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Energy Savings and Retrofit Assessment for City-scale Residential Building Stock During Extreme Heatwave Events Using 

Genetic Algorithm-Numerical Moment Matching  

Abstract 

During heatwave events electricity demand and consumption of residential buildings are generally higher than during 

non-heatwave events. As a result, this can significantly increase the energy demand at the city scale. In an effort to 

support sustainable development, it is important to be able to predict the level of increased building electricity 

consumption and its associated impacts. In this study six key building energy variables from energy audit data from 

2008-2018 were identified as significant predictors of energy consumption for 17,000 single family homes (SFHs) in 

Austin, Texas (hot-humid climate). These variables were utilized as input to a Genetic Algorithm-Based Numerical 

Moment Matching method to predict the electricity consumption and demand of SFHs along with uncertainty 

quantification. The model was validated with measured data for 2009 and 2011. Using this model, the potential 

electricity saving and demand reduction during peak hours for several energy efficiency retrofits were evaluated. The 

results indicate that, cooling system efficiency improvements have higher impact on demand reduction during peak 

hours since approximately 65% of daily electricity saving occurs during these hours. Attic insulation retrofits can also 

shift air conditioning operation from peak to off-peak hours. This quantitative approach for evaluating city-scale 

electricity demand supports establishing effective responses to heatwave events.  

Keywords: City-scale energy modeling, genetic algorithm-based numerical moment matching, single family homes, 

residential buildings, demand reduction policies, energy saving 
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1 Introduction 

The electricity demands and consumption of individual buildings are significantly affected by the occurrence of 

extreme heat events. During these events, the electricity demand (kW) and consumption (kWh) at the city scale is 

typically much higher than on a typical summer day. It should be noted that electricity demand, as referenced in this 

paper, is measured in kW, and is the instantaneous amount of electricity needed; electricity consumption, measured 

in kWh, is the use of electricity over time, across a specified period. This is due in large part to the 73% of electricity 

consumption (U.S. Energy Information Administration) and nearly 75% of electricity demands (Hand et al. 2012) that 

originate from residential and commercial buildings in the U.S. Given that heating, ventilation, and air conditioning 

(HVAC) systems are present in over 83% of residential and nearly 100% of commercial buildings in the U.S., and in 

higher percentages in hot climates (U.S. Energy Information Administration 2011), electricity demand and 

consumption is generally higher during heatwave conditions because more buildings are using air conditioning, for 

longer periods of time, with lower efficiency due to the hotter temperatures (Mirzaei and Haghighat 2010; Santamouris 

et al. 2015). Therefore, developing methods to better model the electricity demands of buildings and cities is crucial 

for predicting the potential demand reduction and electricity savings practices during extreme heatwave conditions. 

The following subsections considering recent literature on heatwave characteristics, various techniques in building 

energy modeling and finally have a closer look on retrofit assessment during heatwave events. 

1.1 Heatwave characteristics 

A survey of scholarly sources on heatwave definitions indicates that there are more than 30 heatwave definitions that 

have been developed and used (Jahani et al. 2020). Different elements considered in these definitions include 

frequency of occurrence, magnitude of the outdoor temperature, and duration of the event, among others (Karl, T.R., 

N. Nicholls, A. Ghazi 2009). In a study by (Jahani et al. 2019) focused on city-scale electricity use prediction, four 

heatwave indices were used to identify historical heatwave events in Austin, Texas between 1948-2017. These include 

Excess Heat Index (EHI), Warm Spell Duration Index (WSDI), Heatwave Duration Index (HWDI), and Meehl index 

(Meehl 2004), all of which are described in detail in (Jahani et al. 2019). For example, in Meehl (2004), a heatwave 

is defined using in index which is based on exceeding two thresholds. The first threshold is the 97.5th percentile of 

the distribution of maximum temperature (T1), and second is the 81 percentile of maximum temperature (T2). Within 

this study, a heatwave is then defined as the longest period of consecutive days satisfying the following three 

conditions: (i) The daily maximum temperature must go above T1 for at least 3 days, (ii) the average daily maximum 
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temperature must be above T1 for the entire period, and (iii) the daily maximum temperature must be above T2 for 

every day of the entire period. 

