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Capillary driven fragmentation of large gas bubbles in turbulence

Aliénor Rivière ,1 Daniel J. Ruth,2 Wouter Mostert ,3

Luc Deike ,2,4 and Stéphane Perrard 1,5,*

1Physique et Mécanique des Milieux Hétérogènes, CNRS, ESPCI Paris, University PSL, Paris 75005, France
2Department of Mechanical and Aerospace Engineering, Princeton University, Princeton,

New Jersey 08544, USA
3Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom

4High Meadows Environmental Institute, Princeton University, Princeton, New Jersey 08544, USA
5LPENS, Département de Physique, Ecole Normale Supérieure, PSL University, 75005 Paris, France

(Received 11 June 2021; accepted 21 June 2022; published 30 August 2022)

The bubble size distribution below a breaking wave is of paramount interest when quan-
tifying mass exchanges between the atmosphere and oceans. Mass fluxes at the interface
are driven by bubbles that are small compared with the Hinze scale dh, the critical size
below which bubbles are stable, even though individually these are negligible in volume.
Combining experimental and numerical approaches, we report a power-law scaling d−3/2

for the small bubble size distribution, for sufficiently large separation of scales between
the injection size and the Hinze scale. From an analysis of individual bubble breakups,
we show that small bubbles are generated by capillary effects, and that their breakup time
scales as d3/2, which physically explains the sub-Hinze scaling observed.

DOI: 10.1103/PhysRevFluids.7.083602

I. INTRODUCTION

Bubble fragmentation drives gas dissolution by drastically increasing the exchange surface
between phases. For instance, up to 40% of the total CO2 uptake by the ocean is due to bubble-
mediated gas transfer [1–3]. More specifically, it is the bubble size distribution that controls gas
transfer [4,5] and spray production as bubbles burst at the surface [6–9]. Bubbles also play a major
role in industrial applications like oil and gas transportation from remote wells [10] or oil spill
mitigation [11,12].

As a consequence, the fragmentation of bubbles has been extensively studied in model exper-
iments [13–16] as well as under breaking waves both experimentally [17–20] and numerically
[21–23]. For large bubbles, a consensus has been reached on the bubble size distribution, described
as N (d ) ∝ d−10/3 with d being the bubble volume equivalent diameter. This law originates from
a self-similar cascade of breakups [24], in which each bubble produces a fixed number of equally
sized child bubbles, on a time given by the typical velocity fluctuations correlation time at the bubble
scale d . This correlation time scales with the eddy turnover time tc(d ) = ε−1/3d2/3 where ε is the
averaged dissipation rate of kinetic energy by viscous dissipation, which is used to characterize
turbulent flows [25].

The N (d ) ∝ d−10/3 scaling holds down to the Hinze scale dh, the size at which kinetic energy
balances surface-tension energy. The ratio of inertial and surface tension effects defines the Weber
number, We = ρU 2d/γ , where γ is the liquid-gas surface tension, ρ is the liquid density, and U
is a characteristic velocity driving the interface deformation. For a bubble immersed in a turbulent
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(a) (b)

FIG. 1. (a) Sketch of a breakup process, involving inertial deformations, followed by a capillary splitting
event. (b) Schematic of a bubble of size � splitting into a small bubble of size δ in a time T (�, δ) and
subsequent splittings.

flow, the characteristic velocity U is chosen as the averaged velocity difference at bubble bubble
diameter scale. If the bubble is within the inertial range, i.e., where the turbulent fluctuations are
scale invariant, the velocity increment is given by 〈(�u)2〉 = 2ε2/3d2/3 [26], where 〈〉 denotes
the average over realization, often called the ensemble-average operation. The average velocity
increment at the bubble scale defines the Weber number for a bubble in a turbulent flow,

We = 2ρε2/3d5/3

γ
. (1)

Concomitantly, the Hinze scale dh [27] separates stable bubbles (d < dh) from those that will
fragment (d > dh),

dh =
(Wec

2

)3/5(γ

ρ

)3/5

ε−2/5, (2)

with Wec being the critical Weber number for breakup, which is typically an order one constant
[14,28,29]. Note that due to the inherent stochasticity of turbulent flows, the Hinze scale dh is a
soft-breakup limit.

The sub-Hinze bubble size distribution (d � dh) always exhibits a gentler slope than N (d ) ∝
d−10/3, although there is variability among the experimental studies [17–20], and the observations
lack a physical explanation [18]. The difficulty arises from the large-scale separation between sub-
Hinze bubbles and their parent size bubbles: the sub-Hinze distribution cannot be explained by a
self-similar cascade process, so a different physical argument is required.

