
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2022.3156475, IEEE
Transactions on Power Systems

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. X, NO. X, AUGUST 2021 1

Linearizing Bilinear Products of Shadow Prices and
Dispatch Variables in Bilevel Problems for Optimal

Power System Planning and Operations
Nicholas D. Laws, Student Member, IEEE, and Grani A. Hanasusanto

Abstract—This work presents a method for linearizing bilinear
terms in the upper level of bilevel optimization problems when the
bilinear terms are products of the primal and dual variables of
the lower level. Bilinear terms of this form often appear in energy
market optimization models where the dual variable represents
the market price of energy and the primal variable represents
a generator dispatch decision. Prior works have linearized such
bilinear terms for specific problems. This work is the first to
demonstrate how to linearize these terms in the most general
case and the conditions required to perform the linearization for
bilevel problems with integer or continuous variable in the upper
level. The method is provided in an open source Julia module that
allows researchers to write their bilevel programs in an intuitive
fashion.

Index Terms—Duality, Optimization methods, Power system
economics, Power system planning.

I. INTRODUCTION AND BACKGROUND

Since the restructuring of electricity markets began in the
early 1980’s [1] and the introduction of locational marginal
pricing into large scale power markets in the 1990’s re-
searchers have been investigating electricity market design
optimization problems. From a market participant point-of-
view one of the most critical terms in a problem is the
price signal (typically in $/MWh) from the market operator
multiplied by the energy delivered (MWh) by the participant,
which together represent the participant’s income. When both
the price signal and energy delivered are decision variables in
a mathematical program then the problem becomes bilinear.

In many electricity markets the price signal to market
participants (or generators) is determined as the marginal price
of the load balance constraint at any given network node at
any given time step. The objective of the market model is
to minimize the total cost of energy, or as it is commonly
known: maximizing the social welfare. The constraints of the
model typically represent an approximation to the power flow
equations and take participant cost functions as input.

Equilibrium models allow modeling both the electricity mar-
ket and participant behavior by including the power flow con-
straints and multiple, competing objective functions. Bilevel
or Stackelberg Game formulations are common in electricity
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market models that include participant objectives, which are
typically to maximize profits.

Ruiz et al. 2009 [2] is the earliest known example to
demonstrate that bilinear terms for market price and participant
dispatch can be linearized. Their model places the market
participant in the upper level, which chooses its offer curve for
energy generation, while the lower level models the electricity
market given the other participants’ offer curves. Fernandez-
Blanco et al. 2016 [3] is the first to find a linearization for
the same bilinear terms (products of lower level primal and
dual variables) in the upper level of a bilevel program for
revenue adequacy constraints. More recently, Naebi et al. 2020
[4] forms a bilevel problem to optimize the bidding strategy
of a microgrid owner in a day ahead market. The upper
level minimizes operating costs from the microgrid owner’s
perspective with the product of its exported power and the dual
variable of the lower level, linear power flow load balance in
its objective. (In other words, the microgrid operator knows
its impact on the market price). The lower level minimizes the
system operator’s cost, including the payment to the microgrid
owner, subject to linear power flow constraints. Xu et al.
2020 [5] proposes a bilevel model in which the upper level
represents a coalition of PV system owners that can sell excess
power to the grid or to other consumers. The upper level
objective contains a bilinear product of the price to charge
consumers and the level of excess PV production to be sold.
The lower level objective is the sum of the PV owners’ cost
functions, which contain the benefit of selling excess PV and
the cost of consuming grid power. The bilinear product of
price and dispatch variables is linearized by setting the lower
level primal objective equal to the dual objective. Additional
problem specific examples of the linearization technique can
be found in [6] and [7].

Each of the aforementioned examples presents problem-
specific examples of how the bilinear products of shadow
prices and dual variables can be linearized in bilevel problems
using Strong Duality Theorem [8]. This paper presents a gen-
eral algorithm for linearizing the bilinear terms of interest and
determines the exact conditions under which the bilinear terms
can be linearized in general bilevel problems. The algorithm is
implemented in an open source Julia module for mathematical
programming that allows researchers to write their bilevel
problems in an intuitive fashion ([9], which extends [10]).
After showing the linearization algorithm we present some
simple and complex use-case examples to demonstrate the
value of the linearization method for power system planning
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research questions. In the complex use-case, with a power flow
model, we show that the linearization method makes otherwise
intractable problems solvable in a matter of minutes. Using the
open source module other researchers can take advantage of
the linearization method for any bilevel problem with bilinear
products of shadow prices and dispatch variables of interest.

II. LINEARIZATION METHOD WITH INTEGER UPPER
LEVEL VARIABLES

TABLE I: Sets, indices, parameters, and decision variables.

Decision Variables

x 2 RM upper level, primal decision variables
y 2 RN lower level, primal decision variables
� 2 RJ lower level, dual variables for equality constraints
µ 2 RN

+ lower level, non-negative, dual variables for upper
bounds

µ 2 RN
+ lower level, non-negative, dual variables for lower

bounds
Parameters

c 2 RN lower level cost coefficients for lower level deci-
sions y

U 2 RJ⇥M lower level equality constraint coefficients for upper
level decisions x

V 2 RJ⇥N lower level equality constraint coefficients for lower
level decisions y

w 2 RJ lower level equality constraints right-hand-side
y 2 RN upper bounds for lower level, primal decision vari-

ables
y 2 RN lower bounds for lower level, primal decision vari-

ables
A 2 RJ⇥N upper level coefficients for bilinear terms of lower

level primal and dual variables
B 2 RM⇥N lower level coefficients for bilinear terms of lower

level primal and upper level primal variables
Sets and Indices

A {(j, n) 2 J ⇥N : Ajn 6= 0}
AJ {j 2 J : 9n 2 N such that Ajn 6= 0}
AN {n 2 N : 9j 2 J such that Ajn 6= 0}
J 1, 2, . . . , J , |J | = number of lower level equality

constraints
Jj ✓ J indices of lower level equality constraints con-

nected to constraint j via non-zero values of V , i.e.
the constraints that share variables with constraint
j and the constraints that share variables with those
constraints (and so on recursively as described in
Algorithm 1).

J[
S

j2AJ
Jj

M 1, 2, . . . ,M, |M| = number of upper level vari-
ables

N 1, 2, . . . , N, |N | = number of lower level vari-
ables

Nn ✓ N indices of lower level variables connected to vari-
able yn via non-zero values of V

N[
S

n2AN
Nn

ABN {n 2 AN : 9m 2 M such that Bmn 6= 0}
AB {(j, n) 2 A : 9m 2 M such that Bmn 6= 0}
Ø The empty set
Z The set of integers

We begin by assuming that the upper level variables x are
integer such that any product of integer x and the continuous
variables y or � can be made linear using binary expansion

[11]1. The bilevel problem with bilinear terms in the upper
level objective and a linear lower level is

min
x2ZM ,y2RN

f(x,y) + �|Ay (1a)

s.t. g(x,y)  0 (1b)
y 2 argmin

y2RN

c|y + x|By (1c)

s.t. y  y  y (µ,µ) (1d)
Ux+ V y = w (�). (1e)

Table I summarizes the terms in Equation 1. Note that the
method is also valid for bilinear terms of � and y in the
upper level constraints, but they are not shown for clarity.

