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Synopsis  Understanding the processes that shaped the distribution of species richness across the Tree of Life is a central
macroevolutionary research agenda. Major ecological innovations, including transitions between habitats, may help to explain
the striking asymmetries of diversity that are often observed between sister clades. Here, we test the impact of such transitions on
speciation rates across decapod crustaceans, modeling diversification dynamics within a phylogenetic framework. Our results
show that, while terrestrial lineages have higher speciation rates than either marine or freshwater lineages, there is no difference
between mean speciation rates in marine and freshwater lineages across Decapoda. Partitioning our data by infraorder reveals
that those clades with habitat heterogeneity have higher speciation rates in freshwater and terrestrial lineages, with freshwater
rates up to 1.5 times faster than marine rates, and terrestrial rates approximately four times faster. This averaging out of marine
and freshwater speciation rates results from the varying contributions of different clades to average speciation rates. However,
with the exception of Caridea, we find no evidence for any causal relationship between habitat and speciation rate. Our results
demonstrate that while statistical generalizations about ecological traits and evolutionary rates are valuable, there are many
exceptions. Hence, while freshwater and terrestrial lineages typically speciate faster than their marine relatives, there are many
atypically slow freshwater lineages and fast marine lineages across Decapoda. Future work on diversification patterns will benefit
from the inclusion of fossil data, as well as additional ecological factors.

Introduction Brown 2007; Bloom et al. 2014; Wiens 2017; Gamisch

Why do some clades harbor incredible diversity, while = and Comes 2019), however, it cannot account for the

their close relatives or even sister clades contain just
a handful of species? What factors drive the remark-
able asymmetry of species richness across the Tree
of Life and across ecoregions? Attempts to quantify
and test these drivers now constitute a major research
agenda in evolution and ecology. While there has his-
torically been a debate concerning the relative impor-
tance of biotic versus abiotic factors in shaping biodi-
versity on macroevolutionary timescales, a wealth of
evidence now demonstrates the significance of both
(Benton 2009; Ezard et al. 2011; Condamine et al. 2019).
Clade age alone may offer an explanation for the extant
species richness of groups in some cases (McPeek and
Advance Access publication May 24, 2022

observed discrepancy in species richness between sis-
ter clades (Rabosky et al. 2012; Bloom et al. 2014; Scholl
and Wiens 2016), which originate at the same time and
in the same environments (by definition). Differences in
species richness between sister clades must, therefore,
result from different rates of net diversification, which
itself requires a different type of explanation. Ecologi-
cal transitions (such as habitat, diet, and mode of life)
are one such possibility, offering the potential for lin-
eages to radiate into relatively uncontested eco-space
(Schluter 2000; Losos 2010; Poore et al. 2017; Davis et
al. 2018). This in turn may lead to increased rates of spe-
ciation and, therefore, increased overall net diversifica-
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tion. Such ecological transitions are well-documented
across the Tree of Life, with examples from invertebrates
(Hou et al. 2011; Davis et al. 2018), fishes (Bloom et
al. 2013; Rabosky 2020), and even bacteria (Zhang et
al. 2019). Many of these transitions are also associated
with increases in rates of diversification (Hou et al. 2011;
Bloom et al. 2013; Davis et al. 2018; Nakov et al. 2019;
Rabosky 2020).

Decapoda are a highly diverse (~17,500 extant
species; WoRMS Editorial Board 2021) pancrustacean
order that originated around 450 million years ago
(Wolfe et al. 2019). They are of great economic im-
portance (Bondad-Reantaso et al. 2012) and are vi-
tal constituents of healthy ecosystems in many of the
most delicately balanced and endangered biomes, in-
cluding coral reefs (Kramer et al. 2014; Giraldes et
al. 2015; Gonzalez-Gdémez et al. 2018) and mangrove
forests (Negromonte et al. 2012; Cannicci et al. 2018;
Hajializadeh et al. 2020). Decapod crustaceans occupy
a wide variety of aquatic habitats and have even be-
come terrestrial (Watson-Zink 2021). Multiple shifts
from marine ancestors have resulted in the ecological
heterogeneity observed today (Ashelby et al. 2012; von
Rintelen et al. 2012; Anger 2013; Bracken-Grissom et al.
2013; Tsang et al. 2014). In true shrimps (Caridea; circa
3000 species), these transitions are associated with in-
creased speciation rates (Davis et al. 2018) as lineages
evolved into vacant ecospace. However, there has been
no comparable study across the much more speciose,
morphologically and ecologically diverse Decapoda as
a whole.