In this article, we describe the physical mechanism leading to the sub-Hinze size distribution
resulting from the breakup of large super-Hinze bubbles. We decompose the bubble fragmentation
dynamics by sequences of binary events and consider two concomitant processes: breakup events,
akin to the inertial self-similar process [24] which lead to the formation of two bubbles of similar
sizes, and splitting events, which creates one sub-Hinze and one super-Hinze bubble, largely
separated in size. For large separation of scales between the initial cavity and the Hinze scale,
the turbulence induces strong deformation, creating elongated structures, which will fragment on
a timescale set by capillarity, much faster than the surrounding turbulence timescales. Figure 1
sketches the succession of the typical breakup and splitting events. Considering these two types of
processes within a population balance equation and their associated timescale, we recover the two
power-law scalings for the bubble size distribution with N (d ) ∝ d−10/3 for d > dh originating from
self-similar breakup controlled by the eddy-turnover time at scale d , and N (d ) ∝ d−3/2 for d < dh
controlled by capillary breakup time of ligaments of diameter d . To test the validity of our model, we
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analyze individual splitting events using three-dimensional two-phase direct numerical simulations
(DNS) of bubble breakup in turbulence. Next, we present an experiment that achieves a large-scale
separation between an initial large bubble and the Hinze scale, which produces a clear sub-Hinze
bubble size distribution power law N (d ) ∝ d−3/2, in accordance with the theoretical model and the
numerical simulations.

II. MODEL OF SUB-HINZE BUBBLE PRODUCTION

Let consider the fragmentation dynamics as a succession of binary events and we neglect
the correlation between successive events. Let T (�, δ) denotes the lifetime of the parent bub-
ble, of equivalent diameter �, which produces two child bubbles of equivalent diameters δ and
(�3 − δ3)1/3 � δ (from volume conservation), as sketched in Fig. 1. For equal-size child bubbles
we have δ = c� with c = 2−1/3 ≈ 0.79 a numerical constant.

The mean bubble flux �(�, d, t ) is the production rate of bubbles of diameter d from the breakup
of a bubble of size �, and is decomposed into the product of a breakup rate ω(�) and a child size
probability density f (�, d ) per unit of diameter and can be written as [30, Chap. 4, Eq. (2.1)], [31],

�(�, d, t ) = 2 f (�, d )ω(�)N (�, t ), (3)

where N (�, t ) is the number density of bubbles of size � at time t , and the factor 2 comes from
the assumption of binary events, which is discussed in greater details in Ref. [14,16,28,32]. The
breakup rate ω(�) is the average number of breakup events of bubble of size � per unit of time,
also called breakup frequency. The probability density f is often referred to as the child bubble size
distribution and is the probability density function for a child of size d given the breakup of a bubble
of size �.

From Eq. (3), we obtain the temporal evolution of the bubble size distribution from the fragmen-
tation of an initial bubble of size d0 as the difference between a birth term and a death term [14]:

∂N (d, t )

∂t
=

∫ d0

d
�(�, d, t )d� − ω(d )N (d ), (4)

considering the total bubble size distribution in a spatially homogeneous configuration, henceforth
neglecting the spatial advection terms. Equation (4) is the starting point of numerous population
balance models.

For super-Hinze bubbles d > dh, we recall the argument from [24]. Considering breakup rates
controlled by the eddy turn-over time at the scale of the parent bubble, using (4) at steady state
leads to N (d ) ∝ d−10/3 [23,24]. In this self similar model, a bubble of size d breaks, in a time given
by tc(d ) = ε−1/3d2/3, into m fragments of equal diameter m−1/3d . Each of these child bubbles then
breaks in a time ε−1/3(m−1/3d )2/3. We obtain an increasing number of m × m−2/9 = m7/9 bubbles
per unit of time, which yields the bubble density N (m−1/3d ) = m1/3m7/9N (d ). Assuming N (d ) ∝
dα , we have −α/3 = 1/3 + 7/9 which gives α = −10/3 [24]. For d < dh, the self-similar argument
cannot be applied anymore since surface tension must be important at this scale.