The linearization algorithm is applicable when the upper
level and/or the lower level problems are non-linear in con-
straints or objectives. However, the lower level constraints that
include the lower level variables from the upper level bilinear
terms must be linear to get an exact linearization of the upper
level bilinear terms. Futhermore, we assume that the lower
level problem is linear in its decision variables (given the upper
level decisions) so that we can replace the lower level with its
Karush Kuhn Tucker conditions to show single level problem
equivalents to the non-linear bilevel problems of interest.

To linearize any �jyn term one must combine the lower
level primal and dual constraints. The dual formulation of the
lower level problem is shown below for reference.

max
µ,µ2RN

+ ,�2RJ
yTµ� yTµ+ (w �Ux)T � (2a)

s.t. V T� = c+ µ� µ+BTx (2b)

The first step is to multiply the lower level primal constraints
(1e) by � component-wise:

V y � � = w � ��Ux � � (3)

where � denotes the Hadamard product.2

Second, the dual constraints (2b) are multiplied with y as
follows:

(V |�) � y = c � y + µ � y � µ � y + (B|x) � y. (4)

Note that any µnyn can be linearized because of the upper
bound

yn  yn. (5)

The complementary slackness condition for (5) allows one to
linearize µnyn:

µnyn = µnyn. (6)

A similar result follows for any µ
n
yn. Combining the last

result with the complementary slackness conditions gives:

(V |�) � y = c � y + µ � y � µ � y + (B|x) � y. (7)

1It is important to note that in some cases good bounds, which are necessary
for the ”big M” constraints used to linearize the product of integer and
continuous variables, cannot be found [12].

2Note that one can also multiply each of the primal constraints by each of
the components of � to get J2 equations. However, in practice the bilinear
terms that appear in the upper level problem are bilinear in yn and �j , where
�j is the Lagrange multiplier of the constraint that involves yn.
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Equations (3) and (7) are then combined to produce a system
of equations with the bilinear products of � and y as the
unknowns. In the following we show how to solve for a
specific �jVjnyn.

Let the ith row of (3) be defined as (Pi), which can be
written:

(Pi) : �iVinyn = wi�i � �i

X
Vikyk

k2N\{n}

� �i

X

m2M
Uimxm (8)

And, let the kth row of (7) be defined as (Dk), which can be
written:

(Dk) : yk
X

i2J
Vik�i = ckyk + µkyk � µ

k
y
k
+ yk

X

m2M
Bmkxm

(9)
Note that the choice of P for (Pi) and D for (Dk) are
intentional: P is for primal constraints and D is for dual

constraints.
Algorithm 1 outlines the procedure for determining the

minimum set of the (Pi) and (Dk) equations needed to
linearize a given �jyn term. Note that the algorithm refers
to the indices of (Pi) as rows and (Dk) as columns because
the sums over Vjk in (8) and (9) are over the rows and columns
of V respectively.

The first step of Algorithm 1 is to check if Vjn is the
only non-zero value in the nth column of V : in this case
(Dn) provides the exact linearization of �jyn (and (Pi) is
unnecessary):

yn�j =
1

Vjn

 
cnyn + µnyn � µ

n
y
n
+ yn

X

m2M
Bmnxm

!

(10)
Note that (10) only applies under the condition that yn is in a
single lower level primal constraint. Additionally, the bilinear
products of yn and xm in (10) can be linearized since we are
assuming that x is integer in this section.

In the second step of Algorithm 1 the first primal equation
(Pj) is added to the set of row indices that will be returned at
the end of the algorithm (where j is an input). Additionally,
for all the non-zero values in the jth row of V , except Vjn,
the indices of the dual equations (Dk) are added to the set
of column indices. In mathematical terms, this step is taking
(Pj):

�jVjnyn = wj�j � �j

X
Vjkyk

k2N\{n}

� �j

X

m2M
Ujmxm (11)

and all of the (Dk) equations for k 2 N \ {n} in order to
replace the bilinear terms of �j and yk on the right-hand-side
of (11). Each (Dk) equation can add more bilinear terms of
� and y and so step three of Algorithm 1 adds additional
equations if necessary.

In the third and final step of Algorithm 1 a recursive
function, Algorithm 2, is used to search the array V for
non-zero, “connected” values. We use the term “connected”
to indicate that one could draw horizontal and vertical paths
through V to connect non-zero entries to the first entry of
interest Vjn, starting with a horizontal line each time. A
horizontal line adds a (Pi) equation and a vertical line adds

a (Dk) equation. The indices of the rows and columns are
collected until a sufficient amount of equations are obtained
to linearize the �jyn term in the upper level objective.

Note that Algorithm 2 is similar to — but not the same as —
finding the blocks of a block-diagonal matrix. The difference is
that Algorithm 2 does not necessarily find all of the non-zero
values in a block. In other words, one does not need all of the
(Pi) and (Dk) equations that may be available; one only needs
as many equations as unknowns (where the unknowns are
products of � and y entries). Algorithm 2 has some conditions
Algorithm 1: Minimum set of equations to linearize
�jyn
input : The 2D array V ; and the integers (j, n) of

non-zero Vjn.
output: Indices of (Pi) and (Dk) necessary to

linearize a �jyn term.
1. if Vj0n = 0 8j0 2 J \ {j} then

return {},{n} (only need Dn)
end
2. Initialize arrays of integers for the rows and
columns:

Jj = {j}
cols to check = {k 2 N \ {n} : Vjk 6= 0}
Nn = copy(cols to check)

3. Recursive search to find all connections
foreach k in cols to check do

rows, cols = recursive array search(V, j, k, {},
{})
Jj  Jj [ rows

Nn  Nn [ cols

end
return Jj , Nn

Algorithm 2: recursive array search
input : The 2D array V ; integers row j and column

k; and two vectors of integers to append to:
rows and cols.

output: Two vectors of integers for the non-zero
entries of V connected to row j and column k.

rs = { j0 2 J \ {j} : Vj0k 6= 0 }
if rs \ rows 6= Ø then

return error: redundant row
end
rows  rows [ rs

foreach r 2 rs do
cs = { k0 2 N \ {k} : Vrk0 6= 0 }
if {cs \ cols} 6= Ø then

return error: redundant column
end
cols  cols [ cs

foreach c 2 cs do
recursive array search(V, r, c, rows, cols)

end
end
return rows, cols

under which it returns as error: these errors occur when the
search has indicated that redundant row or column indices
should be appended to the final vectors. Mathematically, these
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errors indicate that there are more unknowns than equations
and thus the system of equations is underdetermined.