Here, we test the hypothesis that ecological transi-
tions from marine habitats into freshwater and terres-
trial ecosystems drove increased diversification across
decapod crustaceans. We address this using an exten-
sive phylogeny of decapod species, itself derived us-
ing a combination of supertree methods and a molec-
ular backbone. We categorize habitat as either marine,
freshwater, or terrestrial and infer ecological transi-
tions using ancestral state reconstruction (ASR). We
then model speciation rates through time, partitioned
by ecology, in order to determine whether transitions
from marine settings resulted in increased speciation.
We find that, across all Decapoda, terrestrial speciation
rates are significantly higher than in both marine and
freshwater lineages, but there is no difference in mean
rate between marine and freshwater biomes. However,
partitioning by sub-clade reveals that rates are higher in
freshwater and terrestrial lineages for those clades that
exhibit habitat heterogeneity. This seemingly contradic-
tory result can be explained by the relative contributions
of different clades to the overall rates. However, while
rates are generally higher in freshwater and terrestrial
lineages, we find no evidence for a causal relationship
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between habitat and speciation rate, with the exception
of one clade—Caridea. While some caution should be
applied in the absence of accounting for phylogenetic
uncertainty, our findings clearly demonstrate a need to
seek alternative explanations for the observed relation-
ship between habitat and speciation rate.

Methods
Phylogenetic supertree

Our goal was to synthesize current knowledge of de-
capod phylogeny rather than to infer a new phy-
logeny, and we, therefore, implemented a synthetic ap-
proach to tree-building. A recently published phyloge-
nomic tree (Wolfe et al. 2019) was used as a back-
bone phylogeny, and we then used supertree meth-
ods to parsimoniously synthesize published phyloge-
nies for each constituent sub-clade. Following (Wolfe et
al. 2019), we split Decapoda into infraorders (Achelata,
Anomura, Astacidea, Brachyura, Caridea + Procari-
didea, Polychelida, Stenopodidea, Gebidea, and Axi-
idea) plus Dendrobranchiata. The backbone tree did
not contain Glypheidea (containing just two extant gen-
era), and we, therefore, omitted this from our analysis.
Gebidea and Axiidea were analyzed together as “Tha-
lassinidea” as the source data for Gebidea and Axiidea
had almost 100% overlap with each other. We used pre-
viously published supertrees for the Achelata (Davis et
al. 2015), Anomura (Davis et al. 2016), and Caridea
(Davis et al. 2018) sub-clades. Supertrees of all other
sub-clades were constructed as detailed below.

Source trees were obtained from the STK database
online repository (https://github.com/drkatiedavis/ST
K_database), which contained Decapoda trees pub-
lished between 1980 and 2014. These source trees were
digitized, along with meta-data, in their published form
using TreeView (Page 1996) and the Supertree Toolkit
(STK; Davis and Hill 2010; Hill and Davis 2014). The
latter is a fully integrated set of scripts designed to pro-
cess trees and meta-data, and to output matrices for
MRP (Baum and Ragan 2004) supertree analysis or
sets of trees for analysis using other supertree meth-
ods. Meta-data included bibliographic information, the
types of characters used (e.g., molecular or morpholog-
ical) and the methods used for tree inference. No cor-
rections were made for synonyms or any other appar-
ent errors or inconsistencies in the source trees prior to
processing.

All source trees were curated and analyzed in a con-
sistent and repeatable manner in assembling the su-
pertree (Davis et al. 2015). Once data collection and
entry were complete, we ensured that source trees met
three criteria:
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(1) Only trees presented by their authors as explicit
inferences of evolutionary relationships were in-
cluded. We also excluded taxonomies, informal
phylogenies, and any other trees not derived from
an explicit matrix of annotated characters.

(2) Only trees comprising clearly identified species,
genera, or higher taxa were included.

(3) Only trees derived from the analysis of a novel, in-
dependent dataset were included.

Non-independent studies were defined as those that
utilized identical matrices (i.e., the same taxa and char-
acters), or where one matrix was a subset of the other.
In the former case, the source trees inferred from “iden-
tical” data were weighted in inverse proportion to their
number. In the latter case, the tree derived from the least
inclusive data set was removed from the analysis. We,
thereby avoided pseudo-replication of the source trees
and the spurious levels of support for the resampled re-
lationships that might otherwise result from this.

