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Distributionally Robust Chance-Constrained Optimal
Transmission Switching for Renewable Integration

Yuqi Zhou , Member, IEEE, Hao Zhu , Senior Member, IEEE, and Grani A. Hanasusanto

Abstract—Increasing integration of renewable generation poses
significant challenges to ensure robustness guarantees in real-time
energy system decision-making. This work aims to develop a ro-
bust optimal transmission switching (OTS) framework that can
effectively relieve grid congestion and mitigate renewable curtail-
ment. We formulate a two-stage distributionally robust chance-
constrained (DRCC) problem that assures limited constraint viola-
tions for any uncertainty distribution within an ambiguity set. Here,
the second-stage recourse variables are represented as linear func-
tions of uncertainty, yielding an equivalent reformulation involv-
ing linear constraints only. We utilize moment-based (mean-mean
absolute deviation) and distance-based (∞-Wasserstein distance)
ambiguity sets that lead to scalable mixed-integer linear program
(MILP) formulations. Numerical experiments on the IEEE 14-bus
and 118-bus systems have demonstrated the performance improve-
ments of the proposed DRCC-OTS approaches in terms of guar-
anteed constraint violations and reduced renewable curtailment.
In particular, the computational efficiency of the moment-based
MILP approach, which is scenario-free with fixed problem dimen-
sions, has been confirmed, making it suitable for real-time grid
operations.

Index Terms—Chance constraint, distributionally robust,
optimal transmission switching, renewable generation.

I. INTRODUCTION

R ISING renewable penetration in recent years greatly chal-
lenges the efficient and reliable operations of power sys-

tems. With the increasing uncertainty from renewables, robust
decision-making, such as grid topology optimization [1], is of
great importance. Judicious line switching along with generation
dispatch can potentially reduce generation costs and renewable
curtailment level, yet at possible violations of operational limits
(e.g., line power flows). Thus, it is imperative to design optimal
transmission switching (OTS) algorithms that ensure guaranteed
robustness under the uncertain renewables.

The OTS problem has attracted high interest in recent years in
its algorithm design and practical implementations (e.g., [2], [3],
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[4], [5]). The switching of transmission lines expands the fea-
sible region for generation dispatch decisions and thus relieves
grid congestion. Therefore, it can potentially adapt to the varying
power transfer needed for renewable generation and reduce the
level of renewable curtailment. For example, over 7000 MW of
wind capacity was installed in Texas from 2006 to 2009, but
major transmission congestion was experienced [6]. Transmis-
sion constraints have resulted in excessive wind curtailment,
as reported in [7], [8]. Thus, efficiently solving OTS is of great
importance to enhance the penetration level of renewable energy
to the grid.

As the OTS problem includes additional integer decision vari-
ables, extending it to a stochastic/robust optimization framework
is more difficult than that for optimal power flow (OPF). Similar
to OPF, scenario-based approaches have been largely used to
deal with the OTS problem under uncertainty. For example,
stochastic topology optimization has been considered in [9], [10]
based on wind uncertainty scenarios from known probabilistic
models. In addition, the chance-constrained (CC) framework has
been developed for the OTS problem in [11], aiming to attain
guaranteed constraint violation for a given uncertainty distribu-
tion using the sample-average approximation (SAA) approach.
Nonetheless, constructing an accurate distribution for the un-
certainty in energy resources can be extremely challenging in
practice. Moreover, these approaches typically lead to a mixed-
integer program (MIP) in which the problem dimensions quickly
grow with the number of samples. This scalability issue results in
high computational complexity and makes these scenario-based
approaches sub-par for real-time OTS decision-making.

To tackle the scalability issue with scenario-based ap-
proaches, some robust/stochastic OTS work [12], [13], [14]
invokes a repeating procedure of adding cuts to a master problem
using sub-problem solutions. Nonetheless, their computational
efficiency can still be problematic while the optimality guarantee
is unclear. Instead, our earlier work [15] has proposed a robust
OTS algorithm by using the linear decision rule (LDR) technique
to approximate second-stage variables, seeking to maintain
the operating limits for any uncertainty within a compact set.
Even though LDR constitutes merely a linear approximation,
the resultant mixed-integer linear program (MILP) has a fixed
problem dimension and is efficient to solve. Nonetheless, its
robustness under all possible uncertainty scenarios makes the so-
lution unnecessarily conservative. In addition, recent work [16]
has considered the distributionally robust chance-constrained
(DRCC) OTS problem to account for the ambiguity of un-
certainty distribution. Nonetheless, the linearized OTS model
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therein builds upon line outage sensitivity factors and cannot
accurately include multiple, simultaneous topology changes.

Our work aims to provide computationally efficient algo-
rithms for solving the DRCC-OTS problem by developing
equivalent reformulations. Notably, we consider an equivalent
linear reformulation for the integer line status and dc power
flow variables. We analytically establish that for the two-stage
OTS under linear generation response, the recourse actions (line
flows and phase angles) can be represented as linear functions
of the uncertainty variables. This linear OTS model is crucial for
tractable DRCC reformulation through dualization. Compared
to CC-OTS, the proposed DRCC framework seeks dispatch
and switching decisions that are robust against the worst-case
uncertainty distribution from within a prescribed ambiguity set.
Thus, it greatly expands the possible probabilistic models, where
variations of uncertainty distributions are common in real-world
settings due to the lack of data samples or high variability. The
DRCC approaches are of particular importance for enhancing
renewable integration because they can provide guaranteed ro-
bustness performance as demonstrated by our numerical tests.
To provide tractable DRCC-OTS solutions, this work considers
moment-based (mean-mean absolute deviation) and distance-
based (Wasserstein distance) ambiguity sets for the renewable
uncertainty, both of which are amenable to linear reformulations.

The contribution of our work is three-fold.
� We put forth a two-stage DRCC-OTS problem under re-

newable uncertainty that models real-time linear adjust-
ment of generation output.

� For the proposed two-stage OTS problem, we analytically
establish an equivalent LDR-based reformulation by rec-
ognizing that recourse actions are exactly linear in the
uncertainty for given first-stage decision variables.

� We are the first to construct scalable DRCC-OTS problems
using the mean dispersion and the ∞-Wasserstein ambi-
guity sets, both leading to MILP reformulations through
dualization-based analysis.

Numerical tests demonstrate the proposed DRCC-OTS solu-
tions can effectively limit the constraint violations and reduce
curtailment under renewable uncertainty, greatly improving the
robustness guarantees over CC-OTS. Furthermore, the moment-
based DRCC-OTS approach is scenario-free and efficiently
solvable, hence very suitable for real-time grid operations.