Let the indices of (Pi) and (Dk) returned from Algorithm
1 for a given (j, n) 2 A pair be defined as Jj and Nn

respectively. The exact linearization of �jyn is:

�jyn =
1

Vjn

2

4
X

j02Jj

 
wj0�j0 � �j0

X

m2M
Uj0mxm

!

�
X

n02Nn

⇣
cn0yn0 + µn0yn0 � µ

n0yn0

+yn0

X

m2M
Bmn0xm

!#
,

(12)

which is simply a combination of (8) and (9) for all of the
non-zero values of V connected to �jyn, as demonstrated with
the examples in Appendix A.

Finally, using the result (12) the mixed integer linear form
of (1) is:

min
x,y,�,µ,µ

f(x,y)

+
X

(j,n)2A

Ajn

Vjn

2

4
X

j02Jj

 
wj0�j0 � �j0

X

m2M
Uj0mxm

!

�
X

n02Nn

⇣
cn0yn0 + µn0yn0 � µ

n0yn0

+yn0

X

m2M
Bmn0xm

!#

(13a)
s.t. g(x,y)  0, (13b)

c+B|x+ V |�+ µ� µ = 0 (13c)
y  y  y (13d)
Ux+ V y = w (13e)
µ ? (y � y) (13f)
µ ? (y � y) (13g)

where the lower level problem has been replaced with the
Karush Kuhn Tucker (KKT) conditions and the complemen-
tary constraints can be modeled as special order sets or using
the “big M” method from [13]. Note that this section assumes
that the x variables are integer and therefore the products of
xm and yn or �j can be linearized using binary expansion
[11].

It is important to note that finding valid values for the
“big M” can be difficult [14]. The open source package in
which the linearization method presented in this paper is
implemented includes the options to use big M (Fortuny-
McCarl) constraints, special order sets, or indicator constraints
to linearize the complementary conditions used to integrate
the lower level problem into the upper level. The latter two
methods do not require defining bounds for the dual variables,
but may be more difficult to solve than the “big M” method.

III. LINEARIZATION METHOD WITH CONTINUOUS UPPER
LEVEL VARIABLES

In Section II we assumed that x are integer such that all
of the products of xm and yn or products of xm and �j can
be linearized using binary expansion [11]. Here we show the
conditions under which a �jyn term can be linearized when
the upper level variables x are continuous.

The conditions are divided into two groups with one group
less restrictive than the other. The first group of conditions is
less restrictive but does not allow lower level variables y to be
bilinear in both the upper level problem with � and the lower
objective with x. In mathematical terms this is when AB =
Ø, where AB , {(j, n) 2 A : 9m 2M such that Bmn 6= 0}.

The second group of conditions allows a problem to be
linearized when bilinear products of �jyn are in the upper level
and bilinear products of xmyn are in the lower level objective
for a given n. These types of problems are particularly relevant
to energy system market models, in which the upper and
lower level bilinear products together represent a zero-sum
game. Demonstrative examples are provided in Section IV, in
which the upper level products of �jyn represent payments to
distributed generator owners and the lower level products of
xmyn represent generator owner income.

A. Conditions when AB = Ø

Recall that the Algorithms 1 and 2 provide the sets Jj for
each �j in the upper level objective. Let J[ , S

j2AJ
Jj ,

which includes the indices of all the lower level constraints
that are connected (via non-zero values of V ) to the �j terms
in the upper level objective. Therefore, in order to eliminate
all bilinear terms of the form �jUjmxm in (13a) the following
condition must be met:

Condition 1. Ujm = 0 8j 2 J[, 8m 2M

Similar to Condition 1, let N[ , S
n2AN

Nn, then one
could assume that

Condition 2. Bmn = 0 8m 2M, 8n 2 N[

to eliminate all bilinear terms of the form xmBmnyn from
(13a). Under Conditions 1 and 2 the mixed integer result for
(1) is

min
x,y,�,µ,µ

f(x,y) +
X

(j,n)2A

Ajn

Vjn

2

4
X

j02Jj

(wj0�j0)

�
X

n02Nn

⇣
cn0yn0 + µn0yn0 � µ

n0yn0

⌘#

(14a)
s.t. g(x,y)  0, (14b)

c+B|x+ V |�+ µ� µ = 0 (14c)
y  y  y (14d)
Ux+ V y = w (14e)
µ ? (y � y) (14f)
µ ? (y � y) (14g)
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B. Conditions when AB 6= Ø

The case when Condition 2 is violated and Problem (1)
has bilinear terms in the upper and lower level objectives
of the form �jAjnyn and xmBmnyn, (where Ajn 6= 0 and
Bmn 6= 0), for some n is particularly relevant to energy system
market models. For example, take the case where Ajn = 1 and
Bmn = �1 for some particular m, j, and n. Let yn represent a
lower level generator dispatch decision. Then �j represents the
marginal cost of the dispatch decision yn as well as the upper
level’s cost of purchasing power from the lower level. And
�xmyn in the lower level objective is the lower level’s income
for the generation yn using the price signal xm. Section IV
provides an example of such a scenario. Thus it is useful to
investigate the linearization of problems when AB 6= Ø (i.e.
when Condition 2 is violated).

The problem of interest has the following structure:

min
x,y

f(x,y) +
X

(j,n)2A

�jAjnyn (15a)

s.t. g(x,y)  0 (15b)

y 2 argmin
y

c|y +
X

m2M

X

n2AN

xmBmnyn

+
X

m2M

X
xmBmnyn

n2N\(AN[N[)

(15c)

s.t. y  y (µ) (15d)
y  y (µ) (15e)
X

n2N
Vjnyn = wj (�j), 8j 2 J[ (15f)

X

m2M
Ujmxm +

X

n2N
Vjnyn = wj (�j),

8j 2 J \ J[.
(15g)

Note that the products of x and y in the lower level objective
(15c) are linearized when the lower level problem is replaced
with the KKT conditions. And the set of yn for all n 2 N \
(AN [N[) in the last sum of (15c) are the values of y that are
not in the upper level objective nor connected to the yn, n 2
AN , in the upper level objective. Recall that the connected
indices are provided by Algorithm 1 and captured in N[. We
will show shortly that the connected yn values must not be in
the lower level objective with x terms to prevent ynxm terms
from showing up in the (Dk) equations needed to linearize
the �jyn in the upper level objective. Also, Condition 1 is
reflected in (15f).