These were selected, among all tested indices, because these four indices were in agreement in identifying historical 

heatwave events in Austin. Through the use of these indices, five historical heatwave events were identified which 

met the criteria of all four definitions. Among these, the event in 2009 was the longest, lasting from June 26 to 29. To 

choose the most significant heatwave event among the remaining four events, two metrics were developed. First is the 

peak daily temperature aggregated for the entire heatwave event, called the cumulative peak temperature. Second is 

lowest daily temperature aggregated for the entire heatwave event, called the cumulative lowest temperature. These 

two metrics were calculated for each of the heatwave events. The heatwave that achieved the highest values for both 

metrics was considered the most significant heatwave. The results indicate that the heatwave event in 2011 was the 

most significant heatwave event among the remaining events. Therefore, the two heatwave events that occurred in 

2009 and 2011 were selected for further investigation.  

1.2 Building energy modeling techniques 

Significant efforts have focused on energy modeling of individual building, to evaluate their performance during 

heatwave and other extreme events. Among the goals of modeling of buildings is assessing the impact of efficiency 

retrofits on an individual building’s performance, thus focusing on single building modeling has been a more common 

practice. However, energy consumption prediction for clusters of buildings, both at the neighborhood (Fonseca and 

Schlueter 2015) and city scale (Heiple and Sailor 2008; Nouvel et al. 2015; Li et al. 2018), as well as the regional and 

national scale (Huang and Franconi 1999; Sailor and Lu 2004a), has become of increasing interest, as these methods 

can be beneficial for city- and utility-level planning purposes, among others.  

The prediction of energy consumption of buildings relies on physical phenomena, including heat transfer and 

thermodynamic relationships. These methods are based on various assumptions and depend on input data for a large 

number of variables, many of which may not be data that are directly available or measured, and are thus assumed or 

rely on previous studies’ assumptions. These inputs include building properties such as geometry, envelope, 

equipment and appliances, climate conditions, as well as indoor environmental conditions, occupancy schedules and 

equipment use. Building energy modeling at different scales can be categorized into the following methods according 
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to (Swan and Ugursal 2009b), including the (a) archetype technique, (b) distribution technique, and (c) sample 

technique.  

A newer sampling method is Numerical Moment Matching (NMM).  NMM is able to create a small set of 

representative samples from complex, large-scale population data, and facilitate a fast and robust uncertainty 

quantification of complex behavior of population. Creating small set of samples can help decision makers to estimate 

the mean behavior or response of a studied population in a short time, which can play an important role in time 

sensitive scenarios. This technique, compared to other sampling techniques such as Monte Carlo and Mean and Sigma, 

can allow for the use of a significantly smaller sample size.  

Although there has been an increase in availability of computing power in recent years, allowing for the use of more 

complex techniques, such sampling methods can still be helpful for scenarios where limited computational resources 

and time are available. In a study by Cho and Porter (Cho and Porter 2016) the difference between the moments of 

the sample and surveyed population was investigated for both NMM and MS. Results indicated that the NMM method 

had a significantly lower error compared to the MS method (Cho and Porter 2016). Matching moments of the sample 

with population was conventionally conducted using a multivariate Newton-Raphson (mNR) scheme. This method 

has limitations such as numerical divergence and initial-value dependency (Karr et al. 1998) (Cho et al. 2018). 

However, recent studies overcome these limitations by coupling a Generic Algorithm (GA) with mNR.  

This new technique, called GA-NMM, has been shown to perform substantially better than conventional methods in 

preserving statistical moments (e.g., mean, variance, skewness, kurtosis, etc.) and has exhibited no restrictions to 

irregular distributions, large sizes, or many variables of engineering data (Cho et al. 2018). Moreover, the performance 

of GA-NMM is compared with other existing nonlinear constrained optimization methods such as 

sequential quadratic programming (SQP) and interior-point algorithm (IPA).  In their comparison two types of 

objective functions are defined, one using absolute error and the other using squared error. Results indicated that both 

SQP and IPA are sensitive to initial values and sometimes have relatively low precision or a few divergences, however 

for GA-NMM the model performed stably and produced converged results with |MAE| < 10−14 with no sensitivity 

to the initial values (Cho et al. 2018). 