Operational taxonomic units (OTUs) were standard-
ized to reduce the inclusion of higher taxa, and to re-
move synonyms and vernacular names (which were
standardized using the freely available online WoRMS
database (WoRMS Editorial Board 2021). Where au-
thors used higher taxa as proxies for particular exem-
plars, we substituted those higher taxa with the names
of the exemplar genera or species. Where no exemplars
were specified, higher taxa were removed from source
trees by substituting those constituent taxa present in
other source trees as a polytomy in the focal tree. This
avoided both artificial inflation of the taxon sample and
also coding relationships that were not inferred from
the focal tree. Definitions for higher taxa were derived
from the WoRMS online database (WoRMS Editorial
Board 2021).

Taxonomic overlap was checked once the nomencla-
ture had been standardized. Each source tree needed at
least two taxa in common with at least one other source
tree to be included. Overlap within our dataset was suf-
ficient; therefore, no source trees were removed and we
were able to derive a matrix representation without any
further edits. The full source data bibliography is avail-
able in Supplementary Information 1. Only extant taxa
were included in our diversification rate analyses, and
all fossil taxa were, therefore, pruned from the source
trees.

With the exception of Stenopodidea and Polychelida
(each of which contributed just a single source tree:
Saito and Takeda 2003; Ahyong 2009), we used Matrix
Representation with Parsimony (MRP; Baum and Ra-
gan 2004) to produce phylogenetic supertrees for each
of the six subclades for which a supertree was not al-
ready available (see Supplementary Information 2 for
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a breakdown of taxa by clade). Source trees were en-
coded as a series of group inclusion characters using
standard Baum and Ragan coding (Baum and Ragan
2004), and the process was automated within the Su-
pertree Toolkit software (Hill and Davis 2014). All taxa
subtended by a given node in a source tree were scored
as “1,” taxa not subtended from that node were scored
as “0,” and taxa not present in that source tree were
scored as “?.” Trees were rooted with a hypothetical,
“all zero” outgroup. The resulting MRP matrices were
analyzed using standard parsimony algorithms in TNT
(Goloboff et al. 2000). See Supplementary Information
3 for all the newly generated MRP matrices. We used
the ‘xmult = 10’ option, and ran 1000 replicates for the
analysis, each using a different random starting point
for the heuristic search. This improved exploratory cov-
erage of the tree space, potentially avoiding local min-
ima in the solutions. For Astacidea, Brachyura and
“Thalassinidea” we computed a Maximum Agreement
Subtree (MAST) of the MPTs using PAUPx* (Swofford
2001) to remove conflicting leaves. One limitation of
the MRP method is the potential generation of spu-
rious clades and relationships that are not present in
any of the source trees (“novel clades”; Bininda-Emonds
and Bryant 1998; Davis and Page 2014; Davis et al.
2016). The misplaced taxa that result in these novel
clades are known as “rogue taxa” and are usually a re-
sult of either poorly constrained or poorly represented
taxa contained in the source trees. While there is a syn-
thetic metatree methodology that addresses this issue
(Lloyd et al 2016), we were unable to employ it in this
study as it requires reanalysis of all source data and is,
therefore, not tractable for data sets of this size. This
rogue taxon problem is not limited to supertree meth-
ods. Moreover, identifying and removing rogue taxa
a priori is problematic, because rogues can constrain
the positions of other taxa in the phylogeny. Remov-
ing rogues simply creates new rogue taxa. Nonetheless,
it is important that spurious clades are removed from
the phylogeny before undertaking any further analy-
sis (Trautwein et al. 2011). A small number were iden-
tified, and subsequently removed, from the Brachyura
and “Thalassinidea” trees. A list of rogue taxa is given
as Supplementary Information 4. The resulting and pre-
existing supertrees for each clade were then combined
into a single larger tree using the (Wolfe et al. 2019) phy-
logeny as a backbone tree.

