (20) imply the Con-
ditions (3), which proves the claim. Let

P � F g
g� h − 1

[ ]
:

Also, consider [x;τ] ∈K. From the first semidefinite
inequality, we have that

x
τ

[ ]�
P x

τ

[ ]
≤ x

τ

[ ]� −S�NS+∑
i∈[I]

λiJi−
∑

i∈[I], j∈[J]
Mij(αij)

( )
x
τ

[ ]
:

We show that all three terms in the expression on the
right-hand side are nonpositive. The first term is

nonpositive as shown in the proof of Theorem 2.
Next, observe that for all i ∈ [I], we have that
[x;τ]�Ji[x;τ] � ‖Qix+ τqi‖2 − τ2 ≤ 0, because [x;τ] ∈ K.
Also,

[x;τ]�Mij(αij)[x;τ]� (τtj−S�j: x)(τκij+α�
ij (Qix + τqi))≥0:

The previous inequality follows because both terms in
the product are nonnegative because Sx ≤ τt and τκij +
α�
ij (Qix+ τqi) ≥ τκij − ‖αij‖ ‖Qix+ τqi‖ ≥ τκij − τκij � 0:

Hence, [x;τ]�P[x;τ] ≤ 0 ∀[x;τ] ∈K, which implies
that P�C(K)0: Hence, the claim follows. w

Theorem 4 implies that the following SDP serves as
a restriction to (MVE):

minimize −logdet(A)
subject to A∈SK, b∈RK, F ∈ SK, g ∈RK, h∈R,

N ∈RJ×J
+ , λi ≥ 0 ∀i∈ [I], αij ∈RK,

(20) holds:
(21)

Remark 5. The approximation discussed is motivated
by the relaxation linearization technique discussed in
Anstreicher (2009) and Sherali and Adams (2013) and
SOC-RLT constraints discussed in Burer and
Anstreicher (2013).

4. Application to Distributionally Robust
Optimization

In this section, we demonstrate how our approximation
to (MVE) can be used to obtain good solutions to the
two-stage DROmodel with random recourse given by

inf
x∈X c�x+ sup

Q∈Q
EQ[R(x, ξ̃)]

{ }
, (22)

where

R(x,ξ) � inf
y

(Dξ+d)�y
s:t: Tℓ(x)�ξ+hℓ(x) ≤ (Wℓξ+wℓ)�y ∀ℓ ∈ [L]:

(23)

Here, x ∈ RN1 and y ∈ RN2 represent the first- and
second-stage decision variables, respectively; X is a
set defined by tractable convex constraints on x; and
ξ ∈ RK is the vector of uncertain parameters. Also,
c ∈ RN1 ,D ∈ RN2×K,Wℓ ∈ RN2×K,d ∈ RN2 , and wℓ ∈ RN2

are problem parameters. The functions Tℓ : X → RK

and hℓ : X → R are affine in the input parameter. We
consider the following moment-based ambiguity set:
Q � {Q ∈Q0(Ξ) : EQ[ξ̃] � µ, EQ[ξ̃ξ̃�]�Σ}, where Ξ �
{ξ ∈ RK : Sξ ≤ t} is the bounded support set and Q0(Ξ)
is the set of all probability measures supported on Ξ.
The objective function minimizes the sum of the first
stage and the expected recourse cost, where the expec-
tation is taken with respect to the worst case distribu-
tion among those in the ambiguity set Q. The results
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presented here can be extended to other types of ambigu-
ity sets, including the simpler case where Q �Q0(Ξ) (i.e.,
robust optimization) (Bertsimas and Dunning 2016, Xu
and Burer 2018), the more sophisticated data-driven Was-
serstein ambiguity set (Hanasusanto and Kuhn 2018), and
the classical stochastic programming setting.