The rest of the paper is organized as follows. Section II
formulates the OTS problem based on the dc power flow model.
Section III introduces the linear equivalent reformulation of
the two-stage robust OTS problem. For comparison purposes,
two benchmark CC-OTS approaches with conic reformulations
are considered and a linear program is further presented for
quantifying the benefits of renewable curtailment for each given
approach. Section IV presents the DRCC-OTS algorithms using
both moment-based and distance-based ambiguity sets. Numer-
ical experiments using the IEEE 14-bus and 118-bus systems
are presented in Section V to demonstrate the improvements
of the proposed DRCC-OTS algorithms in terms of guaranteed
robustness and computational efficiency. The paper is wrapped
up in Section VI.

Notation: Bold symbols stand for matrices/vector and un-
bolded symbols stand for scalars; (·)T stands for transposition;
| · | denotes the absolute value; ‖ · ‖ denotes the vector norm;
◦ denotes the Hadamard product; e denotes the vector of all
ones; ei denotes the standard basis vector with all entries being
0 except for the i-th entry equals to 1; 1 denotes the indicator
function;M+ denotes the set of nonnegative measures.

II. SYSTEM MODELING

We first present the dc power flow based optimal transmis-
sion switching (OTS) formulation [1]. Consider a transmission
system with N buses collected in the setN := {1, . . . , N} and
L lines in L := {(i, j)} ⊂ N ×N . Let θi denote the voltage
angle per bus i and the vector θ ∈ RN collect all θi’s. Similarly,
let g, d ∈ RN denote the vectors of nodal generation and load,
respectively. The line flow f := [{fij}] ∈ RL becomes

f = Kθ (1)

where the matrix K ∈ RL×N is formed by the topology and
line parameters. Specifically, its row for line (i, j) equals to
bij(ei − ej)

T, with bij being the inverse of line reactance and
ei the i-th standard basis vector. Furthermore, the nodal power
balance leads to the total injection p := g − d as:

p = Af (2)

where A ∈ ZN×L corresponds to the graph incidence matrix
for (N ,L), with the column for line (i, j) set to (ei − ej).

The OTS problem aims to determine the connectivity of
transmission lines so as to minimize the total generation cost for
a given load d. For simplicity, we consider a linear generation
cost (as in [1], [2], [17]) and use c ∈ RN to denote the vector
of (known) linear cost coefficients. In addition to the dispatch
g, the OTS’s decision variables include a binary vector z ∈ RL

to indicate the transmission line status (1: closed, 0: open). The
OTS problem is formulated as a mixed-integer linear program
(MILP), given by

min cTg (3a)

s.t. g ∈ RN ,θ ∈ RN ,f ∈ RL, z ∈ ZL (3b)

g ≤ g ≤ g (3c)

θ ≤ θ ≤ θ (3d)

f ◦ z ≤ f ≤ f ◦ z (3e)

Af = g − d (3f)

Kθ − f +M ◦ (e− z) ≥ 0 (3g)

Kθ − f −M ◦ (e− z) ≤ 0 (3h)

eTz ≥ L− Lo (3i)

where constraints on generation, angle and line flow in (3c)–(3e)
enforce the system operating limits. We use ◦ to denote the
component-wise product (or Hadamard product), which is used
in (3e) to enforce the limits on closed lines only according to
z. For any open line (zij = 0), its flow fij becomes zero under
(3e). Additionally, the constraint (3f) enforces network power
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balance as in (2). As for constraints (3g) and (3h), they jointly
represent the line flow model in (1) where the vectorM has each
entry Mij for each line (i, j) to be a sufficiently large constant.
For any closed line (zij = 1), the two inequalities exactly lead
to the equality constraint as in (1). Otherwise, under zij = 0
and thus fij = 0 [cf. (3e)], the two constraints respectively
become bij(θi − θj) +Mij ≥ 0 and bij(θi − θj)−Mij ≤ 0.
Accordingly, both conditions trivially hold under a large enough
Mij and does not affect the OTS problem. This technique is
known as the Big-M method [18], which is powerful for handling
constraints with binary variables. For each line (i, j), we can set
Mij := bijΔθmax

ij with a maximum limit Δθmax
ij according to

angle stability [cf. (3d)]. Lastly, for system stability concerns,
we impose the constraint (3i) to restrict the total number of lines
that can be switched off not to exceed the given limit Lo. In fact,
this restriction can also reduce the computational complexity
of solving the resultant MILP. In addition, earlier studies (see
e.g., [1], [11], [17]) have shown that the incremental reduction
of total generation cost diminishes rapidly when Lo reaches a
certain level. Practical choices of Lo are relatively small (e.g.,
Lo ≤ 4) for large systems.

Remark 1 (power flow modeling): This paper adopts the dc
power flow model for formulating the OTS problem. Albeit
simple, it does not include voltage limits or other ac flow
considerations. To address this, it is possible to extend to the
ac power flow by using the relaxation-based formulation in [3].
In addition, one can perform the post-selection ac flow analysis
and verify the ac feasibility of the resultant solution to (3), as
introduced in [19].

While the dc-OTS solutions may not always be ac feasible as
pointed out by earlier papers (e.g., [20], [21], [22]), there exist
some corrective measures to attain ac-feasiblility; see e.g., [23]
and references therein. For example, one can try to remove one
single line from the dc-optimal solution of switched lines in order
to maintain the satisfaction of constraints. The selection of the
line removal could depend on the reactance/resistance criteria as
proposed in [23]. This screening process could be repeated until
an ac-feasible solution has been obtained. While these solutions
do not exactly guarantee ac-feasibility, they turn out to be very
effective in practice [23], [24], [25].

III. OTS UNDER UNCERTAINTY

This section formally presents the OTS problem under un-
certainty as well as its chance-constrained solutions. We first
discuss the model of uncertainty due to e.g., renewable gener-
ation or flexible demand. Let ξ ∈ RK stand for the uncertainty
vector of the full system with its samples denoted by {ξj}Sj=1.
We assume that ξ is bounded with a certain support set. In a
data-driven setting, the set can be estimated with high confidence
from the samples under mild assumptions on the distribution
(e.g., sub-Gaussian). For example, it can be the polytope formed
by the convex hull of the samples [26]. The following general
condition is assumed.

AS 1: The support set for ξ is compact and represented by a
full-dimensional polytope Ξ := {ξ ∈ RK : Uξ ≤ t}.

To incorporate the uncertainty into (3), we resort to a two-
stage robust optimization by making a here-and-now decision

while taking recourse or wait-and-see actions once the real-
izations of ξ are observed. Recourse functions are defined for
the generation, angle, and line flow variables upon observing
ξ. For simplicity, we consider a linear response modeling for
generator recourse actions, as motivated by frequency response
and automatic generation control mechanisms [27, Ch. 9].

AS 2: The generation recourse actions follow a linear re-
sponse mechanism that adjusts each dispatchable generator
by a fixed percentage of instantaneous network-wide power
imbalance. As the latter is equal to eTξ = ξ1 + · · ·+ ξK , the
generation adjustment becomes g′(ξ) = γ(eTξ), with vector
γ ∈ RN collecting the linear coefficients to be determined.