The application of this technique in city-scale building energy modeling has been used recently to demonstrate a 

validated city-scale residential building stock model and its energy-related characteristics in the city of Cedar Falls, 

https://www.sciencedirect.com/topics/computer-science/constrained-optimization
https://www.sciencedirect.com/topics/computer-science/quadratic-programming
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Iowa (Jahani et al. 2020). The proposed methodology was found to significantly reduce the building sample size 

needed, and also reduce the need for detailed information on building energy related characteristics. However, the 

model was used to predict monthly and yearly electricity consumption of single family homes (SFHs) in this specific 

city, in a cool-humid climate zone, and was not considered in other locations or climate zones. As such, it is beneficial 

to assess the proposed technique in other climate zones, cities and data frequencies in order to determine its ability to 

be used  more broadly.  In addition, it is anticipated that such methods could also be used in related applications, to 

study the impacts of efficiency improvements on city-scale consumption patterns, however this has yet to be studied, 

to date, in the existing literature. Therefore, assessing this technique i) with a larger sample dataset, ii) in a hot-humid 

climate, and iii) with a higher frequency time resolution, has yet to be explored and validated. In addition, this 

technique has not been used to assess city-wide efficiency improvements’ impact on city-scale consumption patterns. 

As such, this study seeks to accomplish these gaps in existing literature.  

1.3 Retrofit assessment during heatwave events 

There have been several recent studies that have addressed reducing electricity demand at the city scale. In a study by 

Ruddell et. al. (Ruddell et al. 2014), a utility-scale model of the Phoenix is used to simulate electrical demand due to 

air conditioning, during a summer heatwave. The peak electricity demand reduction was assessed through using cold 

thermal energy storage, finding that shifting air conditioning electrical demands using cold thermal storage can reduce 

peak city-wide demand by 13%. In another study by Dirks et al. (Dirks et al. 2015), the impact of future climate change 

scenarios on energy consumption and peak demand is investigated. This study focused on the region of the EIC 

(Eastern Interconnection) in the United States. In a case study for six city districts in northeast San Francisco in the 

U.S. (Chen et al. 2017), five individual energy conservation measures (ECMs) for 940 office and retail buildings were 

investigated. The results demonstrated that all five tested measures together have the ability to save 23–38% of site 

energy per building. Based on the authors’ knowledge of literature in this area, however, there are not existing studies 

focusing on the impact of retrofits on city-scale electricity demand during heatwave events, using the proposed GA-

NMM technique.  

1.4 Objective  

The objectives of this study are thus to, first, evaluate the use of the GA-NMM technique in a new climate zone and 

location scenario, specifically for single family homes in Austin, TX (Climate Zone 3A), using monthly frequency 
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energy use data, and second, use the validated model to   evaluate city-scale electricity savings during peak demand 

hours, and during heatwave events due to widespread implementation of specific energy efficiency retrofits in single-

family buildings. Energy efficiency retrofits of buildings are a critical component of advancing energy efficiency and 

urban sustainability. Numerous cities have dedicated investments focused on energy use and carbon reduction plans, 

including in particular, retrofitting the existing building stock. This study presents a methodology that utilizes actual 

buildings characteristics of the studied location (buildings’ energy audit data) to estimate the mean behavior of existing 

single family buildings of the studied region for use in evaluating energy efficiency retrofit options. This methodology 

can be used to forecast the city-wide building energy saving opportunities, supporting evidence-based decision making 

for medium or long-term energy demand reduction targets in sustainable urban planning contexts. 

2 Dataset 

Several key datasets were used in this work, as summarized in this section. The first dataset includes energy audit data 

for SFHs in the residential building sector in the city of Austin, Texas. The dataset was collected by Austin Energy 

for houses that meet three main requirements, including that it must be (a) located within the city of Austin; (b) 

serviced by Austin Energy; and (c) over 10 years old. The third requirement is based on a city-wide ordinance, Energy 

Conservation Audit and Disclosure (ECAD), enacted in 2011 (Austin Energy 2011). This states that the energy audit 

information must be disclosed while selling a home that is over 10 years in age. For example, in 2018 all SFH that 

were built before 2009, are required to have an energy audit completed by a third party during the buying/selling 

process (Energy 2018). This dataset, compiled from 2008-2018, contains 17,000 single-family buildings’ energy audit 

data. This is among the most detailed dataset of building characteristics for a city in the U.S, beyond basic data derived 

from assessors data.  Based on an analysis and comparison of basic building characteristics obtained from assessors 

data for Travis County, Texas (Travis County 2020), the median age and size (conditioned area) of homes in Travis 

County assessor dataset are 32 years old and 164 m2, respectively. The studied ECAD dataset the median age and size 

(conditioned area) of homes are 46 years old and 140 m2, respectively. Thus, the reported homes in ECAD dataset 

(Austin region) are slightly older and smaller than the homes in Travis County, which is understandable given the 10-

year minimum requirement for audit data collection. 