Now, applying Condition 1 to (12) gives

�jyn =
1

Vjn

2

4
X

j02Jj

wj0�j0 �
X

n02Nn

(cn0yn0 + µn0yn0

�µ
n0yn0 + yn0

X

m2M
Bmn0xm

!#
, 8(j, n) 2 A. (16)

We wish to eliminate the yn0Bmn0xm terms when AB 6= Ø.
Recall that the yn0Bmn0xm terms in (12) and (16) come from
the (Dk) equations with Bmk 6= 0, and that the (Dk) equations

for all k 2 N[ are necessary to linearize the upper level
�jAjkyk terms.

Let us assume that a less restrictive version of Condition 2
holds:

Condition 20. Bmn = 0 8m 2M, 8n 2 N[ \ AN

Condition 20 implies that none of the lower level variables
connected to the �jAjnyn terms (provided by Algorithm 1)
are in the lower level objective with ynBmnxm terms, except
the lower level variables in the upper level objective (yn 8n 2
AN ). Applying Condition 20 to (16) gives:

�jyn =
1

Vjn

2

4
X

j02Jj

wj0�j0

�
X

n02Nn\AN

⇣
cn0yn0 + µn0yn0 � µ

n0yn0

⌘

�
X

n02Nn\AN

⇣
cn0yn0 + µn0yn0 � µ

n0yn0

+yn0

X

m2M
Bmn0xm

!#
, 8(j, n) 2 A. (17)

Let us also assume that Condition 3 holds:

Condition 3. AN \ {n} ✓ Nn 8n 2 AN

) Nn \AN = AN \ {n} 8n 2 AN

Condition 3 implies that the yn 8n 2 AN variables of
interest are connected to each other via non-zero values of
V . Section IV-B provides an example problem, in which the
yn 8n 2 AN are indexed on time and connected to each other
via another time-indexed variable in each equality constraint
that is restricted to be no more than a certain value across all
time.

Condition 3 allow us to rewrite (17) as

�jyn =
1

Vjn

2

4
X

j02Jj

wj0�j0

�
X

n02Nn\AN

⇣
cn0yn0 + µn0yn0 � µ

n0yn0

⌘

�
X

n02AN \{n}

⇣
cn0yn0 + µn0yn0 � µ

n0yn0

+yn0

X

m2M
Bmn0xm

!#
, 8(j, n) 2 A. (18)

Applying (9) to the last summation in (18) gives:

�jyn =
1

Vjn

2

4
X

j02Jj

wj0�j0

�
X

n02Nn\AN

⇣
cn0yn0 + µn0yn0 � µ

n0yn0

⌘

�
X

n02AN \{n}

0

@yn0

X

j02J
Vj0n0�j0

1

A

3

5 , 8(j, n) 2 A, (19)
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This step is key to eliminating the bilinear yn0Bmn0xm terms
when AB 6= Ø. The next steps are to impose conditions that
allow us to move the last summation in (19) to the left hand
side to get a single sum of terms over the set A.

Let us assume that Condition 4 holds:

Condition 4. Vj0n = 0 8j0 2 J \ {j}, 8(j, n) 2 A.

Condition 4 is equivalent to each yn for all n 2 AN being in
only one lower level constraint. Condition 4 implies that

yk
X

j02J
Vj0k�j0 = �jVjkyk, 8(j, k) 2 A (20)

Note that Condition 4 requires that Step 1 of the Algorithm
be skipped. The revised algorithm for Conditions 1, 20, 3, and
4 is shown in Algorithm 3.

Algorithm 3: Minimum set of equations to linearize
�jyn under Conditions 1, 20, 3, and 4
input : The 2D array V ; and the integers (j, n) of

non-zero Vjn.
output: Indices of (Pi) and (Dk) necessary to

linearize a �jyn term.

1. Initialize arrays of integers:
Jj = {j}
cols to check = {k 2 N \ {n} : Vjk 6= 0}
Nn = copy(cols to check)

2. Recursive search to find all connections
foreach k in cols to check do

rows, cols = recursive array search(V, j, k, {},
{})

Jj  Jj [ rows

Nn  Nn [ cols

end
return Jj , Nn

Condition 4 allows us to write (19) as

�jyn =
1

Vjn

2

4
X

j02Jj

wj0�j0

�
X

n02Nn\AN

⇣
cn0yn0 + µn0yn0 � µ

n0yn0

⌘

�
X

(j0,n0)2A\{(j,n)}

(yn0Vj0n0�j0)

3

5 , 8(j, n) 2 A, (21)

Rearranging (21) gives:

X

(j0,n0)2A

�j0Vj0n0yn0 =
X

j02Jj

wj0�j0

�
X

n02Nn\AN

⇣
cn0yn0 + µn0yn0 � µ

n0yn0

⌘
, 8(j, n) 2 A.

(22)

Note that since (22) is valid for all (j, n) 2 A it implies that
Nn are equal for all n 2 AN and that Jj are equal for all
j 2 AJ .

Lastly, we see that to replace
P

(j,n)2A �jAjnyn with the
last result for

P
(j,n)2A �jVjnyn we must require that the two

sums are equal to a proportionality constant p:

Condition 5. Ajn = pVjn 8(j, n) 2 A

)
X

(j,n)2A

�jAjnyn = p
X

(j,n)2A

�jVjnyn.

With Condition 5 we can write (22) as:

X

(j,n)2A

�jAjnyn = p

2

4
X

j02Jj

wj0�j0

�
X

n02Nn\AN

⇣
cn0yn0 + µn0yn0 � µ

n0yn0

⌘
3

5 8(j, n) 2 A.

(23)

Substituting (23) into (1) and replacing the lower level with
the KKT conditions, under Conditions 1, 20, 3, 4 and 5 the
mixed integer result is shown in (24). Note that any (j, n) 2 A
can be used in (24a) to define the sets Jj and Nn.

min
x,y,�,µ,µ

f(x,y) + p

2

4
X

j02Jj

(wj0�j0)

�
X

n02Nn\AN

⇣
cn0yn0 + µn0yn0 � µ

n0yn0

⌘
3

5

(24a)
s.t. g(x,y)  0, (24b)

c+B|x+ V |�+ µ� µ = 0 (24c)
y  y (24d)
y  y (24e)
Ux+ V y = w (24f)
µ ? (y � y) (24g)
µ ? (y � y) (24h)

To summarize all of the conditions under which (24) is
valid:

• Condition 1: Ujm = 0 8j 2 J[, 8m 2M
– None of the connected constraints contain x terms.

• Condition 20: Bmn = 0 8m 2M, 8n 2 N[ \ AN
– None of the connected variables are multiplied with

x in the lower level objective, except the y in the
upper level objective that are multiplied with �.

• Condition 3: AN \ {n} ✓ Nn 8n 2 AN
– Each of the yn in the upper level objective are

connected to each other via non-zero values of V .
• Condition 4 Vj0n = 0 8j0 2 J \ {j}, 8j 2 AJ

– Each of the yn in the upper level objective are in
only one lower level equality constraint.