This linear policy has been widely adopted by various ear-
lier work (e.g., [28], [29], [30]), as it can quickly restore the
system-wide power imbalance. Specifically, the recourse actions
are linear functions of total power mismatch, which can be
quickly corrected by a proportional change from each generating
unit. Such policy is very convenient to implement in practice
as system-wide power mismatch is easily measured using fre-
quency deviation. As a result, area-wide frequency responses
require minimal communication overhead.

The flexibility of generation output is limited by the commit-
ted reserves, with r, r ∈ RN denoting its upper/lower limits.
Moreover, changes of angles and line flows are respectively
denoted by θ′(ξ) : RK → RN and f ′(ξ) : RK → RL, both as
recourse functions of ξ. Inspired by the linearity of dc power
flow, we will model them as linear functions, i.e., we have
θ′(ξ) = Y θξ and f ′(ξ) = Y fξ with matrices Y θ ∈ RN×K

and Y f ∈ RL×K as decision variables. This approach is well
known as the linear decision rule (LDR) scheme in two-stage
robust optimization [31], which approximates the recourse vari-
ables as affine functions of uncertainty. Interestingly, under
(AS1)-(AS2) this linearized model turns out to be exact in
representing the actual changes of angles and line flows at no
modeling error, as detailed shortly. With vector q collecting
the linear cost coefficients for generation adjustment, the OTS
problem under uncertain ξ is cast as:

min cTg + E[qTγeTξ] (4a)

s.t. (3b)− (3i), γ ∈ [0, 1]N , eTγ = 1 (4b)

Y θ ∈ RN×K , Y f ∈ RL×K (4c)

r ≤ γeTξ ≤ r ∀ξ ∈ Ξ (4d)

g ≤ g + γeTξ ≤ g ∀ξ ∈ Ξ (4e)

θ ≤ θ + Y θξ ≤ θ ∀ξ ∈ Ξ (4f)

f ◦ z ≤ f + Y fξ ≤ f ◦ z ∀ξ ∈ Ξ (4g)

A(f + Y fξ) = g + γe
Tξ − d− Fξ ∀ξ ∈ Ξ (4h)

K(θ + Y θξ)− f − Y fξ +M ◦ (e− z) ≥ 0 ∀ξ ∈ Ξ
(4i)

K(θ+Y θξ)− f − Y fξ −M ◦ (e−z)≤0 ∀ξ ∈ Ξ.
(4j)

In the following, we define x to be the vector of decision
variables comprising the first-stage decisions (g,θ,f , z,γ).
Note that the coefficient γ is included for reducing the total
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cost. The second-stage decisions Y θ and Y f relate the angle
and line flow adjustments to ξ. Moreover, the transformation
matrix F ∈ RN×K in (4h) is a known mapping from ξ ∈ RK

to the system dimension N . Basically, problem (4) aims to
minimize the sum of total generation cost at the first-stage
and the expected cost during real-time recourse adjustment.
Constraint (4d) imposes the operating reserve limits while the
remaining ones (4e)–(4j) ensure that the system operating limits
in the OTS problem (3) would still hold after recourse actions
are taken [cf. (3c)–(3h)]. With the mean of uncertainty E[ξ] = μ
known, the term E[qTγeTξ] in (4a) simplifies to qTγeTμ, which
is a linear function of the unknown γ.

By recognizing this linearity, we can establish the exactness
of the modeling on θ′(ξ) = Y θξ and f ′(ξ) = Y fξ, as follows.

Lemma 1: Under (AS1)-(AS2), the adjustments on angle and
line flow for fixed grid topology z and coefficients γ become
exactly linear functions of ξ, with both matrices Y θ and Y f

uniquely determined by z and γ.
Proof: Under (AS2), the change of full network injection due

to uncertainty is (γeT − F)ξ [cf. (4h)]. Under the fixed topology
of no islanding, the dc linear flow model [27, Ch. 4] states that
changes of angle and line flow, namely θ′ and f ′, are linearly
related to the change of injection, and thus to ξ as well. Lastly,
the full-dimensionality of the support set Ξ in (AS1) further
guarantees the uniqueness of Y θ and Y f . �

Lemma 1 ensures the linear models in problem (4) produce the
exact recourse values for angle and line flow under given first-
stage decision variables of z and γ. Hence, our LDR approach
yields an exact model for the recourse variables, and problem (4)
constitutes an equivalent two-stage OTS formulation. This is a
much stronger result than existing LDR solutions [31], including
the earlier OTS application in [16].

A. Chance-Constrained (CC-) OTS

The chance-constrained (CC) formulation is popularly em-
ployed to deal with inequality constraints under uncertainty [32].
It ensures that constraints are satisfied with probability above a
prescribed threshold. The relevant constraints from problem (4)
can be collected in the following set:

I =

{
r ≤ γeTξ ≤ r,

g ≤ g + γeTξ ≤ g,
θ ≤ θ + Y θξ ≤ θ,

f ◦ z ≤ f + Y fξ ≤ f ◦ z
}
. (5)

These constraints correspond to the limits on reserve, generation,
phase angle, and line flow as in (4d)–(4g), all of which are linear
in ξ. Note that the network power balance in (4h) and line flow
relations in (4i)–(4j) are not part of the set (5). This is because
they are used to determine the power flow and thus need to be sat-
isfied strictly. Interestingly, they can be effectively reformulated
by linear constraints without ξ. For the semi-infinite equality

constraint (4h), it reduces to a finite linear one, as stated in the
following proposition.

Proposition 1: Under (AS1), constraint (4h) is equivalent to:

AY f = γeT − F. (6)

Proof: Recalling Af = g − d [cf. (3f)], we can rewrite (4h)
as (AY f − γeT + F)ξ = 0, ∀ξ ∈ Ξ. This implies that the
linear hull of Ξ should belong to the null space of the linear
operator (AY f − γeT + F). As Ξ spans the whole sample
space under (AS1), the associated null space is empty and (6)
holds accordingly. �

For the inequality constraints (4i) and (4j), a well-known
equivalence result in robust optimization [31] leads to a tractable
constraint system, as described in the following proposition.