Problem (22) can be written equivalently as

inf
x,y(·)

c�x+sup
Q∈Q

EQ[(Dξ+d)�y(ξ)],
s:t: x∈X ,

Tℓ(x)�ξ+hℓ(x)≤(Wℓξ+wℓ)�y(ξ) ∀ξ∈Ξ,∀ℓ∈[L],
(24)

where the second-stage decision variable y is a func-
tion of the uncertain parameters ξ. Problem (24) is
difficult to solve. To generate a tractable approxima-
tion to (24), we explore the use of PLD rules.
Specifically, we partition Ξ into regions Ξ1, : : : ,ΞJ and
restrict y(·) to be of the form y(ξ) � Y jξ+ yj if ξ ∈ Ξj,
where Y j ∈ RN2×K and yj ∈ RN2 . For constructing the
partitions, we start with a set of constructor points
{ξj}j∈[J] in Ξ. Then, we define the partition Ξj to be the
set of all points in Ξ that are closer to ξj than any other
constructor point. In other words,

Ξj �{ξ∈RK :Sξ≤t, ‖ξ−ξj‖≤‖ξ−ξi‖∀i∈[J],i≠ j}
�{ξ∈RK :Sξ≤t, 2(ξi−ξj)�ξ≤ξ�i ξi−ξ�j ξj ∀i∈[J],i≠ j}
�{ξ∈RK :Sjξ≤tj},

where the matrix Sj ∈ RLj×K and the vector tj ∈ RLj are
formed by combining the linear constraints in the defini-
tion of Ξj. These partitions are known as Voronoi regions.

Because of random recourse (i.e., uncertainty in the
coefficients of y(·)), finding the optimal PLD rule is
NP hard, even if there is only one piece (Ben-Tal et al.
2004). However, we can approximate the problem of
finding the optimal PLD rule using the S procedure.
However, we need a quadratic constraint in the
definition of Ξj for an effective application of S
procedure (see Remark A.1 in Appendix A). To this
end, let E(Aj,bj) be an ellipsoid that contains Ξj.
Because Ξj is a polytope, we can exploit the results
developed in Section 3 to find E(Aj,bj). We
can write Ξj equivalently as Ξj � {ξ ∈ RK : Sjξ ≤ tj,
‖Ajξ+ bj‖2 ≤ 1}. We illustrate the procedure of parti-
tioning and covering with ellipsoids in Figure 2.

In the next proposition, we derive a tractable SDP
that generates a feasible PLD rule. The optimal value
of the resulting SDP approximation provides an upper
bound to the optimal value of (24). In Example 2
presented after the proposition, we demonstrate that
the size of the bounding ellipsoids E(Aj,bj) can drasti-
cally impact the upper bound provided by the SDP
approximation; in particular, the tighter the ellipsoids,
the better the upper bound.

Figure 2. Voronoi Regions

Notes. The outer square represents the support set, and the black dots are the constructor points. The points are used to construct partitions, and
an ellipsoid containing each partition is found by solving the SDP (12).
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Proposition 3. Consider the following SDP:

inf c�x + α + β�µ + tr(ΓΣ)
s:t: x ∈ X , Γ ∈ SK+, β ∈ RK, α ∈ R,

Y j ∈ RN2×K, yj ∈ RN2 , γj ∈ R
Lj
+ , δj ∈ R+ ∀j ∈ [J],

λjℓ ∈ R+, ρjℓ ∈ R
Lj
+ ∀j ∈ [J] ∀ℓ ∈ [L],

Γ
1
2
β

1
2
β� α

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ −

1
2
(D�Y j + Y�

j D) 1
2
(D�yj + Y�

j d)
1
2
(D�yj + Y�

j d)� d�yj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+Pj(γj) + δjJj � 0 ∀j ∈ [J],
1
2
(W�

ℓ Y j + Y�
j Wℓ) 1

2
(W�

ℓ yj + Y�
j wℓ)

1
2
(W�

ℓ yj + Y�
j wℓ)� w�

ℓ yj

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−Mℓ(x) + Pj(ρjℓ) + λjℓJj � 0 ∀j ∈ [J] ∀ℓ ∈ [L], (25)

where

Mℓ(x) �
0

1
2
Tℓ(x)

1
2
Tℓ(x)� hℓ(x)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Pj(ρ) �
0

1
2
S�j ρ

1
2
ρ�Sj −t�j ρ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, and Jj �

A2
j A�

j bj
b�j Aj b�j bj − 1

[ ]
:

Let y(ξ) � Y jξ+ yj if ξ ∈ Ξj. Then, (x,y(·)) provides a
feasible solution to (24). Furthermore, the optimal value of
(25) provides an upper bound to the optimal value of (24).