Supertrees derived from parsimony analyses do not
contain branch lengths that can be used to infer dates
of relative splits or rates of diversification. Rather,
branch lengths in MRP supertrees reflect a parsimo-
nious resolution of all the inferences of clade member-
ship across the set of source trees; inferences that are
potentially (and often) mutually incompatible. In order
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to time-scale, we therefore, calibrated nodes using fos-
sil first occurrence data obtained from the palaeobiol-
ogy database (paleobiodb.org). Fossils selected for cal-
ibration were those that conclusively showed the char-
acteristics of the family concerned. These were assigned
to clades using the decapod genus list classification (De
Grave et al. 2009). Within Brachyura, there were few
fossil calibrations relative to the number of leaves in
the clade, and we, therefore, obtained 23 additional cal-
ibration points from published molecular phylogenetic
analyses using the approach of Davis et al. (2018) (as
implemented successfully hitherto for Caridea). The R
package “paleotree” (Bapst 2012) was used to scale the
tree and extrapolate dates to the remaining nodes. To
extend node calibration to the whole tree, we used the
“equal” method, with minimum branch lengths set to
0.1 Myr. We performed the time-scaling on the full de-
capod tree, rather than on sub-clades, to allow cali-
brated nodes to inform node dates throughout the su-
pertree. Finally, we also used molecular dates from the
backbone phylogeny to help constrain the ages of the
major splits in the tree (Wolfe et al. 2019). Our fi-
nal, time-calibrated phylogeny contained 3039 taxa, see
Supplementary Informations 5 and 6 for node calibra-
tion dates and sources.

Ancestral State Reconstruction

We used ASR to infer when, and how often, major
transitions between marine, freshwater, and terrestrial
habitats occurred. We collected trait data for all 3039
taxa in our supertree. Taxa are defined as freshwater if
they live permanently in freshwater or require freshwa-
ter to complete their life cycle. Only the infra-orders
Anomura and Brachyura contain terrestrial species but,
even so, there is a wide variety of terrestrial adapta-
tion amongst Decapoda. We, therefore, define taxa as
terrestrial if they live predominantly on land, includ-
ing those species that need to return to the sea in
order to release larvae (e.g., Birgus latro) and those
that are independent from the sea (e.g., Metopaulias
depressus and other arboreal crabs). Semi-terrestrial
crabs, such as those in the genus Potamon, were clas-
sified as freshwater. Crayfish were classified as fresh-
water although so-called “primary burrowers” might
perhaps be better considered as terrestrial (Welch and
Eversole 2006; Reynolds et al. 2013; Richman et al.
2015). We then applied stochastic character mapping
to our time-calibrated supertree, implemented using
‘make.simmap’ in PhyTools (Revell 2012). The vari-
ables for habitat (marine/freshwater/terrestrial) were
both discrete and three-state, and were optimized using
equal-rates models. See Supplementary Information 2
for species traits lists.
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Diversification dynamics

Diversification rates were modeled from the phylogeny
using BAMM (Rabosky 2014). BAMM implements an
MCMC approach to calculate diversification rates. A
total of four chains were executed, each running a to-
tal of 50 million generations, with a minimum clade
size of five taxa used to aid convergence. A total of
10,000 of the resulting trees were stored, with 10% dis-
carded as “burn-in,” leaving 9001 trees for subsequent
analysis. The analysis also accounted for incomplete
coverage of taxa in the tree by specifying a sampling
bias factor derived from taxonomy. Again, the WoRMS
online database provided the taxonomic basis for this
(WoRMS Editorial Board 2021). For full details of our
sampling regime and BAMM implementation, see Sup-
plementary Informations 7 and 8 for details of the sam-
pling bias factors.

State dependency

The relationship between speciation rate and habi-
tat was tested formally using STRAPP (STructured
Rate Permutations on Phylogenies; Rabosky and Huang
2016) implemented with BAMMTtools (Rabosky et al.
2014). While the analyses comparing speciation rates
between different habitats tests for significant differ-
ences in mean values, STRAPP tests for causality (i.e.,
does a change in habitat result in a change in speciation
rate). This is done by assessing the significance of any
association between tip rates and traits by comparing
it to a null distribution. This null is generated by ran-
domly permuting the speciation rates across the phy-
logeny whilst still maintaining the position of rate shifts
in the tree. We ran 1000 replicates and assessed signif-
icance using a Kruskal-Wallis test for speciation rates
in each habitat partition; marine, freshwater, and terres-
trial. This test was repeated across all Decapoda and also
within each sub-clade.