Proposition 2: Under (AS1), the constraints (4i) and (4j) are
respectively equivalent to:

Y f = KY θ +ΦT
1U, Kθ +M ◦ (e− z)−ΦT

1t ≥ f (7a)

Y f = KY θ −ΦT
2U, M ◦ (e− z)−ΦT

2t+ f ≥ Kθ (7b)

where the matrices Φ1,Φ2 ∈ RL×W
+ collect the dual variables

for constraints in (4i) and (4j), respectively.
Proof: This proposition can be viewed as a special case

of [33, Thm. 3.2]. For any constraint of the form hTξ +m ≥
0, ∀ξ ∈ Ξ, under (AS1) it is equivalent to 0 ≤ minξ{hTξ +m :
Uξ ≤ t}. The right-hand side expression is essentially a linear
program, for which the equivalent dual problem under Slater’s
conditions becomes 0 ≤ maxϕ{−tTϕ+m : ϕ ≥ 0,−UTϕ =
h}, where ϕ is the vector of dual variables. For the maximum
of the dual problem to be non-negative, the dual vector ϕ ≥ 0
has to satisfy UTϕ = −h and tTϕ ≤ m. Thus, constraints (4i)
and (4j) are rewritten into (7) using this equivalence. �

Using Propositions 1 and 2, we can convert the remaining
constraints in (4) to deterministic ones withoutξ and accordingly
formulate the CC-OTS problem as, follows:

min cTg + E[qTγeTξ] (8a)

s.t. (4b), (4c), (6), (7a), (7b) (8b)

P{ai(x)Tξ ≤ bi(x)} ≥ 1− εi, ∀i ∈ I. (8c)

Here, the chance constraints (8c) guarantee that each inequality
in (5) holds with a probability of at least 1− εi, for a pre-
specified tolerance level εi.

B. Benchmark Methods for CC-OTS

We present two benchmark methods for approximating the
chance constraints (8c), which is the most critical step in solving
(8). These two approximation methods give rise to mixed-integer
problems and will be used to numerically compare with the
proposed DRCC methods later on.

1) Sample Average Approximation (SAA): Given indepen-
dently and identically distributed (i.i.d.) uncertainty samples
{ξj} with j ∈ J := {1, . . . , S}, the SAA approach [34] re-
places the CC constraints (8c) with the sample-based empirical
distribution P̂ that assigns equal mass to all samples.

Under the empirical distribution, the chance constraint (8c) is
equivalent to the system of mixed-integer linear constraints:

wj
i ∈ {0, 1}, ∀i ∈ I, j ∈ J . (9a)
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bi(x)− ai(x)
Tξj +Mwj

i ≥ 0, ∀i, j. (9b)

S∑
j=1

wj
i ≤ Sεi, ∀i. (9c)

with a sufficiently large M. The binary decision variable wj
i

indicates whether the constraint ai(x)
Tξj ≤ bi(x) holds or

not. If wj
i = 0, (9b) is equivalent to ai(x)

Tξj ≤ bi(x) and
the constraint holds; otherwise, (9b) becomes redundant for a
large enough M. If each ξj is randomly sampled with an equal
probability (i.e., P (ξj) = 1/S), constraint (9c) guarantees that
the sample-based probability of violation ( 1

S

∑S
j=1 w

j
i ) is not

greater than the threshold εi. Under SAA, the resulting approx-
imation of (8) is an MILP. Notice, however, that the number of
constraints can grow quickly with the sample size S. Due to this
scalability issue, the SAA approach will be mainly used for the
small test case in numerical studies.

2) Gaussian Approximation: This method assumes that ξ is
a Gaussian random vector with mean μ and covariance Σ. For
the chance constraint (8c) with a typical threshold of εi ≤ 1

2 ,
the Gaussian distribution leads to an equivalent second-order
cone (SOC) constraint [35, Sec. 4.4]. To briefly introduce the
basic idea of this method, we consider the variance of ai(x)Tξ
as denoted by σ2 and constraint i ∈ I in (8c) now becomes

P

(
ai(x)

Tξ − ai(x)
Tμ

σ
≤ bi(x)− ai(x)

Tμ

σ

)
≥1− εi. (10)

With Φ−1(εi) denoting εi-quantile of the standard normal dis-
tribution, (10) is equivalent to the following SOC constraint:

μTai(x) + Φ−1(1− εi)
∥∥Σ 1

2 ai(x)
∥∥
2
≤ bi(x) (11)

Under Gaussian approximation, the CC-OTS problem (8) be-
comes a mixed-integer SOCP (MISOCP). This method requires
no sampling, yet its uncertainty model can be too restrictive for
the renewable perturbations in practice.

C. Quantifying the Level of Renewable Curtailment

In practice, curtailment of renewable generation is used to
avoid oversupply and to maintain constraint satisfaction [36].
Upon solving any CC-OTS problem with the optimal topology
z∗ and other values (denoted by ∗), one can apply the Monte
Carlo method using a large number of uncertainty scenarios to
obtain the average of resultant curtailment values. Specifically,
for a given renewable scenario ξ̃, we determine the renewable
curtailment vector ξc ∈ RK

+ in order to satisfy all network
constraints, as given by

min 1Tξc (12a)

s.t. ξc ∈ RK
+ (12b)

θ ≤ θ∗ + Y ∗θ(ξ̃ − ξc) ≤ θ (12c)

f ◦ z∗ ≤ f ∗ + Y ∗f (ξ̃ − ξc) ≤ f ◦ z∗, (12d)

where the network constraints in (5) have been simplified to
the linear ones in (12) by fixing z∗. Note the the curtailment
criterion in (12a) is essentially the L1 norm of ξc, which gives
rise to an efficient linear program (LP) in (12). Other criteria such

as L2 norm can be used as well, at possibly increased computa-
tion complexity. By determining ξc using (12), the process for
quantifying renewable curtailment boils down to computing the
average of (1Tξc) over a large number of renewable scenarios.
This process serves to evaluate the impact of OTS solutions
in terms of renewable curtailment level, which also applies
to the DRCC-OTS solutions to be discussed soon. Note this
evaluation is completed offline and does not affect the real-time
computation of any OTS solution. As more frequent constraint
violations naturally lead to higher renewable curtailment, the
objective cost attained by (12) serves as an important criterion
to evaluate the robustness performance of CC-OTS solutions, as
shown by the numerical results in Section V.

IV. DISTRIBUTIONALLY ROBUST CHANCE-CONSTRAINED OTS

The distributionally robust optimization (DRO) framework
has been recognized as a powerful yet potentially tractable
approach to deal with uncertainty in energy systems [37], [38],
[39], [40], [41], [42]. The DRO framework does not assume
a particular probability distribution. Instead, it constructs an
ambiguity set of plausible distributions that are consistent with
the available statistical and structural information on uncertainty.
A safe decision is then sought that is feasible to the chance con-
straints for all distributions within the ambiguity set. Hence, the
framework mitigates data overfitting issues and yields superior
performance in out-of-sample (OOS) tests.

To develop the DRO-based OTS formulation, consider the
distributionally robust chance constraints (DRCC) for (5) as

inf
P∈P

P{ai(x)Tξ ≤ bi(x)} ≥ 1− εi ∀i ∈ I, (13)

which require each chance constraint to be satisfied under all
probability distributions P ∈ P . Typical ambiguity sets studied
in related DRO-based power system decision-making problems
fall into the following categories: i) moment-based ambiguity
set [43], [44], [45], ii) distance-based ambiguity set [46], [47],
[48] and iii) structural-based ambiguity set [49], [50]. We con-
sider the DRCC reformulations using the moment-based ambi-
guity set (mean and mean absolute deviation) and the distance-
based ambiguity set (Wasserstein distance). Both of them are
amenable to mixed-integer linear programming reformulations.