Proof. See the e-companion. w

Example 2. Consider the following special case of (24):

z � inf
x,y(·)

x

s:t: 1 ≤ (ξ + e)�y(ξ) ≤ x ∀ξ ∈ Ξ,
(26)

where Ξ � {ξ ∈ RK : 0 ≤ ξ ≤ e} is the unit hypercube
and J � 1. This problem is a special case of (24) with
L � 2, D � 0, d � 0, W1 � I, w1 � e, T1(x) � 0, h1(x) � 1,
W2 � −I, w2 � −e, T2(x) � 0, and h2(x) � −x: The true
optimal value is z � 1, which is obtained by the
nonlinear decision function y(ξ) � (ξ+ e)=‖ξ+ e‖2. In
this case, Emve � {ξ ∈ RK : ‖ξ− e=2‖2 ≤N=4}. For s ≥ 0,
let z(s) be the upper bound generated by the SDP
approximation when {ξ ∈ RK : ‖ξ− e=2‖2 ≤N(1+ s)=4}
is used as the bounding ellipsoid. In the
e-companion, we show that

z(s) �
9=(8− s) if 0 ≤ s ≤ 2,
1+ s=4 if 2 ≤ s ≤ 4,
2 if 4 ≤ s:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Therefore, the linear decision rule (LDR) obtained with
Emve generates an objective value of z(0) � 9=8 � 1:125.
The objective value z(s) increases as the size of the

ellipsoid increases. The case when s approaches ∞
corresponds to dropping the ellipsoidal constraint;
in that case, we obtain an objective value of
lims→∞z(s) � 2. Hence, ignoring the ellipsoidal con-
straint can increase the suboptimality of the deci-
sion rules approximation from 12.5% to 100%.

Example 2 demonstrates the importance of generat-
ing good outer ellipsoids. We further elaborate on this
point in Section 5.2, where we perform experiments on
randomly generated instances of an inventory manage-
ment model. We note that the task of finding the outer
ellipsoids E(Aj,bj) can be parallelized, which leads to a
substantial reduction in the computation time.

Remark 6 (Two-Stage Stochastic Programming). In the
classical stochastic programming setting, the random
parameters ξ̃ are assumed to be governed by a known
distribution P. The semiinfinite constraints in (24)
remain unchanged and can be approximated in the
same manner using the S procedure. On the other
hand, the worst case expectation in the objective
function of (24) reduces to the expectation EP[(Dξ̃+
d)�y(ξ̃)]. Applying the law of total expectation and
employing the proposed PLD rules, we can reformu-
late the expectation as∑

j∈[J]
P(ξ̃ ∈ Ξj)EP (Dξ̃ + d)�y(ξ̃) | ξ̃ ∈ Ξj

[ ]
� ∑

j∈[J]
P(ξ̃ ∈ Ξj)EP (Dξ̃ + d)�(Y jξ̃ + yj) | ξ̃ ∈ Ξj

[ ]
� ∑

j∈[J]
P(ξ̃ ∈ Ξj) tr D�Y jEP[ξ̃ξ̃� | ξ̃ ∈ Ξj]

( )(
+(y�j D+ d�Y j)EP[ξ̃ | ξ̃ ∈ Ξj] + d�yj):

This expression is affine in the decision variables Y j

and yj, j ∈ [J]. Note that the partition probabilities
P(ξ̃ ∈ Ξj), j ∈ [J], and conditional moments EP[ξ̃ | ξ̃ ∈
Ξj] and EP[ξ̃ξ̃� | ξ̃ ∈ Ξj], j ∈ [J], can be estimated using
the Monte Carlo sampling method.

5. Numerical Experiments
In this section, we present numerical experiments that
demonstrate the improved performance of our
scheme for approximating (MVE) over the existing
methods. First, we show that our approach outper-
forms the existing approaches in terms of solution
quality and computational time on randomly generat-
ed polytopes. Second, we demonstrate the efficacy of
our method in generating quality solutions for a
distributionally robust inventory management model.
All optimization problems are solved using the
YALMIP interface (Löfberg 2004) on a 16-core, 3.4-
GHz computer with 32 GB RAM. We use MOSEK 8.1
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to solve SDPs and CPLEX 12.8 to solve nonconvex
quadratic programs to optimality.

5.1. Random Polytopes
Here, we compare our method of approximating
(MVE) with (i) the constraint generation approach
(Gotoh and Konno 2006), (ii) the SMVIE approach,
and (iii) the method using sufficient conditions pro-
posed by Kellner et al. (2013). We refer to the last
method as the KTT approach and denote the corre-
sponding ellipsoid by Ektt (see Appendix B for details
on the formulation).