A second dataset used includes the measured average monthly electricity use for SFHs the Austin Energy region from 

2000-2018. This data is used, in aggregate, to validate the results of the developed city-scale model.  The third dataset 

used includes historical hourly electricity demands (1998-2017) in the Electric Reliability Council of Texas (ERCOT) 

https://www.sciencedirect.com/topics/engineering/retrofit
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south central region that includes the city of Austin (Electric Reliability Council of Texas (ERCOT) 2020). This 

dataset is used to determine whether the peak electricity demand occurred during the studied heatwave event. To 

identify the peak demand, the exceedance from 90th percentile threshold of demand for a given year was considered 

as the peak demand. The final dataset is measured hourly weather data collected in Camp Mabry weather station in 

Austin for 2009 and 2011 (White Box Technology 2018), which was also used as input to the data-driven model.  

3 Methodology 

The methodology described herein includes two main steps. The first is the development of a city-scale model to 

predict the site electricity use for SFHs in Austin and the verification of these results with the measured data. To 

accomplish this, key energy-related characteristics were identified through energy modeling-based sensitivity 

analysis. Considering these key characteristics, the GA-NMM method was then used to obtain a set of index buildings 

and associated weighting criteria which statistically represent the energy-related features of the larger dataset of 

buildings. These are used to develop building energy models of the index buildings.  Measured energy use data was 

then used to validate the model results in aggregate. The final models were then used to predict the annual, monthly 

and hourly site electricity consumption of the building population. The second step is to utilize the developed energy 

model to evaluate the potential electricity saving and peak electricity demand reduction during heatwave events 

considering city-level adoption of several different energy efficiency upgrades.  

3.1 Developing city-scale energy model 

To generate a city-scale energy model, the GA-NMM method is used to statistically represent the building stock for 

the purpose of estimating its energy behavior. This methodology involves four main steps, including (i) an assessment 

of the most energy-impacting building features among those collected in energy audit data; (ii) the utilization of the 

GA-NMM to obtain a set of index buildings and associated weighting criteria which statistically represent the energy 

related features of the larger dataset of buildings; (iii) the development of building energy models of the index 

buildings, and their utilization to predict the site energy behavior of the building population under different time 

resolutions; (iv) validation of the results with measured electricity data. Detailed information about each of these steps 

are discussed further in this section. 

3.1.1 Key energy-related building characteristics 

The building characteristics documented in the energy audit data utilized were classified into five main categories, 

based on the classification method described in a recent study (Wilson et al. 2017a). These categories of characteristics 
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include (a) meta, (b) geometry, (c) envelope, (d) equipment, and (e) occupancy, as described in Table 1.  Single family 

building characteristics can be defined by a particular combination of these parameters. The meta category includes 

self-referential parameters that the rest of other parameters are directly or indirectly influenced by. For example, the 

age of the building, a meta characteristic, typically correlates with the level of wall insulation, window type, and 

equipment efficiencies.  

The geometry category includes floor area, foundation type, building orientation, and number of stories. The envelope 

category includes components that physically separate the conditioned environment of the building from outdoor 

environment, such as window type, wall and attic insulation level. Equipment includes large and small appliances and 

other energy consuming devices, including the heating, ventilation and air condition systems (HVAC). The occupant-

related parameters include those impacted by the presence of and/or preferences of occupants, such as appliances that 

operate strictly based on occupants’ use. Such parameters are not as highly predictable as other parameters, and thus 

represent higher levels of uncertainty.   Of the characteristics listed in Table 1 that are noted to have an impact on the 

energy performance of a building, some were not measured in the energy audit data and thus not captured in this 

dataset. Those that were measured and included in the dataset are noted with a “*”.  