Results
Supertree

Our final phylogeny is fully bifurcating and contains
3039 extant taxa. We used a synthetic approach to tree-
building using a backbone phylogeny that constrained
the position and monophyly of all sub-clades. Gebidea
and Axiidea were the only clades to be analyzed non-
independently as many papers considered these holis-
tically as “Thalassinidea.” These were accordingly re-
covered as reciprocally monophyletic and could, there-
fore, be placed in the phylogeny as in Wolfe et al.
(2019). Our resulting phylogeny is, therefore, by def-
inition, congruent with recently published molecular
phylogenies (Wolfe et al. 2019) for the divergences be-
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tween sub-clades. At the family level, our phylogeny is
also remarkably congruent with the relationships recov-
ered by Wolfe et al., (2019), the only differences being
within the Anomura and Brachyura. In the supertree,
the basal anomuran clade is Hippidae (reflecting pre-
vious molecular analyses: Tsang et al. 2011; Bracken-
Grissom et al. 2013), whereas Eumunididae is basal in
Wolfe et al. (2019). Within Brachyura, both our superee
and Wolfe et al. (2019) recover the podotremes as the
earliest diverging clade, as well as a monophyletic Tho-
racotremata. However, in contrast to Wolfe et al. (2019),
the supertree recovers a paraphyletic Heterotremata, a
result that reflects paraphyly of Heterotremata in the
source data (Jamieson 1994; von Sternberg and Cum-
berlidge 2001; Ahyong et al. 2007; Brosing et al. 2007;
Ji et al. 2014; Bai et al. 2018). This synthetic approach
to combining additional phylogenetic information to
an accepted backbone tree does not provide any new
insight into decapod phylogenetics (this was not—by
definition—the objective) but does enable large-scale
comparative analyses.

Ancestral State Reconstruction

Our ASR analysis (Fig. 1) was carried out in Phy-
Tools (Revell 2012) and shows a marine ancestor for
Decapoda with multiple independent transitions into
freshwater environments in four infra-orders as well
as independent transitions onto land in two infra-
orders. There are no transitions from freshwater to
terrestrial. Although there are a number of semi-
terrestrial brachyurans found within freshwater clades
(e.g., within Potamidae; Ng and Yeo 2001), we find no
evidence for fully terrestrial taxa originating from a
freshwater ancestor.

The freshwater transitions are the most numerous
and occur within Anomura, Astacidea, Brachyura, and
Caridea. Anomura and Astacidea each contain a single
large freshwater clade; the genus Aegla and the clades
Astacoidea and Parastacoidea, respectively. Caridea
contains two transitions that result in large, speciose
clades. These are Atyidae and a clade largely consisting
of the genus Macrobrachium (Palaemonidae). Within
the latter there are a small number of reversals back
to marine habitats. The genus Palaemon contains ap-
proximately equal numbers of marine and freshwater
taxa but the analysis shows that it most likely had a
marine ancestor with a number of independent transi-
tions to freshwater within the genus. There are a fur-
ther seven freshwater transitions within Caridea con-
sisting of either isolated lineages or lineages leading to
small clades of three or fewer taxa. Brachyura is shown
to have three independent freshwater transitions with
no reversals. The superfamilies Pseudothelphusoidea,

K. E. Davis et al.

Gecarcinucoidea, and Potamoidea represent a single in-
vasion into freshwater biomes. The two remaining tran-
sitions are the superfamily Trichodactyloidea, and the
genus Eriocheir (Grapsoidea).

The terrestrial transitions are found within Anomura
and Brachyura. Anomura has a single transition to a ter-
restrial mode of life in the clade Birgus + Coenobita
(Coenobitidae), while the other three transitions are
found within Brachyura. A total of two of the brachyu-
ran transitions are within Sesarmidae, including a single
reversal to the marine habitat, while the other two ter-
restrial transitions occur in Cardisoma (Gecarcinidae)
and Geograpsus (Grapsidae).

Diversification dynamics

Using BAMM (Rabosky et al. 2014; Rabosky 2014), we
tested for significant associations between habitat and
diversification rates. Recent studies suggest that diversi-
fication rate inference from extant-only phylogenies has
limitations (Louca and Pennell 2020), however, simu-
lations have also shown that BAMM is remarkably ac-
curate when modeling speciation rates on trees of ex-
tant taxa, despite some shortcomings when modeling
extinction rates (Rabosky 2010). Hence, we only report
speciation rates here. For each partition, differences in
the speciation rates were analyzed by one-way analysis
of variance (ANOVA). We then used a post-hoc Tukey
test to assess significance. All results were significant
with a P-value of < 0.01. All the analyses were based on
9001 simulations (one for each tree) of speciation rate
for clades containing at least five taxa. Hence, the ma-
rine Procarididea (two taxa) and the terrestrial anomu-
rans (three taxa in the genera Coenobita and Birgus)
were excluded from analysis.