• Condition 5 Ajn = pVjn 8(j, n) 2 A
– All of the coefficients of the upper level �jyn terms

are proportional to the corresponding coefficients in
the lower level constraints to the same constant p.
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The examples in Section IV meet the Conditions 1, 20, 3, 4
and 5. The theme in both problems is an energy market model
with a load balance constraint in the lower level, bilinear
products in the upper level objective of lower level dispatch
variables and the load balance dual variables, and bilinear
products in the lower level objective of upper level price signal
variables and the same lower level dispatch variables as in the
upper level objective.

C. A note on separable lower level problems

It is important to note that the conditions required to
linearize the bilinear products of shadow prices and primal
variables can be applied to sub-matrices when the lower
level problem is separable. For example, in a multi-follower
Stackelberg game the lower level is likely to be separable,
such as when modeling multiple distributed energy reosource
(DER) owners or grid customers. In these cases Conditions
3 and 5 should be checked against the blocks of A and V
corresponding to each sub-problem. An example of a separable
lower level problem is provided in Section IV

IV. USE-CASE EXAMPLES

It is important to note that the use of the linearization
algorithm is not limited to the problem types shown in these
examples. Indeed, the conditions required for the linearization
algorithm are met in each of the references mentioned in
Section I. For example, other use cases include:

• optimizing generator offer curves in an energy market
[2];

• applying generator revenue constraints in a market clear-
ing process [3];

• and optimal profit sharing in a community microgrid [6].

A. Simple examples without time indices

The first use-case example shows a step-by-step lineariza-
tion process for a scenario in which the upper level model
minimizes the total cost of power with the option to purchase
power from the bulk system or from customer owned DER.
The lower level can choose to meet its demand from the grid
at some retail rate or invest in DER to lower its total cost.

min
x,y

cLMPx0 + �ye (25a)

s.t. x0 + ye � yi � d2 = 0 (25b)
x� � 0 (25c)
0  ye ? yi � 0 (25d)
y 2 argmin

y
cDERyDER + ciyi � x�ye (25e)

s.t. yi � ye + yDER = d1 (�) (25f)
yDER � yDER � 0, (µDER, µDER

) (25g)

ye � ye � 0 (µe, µe
) (25h)

yi � yi � 0 (µi, µi
). (25i)

In example (25) the upper level (UL) can purchase power
x0 at the feeder head at the wholesale price cLMP and/or from
the lower level (LL) at a price of the UL’s choosing. The UL

chooses x� to set the LL’s marginal cost of power � when
the LL chooses to export power ye (”e” for export). The LL
considers buying power yi from grid at the retail rate ci (”i”
for import) and/or purchasing the DER capacity yDER at the
cost cDER to meet its demand d1. Constraint (25b) is the system
load balance, which includes an uncontrollable demand d2 (in
practice this constraint is replaced with a power flow model).
Constraint (25d) is the UL enforcement of no simultaneous
export and import3. Constraint (25f) is the LL’s load balance.
The lower level dual variables, µDER, µe, and µi, are show in
parentheses.

Let y , [ye, yi, yDER]|. The lower level has one equality
constraint, making V = [�1 1 1]. In this case we wish to
linearize the product �ye, making the indices of interest j = 1
for the first and only equality constraint in the lower level, and
n = 1 because we put ye in the first index of y.

First, let us check the linearization conditions for this
problem. Note that the set AB is not empty because we have
a bilinear term in the upper and lower level objectives of
the form �jAjnyn and xmBmnyn. Thus, we must check the
Conditions 1, 20, 3, 4, and 5. To check the conditions we need
the sets J[, N[, A and their sub-sets Jj , Nn, AN . With
N = {1, 2, 3} for the three LL variables and J = {1} for the
single LL constraint, we get:

• A = {(j, n) 2 J ⇥N : Ajn 6= 0} = {(1, 1)}
• AN = {n 2 N : 9j 2 J such that Ajn 6= 0} = {1}

With only one pair of (j, n) in A we only need to call
Algorithm 3 once with the values for V , j = 1, and
n = 1. Algorithm 3 first initializes J1 = {1} and defines
the cols to check as {2, 3} because V1,2 and V1,3 are non-
zero. The cols to check is copied to start the set N1 and then
the recursive search is started. The recursive search loops over
the values in cols to check and calls Algorithm 2, appending
the results to the sets J1 and N1. In this case no new non-
zero values are found (there is only one row in V ) and so
Algorithm 2 returns the values that it was provided. Finally,
Algorithm 3 returns the sets J1 = {1} and N1 = {2, 3}.

Now, since we only have one pair of (j, n) in A the union
sets J[ and N[ are equal to the sets J1 and N1 respectively.
With the necessary sets defined we can use (23) to linearize
the product of � and ye in the UL objective:

�e(�1)ye = d1�� (cgyDER + yDERµDER + ciyi + yiµi)

) �ye = cDERyDER + yDERµDER + ciyi + yiµi � d1�.
(26)

With this last result, we replace the lower level problem in
(25) with its KKT conditions to get the mixed integer linear

3Allowing simultaneous power import and export would require two
isolated meters: one measuring demand and one measuring DER production.
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program:

min
x,y

cLMPx0 + cDERyDER + yDERµDER + ciyi + yiµi � d1�

(27a)
s.t. x0 + ye � yi � d2 = 0 (27b)

x� � 0 (27c)
0  ye ? yi � 0 (27d)
yi � ye + yDER = d1 (�) (27e)
yDER � 0, ye � 0, yi � 0 (27f)
� x� + �� µe = 0 (27g)
ci � �� µi = 0 (27h)
cDER � �� µDER = 0 (27i)
0  yDER ? µ

DER
� 0 (27j)

0  ye ? µ
e
� 0 (27k)

0  yi ? µ
i
� 0 (27l)

yDER � yDER ? µDER � 0 (27m)
ye � ye ? µe � 0 (27n)
yi � yi ? µi � 0 (27o)

Example (25) (and its mixed-integer linear version (27)) is
useful for showing how DER can benefit system operators.
First, let us assume that the DER system has a relatively high
cost of 10 $/MW when compared to the other cost values,
which are cLMP = 1 $/MW, ci = 1 $/MW, d1 = 1 MW,
and d2 = 2 MW. In this case it is not in the LL’s interest
to buy DER and so yDER = 0 and the LL purchases all of its
power d1 = 1 from the grid. Also, the UL purchases all power
from the bulk system at cLMP = 1 to meet the total demand
d1 + d2 = 3 MW. Therefore, the UL’s cost is $3 and the LL’s
cost is $1.