A. Mean and Mean Absolute Deviation Ambiguity Set

The mean and mean absolute deviation (mean-MAD) ambi-
guity set [51] is defined as:

P1 := {P ∈ P0(Ξ) : E[ξ] = μ, E[|ξ − μ|] ≤ σ} , (14)

which includes all distributions with the mean equal toμ ∈ RK

and the mean absolute deviation bounded byσ ∈ RK
+ . Note that

the absolute value and its inequality are both component-wise.
This ambiguity set can be extended to impose certain depen-
dence structures (see e.g., [52, Sec. 5]). Each worst-case prob-
ability infP∈P P{ai(x)Tξ ≤ bi(x)} in (13) over the ambiguity
set P = P1 boils down to the following optimization problem:

ZP1 = inf

∫
1{ai(x)Tξ ≤ bi(x)}v(dξ) (15a)

s.t. v(·) ∈M+, (15b)
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∫
v(dξ) = 1, (15c)

∫
ξv(dξ) = μ, (15d)

∫
|ξ − μ|v(dξ) ≤ σ, (15e)

where 1(·) denotes the indicator function for the inequality
constraint, whileM+ defines the set of nonnegative measures.
Constraints (15c)–(15e) are essentially the integral forms of (14).
As the objective and constraint functions are all linear in the
unknown measure v(·), the problem (15) is a convex semi-
infinite linear program (SILP). If the DRCC (13) is feasible
under P1, then we have ZP1 ≥ 1− εi for constraint i ∈ I. By
denoting α ∈ R, β ∈ RK , and κ ∈ RK

+ as the dual variables of
constraints (15c)–(15e), respectively, we can formulate the dual
problem of (15) as:

sup α+ βTμ− κTσ (16a)

s.t. α ∈ R, β ∈ RK , κ ∈ RK
+ , (16b)

1{ai(x)Tξ ≤ bi(x)} ≥ α+ βTξ − κT|ξ − μ| ∀ξ ∈ Ξ.
(16c)

Strong duality holds as the ambiguity setP1 satisfies the Slater’s
condition [53] for the SILP (15). The semi-infinite constraint for
the dual problem (16) boils down to two cases according to the
indicator 1(·) in (16c). Specifically, it equals to 0 for any ξ such
that ai(x)Tξ > bi(x), or 1 for any other choice of ξ. These two
cases can be reformulated using standard convex duality theory
to arrive at the following equivalent linear constraints:

α′ + β′Tμ− κ′Tσ ≥ (1− εi)λ
′ (17a)

α′ + (π′T1 − τ ′T1)μ+ψ′T1t ≤ λ′ (17b)

β′T + τ ′T1 = π′T1 +ψ
′T
1U (17c)

π′T1 + τ
′T
1 = κ′T (17d)

α′ + (π′T2 − τ ′T2)μ+ψ′T2t ≤ bi(x) (17e)

β′T + ai(x)
T + τ ′T2 = π′T2 +ψ

′T
2U (17f)

π′T2 + τ
′T
2 = κ′T. (17g)

The dual variables π′ ∈ RK
+ and τ ′ ∈ RK

+ are introduced for
the epigraph based constraints ρ ≥ ξ − μ and ρ ≤ ξ − μ, re-
spectively; the dual variablesψ′ ∈ RW

+ are assigned to the linear
constraints of the support setΞ. Note that the dual variable λ > 0
corresponding to the new constraintai(x)Tξ > bi(x) introduces
bilinearity in the original decision variables x. We address this
by dividing all constraints with λ and performing the change
of variables for the primal variables in (16) as α′ = α

λ
∈ R

(similarly for β′ and κ′), and the dual variables as λ′ = 1
λ
∈ R+

(similarly for the aforementioned π′ and τ ′).
Proposition 3: The DRCC-OTS problem under ambiguity set
P1 is equivalent to the following optimization problem:

min cTg + E[qTγeTξ] (18a)

s.t. α′ ∈ R, β′ ∈ RK , κ′ ∈ RK
+ (18b)

λ′ ∈ R+, π
′ ∈ RK

+ , τ ′ ∈ RK
+ , ψ′ ∈ RW

+ (18c)

(8b), (17a)− (17g). (18d)

Thanks to all the linear constraints, the DRCC-OTS problem
in (18) is an MILP. The DRCC-OTS significantly improves
the scalability over the SAA-based MILP problem, as it ef-
fectively uses dualization techniques to attain a fixed set of
linear constraints such that (13) holds for any distribution in
P1. Therefore, the resulting problem (18) is scenario-free and
of low computational complexity for efficient implementations
in real time.

Incorporating Multimodality Information: To obtain less con-
servative solutions to the aforementioned DRCC model, one can
further incorporate multimodality information of the uncertainty
into the formulation. This additional structural information is
particularly relevant to the problem studied in the paper, as it
has been observed that wind energy data exhibits multimodal
behavior [54], [55], [56]. To this end, we assume the actual dis-
tribution to be a mixture of m distinct distributions P1, . . . ,Pm,
with known probabilities p1, . . . , pm, and each Pj has known
mean and MAD values (μj ,σj). In this setting, the ambiguity
set with multimodality information is given by

P′1 :=
m∑
j=1

pjP1(μj ,σj), (19)

where P1(μj ,σj) denotes the mean-MAD ambiguity set (14)
with mean μj and MAD σj . Each worst-case probability
infP∈P′1 P{ai(x)Tξ ≤ bi(x)} can be cast as the following prob-
lem:

ZP′1 =inf
m∑
j=1

pj

∫
1{ai(x)Tξ ≤ bi(x)}vj(dξ) (20a)

s.t. vj(·) ∈M+, ∀j = 1, . . . ,m, (20b)∫
vj(dξ) = 1, ∀j = 1, . . . ,m, (20c)

∫
ξvj(dξ) = μj , ∀j = 1, . . . ,m, (20d)

∫
|ξ − μj |vj(dξ) ≤ σj , ∀j = 1, . . . ,m. (20e)

However, applying similar derivations as in (15)-(17) to the mul-
timodal model leads to a non-convex problem, as there will be
multiple bilinear products λjai(x) and λjbi(x), ∀j = 1, . . . ,m
for the different modes that cannot be handled simultaneously.
To deal with this bilinearity, we propose to adopt the block
coordinate descent (BCD) algorithm in [51, Sec. 5] for a tractable
solution, as described in Algorithm 1.