Here we propose a scaling for the sub-Hinze bubble size distribution, i.e., for d < dh. In equa-
tion (3) the rate ω(�) at which a bubble breaks up does not distinguish between processes which
produce equally sized child bubbles or highly asymmetrically sized child bubbles, for which at least
one child bubble is smaller than the Hinze scale. These two types of events, however, may occur
on very different timescales. Here, we consider that the fragmentation statistics depends on both
the parent size � and smallest child size δ, a framework that has been used previously for models
based on bubble-eddy interactions [33]. We assume that the production of small bubbles (d < dh)
is controlled by bubble splitting events, in which elongated filaments become unstable under a
Rayleigh-Plateau-like mechanism [34]. These elongated structures result from the deformation
of larger bubbles due to the turbulent fluctuations, which occur at timescale controlled by the
turbulence (as sketched in Fig. 1). Then, the time for such elongated filaments to rupture will be
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controlled by capillarity, at the scale of the filament. This stems from the “freezing” in place of the
turbulent flow relative to the accelerating collapse dynamics in the final moments before rupture,
which was shown experimentally by Ruth et al. [35]. A cascade of splitting events leads to the
formation of sub-Hinze bubbles, whose size δ are comparable to the diameter of the filament,
and one larger bubble. The exact geometry of the filament and the splitting time varies from one
realization to the other, but considering an ensemble average, the splitting time T (�, δ) will be
given by the capillary time T2(δ) at size small δ:

〈T (�, δ)〉 = T2(δ) = 1

2
√

3

(
ρ

γ

)1/2

δ3/2, (5)

where the capillary time T2(δ) is the inverse of the angular frequency of oscillation of the principal
mode of oscillation of an inviscid bubble in a quiescent fluid [36], and also correspond to the
growth rate of Rayleigh plateau instability of a bubble filament [34]. When the capillary mechanism
dominates, the bubble lifetime T scales as δ3/2, with δ being the size of the smallest child bubble, is
independent of the parent size and will control the shape of the bubble size distribution.

While the two breakup mechanisms we consider are happening concomitantly, O(10–100)
splitting events follow a single breakup event for d � dh, so that the capillary timescale dominates
the production of sub-Hinze bubbles. We integrate the splitting events within the population balance
framework and use flux conservation to express ω and f from equation (3) in terms of the newly
introduced timescale:

f (�, d )ω(�) = F (�, δ)

〈T (�, δ)〉 = F (�, δ)

T2(δ)
, (6)

with δ = d if the child bubble considered is the smaller one of the two produced (that is, if d < c�)
and δ = (�3 − d3)1/3 if it is the larger of the two (that is, if d > c�), since the production is
controlled by the faster of the two timescales. Note that a bubble lifetime that depend on both the
parent and the child bubble size was introduced by Wang et al. [33]. F (�, δ) is the weight associated
with each breakup frequency and can be interpreted as the likelihood of breakup of a bubble of size
� into a bubble of size δ. We use DNS of bubble breakup in homogeneous and isotropic turbulence
to estimate F and will find that F (�, δ) ≡ F (�) is independent of δ. Proving the independence of
the weight factor F (�) on δ would require a complete analysis of the filament geometry, which is
not accessible with our numerical dataset. The independence of F on δ could be attributed to the
absence of a characteristic length scale in a turbulent flow, such that no specific filament size is
selected. We will work with the assumption F (�) in the remaining of the theoretical discussion.

For d < dh, using Eq. (6) in Eq. (4), we split the birth term into two parts, one term taking into
account breaking for δ < c� and one for δ > c�, and we obtain

∂N (d, t )

∂t
=

∫ d0

d/c
2
F (�)

T2(d )
N (�, t ) d� +

∫ d/c

d
2

F (�)

T2
(√

[3]�3 − d3
)N (�, t ) d� − ω(d )N (d, t ),

(7)
where d0 is the largest bubble size in the system. Assuming that bubbles smaller than dh do not
break implies that the second integral and the death term vanish, and that the lower bound of the
first integral is dh leading to

∂N (d, t )

∂t
=

∫ d0

dh

2
F (�)

T2(d )
N (�, t ) d�. (8)

Integrating over time, we obtain for d < cdh

N (d, t ) = d−3/2
∫ t

0
IN (d0/dh, s)ds, (9)
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with

IN (d0/dh, t ) =
∫ d0

dh

4
√

3F (�)

(
ρ

γ

)−1/2

N (�, t )d�. (10)

The integral IN does not depend on the child bubble size d , so that the bubble size distribution for
d < cdh follows

N (d, t ) ∝ d−3/2. (11)

The details of the breakup cascade above the Hinze scale and its the temporal evolution only affects
the total number of sub-Hinze bubbles produced while the scaling exponent d−3/2 is not affected
and is independent of time.