Overall, we found no statistically significant differ-
ence between speciation rates in marine versus freshwa-
ter taxa. However, terrestrial speciation rates were twice
as high as those in either marine or freshwater taxa.
Mean rates of speciation in marine taxa are 0.02497, in
freshwater taxa they are 0.02510 and in terrestrial taxa
they are 0.05292. As the speciation rates are not nor-
mally distributed, we report the 25% and 75% quan-
tiles, rather than standard deviation, as a measure of
the spread in the data. See Table 1 for full speciation
rate statistics for all Decapoda and for each constituent
clade.

Considering patterns within clades, however, we
find significant differences in speciation rates between
all three habitat states. The infraorders Anomura,
Astacidea, Brachyura, and Caridea all show transitions
to freshwater habitats, while Anomura and Brachyura
also show transitions to freshwater and terrestrial habi-
tats. In Anomura, the mean speciation rate for ma-
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Fig. I. Phylogenetic tree of Decapoda showing the results of the ASR. Branch colors are as follows: blue = marine, yellow = freshwater,
and orange = terrestrial. Reconstructed states were plotted using the R package “phytools” (Revell 2012) and the geological time scale

was added using the R package “strap” (Bell and Lloyd 2015). Procarididea consists of two taxa as sister to Caridea and are omitted for
clarity. Silhouettes are from Phylopic (phylopic.org). Colors used to denote clades are as in Wolfe et al. (2019)
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Table | Summary statistics for each sub-clade

K. E. Davis et al.

Clade Mean lambda 25% quantile 75% quantile
Marine Astacidea 0.0189 0.01644 0.0208
Stenopodidea 0.02042 0.01769 0.0222
Caridea 0.02195 0.01468 0.02759
Dendrobranchiata 0.02431 0.01462 0.03349
Axiidea 0.02665 0.01949 0.03191
Achelata 0.02857 0.01757 0.02759
Brachyura 0.02894 0.01468 0.02906
Gebiidea 0.03684 0.01621 0.05130
Anomura 0.04408 0.02862 0.04631
Polychelida 0.09467 0.08285 0.10477
Freshwater Astacidea 0.02334 0.01777 0.02795
Caridea 0.03475 0.01981 0.04205
Anomura 0.06428 0.05587 0.07373
Brachyura 0.08427 0.06125 0.09429
Terrestrial Brachyura 0.11584 0.05963 0.15903

Mean speciation rate (lambda) is reported along with the 25% and 75% quantiles. Italic font indicates clade rates that are lower than the average
rates for all Decapoda, bold font indicates clade rates that are higher than the average rates for all Decapoda. Rates are considered to be low or
high if the mean speciation rate for Decapoda falls outwith the quantiles. For reference mean speciation rates across Decapoda are as follows -
marine: 0.02497 (25% quantile: 0.01482042, 75% quantile: 0.02784870), freshwater: 0.02510 (25% quantile: 0.014734764, 75% quantile: 0.024335542),

terrestrial: 0.05292 (25% quantile: 0.02022809, 75% quantile:0.02022809).

rine taxa is 0.04408 while that in freshwater is 0.06428;
nearly 1.5 times as fast. In Astacidea the mean ma-
rine speciation rate is 0.0189, compared with 0.02334 in
freshwater taxa (1.2 times as fast). In Caridea, the mean
speciation rate in marine taxais 0.02195, compared with
0.03475 in freshwater (1.5 times higher; a result that
is consistent with previous work; Davis et al. 2018). In
Brachyura, the mean marine speciation rate is 0.02894,
compared with 0.08427 in freshwater and 0.11584 in
terrestrial lineages. Therefore, freshwater speciation
rates in Brachyura are nearly three and four times higher
in freshwater and terrestrial taxa respectively compared
with marine taxa. Mean speciation rates in terrestrial
taxa are also 1.3 times higher than in freshwater taxa.
Mean speciation rates for marine-only clades are as
follows: Achelata, 0.02857; Axiidea, 0.02665; Dendro-
branchiata, 0.02431; Gebiidea, 0.03684; Stenopodidea,
0.02042; and Polychelida, 0.09467. Figure 2 shows the
relative rates for speciation across all Decapoda and
within each subclade. Note that all speciation rates re-
ported are measured in units of species per million
years.