For ease of exposition, we denote all the dual vari-
ables that are not directly coupled with x as Υj =
{αj ,βj ,κj ,πj , τ j ,ψj}, ∀j = 1, . . . ,m. The BCD algorithm
starts with an initial solution x0, which can be the optimal
solution from the unimodality model (18). Per iteration t, an un-
certainty quantification problem is solved to find the worst-case
probability under the previous iterate xt−1. Once the dual multi-
pliers λj ,Υj are obtained, we fix λj and solve the DRCC-OTS to
update the iteratext. This iterative approach is repeated until the
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Algorithm 1: Block Coordinate Descent Algorithm.

Input: x0, pj ,Ξj ,μj ,σj , ∀j = 1, . . . ,m
Output: x

Initialization: Initial feasible solution x0

1: Get objective value f0 using x0, set t = 1.
2: for t = 1 to tmax do
3: Uncertainty Quantification: Find the optimal

(Υ∗j , λ
∗
j) to the dual of (20) with input xt−1. Set

λt
j ← λ∗j .

4: Policy Update: Fix λt
j , solve DRCC-OTS and obtain

the optimal (x∗,Υ∗j). Set xt ← x∗ and compute the
objective value f t.

5: if (|f t − f t−1| < ω) then
6: Stop the algorithm, and set x = xt

7: end if
8: end for
9: return x

difference between consecutive objectives is below a prescribed
convergence threshold ω. Note that the optimization problems
solved in each iteration are convex and can be solved efficiently.
We will investigate this multimodality model in numerical tests,
as well.

B. Wasserstein Ambiguity Set

The DRCC with the ambiguity set described in this sec-
tion ensures the robustness against all probability distributions
within a prescribed Wasserstein distance from the empirical
distribution P̂ . Compared with the mean-MAD criterion, the
Wasserstein metric is purely data-driven and constructed using
actual data samples. With more samples available, the latter
better reveals the actual uncertainty distribution and thus can
lead to less conservative DRCC solutions.

We adopt the∞-Wasserstein ambiguity set which is known
to enjoy a more tractable reformulation [57], [58]. The ∞-
Wasserstein ambiguity set is defined as

P2 :=
{

P ∈ P0(Ξ) : d∞(P , P̂ ) ≤ δ
}
, (21)

where δ > 0 is a given Wasserstein radius that determines the
finite-sample performance guarantee of the DRCC problem; see
e.g., [59]. The radius parameter δ depends on the number of
sample S in a monotonically decreasing fashion. One choice

of setting δ is δ = ηS−
1

kmax{K,2} [59, Cor. 1], where K is
the dimension of the uncertainty while k and η are problem-
dependent constants. The∞-Wasserstein distance between two
distributions P1 and P2 is given by

d∞(P1,P2) := inf ess sup‖ξ̃1 − ξ̃2‖
s.t. P ∈ P0(R

K ×RK), (22)

where P is the joint distribution of ξ̃1 and ξ̃2 with marginals
P1 and P2, respectively. We use ess sup to denote the essential
supremum of a function and ‖ · ‖ to denote a norm in RK . For
each constraint i ∈ I, suppose a big-M coefficient Mj exists to

Fig. 1. Comparisons of OOS costs and average violation rate for unimodality
and multimodality models in A3 approach.

bound

Mj ≥ max
x

{
ai(x)

Tξj + δ‖ai(x)‖∗ − bi(x)
}
, ∀j ∈ J

where ‖ · ‖∗ is the corresponding dual norm. This way, the
DRCC in (13) under P2 can be represented as the following
mixed-integer constraints [57, Cor. 4]:

(9a), (9c) (23a)

δ‖ai(x)‖∗ ≤ bi(x)− ai(x)
Tξj +Mjw

j
i , ∀i, j. (23b)

Note that this reformulation mimics the SAA-based one in (9),
by changing the lower bound of the right-hand side (RHS) of
(23b) from 0 to δ‖ai(x)‖∗, which acts as a regularizer. Intu-
itively, a smaller radius δ implies the restriction to distributions
more similar to the empirical one P̂ . Accordingly, the constraint
(23b) becomes less restrictive. As δ decreases to 0, P2 reduces
to the singleton P̂ itself and (23) becomes equivalent to the SAA
approach.

Proposition 4: The DRCC-OTS problem under ambiguity set
P2 is equivalent to the following optimization problem:

min cTg + E[qTγeTξ] (24a)

s.t. (8b), (23a), (23b). (24b)

For better numerical tractability, we have picked theL∞-norm
as the ground metric for Wasserstein distance in (22), for which
the dual norm is L1 in (23b) and the problem (24) becomes an
MILP. Due to the similarity to SAA, the DRCC-OTS under the
Wasserstein metric also incurs the same complexity issue as the
number of constraints grows with sample size |J |. Nonetheless,
the choice of∞-Wasserstein ambiguity set already improves the
tractability over the traditional Wasserstein metric as in [46],
[47]. Compared to the mean-MAD ambiguity set, the DRCC-
OTS problem under the Wasserstein ambiguity set takes more
computation time especially for large systems, but its data-driven
feature makes the resulting solutions less conservative with
sufficient number of data samples.

Remark 2 (distributionally robust objective): We can also
extend the DRCC formulations to include a distribution-
ally robust objective function. To achieve this, the term
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TABLE I
PERFORMANCE OF APPROACHES A1-A4 IN THE IEEE 14-BUS SYSTEM

Fig. 2. Comparisons of the (a) OOS costs; (b) average violation rates; and (c)
computation time for the 118-bus system.

E[qTγeTξ] in the objective functions of (18) and (24) can
be changed to supP∈P E[qTγeTξ]. The latter is equivalent to
qTγ supP∈P E[eTξ], in which supP∈P E[eTξ] can be deter-
mined for a given ambiguity set P similar to the steps for
analyzing the constraints. Note that this change only affects the

Fig. 3. Comparisons of the OOS costs attained by A3 under different tolerance
levels and Lo values.

coefficient for scaling the term qTγ. Thus, for simplicity, this
work did not incorporate a DR cost objective, as E[eTξ] can be
viewed as a lower bound for supP∈P E[eTξ].