III. DIRECT NUMERICAL SIMULATIONS

To evaluate the validity of the physical arguments leading to N (d, t ) ∝ d−3/2, we perform DNS
of a single initial bubble larger than the Hinze scale in a turbulent flow using the free software
BASILISK [37,38]. A detailed description of the numerical configuration can be found in Rivière
et al. [39]. We first create a homogeneous and isotropic turbulent flow at Taylor Reynolds number
Reλ = 38, following the method introduced by Rosales and Meneveau [40]. We then introduce a
spherical bubble of diameter d0 within the inertial range of the Kolmogorov cascade [26], i.e., at
a scale where turbulence is scale invariant. The density ratio is ρ/ρg = 850 and the dynamical
viscosity ratio is μ/μg = 25 where the subscript g refers to the gas phase located inside the bubble.
We vary the ratio d0/dh and we have verified that the velocity statistics at the scale of the parent
bubble are typical of turbulent flows [41] (although the Taylor Reynolds number is smaller than
that in typical experimental conditions). We perform at least ten simulations per value of the initial
bubble size d0/dh (2.9, 4.1, 5.2) with a spatial resolution of 135 points per diameter. We analyze the
lifetime of all bubbles of diameter larger than four grid points.

Figure 2 presents snapshots of a large bubble (giving an initial separation of scales d0/dh =
2.9) subject to large deformations, described in detail in Rivière et al. [39]. The initial breakup,
which occurs within one eddy turnover time at the bubble scale tc(d0) [39], is followed by a rapid
succession of splitting events, occurring on a much faster timescale and producing dozens of sub-
Hinze-scale bubbles.

As previously, we decompose the dynamics into binary events and associate a lifetime T (�, δ)
to each parent bubble of size � producing a small child bubble of size δ. We compute the values
of the equivalent diameters � and δ from parent and child bubble volumes. All individual bubbles
are tracked from birth to death to determine T (�, δ) using a reconstruction process of the full
event sequence for each simulation. To do so, all individual bubbles are first tracked in space and
time using the Python package TRACKPY [42] based on the Crocker-Grier algorithm [43]. Using
volume and momentum conservation during breakup events, we reconstruct the breakage tree event
by event. Each criterion has been manually adjusted and tested on simple situations to validate the
algorithm robustness. The processing is systematically applied to the entire data set and leads to
the identification of 4329 breaking events for d0/dh ranging from 2.9 to 5.2, using 78 different 3D
DNS realizations of bubble breakup. In the following, we focus on the sub-Hinze bubble production,
corresponding to δ < dh and t < 4tc(d0), during which most of the sub-Hinze bubbles are generated
[39]. Given the low volume fraction of air, the coalescence events are statistically negligible.

Figure 3(a) shows the splitting times T (�, δ) as a function of the size of the smallest child
bubble they produce, δ. Each individual event is color coded by the parent size �, highlighting a
broad distribution of splitting times, almost all smaller than the eddy turn-over time at the small child
bubble’s scale, tc(δ). This suggests that these splitting events are not primarily instigated by turbulent
deformations at the small child scale. To estimate the ensemble average 〈T (�, δ)〉 over multiple
realizations, we compute the ensemble average over � values given δ, denoted 〈T (�, δ)〉�, which is
shown in black squares. It matches the capillary time scale T2(δ), i.e., the typical capillary time at the
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(a) 0.7tc(d0) (b) 0.8tc(d0) (c) 1.0tc(d0) (d) 1.1tc(d0)

(e) 1.4tc(d0) (f) 1.6tc(d0) (g) 1.7tc(d0) (h) 1.8tc(d0)

FIG. 2. DNS snapshots of a typical breakup sequence, with the initial bubble size d0/dh = 2.9. The
bubbles’ interface is represented in white. The first images (a), (b) show large-scale deformation due to
turbulence, happening over the eddy turn over time at the size of the initial bubble scale d0, tc(d0) = ε−1/3d2/3

0 ,
leading (c), (d) to the formation of thin filaments. (e)–(h) Successive splitting events of the filament are visible
leading to multiple child bubbles. The filaments quickly break creating a wide range of bubble sizes, the
smallest being orders of magnitude smaller than the initial one.