Table 1. Main categories of residential building characteristics 

Meta Geometry Envelope Equipment Occupancy 

Location Floor area* Window type* Heating system type Heating setpoint 

Age* # of Stories* Wall insulation level Heating system efficiency* Cooling setpoint  

Heating fuel* Foundation type* Attic insulation level* Cooling system type* Dryer usage 

DWH fuel* Attached garage Foundation insulation  Cooling system efficiency* Lighting use  

Appliance use 

level (Low, 

Medium, High) 

Orientation Air leakage* Duct insulation, tightness* 

DHW system type* 

DHW system efficiency 

Cooking appliance type 

Clothes dryer type 

Appliance use 

Cooking appliance 

usage 

Note: * indicates the parameters that are measured in ECAD energy audit data; DHW = Domestic Hot Water 

In order to determine, of the available parameters in the dataset, which has the most impact on the energy performance 

of residential buildings in the Austin area (hot-humid, ASHRAE Climate Zone 3A), a sensitivity analysis was 

conducted using the physics-based energy simulation software, EnergyPlus. This software is among the most 

commonly used of building energy performance analysis software packages, and has been highly validated in many 

in-depth studies (Robert H. Henninger and Michael J. Witte 2011),(Robert H. Henninger and Michael J. Witte 2015). 

Other characteristics used (Table 2) for the Texas region, were derived from ResStock (National Renewable Energy 
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Laboratory (NREL) 2018), which is a dataset that statistically defines residential building stock characteristics for 

various regions and states in the U.S. Three values were defined, including the upper and the lower range of values 

for each parameter, and the most frequent value, also listed as the “most common” (National Renewable Energy 

Laboratory (NREL) 2018). The values listed in the table as the "most common" are used as the properties for the 

baseline building in this study. The baseline building was developed initially in BEopt (National Renewable Energy 

Laboratory (NREL)) to represent a typical SFH in this region, then simulated in EnergyPlus. It should be noted that 

parameters with a “*” in  

Table 2, have single value of a particular variable, for more than 80% of homes in the studied database. For example, 

82% of the foundations are slab foundations, 95% of buildings have a central air conditioning system, and 96% of the 

water heating systems are standard tank systems. Therefore, these parameters were not considered in the sensitivity 

analysis. Moreover, in some cases such as “window type” and “foundation type”, the most common value matches 

either the lower range or upper range that result in not having variation in sensitivity analysis. 

Table 2. Upper, lower, and the most common values of building characteristics for single-family buildings in Texas 

Building 

characteristics 

Upper range Lower range Most common 

Type % Type % Type % 

Foundation Type* Slab 98% Unheated basement 1% Slab 98% 

Attic insulation R-49 0% Uninsulated 4% R-30 43% 

Window type 

Low-E, Double, 

Non-metal, Air, 

Low-Gain 

21% 
Clear, Single, 

Metal 

44

% 

Clear, Single, 

Metal 
44% 

Air infiltration  0.19 3% 0.94 8% 0.56 30% 

Duct leakage 10%, R-8 6% 30%, R-4 
19

% 
20%, R-4 38% 

Heating system fuel 

type, efficiency  

Gas furnace,  

96% AFUE 
1% 

Gas furnace,  

60% AFUE 
2% 

Gas furnace,  

80% AFUE 
29% 

Cooling system type*, 

efficiency 

Air Conditioning, 

SEER 15 
4% 

Air Conditioning,  

SEER 8 
6% 

Air Conditioning, 

SEER 10 
37% 

Water heating fuel, 

type* 
Electric, standard 38% Propane, standard 4% Gas, standard 53% 

Heating fuel, efficiency  
Electricity  

(100% AFUE) 
39% 

Propane  

(80% AFUE) 
1% 

Gas  

(80% AFUE) 
59% 

Area 325 m2  8% 139 m2  
29

% 
186 m2  47% 

Note: The given values are the percentage of buildings that have those specific characteristics. 

Based on the collected data, a typical SFH was developed in EnergyPlus based on the most common variables. The 

values for the remaining parameters were based on Building America House Simulation Protocol (Wilson et al. 2014). 
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Figure 1, shows the change in the annual site electricity use based on the sensitivity analysis that is conducted for the 

given ranges in  

Table 2.  The percentage values reported in Figure 1 represent the percent difference between the energy use of the 

“most common” variable scenario and the either “upper” or “lower” range values in  

Table 2.  