For our experiments, we generate polytopes ran-
domly as follows. We start with the hyperrectangle
{x ∈ RK : 0 ≤ x ≤ e} with center c � e=2. Then, we add
M linear inequalities in the following way. For j ∈ [M],
we generate a vector sj ∈ RK uniformly distributed on
the surface of the unit hypersphere. We generate a
distance rj uniformly at random from the interval
[−‖sj‖1=2, ‖sj‖1=2] and add the constraint s�j (x− c) ≤ rj
if rj > 0 and s�j (x− c) ≥ rj if rj ≤ 0. Choosing rj from the
specified interval leads to a constraint that cuts the
hyperrectangle (i.e., the constraint is not redundant).
Also, the construction ensures that the polytope is
nonempty because c satisfies all the constraints.

For several values of K, we solve the problem exactly
and apply each approximation method on 50 randomly
generated instances for M � K, 2K, 3K. We report the
suboptimality results of the three approximation methods
in Table 1. For higher values of K, for which we were not
able to solve the problem exactly within 30 minutes, we
report the suboptimality of the radius of Esmvie and Ektt
with respect to Esdp in Table 2. Finally, the solution times
of different methods are reported in Table 3. We do not
report the solution time of the SMVIE approach. Even for
the largest problem size that we solved, the SMVIE
approach produces solutions in less than two seconds,
dominating every other approach.

It can be observed that the radius (and therefore,
volume) of Esdp is significantly lower than that of
Esmvie. Furthermore, the suboptimality of the radius of
Esmvie relative to that of Esdp increases with the dimen-
sion K (from 246% for K � 15 to 481% for K � 40). This

is perhaps because the scale factor of K becomes very
conservative for higher values of K. This increase in
solution quality of Esdp comes at the cost of higher
solution times compared with that of finding Esmvie.

We also observe that the radius of Esdp is slightly
better than that of Ektt; the solution time, however, is
significantly lower (one to two orders of magnitude). As
an example, for K �M � 30, the KTT approach does not
provide solutions within 30 minutes, whereas our meth-
od generates an solution in 13.7 seconds on average.

Finally, we observe that for small problem instan-
ces, our method finds a solution much faster than
solving the problem to optimality. For higher-
dimensional problems (K > 15), where solving the
problem exactly becomes intractable, our approxima-
tion continues to provide ellipsoids of lower volume
than the other approximation methods.

5.2. Risk-Averse Inventory Management
Next, we consider an inventory management problem,
where we decide the purchase amount of N products
before observing their demands. We incur a holding cost
if we purchase more than the demand and a stockout
cost if we purchase less than the demand. We assume
that the demands and the stockout costs are random.
The objective is to minimize the worst case conditional
value at risk (CVaR) (Rockafellar and Uryasev 2000,
Natarajan et al. 2009, Zhu and Fukushima 2009) of the
total cost. We can write the model as follows:

minimize sup
Q∈Q

Q-CVaRε[R(x, ξ̃, s̃)]
subject to x ∈ RN, x ≥ 0, e�x ≤ B,

where

R(x, ξ, s) � inf g�y1 + s�y2
s:t: y1 ∈ RN

+ ,y2 ∈ RN
+ ,

y1 ≥ x − ξ, y2 ≥ ξ − x:

Here, the variables x, y1, and y2 represent the vector
of purchase decisions, excess amounts, and shortfall

Table 1. Random Polytopes: Mean Suboptimality of the
Radii of Esdp (“Copos”), Ektt (“KTT”), and Esmvie (“SMVIE”)
for Different Problem Sizes

K

M � K, % M � 2K, % M � 3K, %

Copos KTT SMVIE Copos KTT SMVIE Copos KTT SMVIE

2 3.41 4.68 34.3 5.20 6.48 32.8 5.33 6.63 31.9
5 4.88 7.02 105 9.92 13.16 91.9 13.2 16.4 93.7
10 2.53 3.72 188 7.48 9.51 176 13.6 16.9 164
15 1.29 1.84 250 5.57 7.16 230 N/A N/A N/A

Note. We use “N/A” when the problem cannot be solved to
optimality within 30 minutes.