length δ (shown in black dashed line), up to δ = dh, without any adjustable parameters. However,
a broad distribution of timescale is observed, and the standard deviation of the bubble lifetime
is barely defined, which cannot be explained by a simple Rayleigh-Plateau instability of a single
bubble filament of diameter δ. The dispersion of the individual splitting times can be attributed to
the various shapes induced by the turbulent flow and more generally to the inherent stochasticity of
the breakup events. To our knowledge, the Rayleigh-Plateau instability dynamics for a gas filament
in presence of an external noise has never been investigated. A recent study on liquid filament [44]
has shown that indeed, initial noise on the filament shape induces a widening of the satellite drop
size distribution. The velocity fluctuations associated with the turbulent flow around the bubble
could also play a crucial role by inducing various filament shapes. However, a recent study by the
same authors [35] showed that for the final stage of evolution, i.e., the pinch-off of a single bubble
in a turbulent flow, the shrinking dynamics of the bubble neck is only slightly modified compared
with the quiescent case. Determining how the growth rate of RP instability would be modified by
the variety of filament shapes and by the presence of the flow will require further investigations. For
δ > dh, the breakup time seems to converge to a value independent of δ. We have also separately
verified that, 〈T (�, δ)〉 being a function of two variables, the ensemble average of over δ values for
a given �, 〈T (�, δ)〉δ is independent of �. This confirms the scaling proposed in Eq. (5).

IV. EXPERIMENTAL VALIDATION

We now aim to verify that an initial large separation of scales, namely for which d0/dh � 1,
indeed leads to a universal N (d ) ∝ d−3/2 in the sub-Hinze-scale regime. We will analyze laboratory
and numerical data of bubble size distribution under breaking waves from previous work [18,22].
On top of this, we compare the results to a more idealized configuration consisting of a single large
bubble injected in a turbulent flow, both numerically [39] and experimentally.

We design an experiment to inject a unique large air cavity (bubble) of initial size much larger
than the Hinze scale dh. Using a thin latex membrane, we pressurize an underwater air cavity of
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FIG. 3. Lifetime of bubbles as a function of the size of the smallest bubble they split apart into. The size
of the parent bubble is given by the color. Most splitting events occur on a timescale faster than the eddy
turnover time tc(δ), shown in dotted line, suggesting that the splitting events are not primarily instigated by
turbulent deformations at the small child bubble size. The ensemble averaged time 〈T (�, δ)〉� is shown in black
squares and follows the capillary timescale of the small child bubble T2(δ) without any adjusting parameters
(shown as the dashed line). Diamonds and circles denote two levels of resolution, associated with a grid size
of � = 0.0075d0 and � = 0.015d0, respectively, with d0 the initial bubble size.

diameter d0 = 40 mm, as shown in Fig. 4(a). In the water phase, a turbulent flow is generated in
a horizontal middle plane located above the initial air pocket, similarly to Ref. [35]. It is done
by arranging and running four pumps pointing toward the center. The resulting velocity field is
characterized using a particle image velocimetry algorithm [45], which gives u′ = 0.25 m/s, Lint =
15 mm, ε = 0.7 m2 s−3 and Reλ = 340 ± 40, where u′ is the root mean squared (rms) velocity,

(b) (c)

(d) (e)

2 cm e

d0

latex sheet

pressure 

regulator

submerged 

pump

air cavity

turbulent 

jet

turbulent 

water

air supply

turbulent 

latex sheet

submerged 
pump

Submerge

pump

Submerged
turbulent jet

pressure
regulator

air cavity

d0

(a) (f)

(g)

(h)

FIG. 4. (a) Sketch of the experimental setup. (b)–(e) Successive snapshots of the release of a large bubble
into a turbulent background flow. (b) Before the crack opening, an air pocket is trapped within a extended thins
rubber sheet. (c) Just after the membrane piercing, the membrane moves away, generating locally a high shear
situation, but on a timescale much shorter than the typical turbulence time at the bubble scale (0.2 ms). (d) The
small wavelength disturbances are then dissipated by viscosity while the interface deforms at larger scale under
the action of the background turbulence. (e) Eventually the bubble interface experiences multibreaking events,
generating a broad distribution of bubble size. ( f)–(h) Zoom in view of a typical breaking dynamics of a gas
filament during the process. The time between images is 2 ms. The red rectangle highlights the region where
ligament collapsed creating many sub-Hinze bubbles.
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N
(d
)d

h

FIG. 5. Bubble size distribution obtained both experimentally and numerically in two different geometries:
a breaking wave (�, •) and a single bubble breaking (�, �). The distribution exhibits two power laws: for
d > dh, N (d ) ∝ d−10/3 (dashed line), while N (d ) ∝ d−3/2 for d < dh (dotted line).