The results show that factors which have more than 5% impact on the site electricity use are building area, heating 

fuel type, cooling system efficiency, unfinished attic insulation, water heating fuel type, window type, and duct 

leakage. This impact on the electric grid may not be significant for an individual house, but at a larger scale such as a 

city, this would have a more significant impact on demand. It should be noted that the impact of some of these 

parameters are seasonal, such as cooling system efficiency. However, other parameters such as attic insulation, duct 

leakage and window type impact energy use in both the cooling and heating seasons. Since in this study, site electricity 

saving and demand reduction were addressed, the heating system efficiency is not included as one of the considered 

variables. The reason is that in the studied dataset 60% of heating systems are gas-powered, the use of which has a 

minimal impact on electricity. For the other 40% of electricity-based heating systems, the systems’ efficiency were 

not reported in studied database and thus could not be used. The variable “heating fuel type” is used as a variable in 

the GA-NMM since the variation of heating fuel type (gas or electric) can have a significant impact on electricity 

consumption of both individual homes, and the city-scale consumption in aggregate. Therefore, building area, window 

type, attic insulation, duct air leakage, cooling system efficiency, heating fuel type, water heating fuel were considered 

as key energy-impacting predictors of building energy performance, and used in the remainder of this effort.  

 
 

-40% -35% -30% -25% -20% -15% -10% -5% 0% 5% 10% 15% 20% 25%

Unfinished attic insulation
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Infiltration

Ducts leakage
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Figure 1. Sensitivity analysis of different parameters, including both the upper and lower range values from Table 2 

on annual site electricity use of a residential building in Austin, TX, compared to the baseline “most common” 

building 

 

3.1.2 Numerical Moment Matching technique (NMM) 

An essential part of the implementation of demand reduction and energy-saving practices is being able to accurately 

model energy use patterns at the city scale. Thus, improving the modeling abilities for predicting energy consumption 

at the city scale is critical. In this study, a Genetic Algorithm-Based Numerical Moment Matching (GA-NMM) method 

is adopted from Jahani et al. (Jahani et al. 2020) to develop a city-scale model for SFHs. This technique is moment 

matching technique that is applicable for large scale data by generating a small set of representative samples of a 

population. In this study, six independent variables or features of the studied population are identified as 𝑋. It is also 

assumed that a function 𝑌 = 𝑔(𝑋) can relate the response variable 𝑌 to the independent variable 𝑋, where the objective 

is to estimate expectation (𝐸[𝑌]), and variance (𝑉𝑎𝑟[𝑌]) of 𝑌. In this study the resultant parameter is considered as 

electricity consumption of SFH which is a function of building area, window type, attic insulation, duct air leakage, 

cooling system efficiency, heating fuel type. 

In this study, the GA-NMM is applied to generate a city-scale energy model for the city of Austin, Texas. The key 

energy related building characteristics discussed in Section 3.1.1 must next be evaluated to determine if they are 

mutually independent, thus they were checked for interdependency. The variables that have high correlation 

coefficients were eliminated from the input list. The final set of variables were considered as key, independent, energy-

impacting predictors of building energy use, and were used as input to the GA-NMM to develop a discrete Probability 

Distribution Function (PDF) for each variable. A discrete probability can be considered as a probability mass function 

(PMF) which consists of positions and their associated weights for each variable. It should be noted that the weights 

and positions of PMF are chosen such that first five moments (mean, variance, skewness, etc.) of both the discrete 

PMF and the original PDF are identical.  

More detailed information on how to numerically approach to obtain three positions and their weights for each 

variables in a way that the resulted PMF exactly match the first five moments of variable’s arbitrary distribution (i.e., 

not necessarily Gaussian, lognormal, beta, etc.) is given in (Jahani et al. 2020). The resultant PMF for each variable 

consist of 3 positions and their associated weighting factor. Detailed information on the number of index buildings 

and fundamental aspects of this are also given in (Jahani et al. 2020). The next step combines all PMFs to determine 
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a junction distribution of all the variables’ PMF. The final result is 2n+1 index buildings, where n is the number of 

variables that are selected as impactful variables on building electricity consumption. As 6 variables are employed, 13 

index buildings are thus generated. 