Table 2. Random Polytopes: Mean Suboptimality of the
Radii of Ektt (“KTT”) and Esmvie (“SMVIE”) Relative to Esdp
for the Cases That Could Not Be Solved to Optimality
Within 30 Minutes

K

M � K, % M � 2K, % M � 3K, %

KTT SMVIE KTT SMVIE KTT SMVIE

15 0.54 246 1.50 212 2.07 191
20 0.30 310 1.01 268 1.65 245
25 0.28 357 0.66 318 — 292
30 — 401 — 364 — 329
35 — 440 — 405 — 372
40 — 481 — 447 — 414

Note. We use — for the cases when the KTT approach does not
provide a solution within 30 minutes.
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amounts, respectively. The vector g ∈ RN represents
the known holding costs, and B denotes budget on the
total purchase amount. Also, ξ ∈ RN and s ∈ RN are
random parameters, which represent the vectors of
demand and stockout costs, respectively. The ambigu-
ity setQ is as described in Section 4. By employing the
definition of CVaR, it can be shown that the problem
is equivalent to

minimize κ+1
ε
sup
Q∈Q

EQ[τ(ξ̃, s̃)]
subject to κ ∈R, x∈RN, x≥ 0, e�x≤B,

τ(ξ,s) ≥ 0, y1(ξ,s) ≥ 0, y2(ξ,s) ≥ 0,
τ(ξ,s) ≥ g�y1(ξ,s)+ s�y2(ξ,s)−κ,
y1(ξ,s) ≥ x−ξ, y2(ξ,s) ≥ ξ−x

}
∀(ξ,s) ∈Ξ,

(27)

which is of the form (25) (Shapiro and Kleywegt 2002,
Hanasusanto et al. 2015).

We generate the parameters for this problem as
follows. We use n � 7 products, which leads to 2N � 14
random parameters. We choose Ξ � {[ξ; s] : ξl ≤
ξ ≤ ξu,sl ≤ s ≤ su}, and ε � 5%. We partition Ξ into J � 4
regions and select the constructor points {[ξj; sj]}j∈[J] by
sampling uniformly at random from Ξ. We choose B �
30, ξl � 0, ξu � 10e, sl � 8e, su � 12e. For constructing
the ambiguity set, we use µ � [µξ;µs] ∈ R2N, where
µs � 10e, and every element of µξ is generated
uniformly from the interval [0, 2]. We select a random
correlation matrix C ∈ S2N+ with the MATLAB command
“| gallery(′randcorr′, 2 ∗N) |” and set Σ �Diag(σ)
C Diag (σ) +µµ�, where σ � [σξ;σs] ∈ R2N, σs � e=2,
and σξ � µξ=4.

We approximate (27) using our proposed SDP (25),
where the ellipsoids E(Aj,bj) are generated using the
SDP (12) developed in Section 3. We refer to this
approach here as PWL. We compare the solution time

and quality of the PWL approach with those of the
following schemes.

• PWS (Bertsimas and Dunning 2016). Here, the
second-stage decision variables are restricted to be cons-
tant within each partition (i.e., Y j � 0 in Proposition 3).
This approach leads to a tractable approximation and to
the best of our knowledge, is the state of the art for
solving DRO problemswith random recourse.

• LDRs. This is similar to PWL except we do not
partition the support set (i.e., J � 1). We compare
against LDR to demonstrate the advantage of partition-
ing the support set.

• Ellipsoids of double radius (PWL-2). To demon-
strate the importance of the size of the ellipsoid, we
present comparisons against the scheme similar to
PWL, except we double the radii of the ellipsoids
E(Aj,bj) used in PWL.

We perform the experiment on 100 randomly gener-
ated instances and present the relative objective gaps in
Table 4. We also report the average solution times in
Table 5. We assume that we can parallelize the task of
generating the ellipsoids for each partition on four
machines. Because we consider J � 4, for the solution
time of the PWL approach, we choose the maximum
among the solution times to find the four ellipsoids and
add that to the solution time of solving the SDP (25).

The results indicate that we outperform the other
methods in terms of the quality of the approximation.
We observe that neglecting the linear term in the
decision rules (i.e., using static decision rules) can lead
to 75% increase in the objective value. Thus, although
static decision rules lead to a tractable formulation
that requires less computational time, they also gen-
erate significantly worse solutions. Furthermore, not
partitioning the support set can lead to 24% higher
objective values. Finally, doubling the radii of the
bounding ellipsoids can increase the objective by
47%. For two-stage DRO models with random re-
course, these results exhibit the importance of (i)
using piecewise linear (PWL) instead of piecewise
static decision rules, (ii) partitioning the support set,
and (iii) having good ellipsoidal approximations to
the partitions of the support set. The improvement
in solution quality comes at the expense of increased
computational time. However, if one is willing to
spend computational resources, significant improve-
ment in the solution quality can be achieved by
using our method.