State dependency

Using our formal test of the effects of habitat tran-
sitions on speciation rate (implemented in STRAPP;
Rabosky and Huang 2016), we found no significant
effect within Decapoda as a whole (marine-freshwater,
P = 0.65; freshwater-terrestrial, P = 0.196; and marine-

terrestrial, P = 0.213). Within sub-clades, the only
significant effects were within Caridea, where ma-
rine to freshwater transitions were associated with
elevated speciation rates (P = 0.05). Other large
clades, including Anomura (marine-freshwater,
P = 0.607; freshwater-terrestrial, P = 0.753; and
marine-terrestrial, P = 0.678), Astacidea (marine-
freshwater, P = 0.778), and Brachyura (marine-
freshwater, P = 0.703; freshwater-terrestrial, P = 0.485;
and marine-terrestrial, P = 0.419) had no effects even
approaching significance.

Discussion

Terrestrial biomes are more diverse than
marine biomes

The species-area effect (MacArthur and Wilson 1967;
Rosenzweig 1995) predicts a relationship between the
area of an “island” and the number of species found
within it. The oceans occupy around 70% of the
Earth’s surface (Wiens 2015) and—all other things be-
ing equal—might, therefore, be expected to contain the
majority of species diversity. However, estimates sug-
gest that between 80 and 95% of macroscopic species
are terrestrial (May et al. 1990; Vermeij and Grosberg
2010; Grosberg et al. 2012). The continental land masses
are geologically much younger than marine habitats
(Vermeij and Grosberg 2010; Nakov et al. 2019) and
this discrepancy cannot, therefore, be explained by
the clade-age effect (Rabosky et al. 2012; Wiens 2017;
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Gamisch and Comes 2019). What other factors might
therefore determine the strikingly higher species rich-
ness of terrestrial biomes? One possibility is that key in-
novations, such as those associated with ecological tran-
sitions, might facilitate adaptation and radiation into
new ecospace (Schluter 2000; Losos 2010). Transitions

from marine to freshwater and terrestrial habitats have
occurred across the Tree of Life and have often re-
sulted in higher rates of speciation. There are promi-
nent examples in amphipods (Hou et al. 2011), caridean
shrimps (Davis et al. 2018), diatoms (Nakov et al. 2019),

and fishes (Bloom et al. 2013; Rabosky 2020).
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Multiple freshwater and terrestrial decapod
clades have increased speciation rates

Across decapods, we observe multiple independent
shifts from marine into freshwater habitats (within
Anomura, Astacidea, Brachyura, and Caridea), and
four shifts from marine to terrestrial habitats (one in
Anomura and three within Brachyura). Some of these
result in large radiations. While our initial analysis
found that speciation rates are not consistently higher
in non-marine environments across all Decapoda, they
are consistently higher in these environments for clades
that retain habitat heterogeneity. Therefore, while we
do not show that speciation rates are always higher in
non-marine decapod lineages, our results are consistent
with the general rule that non-marine speciation rates
are higher than marine speciation rates within clades.
We note that major subclades make strongly differen-
tial contributions to overall speciation rates. Partition-
ing by infra-order revealed that mean marine rates are
skewed upwards by two clades; Anomura and Polyche-
lida. Marine anomurans have rates that are 43% higher
than the mean for all marine lineages, while Polychelida
(which are exclusively marine) have rates that are ele-
vated by 74%. Freshwater anomurans also have elevated
rates (61% higher) compared to the mean freshwater
rates in Decapoda. We also found that Brachyura have
elevated rates in both freshwater and terrestrial lineages
as compared to the mean decapod rates, with freshwa-
ter rates increased by 70% and marine rates by 54%.
We caution, however, that all other terrestrial species
are anomurans, which we could not analyze separately
given their low numbers (three taxa) in our tree. How-
ever, since we found no evidence for a causal associ-
ation between habitat and speciation rates in any of
these clades, an explanation for the observed rate het-
erogeneity is still required. One potential confounding
factor in Polychelida is the absence of extinct taxa in
our analyses. Decapoda originated in the Ordovician
(Wolfe et al. 2019) and have a rich and taxonomically
diverse fossil record. Polychelida have just 38 extant rep-
resentatives, forming a relatively young radiation from
approximately 32 million years ago. However, an addi-
tional 55 species are known from the fossil record (De
Grave et al. 2009; Audo et al. 2014). No other decapod
clade contains such a large proportion of fossils. The ex-
clusion of these extinct polychelidans in combination
with the relatively young origin of extant Polychelida
might have caused the anomalously high rates that we
recovered. We were unable to consider the role of ex-
tinction on decapod diversity here as trees exclusively
comprising extant taxa do not produce reliable extinc-
tion rates (Rabosky 2010). Other confounding factors
include the paucity of the fossil record for some deca-
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pod infra-orders, such as the ghost shrimps (Axiidea),
which are soft-bodied and, therefore, likely to be under-
represented in the fossil record. Moreover, these fossils
are difficult to confidently assign to higher level taxa
(Hyzny and Klompmaker 2015). It is likely that new fos-
sil discoveries will lead to better calibrations for the phy-
logeny and this could help to clarify the diversification
dynamics across the group.