3.1.3 Modeling energy consumption for the sample buildings 

To model energy consumption for each resulting index building, a building energy model was developed in 

EnergyPlus, initially using the software BEopt (Building Energy Optimization) v.2.8.0.0, which is specifically 

designed for U.S. residential building energy modeling (National Renewable Energy Laboratory (NREL) 2019). For 

modeling energy performance of index buildings, the hourly measured weather data for 2011 and 2009 for Austin, TX 

was used. Among the 5 historical heatwave events that occurred between 1948-2017 in Austin, identified based on 

the specified heatwave definitions, these two years were chosen because 2009 included the longest event and 2011 

had, the highest cumulative daily peak temperature occurred during the heatwave and highest cumulative daily 

minimum temperature during the heatwave event, as discussed in Section 1. It should be noted that the weather data 

from 1948-2017 was the period of time in which weather data, in a consistent format, was available. 

The majority of the input parameters utilized in the energy models originate from the assumptions and data discussed 

in the Building America House Simulation Protocol (Wilson et al. 2014), with the exception of the heating and cooling 

setpoints, which are adjusted to be 21C and 25C respectively. This is based on housing characteristics and baseline 

consumption for U.S. residential buildings from (National Renewable Energy Laboratory (NREL) 2018). The 

miscellaneous plug loads (MELs) are designated to be half of the “default” values, based on the impact of climate 

regions on MELs that are not considered in BEopt.  

In BEopt the only two parameters that are considered in the empirical equation which calculates MELs are the number 

of bedrooms, and thus assumed level of occupancy, and the finished floor area (National Renewable Energy 

Laboratory (NREL) 2019). Since, Austin is located in hot and humid region, the total site energy consumption for MELs 

is approximately 44% less than in cold and mixed-humid regions based on the Residential Energy Consumption 

Survey (RECS) 2015 data (U.S. Energy Information Administration 2018). In this work, a coefficient of 0.5 is used 

for MELs. The hourly site electricity was calculated for each index building i, to determine the expected value of 

hourly site electricity use for the entire sample, Equation (1) is utilized, 
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𝐸[𝑌] = ∫ PDF(𝐗)𝑌(𝐗, 𝐭)𝑑𝐗 ≅⏟
NMM

∑ 𝑤𝑖𝑌𝑖(𝑡)

2𝑛+1

𝑖=1

 
(1) 

  

 

𝜎[𝑌(𝑡)] = √𝐸[𝑌(𝑡)2] − 𝐸[𝑌(𝑡)]2 (2) 

Where 𝑌𝑖 (𝑡) is the hourly site electricity consumption for each index building; 𝑤𝑖  is the weight for each index building, 

and 𝑋  is the variable vector that determines the outcome 𝑌(𝑡).  This equation indicates that NMM can replace the 

intractable integration with the simple weighted summation of outcomes. Therefore, the expected monthly and yearly 

energy consumption of SFHs for the studied population is predicted using the weighted average of all index buildings.  

To measure the uncertainty of the expected energy consumption, the standard deviation is calculated using Equation 

(2). 

3.1.4 Model validation with measured data 

To validate the results from the GA-NMM model, the electricity consumption was aggregated across the index 

buildings, and compared to the monthly measured electricity consumption of SFHs in the Austin region. The measured 

average monthly electricity consumption was then compared with the expected monthly electricity consumption 

obtained from the GA-NMM model. Guidelines on the validation of building energy simulation models is based on a 

model’s compliance with criteria for Coefficient of Variation of Root Mean Square Error (CV-RMSE) (%) and Mean 

Bias Error (MBE) (%), which are obtained from Equations (3) and (4). The recommended values for MBE and CV-

RMSE given in ASHRAE Guideline 14 are 5% and 15% respectively, for this data frequency (American Society of 

Heating; Refrigerating and Air-Conditioning Engineers 2002; Coakley et al. 2014). 