Lint the integral length scale and Reλ is the Taylor Reynolds number that characterizes the turbulent
velocity fluctuations. These set the Hinze scale to dh ≈ 4.8 mm with γ = 50 mN/m and ρ = 103

kg/m3. The ratio between the initial cavity diameter d0 = 40 mm and the Hinze scale is therefore
d0/dh = 8.3, which defines a Weber number We = Wec(d0/dh)5/3 ≈ 100, corresponding to a large
separation of scales. Note that in the literatureWec varies between 1 and 5, depending on the details
of the turbulence setup [13–15]. We consider Wec = 3 for consistency with the DNS [39]. The
air pocket is released by piercing the membrane, which triggers a rapid crack opening. After a
transient regime of interface deformations by interfacial instabilities, the bubble rises and deforms
under the combined action of buoyancy and turbulent background flow. A comparison with the
quiescent case shows that the bubble fragments are mainly produced by the turbulent background
flow. In the main turbulent region located between the four pumps, a broad range of bubble sizes
is eventually generated, as illustrated by the successive snapshots of Figs. 4(b)–4(e). The large air
bubbles are highly deformed and lead to the formation of tiny air filaments, breaking down in small
bubbles as illustrated in Figs. 4(f)–4(h). To measure the size distribution quantitatively, we move the
pumps 20 cm above the air pocket. We then process images taken with a high-speed camera with
a resolution of 15 μm per pixel filming at 1000 fps to compute the distribution of bubble sizes in
the region of the most intense turbulence. We compute the bubble size distribution averaged over
two runs and 1.2 s ≈20 Tint each after the first breakup, with Tint = Lint/u′ the integral timescale
associated with the correlation time of the largest eddies.

Figure 5 shows the bubble size distributions N (d ) obtained under breaking waves [18,22] and
from a single large bubble breaking in a turbulent flow, both experimentally and numerically. Within
all four data sets, for d > dh, the distributions exhibit N (d ) ∝ d−10/3 scaling, in agreement with
other previous experimental measures below a breaking wave [17,19,20] and in agreement with the
classic breakup cascade argument from Garrett et al. [24].

For d < dh, all four dataset also exhibit N (d ) ∝ d−3/2 across a large range of scales. The bubble
size distribution measured under breaking waves is in close agreement with the data obtained from
single bubble breakup in turbulence, suggesting that the same underlying mechanisms are at play
for the sub-Hinze bubble production outside if laboratory experiments. This result also justifies that
F (�, δ) = F (�). Indeed, since N (d ) ∝ d−3/2, the left-hand side of Eq. (8) is proportional to d−3/2

and since, from the time analysis the d dependency of the right-hand side is d−3/2F (�, δ), one gets
a posteriori that F (�, δ) must be independent of δ.
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V. CONCLUSION

The observed size distribution, considered alongside the mechanism we present for sub-Hinze
bubble production, suggests that, for these experimental cases, the production rate of sub-Hinze
scale bubbles is controlled by surface tension through the breaking dynamics of gas filaments. It
extends to sub-Hinze bubble production the framework of Villermaux [34], who stated that, for
liquids, ligaments may universally control fragmentation processes. Contrary to many fragmentation
processes in which a physical length scale sets the average fragmentation size, there is no such
specific length scale, and a power-law distribution is observed instead. These capillary effects only
dominate the production of sub-Hinze bubbles, since for larger bubbles, the dynamics, and thereby
the lifetime, of the parent bubbles can also be controlled by the eddy turnover time.

To summarize, the scaling for d > dh [18] reads

N (d, t ) = Qε−1/3d−10/3 for d > dh, (12)

where Q is the volume of air injected to the breaking cascade per volume of water per second, and
can be evaluated from the breaker geometry and energetics [21,22]. The prefactor for the sub-Hinze
distribution can then be evaluated using the continuity of N at dh, and

N (d, t ) = Q

(
Wec

2

γ

ρ

)−11/10

ε2/5d−3/2 for d < dh. (13)

In summary, when d0 � dh, large-scale inertial breakups and small-scale capillary splitting
events occur concurrently. The background turbulence sets the geometry of each breakup event
over a time tc(�) and then freezes relative to the capillary timescale [35], over which a cascade
of small-scale splitting events occur. The classic turbulent inertial breakup scenario [Eq. (12)]
combined with the capillary driven fragmentation regime [Eq. (13)] provides a physical explanation
for the entirety of the bubble size distribution when large air cavities break apart under the action of
turbulence.
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