Freshwater transitions are a causal driver of
higher diversity in Caridea but not in other
clades

We also tested whether there is a causal relationship be-
tween habitat and speciation rates. However, with the
exception of Caridea, we found no evidence for a re-
peated effect of habitat on speciation. As highlighted
by Rabosky (2020), this makes it impossible to deter-
mine whether the higher freshwater and terrestrial rates
recovered here result from habitat transitions per se
(i.e., interactions with the environment) or from other
properties of the clade. How then can we explain the
higher rates of speciation in freshwater and terrestrial
lineages without any evidence of causality? Given that
our interest here is in explaining macroevolutionary
patterns of biodiversity, we can still consider the mech-
anisms by which the exploitation of a new habitat might
promote speciation, even though we cannot say with
any certainty that the observed habitat transitions are
causally associated with observed faster speciation rates.
One such mechanism is the greater habitat fragmen-
tation seen in non-marine environments (Hugueny et
al. 2011; Wiens 2015) contrasting with the sparse geo-
graphic barriers and larger species ranges seen in the
oceans (Palumbi 1992, 1994). Adaptive radiation the-
ory also predicts that clades entering new habitats will
undergo rapid diversification as they exploit new eco-
space (Schluter 2000; Losos 2010; Herrera 2017). Note,
however, that we do not formally test for macroevolu-
tionary signatures of adaptive radiation here (Herrera
2017; Law et al. 2018; Moen et al. 2021). As well as
independent transitions into new habitats, our anal-
yses found a number of reversals from freshwater to
marine environments. However, we found no evidence
for transitions from terrestrial to aquatic environments.
In contrast with the situation in vertebrates (Vermeij
and Motani 2018), there is no evidence for transi-
tions from terrestrial to marine environments in de-
capods (Vermeij and Dudley 2000). Endothermy and
high metabolic rates in mammals (Vermeij and Dud-
ley 2000) may be instrumental in their transitions back
into marine biomes. Further work using new methods
(Mitchell et al. 2019) to include extinct taxa would help
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to elucidate the relative roles of speciation and extinc-
tion in shaping the decapod Tree of Life. Accounting for
uncertainty in the tree (both in terms of topology and
inferred divergence dates) would also enable more rig-
orous tests.

There are other possible drivers of differential
diversity across Decapoda

While we cannot draw strong conclusions about the
role of habitat transitions in shaping rates of speciation
across Decapoda, we can nonetheless consider other
mechanisms that could potentially underlie the patterns
recovered in this study. One possible driver of differ-
ential diversity across decapods is the marine latitudi-
nal gradient, with higher tropical speciation rates al-
ready established in corals (Kiessling et al. 2010), mol-
luscs (Jablonski et al. 2006), and plankton (Allen and
Gillooly 2006). However, the opposite pattern is found
in fishes, with the fastest rates being in the species-
poor regions outside the tropics (Rabosky et al. 2018).
Other variables can also drive differential speciation
rates. For example, rates are lower in caridean shrimp
that live in symbiosis with other organisms (Davis et
al. 2018), while species richness in plant-feeding crus-
taceans is 21 times greater than in their sister clades
(Poore et al. 2017). We, therefore, conclude that while
transitions from marine to non-marine environments
have influenced decapod diversity, the diversity and
distribution of species that we see today results from
a complex interplay of environmental and biotic fac-
tors through time rather than from the action of a sin-
gle driver. Furthermore, while there are common pat-
terns to be found within Decapoda, these patterns are
unlikely to be driven by a common explanatory vari-
able. Future work aimed at further disentangling these
drivers should consider the interplay of other environ-
mental and ecological variables, along with biotic in-
teractions and full evolutionary history. This will allow
a fuller picture of the drivers of clade diversity change
through time, with important implications for our un-
derstanding of the dynamics of the ongoing biodiversity
crisis. Such understanding is vital, since patterns of di-
versity that were shaped over tens or hundreds of mil-
lions of years are now being rapidly reconfigured by an-
thropogenic activity.
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