V. NUMERICAL RESULTS

In this section, we present the numerical results validating the
proposed DRCC-OTS methods using the IEEE 14-bus and 118-
bus test cases. Other benchmark approaches are implemented
too for performance comparisons in terms of robustness. For
ease of exposition, we refer to all the tested approaches as the
following:
� A1: Sample-average approximation benchmark (MILP)
� A2: Gaussian approximation benchmark (MISOCP)
� A3: DRCC under mean-MAD ambiguity set (MILP)
� A4: DRCC under∞-Wasserstein ambiguity set (MILP)
We use the hourly wind power data from the ERCOT mar-

ket [60] from 2018 to 2020 by scaling it according to the size
and load demand of the test systems. Due to the seasonality
of wind patterns, its uncertainty may vary over the year. Thus,
we have used data samples from all four seasons to build the
ambiguity set and scenarios. To better compare the performance,
we conduct out-of-sample (OOS) experiments by partitioning
the dataset into training and testing samples. The optimal solu-
tions are produced using the in-sample training dataset, while the
costs and constraint violations are evaluated on the OOS testing
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dataset. The 14-bus case is used to test and compare all the CC
approaches (A1, A2, A3, and A4). Due to the tractability issues
of the scenario-based approaches, for the larger 118-bus case
we mainly evaluate (A2) and (A3), with a robust benchmark of
ε = 0 (i.e., zero violation), all of which are scenario-free. Each
individual CC tolerance level εi has been set to be the same
value ε for simplicity. The test case parameters are obtained
from MATPOWER, and the OTS problems (MILP, MISOCP)
are solved using Gurobi. The solver was set to utilize up to
12 available threads with a solution tolerance of 1e−2. All the
numerical tests have been implemented on a regular laptop
equipped with Intel CPU @ 2.60 GHz and 16 GB of RAM using
the MATLAB R2020b simulator.

A. IEEE 14-Bus System Tests

The original IEEE 14-bus system consists of 20 lines and
5 conventional generators. We add 3 wind farms to the case,
located at buses 3, 6, and 13, respectively. Given that the marginal
gain reduces with more lines to switch, we have used a maximum
of Lo = 3 opening lines. For the sample-based approaches (A1
and A4), increasing the sample size can lead to more accurate
results at the cost of increased problem dimension and com-
putation time. Therefore, we have used S = 200 samples for
both A1 and A4. The Wasserstein radius δ is selected accord-
ing to [59, Cor. 1] and tuned to comply with solutions from
other approaches (A1, A2, and A3). By setting 1− ε = 0.95
or 1− ε = 0.90, we compare the optimal switching decisions,
run times, OOS costs and constraint violation rates for A1-A4.
The results are listed in Table I. To evaluate the OOS testing
performance, we used 5,000 random samples from the actual
wind data and recorded the percentage of violated constraints
by averaging over all testing samples. To avoid cases where
the majority of line flow constraints are non-binding under
uncertainty, we have slightly adjusted the line flow limits to
increase the transmission congestion level as in [61].

The switching decisions tend to vary among the four ap-
proaches when Lo = 2 or 3. Interestingly, the switching deci-
sions largely remain the same as the tolerance ε changes except
for A2. Note that the tolerance ε more significantly affects the
other decisions, namely the generation dispatch g and AGC
coefficients γ. This becomes clear when comparing the OOS
costs, as discussed shortly. By and large, the run times of all
approaches are very reasonable. Sample-based approaches (A1
and A4) take more time, while the scenario-free ones (A2 and
A3) are much faster (within 1 s). For the sample-based A4, the
∞-Wasserstein metric makes its run time comparable to A1,
while offering better DRO guarantees.

In terms of OOS performance, the DRCC approaches (A3 and
A4) incur slightly higher total costs than the other two. This is
expected as the DRCC approaches are designed to account for
a variety of distributions in the ambiguity set. Between A3 and
A4, the Wasserstein metric has lower OOS costs as its solutions
are more data-driven and less conservative, as mentioned earlier.
Note that although A3 and A4 produce exactly the same switch-
ing decisions, their OOS costs still differ due to their differences
in the g andγ decisions. This difference can also be observed for

all approaches with Lo = 1. Under fixed (1− ε), the OOS costs
generally are reduced as Lo increases, and a smaller (1− ε)
allows for more violations of constraints and thus lowers the
total costs.

The comparisons on constraint violation and renewable cur-
tailment in OOS testing are very important for evaluating the
robustness performance. Ideally, the OOS violation rates should
not exceed the pre-specified threshold ε. However, this is rarely
the case for A1, because the SAA design relies on the ap-
proximation by the empirical distribution and cannot strictly
enforce the robustness guarantees. In addition, A2 has one
instance of exceeding ε = 0.05 for the case of Lo = 3, which
speaks to its disadvantage of solely relying on the assumption on
Gaussian distributed uncertainty. Compared to A1 and A2, the
proposed A3 and A4 have nicely maintained very low constraint
violation rates for all choices of Lo, thanks to their DRCC
based design principle. This is especially important for a smaller
value of ε, where the robustness guarantees are more difficult
to enforce. Using the renewable curtailment quantification ap-
proach in Section III-C, we have shown the clear improvement
of DRCC approaches (A3 and A4) over CC approaches in
reducing curtailment levels. As the former has demonstrated
proved robustness guarantees, grid congestion is less likely
to occur and so is the renewable curtailment. Fig. 1 further
shows the trade-off between OOS costs and average violation
rates attained by the multimodality model based mean-MAD
approaches with 1− ε = 0.90. Compared with the unimodality
benchmark (A3), we increase the number of modes to be m = 2
or 3. We observe that including the multimodality information
leads to a less conservative DRCC solution with decreasing OOS
costs. Meanwhile, the average violation rates slightly increase
with m as a trade-off.

In summary, the proposed DRCC approaches demonstrate a
graceful trade-off between the total cost and constraint satisfac-
tion rate. They can reliably limit the occurrence of constraint
violations and thus reduce the level of renewable curtailment, at
some incremental cost.

B. IEEE 118-Bus System Tests

We have also tested the approaches on the IEEE 118-bus sys-
tem, consisting of 186 lines and 19 conventional generators. Five
wind farms have been added, which are located at buses 10, 23,
57, 62 and 86, respectively. Chance constraints have been applied
on half of the line flow constraints with the other half strictly
enforced. The sample-based methods (A1 and A4) are extremely
inefficient for the mixed-integer formulation, especially for large
systems (as high as 5–10 hours). Due to this scalability issue, we
have only compared the scenario-free approaches A2 and A3,
with a robust benchmark by setting the tolerance level ε = 0.

First, we use the CC tolerance 1− ε = 95% to compare the
OOS performance under different Lo, as plotted in Fig. 2(a).
Overall, the OOS costs increase slightly from A2 to A3, and both
are smaller than the benchmark cost. This trend is consistent with
the average rate of constraint violations as shown in Fig. 2(b).
Compared with the benchmark, A3 achieves 1.0% cost reduction
on average, while A2 achieves 1.8%. Notably, the constraint
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violation rates for the proposed A3 are nicely maintained around
0.02 which is smaller than the threshold ε = 0.05, while those
for A2 can go up to roughly 0.09 that exceeds the tolerance
level. This large-system test again confirms the aforementioned
improvement of the proposed DRCC-OTS approaches over A2
in terms of guaranteed constraint satisfaction. Moreover, we
have compared the average run time, as shown in Fig. 2(c). In
general, the run time of the proposed A3 is on par with the
other two, with a moderate increase for larger Lo values. Lastly,
we compare the OOS costs of the proposed A3 for different
tolerance levels, by varying ε in the range of 0–30%, as shown
in Fig. 3. With fixed Lo, a larger ε value leads to gradually
decreasing costs, by allowing higher occurrences of constraint
violations. If we compare to the OOS costs of the benchmark
approach (ε = 0), the proposed DRCC-based A3 can attain
lower costs with a roughly 1.1% reduction on average. Notice
that the marginal gain of cost reduction is minimal at higher
tolerance levels (ε increasing from 20% to 30%). Generally
speaking, the range of [5%, 20%] is deemed appropriate for ε
in practical operations [47], [61].