Table 3. Random Polytopes: Mean Solution Times (in
Seconds) of the Exact Method (“Exact”), Our Proposed
Method (“Copos”), and the KTT Approach (“KTT”) for
Different Problem Sizes

K

M � K M � 2K M � 3K

Exact Copos KTT Exac Copos KTT Exact Copos KTT

2 1.52 0.004 0.011 1.53 0.005 0.027 1.69 0.005 0.059
5 8.56 0.014 0.036 9.13 0.023 0.073 9.59 0.050 0.096
10 72.6 0.106 0.925 81.7 0.290 2.09 133 0.754 3.78
15 406 0.542 10.0 1,191 1.82 25.8 — 5.21 49.7
20 — 2.01 73.2 — 7.60 210 — 22.2 438
25 — 5.65 368 — 22.8 1,067 — 68.0 —
30 — 13.7 — — 54.7 — — 207 —
35 — 28.8 — — 133 — — 492 —
40 — 53.2 — — 302 — — 1,155 —

Note. We use — when the corresponding method does not provide
a solution within 30 minutes.

Table 4. Inventory Management: Objective Gaps of Other
Models Relative to the PWL Model

Statistic PWS, % LDR, % PWL-2, %

Mean 75.1 24.5 47.4
10th percentile 33.3 1.23 25.6
90th percentile 130 49.4 71.4
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6. Conclusions
In this article, we propose a GC reformulation for the
minimum volume ellipsoid problem. We use that
reformulation to generate tractable approximations
when the set is defined by affine and quadratic inequal-
ities. We prove that the volume of the ellipsoids that
our approach provides never exceeds the volume of
Esmvie. Furthermore, we demonstrate empirically that
our method performs better than the other competing
schemes for providing approximate solutions to the
MVEP, in terms of solution time and quality. Finally,
we use our method to efficiently generate high-quality
approximations in the context of distributional robust
optimization and linear dynamical systems.

The work presented in this paper leaves room for
further investigation. First, it would be interesting to
study the suboptimality bounds of the radii of the
ellipsoids generated by our method. In particular,
for Esmvie, it is known that Radius(Esmvie) ≤
K · Radius(Emve). It would be interesting to see if a
better upper bound can be proved for the radius of
Esdp. A second possible direction is to utilize the GC
reformulation to generate approximation for other
types of sets. Studying such approximations would
add to the entire copositive programming literature
and not only to the minimum volume ellipsoid
problem.
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Appendix A. S Procedure
In this section, we discuss the S procedure (Boyd et al.
1994, Ben-Tal and Nemirovski 2001) and its use in
approximating (MVE).

Lemma A.1 (S Procedure).
Let Qi ∈ SK,qi ∈ RK, ri ∈ R, i ∈ {0}⋃ [I]. Then, the optimal val-
ue of the nonconvex quadratic optimization problem

minimize x�Q0x+ 2q�0 x+ r0
subject to x ∈ RK,

x�Qix+ 2q�i x+ ri ≤ 0 ∀i ∈ [I]
(A.1)

is ≥ 0 if there exist λi ≥ 0 ∀i ∈ [I] such that
Q0 q0
q�0 r0

[ ]
+∑

i∈[I]
λi

Qi qi
q�i ri

[ ]
� 0: (A.2)

The S procedure has been used in literature to provide
sufficient conditions that certify that the optimal value of

a nonconvex quadratic problem is nonnegative (Boyd et al.
1994, Ben-Tal et al. 2002, Hanasusanto and Kuhn 2018). In the
following remark, we discuss a special case when we only
have linear inequalities in the Optimization Problem (A.1).

Remark A.1. In the case when all the constraints are linear
(i.e., Qi � 0, i ∈ [I]), the semidefinite Constraint (A.2) reduces to

Q0 q0 +
∑
i∈[I]

λiqi

q�0 +∑
i∈[I]

λiqi r0 +
∑
i∈[I]

λiri

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦� 0,

which implies that Q0�0. Therefore, if Q0 is not positive
semidefinite, then the sufficient conditions are never feasi-
ble; hence, they do not provide any certification on the
optimal value of (A.1). We can overcome this limitation by
adding a redundant quadratic constraint ‖Ax+ b‖2 ≤ 1 to the
Original Problem (A.1). Doing so does not change the
optimal value of (A.1), but the sufficient Conditions (A.2)
can now be written as

Q0 q0 +
∑
i∈[I]

λiqi

q�0 +∑
i∈[I]

λiqi r0 +
∑
i∈[I]

λiri

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ +μ

A2 Ab
b�A b�b

[ ]
� 0:

Because of the additional variable μ, the conditions
become more flexible and might be feasible even if Q0
fails to be positive semidefinite.