Now, let us assume that the DER system cost is equivalent
to the other cost values at 1 $/MW. The LL can now meet
its demand for equivalent costs from either the grid or from
a DER system. However, it is in the UL’s best interest for
demand to be met by the LL’s DER system because the UL
can lower its total cost from $3 to $2 by paying the LL $2 for
exporting excess DER power in to the grid to meet demand
d2 instead of meeting the total demand d1 + d2 from the bulk
system. Therefore, the UL chooses x� = 1 $/MW, which
incentivizes the LL to purchase yDER = 3 MW. The LL meets
its demand d1 = 1 MW behind-the-meter and exports 2 MW,
which meets demand d2 = 2 MW (and x0 = 0 MW). The
LL’s cost is $1 (the same as in the high DER cost scenario),
but the UL reduces its cost from $3 to $2.

In summary, in this simple demonstration, only when the
marginal cost of power from DER for the LL is less than
(or equal to) retail rate will the LL purchase DER, which
allows the UL to purchase excess power. When the LL can
export excess power, and the UL can lower its total cost by
purchasing DER exports, the UL will set the LL’s marginal
cost of power by choosing the minimum compensation rate
to incentivize the LL to export the optimal amount of power
that minimizes the total system cost of power. Note that in
practice the decision variables are indexed on time; and, with
solar PV as a DER option, there can be times when the LL

has a zero marginal cost of power. Therefore, determining the
DER solutions in practice are not as simple as comparing the
cost coefficients.

B. Complex example with separable lower level problem

In this planning example we have a distribution system
planner in the upper level that is considering purchasing
battery energy storage systems for installation at three different
nodes in a distribution system in order to reduce its operating
cost in a real-time energy market. The planner also accounts
for purchasing exported PV power from customers and sending
a time-of-use price signal to refrigerated warehouses with
price-responsive cooling systems. The upper level model is
shown in (28). Tables III and IV summarize the variables,
parameters and sets in (28). The objective (28a) includes three
components to minimize: (1) the cost of energy purchased on
the bulk market at the feeder head; (2) the cost of energy
purchased from distributed, customer-owned photovoltaic (PV)
systems; and (3) the capital costs of battery systems. We
assume an analysis period of 20 years and a discount rate
of 5%. For the bulk market price cLMP,t we use the average
hourly real-time market prices from ERCOT over the year of
2019 [15]. A year of load is simulated at an hourly resolution
by randomly assigning different U.S. Department of Energy
Commercial Reference Building profiles to the load nodes
[16]. The load nodes are defined in [17], from which we take
the 38 node network model. Constraints (28c) – (28g) define a
linear power flow model, commonly known as ”LinDistFlow”
[18]. Constraint (28h) limits the squared voltage magnitude.
Constraints (28i) and (28j) define the net power injection from
system operator owned battery systems. Constraints (28k) and
(28l) define the net power injection from customer nodes
with PV systems. Constraints (28m) and (28n) define the net
power injection from nodes with price-responsive refrigerated
warehouses. Constraints (28o) and (28p) define the net power
injection from nodes with uncontrollable load. Constraint
(28q) is structural and prevents simultaneous export and import
rom nodes with PV systems. Constraints (28r) – (28v) define
the operational limits of the system operator’s battery systems.
Finally, constraint (28w) says that the lower level decisions y
must be optimal for the lower level problem (29).

Problem (29) shows the lower level problem, with the
objective to minimize the total cost of energy for all customers
in the distribution system. Tables III and IV summarize the
variables, parameters and sets in (29). The first half of the
lower level objective (29a) represents the cost of energy for
price responsive refrigerated warehouses that have a known
retail rate ci,n,t and a time-varying price signal from the upper
level problem xi,n,t. The second half of (29a) represents the
cost of energy for customers that can install PV systems. These
customers also pay the retail rate ci,n,t for imported power but
can also recieve compensation for exported, excess PV power
from the upper level via xe,n,t. Constraints (29b) and (29c)
are the load balance constraints for the PV and warehouse
customers respectively. Constraint (29d) limits the PV power
used to meet load to the PV capacity times a known, normal-
ized solar PV production factor from [19]. Constraints (29e) -
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min
P ,Q,w,x,y,�

pwf
X

t2T

 
cLMP,tx0,t +

X

n2NPV

[�n,tye,n,t]

!
+
X

n2NB

(cBkWxBkW,n + cBkWhxBkWh,n) (28a)

s.t. x0,t � 0, xe,t � 0, xi,t � 0, 8t 2 T (28b)
P0,t = P01,t 8t 2 T (28c)
Q0,t = Q01,t, 8t 2 T (28d)

Pij,t + Pj,t �
X

k:j!k

Pjk = 0, 8j 2 N+, 8t 2 T (28e)

Qij,t +Qj,t �
X

k:j!k

Qjk = 0, 8j 2 N+, 8t 2 T (28f)

wj,t = wi,t � 2 (rijPij,t + xijQij,t) , 8j 2 N+, 8t 2 T (28g)
(vmax

j )2 � wj,t � (vmin
j )2, 8j 2 N , 8t 2 T (28h)

Pj,t = xB�,j,t � xB+,j,t, 8j 2 NB, 8t 2 T (28i)
Qj,t = fpf,j,t

�
xB�,j,t � xB+,j,t

�
, 8j 2 NB, 8t 2 T (28j)

Pj,t = ye,j,t � yi,j,t, 8j 2 NPV, 8t 2 T (28k)
Qj,t = fpf,j,t (ye,j,t � yi,j,t) , 8j 2 NPV, 8t 2 T (28l)
Pj,t = �yi,j,t, 8j 2 NW , 8t 2 T (28m)
Qj,t = �fpf,j,tyi,j,t, 8j 2 NW , 8t 2 T (28n)
Pj,t = �dj,t, 8j 2 NU , 8t 2 T (28o)
Qj,t = �fpf,j,tdj,t, 8j 2 NU , 8t 2 T (28p)
ye,j,t ? yi,j,t, 8j 2 NPV, 8t 2 T (28q)
xSOC,j,t = xSOC,j,t�1 + fhr

�
xB+,j,t⌘ � xB�,j,t/⌘

�
8j 2 NB, 8t 2 T (28r)

xBkW,j � xB+,j,t + xB�,j,t 8j 2 NB, 8t 2 T (28s)
xBkWh,j � xSOC,j,t 8j 2 NB, 8t 2 T (28t)
xSOC,j,0 = 0.5xBkWh,j 8j 2 NB (28u)
xSOC,j,Nt = 0.5xBkWh,j 8j 2 NB (28v)
y = y?(x) (28w)

(29g) define the refrigerated warehouse temperature dynamics,
starting condition, and temperature limits. We assume that the
warehouses are have freezing units that can at most reach zero
�C but can be cooled to as low as -20 �C in order to lower
their energy costs by coasting through high price periods. We
assume that the distribution system is in Austin, Texas, which
defines the PV production factor and the ambient temperature
used as an input to the refrigerated warehouse models.