In summary, the proposed DRCC approaches can effec-
tively limit the occurrences of violating line flow constraints
by accounting for the distributional ambiguity of uncertainty.
In particular, the mean-MAD ambiguity criterion leads to a
scenario-free, tractable MILP reformulation, with comparable
complexity to the CC and benchmark approaches.

VI. CONCLUSION

This paper considered the chance-constrained optimal trans-
mission switching (CC-OTS) problem to account for renewable
uncertainty in power systems. We proposed to simplify the
two-stage OTS problem by establishing the equivalence of linear
decision rules (LDR) based reformulation. Due to the lack of dis-
tributional knowledge on the uncertainty, we pursued a distribu-
tionally robust chance-constrained (DRCC) OTS paradigm that
can ensure the guarantees over an ambiguity set of uncertainty
distributions. Both moment-based and distance-based ambiguity
sets have been considered, leading to scalable MILP problems
through dualization. Numerical tests validated the performance
improvements of the proposed DRCC approaches over the CC
alternatives in terms of guaranteed constraint violation rates.
Between the two proposed DRCC-OTS approaches, the one
using the mean-MAD ambiguity set brought lower computation
complexity on par with other scenario-free approaches, while
the one using the Wasserstein ambiguity led to less conservative
solutions by adapting to the actual data samples. Future work
includes reducing the complexity of scenario-based DRCC-OTS
by simplifying the Wasserstein ambiguity set and developing
machine learning approaches for accelerated OTS computations
in real-time.

APPENDIX

Here we will present the detailed steps to derive the equivalent
reformulation from (16) to (17) for the problem (18). Using
the definition of the indicator function 1(·), the semi-infinite

constraint in problem (16) boils down to the following two cases:

α+ βTξ − κT|ξ − μ| ≤ 1, ∀ξ (25a)

α+ βTξ − κT|ξ − μ| ≤ 0, ∀ξ : ai(x)
Tξ > bi(x) (25b)

Specifically, the right hand side equals to 0 for any ξ such that
ai(x)

Tξ > bi(x), or 1 for any other choice of ξ. These two cases
can be reformulated using standard convex duality theory [51].
Specifically, (25a) is equivalent to the following:

sup α+ βTξ − κTρ ≤ 1 (26a)

s.t. ξ ∈ RK (26b)

ρ ≥ ξ − μ (π1) (26c)

ρ ≥ μ− ξ (τ 1) (26d)

Dualizing this optimization problem implies that there exists
non-negative dual variables π1 ∈ RK

+ , τ 1 ∈ RK
+ such that

α− κTρ+ πT
1(ρ+ μ) + τ T

1(ρ− μ)− 1

≤ min
Uξ≤t

(−βT + πT
1 − τ T

1)ξ (27)

We can dualize the right hand side again using the uncertainty
support, and it leads to the following equivalent constraints:

α+ (πT
1 − τ T

1)μ+ψT
1t ≤ 1 (28a)

βT + τ T
1 = πT

1 +ψ
T
1U (28b)

πT
1 + τ

T
1 = κT (28c)

where ψ1 ∈ RW
+ are introduced as the dual variables for the

linear constraints (Uξ ≤ t) for the support set Ξ. Similarly, we
can derive the equivalent constraints for (25b). The constraints
(25b) are equivalent to the following:

sup α+ βTξ − κTρ ≤ 0 (29a)

s.t. ξ ∈ RK (29b)

ai(x)
Tξ > bi(x) (λ) (29c)

ρ ≥ ξ − μ (π2) (29d)

ρ ≥ μ− ξ (τ 2) (29e)

Dualizing it implies that there exists non-negative dual variables
λ ∈ R+,π2 ∈ RK

+ , τ 2 ∈ RK
+ such that

α− κTρ+ πT
2(ρ+ μ) + τ T

2(ρ− μ)− λbi(x)

≤ min
Uξ≤t

(−βT + πT
2 − τ T

2 − λai(x)
T)ξ (30)

We can dualize the right hand size again, which leads to the
following equivalent constraints:

α+ (πT
2 − τ T

2)μ+ψT
2t ≤ λbi(x) (31a)

βT + λai(x)
T + τ T

2 = πT
2 +ψ

T
2U (31b)

πT
2 + τ

T
2 = κT (31c)

where ψ2 ∈ RW
+ are introduced as the dual variables for the

linear constraints Uξ ≤ t. Recall that the objective function
(16a) also needs to satisfy:

α+ βTμ− κTσ ≥ 1− εi (32)
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Therefore, the original problem is equivalent to the following
constraints:

α+ βTμ− κTσ ≥ 1− εi (33a)

α+ (πT
1 − τ T

1)μ+ψT
1t ≤ 1 (33b)

βT + τ T
1 = πT

1 +ψ
T
1U (33c)

πT
1 + τ

T
1 = κT (33d)

α+ (πT
2 − τ T

2)μ+ψT
2t ≤ λbi(x) (33e)

βT + λai(x)
T + τ T

2 = πT
2 +ψ

T
2U (33f)

πT
2 + τ

T
2 = κT (33g)

Notice that the dual variable λ > 0 corresponding to the con-
straint ai(x)Tξ > bi(x) introduces bilinearity in the above for-
mulation, due to λbi(x) in constraint (33e) and λai(x)

T in con-
straint (33f). To address this, we divide all the constraints with
λ and redefine variables α′ = α

λ
∈ R,β′ = β

λ
∈ RK ,κ′ = κ

λ
∈

RK
+ , π′ = π

λ
∈ RK

+ , τ ′ = τ
λ
∈ RK

+ , λ′ = 1
λ
∈ R+. Eventually,

we arrive at the following equivalent linear constraints, as in
(17):

α′ + β′Tμ− κ′Tσ ≥ (1− εi)λ
′ (34a)

α′ + (π′T1 − τ ′T1)μ+ψ′T1t ≤ λ′ (34b)

β′T + τ ′T1 = π′T1 +ψ
′T
1U (34c)

π′T1 + τ
′T
1 = κ′T (34d)

α′ + (π′T2 − τ ′T2)μ+ψ′T2t ≤ bi(x) (34e)

β′T + ai(x)
T + τ ′T2 = π′T2 +ψ

′T
2U (34f)

π′T2 + τ
′T
2 = κ′T. (34g)
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