Next, we use the S procedure to derive an approximation
to (MVE). The constraint Z(A,b) ≤ 1 can be written as

inf
x∈P −x�A2x− 2b�Ax+ 1− b�b{ } ≥ 0:

Using Lemma A.1 and the definition of P from (19), the
inequality is satisfied if there exist variables µ ∈ RJ

+ and
λi ≥ 0 ∀i ∈ [I] such that

− A2 Ab
b�A b�b−1

[ ]
+

0
1
2
S�µ

1
2
µ�S −µ�t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦+

∑I
i�1

λi
Q2

i Qiqi
q�i Qi q�i qi−1

[ ]
� 0,

which—using the Schur complement—is satisfied if
and only if

0
1
2
S�µ A

1
2
µ�S 1−µ�t b�

A b I

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦+

∑I
i�1

λi

Q2
i Qiqi 0

q�i Qi q�i qi−1 0
0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦� 0: (A.3)

Hence, by replacing the constraint Z(A,b) ≤ 1 in (MVE)
with a stronger Constraint (A.3), we get the following
conservative approximation of (MVE):

minimize −logdet (A)
subject to A ∈ SK,b ∈ RK, µ ∈ RJ

+, λi ∈ R+ ∀i ∈ [I],
(30)holds:

Appendix B. The Containment Approach of
Kellner et al. (2013)

In Kellner et al. (2013), the authors provide the following
sufficient conditions such that a set representable as a
linear matrix inequality contains another such set.

Table 5. Inventory Management: Average Solution Times
of the Models (in Milliseconds)

Statistic PWL PWS LDR PWL-2

Solution time (ms) 622 91.8 219 617

Mittal and Hanasusanto: MVE via Copositive Programming
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Theorem B.1 (Kellner et al. 2013, theorem 4.3).
Let the set SY � {x ∈ RK : Y0 +∑

k∈[K]xkYk�0} and the set
SZ � {x ∈ RK : Z0 +∑

k∈[K]xkZk�0}, where Yk � (Yk
ij) ∈ SJ and

Zk ∈ SL for all k ∈ {0}⋃[K]. Then, SY ⊆ SZ if there exist
matrices Cij ∈ RL×L, i, j ∈ [J], such that the following constraints
hold:

C � (Cij)Ji,j�1 � 0, Z0 �
∑J
i, j�1

Y0
ijCij,

Zk �
∑J
i, j�1

Yk
ijCij ∀k ∈ [K]:

(B.1)

We summarize how we use this result to generate an
approximation to Emve. We are interested in finding
conditions under which a polytope P :� {x ∈ RK : Sx ≤ t} �
{x ∈ RK :Diag(t− Sx)�0} is contained in an ellipsoid
E(A,b) � {x ∈ RK : ‖Ax+ b‖2 ≤ 1} � {x ∈ RK : F(x)�0}, where

F(x) � I Ax+ b
(Ax+ b)� 1

[ ]
� I b

b� 1

[ ]
+∑K

k�1
xk

0 Ak:
A�

k: 0

[ ]
:

Now, we can use Theorem B.1 with SY � P and SZ � E(A,b)
to generate constraints that ensure that E(A,b) contains P.
Because the matrices Y0 �Diag(t) and Yi � −Diag(Si) are
diagonal, the variables Cjk, j≠ k do not appear in the second
and third constraints of (B.1). Therefore, we can eliminate
these variables from the first constraint as well, by forcing
Cjj�0. In light of this observation and by redefining Cjj as
Cj, we can rewrite the Constraints (B.1) as

Cj ∈ SK+1+ ∀j ∈ [J], I b
b� 1

[ ]
�

∑
j∈[J]

tjCj,

0 Ak:
A�

k: 0

[ ]
�∑

j∈[J]
−SjkCj ∀k ∈ [K]: (B.2)

Minimizing −logdet (A) subject to the constraints in (B.2)
provides a conservative SDP approximation to (MVE).
The elimination of these redundant variables leads to a
tremendous increase in the solution speed.

References
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