By inspection the lower level model (29) is separable be-
tween the set of PV nodes NPV and the warehouse nodes NW .
Because we wish to linearize the bilinear product �n,tye,n,t in
(28a), which is only defined for the PV nodes, we only need
to check the linearization conditions for the components of
the lower level model (29) that are relevant to the PV nodes.
A Julia module to programatically check the linearization
conditons, including for separable problems like this example,
is available in [20]4.

The upper level is allowed to install battery systems at
up to three nodes (2, 7, and 24) in the network while the
lower level can install PV systems on up to five nodes (9,
17, 22, 31, and 34). Using the baseline values the optimal
solution is for the lower level customers to install small PV
systems to reduce their utility bills and it is not economical

4The module in [20] will be merged into [9] for ease-of-use. When debug
logging is enabled the module will report which conditions did not pass.

for the upper level to install storage systems. To produce more
interesting results we increase the bulk energy costs by integer
values from the baseline 1⇥ to 5⇥. Table II summarizes the
results with increasing bulk energy costs. In table II we can
see some expected trends: as the bulk energy costs increase
less energy is purchased on the bulk market and more PV
energy is purchased from customers, which encourages larger
PV systems. However, there are not clear trends in the battery
sizes nor energy throughput. The lack of trends in the battery
results is not surprising: batteries can serve many purposes
including energy arbitrage, peak shaving, and grid services.
In fact, in the 5⇥ bulk cost scenario so much PV energy is
exported that it is necessary to use the storage systems to keep
the voltage within limits.

For more information regarding model results readers are
encouraged to see the code available online [21]. The examples
in this section are meant is demonstrative use-cases and only
represent a fraction of the types of questions that might be
answered using the linearization technique for power system
planning. Furthermore, the price signal from the upper level to
the lower level can also be used in transactive control context
by removing capacity decisions, shortening the time horizon,
increasing the time resolution, and using forecasts for the
uncontrolled demand and PV production.
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y?(x) = argmin
y

pwf
X

t2T

X

n2NW

(yi,n,t [ci,n,t + xi,n,t]) + pwf
X

t2T

X

n2NPV

(ci,tyi,n,t � xe,n,tye,n,t)

+
X

n2NPV

cPVyPV,n (29a)

s.t. yi,n,t + ypvprod,n,t = dn,t + ye,n,t, (�n,t) 8n 2 NPV, 8t 2 T (29b)
yi,n,t = dn,t + yHVAC,n,t/COP 8n 2 NW , 8t 2 T (29c)
ypvprod,n,t  yPV,nfPV,n,t 8n 2 NPV, 8t 2 T (29d)

yT,n,t = yT,n,t�1 + fhr
⇣
AyT,n,t�1 +B [yHVAC,n,t,un,t]

T
⌘

8n 2 NPV, 8t 2 T (29e)

yT,n,0 = Tn,t=0 8n 2 NPV (29f)
Thi � yT,n,t � Tlo 8n 2 NPV, 8t 2 T (29g)
ye,n,t � 0, yi,n,t � 0, 8n 2 NPV, 8t 2 T (29h)

cost multiplier Bulk
MWh
purhased

PV
MWh
purhased

PV MW Battery MW Battery MWh Battery
MWh
throughput

1⇥ 129,895 2,396 [0.04, 0.00, 0.89, 0.12, 0.97] [0.00, 0.00, 0.00] [0.00, 0.00, 0.00] 0
2⇥ 127,952 4,162 [0.06, 0.00, 1.42, 0.19, 1.66] [0.27, 0.29, 0.31] [0.58, 0.61, 0.66] 1,026
3⇥ 121,799 9,890 [0.14, 0.42, 2.84, 0.40, 3.50] [0.79, 0.18, 0.00] [1.47, 0.34, 0.00] 1,020
4⇥ 94,092 36,981 [0.35, 2.66, 8.24, 1.53, 12.8] [0.30, 0.35, 0.00] [0.62, 0.74, 0.00] 752
5⇥ 72,352 61,378 [0.56, 5.00, 13.3, 2.13, 21.2] [0.34, 0.46, 0.28] [0.72, 0.96, 0.58] 1,313

TABLE II: Results for the use-case example in Section IV-B. Energy purchased and throughput values are per year. The cost multiplier is
applied to the bulk energy costs only. PV capacities are listed in order of nodes [9, 22, 31, 34, 17]. Battery capacities are listed in order of
nodes [2, 7, 24].

C. Solution time impact

Using the example from Section (IV-B) we compare so-
lution times with and without the upper level bilinear terms
�tye,t replaced with the linearization. In both cases the model
is reformulated as a single level problem. Both the mixed
integer-linear and the mixed integer-bilinear problems were
solved using Gurobi 9.1 on 16-core 3.4GHz Linux PC with
32GB of RAM using ”big M” constraints for the comple-
mentary constraints. The mixed integer-bilinear problem is
(28) combined with the KKT conditions for (29). The mixed
integer-linear problem is not shown due to space constraints,
but is available in the public repository [21].

Both the linearized and bilinear problems have 350,405
binary variables and 2,417,777 continuous variables. The
bilinear problem also has 43,800 bilinear objective terms. After
25 seconds in the presolve the linearized problem has 103,588
binary variables and 519,031 continuous variables. The linear
problem solves in 128 seconds with a gap of 0.01%. After
21 seconds in the presolve the bilinear problem has 83,143
binary variables, 540,209 continuous variables, and 21,180
bilinear constraints. The bilinear model takes 8,447 seconds to
get to a 57% gap, which is not improved until the operating
system kills the problem at 16,032 seconds due to running
out of memory. In short, the linearization method makes the
otherwise intractable bilinear bilevel problem from Section
(IV-B) solve in a few minutes. Similar results are expected
for other large planning problems like the example in Section
(IV-B).

V. CONCLUSION

This work presents a method for linearizing bilinear prod-
ucts of lower level primal and dual variables in the upper level

of bilevel optimization problems, and the conditions required
for the linearization to be exact. The linearization method is
especially relevant for modeling large scale energy distribution
systems with many stakeholders and is therefore applicable to
a growing number of problems as energy markets expand and
adapt to new regulations such as FERC Order 2222 [22] and
the increasing adoption of distributed energy resources [23].
By publishing this method we hope that more use cases will
be discovered for the linearization technique.

For future work we intend to leverage the method in an
open source mathematical programming package [9], [24]. for
studying compensation mechanisms of distributed energy re-
sources serving as power system upgrade deferrals (c.f. [17]).
Another future research direction involves using the optimal
price signals from one level to the other as a transactive control
mechanism. We will also explore more accurate and complex
power flow approximations such as the second-order cone
approximation for the Branch Flow Model.

APPENDIX A
EXAMPLES TO DEMONSTRATE THE ALGORITHMS

Example 1. The simplest case for linearizing a certain �jyn
term occurs when the yn in the upper level objective bilinear
term is in only one lower level constraint. In this case, step
1 of Algorithm 1 returns and (10) provides the linearization
of �jyn. Note that (10) is a particular instance of (9). In this
example we present the next simplest case, which is when yn
is in more than one constraint but the other y variables in
constraint j are in no other lower level constraints.

In Step 2 of Algorithm 1 the indices of (Dk) in the set
{k 2 N \ {n} : Vjk 6= 0} are added to the set of column
indices to check using the recursive Algorithm 2. And the
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TABLE III: Parameters, and decision variables for Problems
(28) and (29). Scalar parameter values are shown in square
brackets and some vector parameters include source refer-
ences.

Decision Variables

P0,t, Q0,t real, reactive power imported at feeder head, node
0 in time step t

Pj,t, Qj,t real, reactive power injected at node j in time step
t

Pij,t, Qij,t real, reactive power flow on line ij in time step t

wj,t voltage magnitude squared at node j in time step t

xi,j,t retail price adder to refrigerated warehouse at node
j in time step t

xB+,j,t battery charge rate at node j in time step t

xB�,j,t battery discharge rate at node j in time step t

xBkW,j battery inverter power rating at node j

xBkWh,j battery storage capacity at node j

xSOC,j,t battery state of charge at node j in time step t

yi,n,t imported power at node n in time step t

ye,n,t exported power at node n in time step t

yHVAC,n,t HVAC thermal power at node n in time step t

yT,n,t interior temperature at node n in time step t

yHVAC,n,t thermal power of HVAC system at node n in time
step t

yPV,n PV capacity at node n

ypvprod,n,t PV production used at node n in time step t

Parameters

cLMP,t Locational Marginal Price paid by upper level in
time step t [ref. [15]]

ci,n,t retail price of energy [$0.25/kWh]
cBkW cost of battery inverter [$700/kW]
cBkWh cost of battery capacity [$350/kWh]
cPV cost of PV capacity [$1,400/kWh]
fpf,j,t power factor at node j in time step t [0.1]
rij , xij resistance, reactance of line ij [ref. [17]]
fPV,n,t PV production factor at node n in time step t [ref.

[19]]
fhr fraction of hour in each time step (for example,

fhr = 0.25 for 15 minute time steps) [1.0]
dn,t uncontrolled demand at node n in time step t [ref.

[16]]
COP HVAC system coefficient of performance [4.55]
⌘ battery charge and discharge efficiency [0.95]
Thi, Tlo upper, lower temperature limit [0, -20]
Tn,t=0 initial interior temperature at node n in time step t

[-1]
A HVAC system state matrix [[ �1

RC ] where R =
0.00025 K/kW and C = 105 kJ/K]

B HVAC system input matrix [[ 1
RC

1
C ]]

un,t HVAC system exogenous inputs at node n in time
step t (outdoor temperature) [ref. [19]]

Nt integer number of time steps [8,760]
pwf present worth factor assumming an annual cash

flow year over year for the analysis period of 20
years and a discount rate of 5% [12.46]

vmax
j , vmin

j maximum, minimum voltage limit at node j

set Jj is initialized with {j}. Algorithm 2 then checks for
non-zero values of V above and below each Vjk entry for
each of the column indices. If no non-zero values are found
then Algorithm 2 returns the same sets that were passed to it,

TABLE IV: Sets and indices for Problems (28) and (29).

T set of integer time steps, 1, . . . , Nt

N set of integer nodes in the network, {0, 1, . . . , N}
N+ set of positive integer nodes, {1, . . . , N}
NPV ⇢ N set of integer nodes that can buy PV in lower level
NU ⇢ N set of integer uncontrolled nodes
NW ⇢ N set of integer refrigerated warehouse nodes
NB set of integer nodes that have battery decisions

meaning that no more equation indices are needed to linearize
the �jyn term.

Take one particular k0 in N \{n} for example. The special
case that Vik0 = 0 8i 2 J \ {j} is illustrated as follows:

V =

2

666666664

k0-th col.
0
...
0

j-th row . . . Vjn . . . Vjk0 . . .
0
...
0

3

777777775

. (30)

When yk0 is only in constraint j then (Dk0 ) is:

�jVjk0yk0 = ck0yk0 + µk0yk0 � µ
k0yk0 + yk0

X

m2M
Bmk0xm.

(31)
Equation (31) can then be substituted into (Pj), shown in (11),
to eliminate the bilinear term of �j and yk0 in the sum over
k 2 N \ {n}. A similar result follows for eliminating all of
the �jyk terms on the right hand side of (11). ⌅
Example 2. Continuing from our previous example, now let
us assume that the k0-th column of V has one other non-
zero entry. Now, additional combinations of the (Pi) and (Dk)
equations are necessary to eliminate the �jyk0 term in (11).
This is where step three of Algorithm 1, which relies on
Algorithm 2, comes in.

For this example let Vi0k0 6= 0 for a particular i0 in J \{j},
and let Vik0 = 0 8i 2 J \ {j, i0}. Also, let the i0-th row of V
contain one other non-zero value Vi0`, and let Vi` = 0 8i 2
J \ {i0}. This case is illustrated in (32).

V =

2

666666666664

`-th col. k0-th col.
0 0
...

...
... 0

j-th row . . . Vjn 0 Vjk0 . . .
i0-th row 0 . . . 0 Vi0` Vi0k0 0 . . . 0

0 0
...

...
0 0

3

777777777775

(32)

Algorithm 2 is passed row j and column k0 from step 3
of Algorithm 1. Algorithm 2 first finds all the row indices of
non-zero values of V in column k0 (except Vjk0 ) and checks
that those rows have not already been added to the set of
rows. (Recall that redundant rows or columns found by the
Algorithms indicate an underdetermined system of equations).
The set of rows in Algorithm 2 now contains i0 since Vi0k0 6= 0.
Finally, Algorithm 2 loops over each row found to check for
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non-zero values of V . If any values are found they are added to
the columns set to search in another call to Algorithm 2 (hence
the name “recursive array search”). In this case column ` is
appended to the empty set of columns and so Algorithm 2
calls itself once with r = i0, c = `, rows = {i0}, cols = {`},
which finds no more non-zero entries in V . Thus Algorithm
2 returns rows = {i0}, cols = {`} to Algorithm 1, which
appends the returned sets to Jj and Nn, making the final sets
Jj = {j, i0} and Nn = {k0, `},

Now (Dk0 ) gives:

�jVjk0yk0 + �i0Vi0k0yk0 = ck0yk0 + µk0yk0 � µ
k0yk0

+ yk0

X

m2M
Bmk0xm. (33)

Since the i0-th row of V contains only one other non-zero
value Vi0`, and the other values in column ` of V are zero as
illustrated in (32), then adding equations (Pi0 ) and (D`) allows
one to linearize the �i0Vi0k0yk0 term in (33) in a similar fashion
to the previous example. ⌅
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