𝑀𝐵𝐸(%) =
∑ (𝑚𝑖 − 𝑠𝑖)

𝑁𝑝

𝑖=1

∑ (𝑚𝑖)
𝑁𝑝

𝑖=1

 
 

(3) 

𝐶𝑉 𝑅𝑀𝑆𝐸(%) =
√(∑ (𝑚𝑖 − 𝑠𝑖)

2/𝑁𝑝)
𝑁𝑝

𝑖=1

𝑚̅
 

 

(4) 

Where 𝑚𝑖 is monthly measured electricity consumption, 𝑠𝑖 is simulated monthly expected electricity consumption, 

and 𝑁𝑝 is the number of the months which is 12. The MBE and CV-RMSE values for both considered historical 

heatwave events were calculated and the energy model that had the lower MBE and CV-RMSE values was chosen for 

investigating the electricity saving and demand reduction methods. 
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3.2 Assessing potential electricity saving and peak demand reduction 

Using the calculated expected hourly electricity consumption, the hourly profile of electricity consumption of the 

studied SFHs is obtained across the studied heatwave event occurred in 2009. The goal is to estimate the potential 

electricity saving and demand reduction during the heatwave in which there is high electricity demands on the grid. 

Based on the conducted sensitivity analysis (Section 3.1.1), the characteristics that most impact electricity demand are 

area, heating fuel type, cooling system efficiency, and attic insulation. Among these parameters cooling system 

efficiency and attic insulation are most easily retrofittable. The goal of this effort is to assess the maximum peak 

demand reduction and electricity savings possible, thus in this case, we have assumed a 100% penetration rate of 

retrofits across the studied buildings, as a best-case scenario.  

To investigate the impact of cooling system efficiency improvements, 10%, 20% and 30% improvements were applied 

to the baseline SEER values for cooling system efficiency of the index buildings. These values are selected according 

to assess up to the maximum efficiency cooling systems commercially available for residential buildings (National 

Renewable Energy Laboratory (NREL) 2018). The utilized dataset for this study that contains 17,000 single-family 

buildings’ energy audit data indicates that the existing cooling efficiency of residential HVAC systems varies between 

SEER 5 to 15. Therefore, the maximum improvement percentage considered is designed to be below the maximum 

SEER rating that is commercially available. Moreover, the selection of multiple percent values can better represent a 

range of improvement levels and the associated range of impacts at the city scale.  Then during the heatwave event, 

the hourly electricity demand was then compared with the baseline model to evaluate the electricity demand reduction 

due to the retrofits. Furthermore, to evaluate the impact of the cooling system improvement on electricity use during 

peak hours, the total electricity use reduction during the peak demand hours was calculated and compared for each 

scenario. To obtain the actual peak demand hours, the hourly demand reported by ERCOT (Electric Reliability Council 

of Texas (ERCOT) 2020) for the south central region were used. The hours where demand exceeded 90% in 2009 

were chosen as peak demand hours.  

To analyze the sensitivity of attic insulation improvements on electricity saving and peak demand reduction, the index 

building that represent the portion of the building stock with low insulation R-values of less than R11 are improved 
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in three retrofit scenarios of 200%, 300%, and 500% increase in attic insulation.  Considering the maximum level of 

improvement for attic insulation (500%), the maximum post-retrofit R-value for the index buildings would be R49, 

which, among current ASHRAE 90.1/90.2 standard-recommended R-values in mixed and cool climate regions 

(American Society of Heating 2013). Next, the hourly results were calculated for each retrofit case. Using the hourly 

electricity profile during the historical heatwave event, the potential electricity saving and demand reduction during 

peak hours were calculated for each scenario, then compared with the baseline model.  

4 Results and Discussion 

Using the GA-NMM technique, the city-scale building energy model was developed for the city of Austin according 

to the selected key energy related building characteristics. Then using the developed model, the potential peak demand 

reduction and electricity saving practices were investigated the results of which are reported in this section. 

4.1 City-scale energy model 

4.1.1 Key energy related building characteristics 

The independency of the chosen indicators is the only requirement of the GA-NMM method. Therefore, the correlation 

coefficient between each pair of variables were investigated. As shown in Table 3, all correlation coefficients, with 

the exception of one, are less than 0.3, which can be used to conclude that the variables are independent. The 

correlation coefficient between heating fuel and water heating fuel is 0.66 which indicates the interdependency, 

therefore, water heating fuel type is removed from the variables since it has the lower impact (16%) on annual 

electricity saving compare to heating fuel type (33%), as shown in Figure 1. Therefore, the final variables considered 

as an input to the GA-NMM method are attic insulation, duct leakage, cooling system efficiency, heating fuel type, 

windows type, and conditioned area.  

Table 3. Correlation coefficients between selected variables 

  
Window 

Type 

Attic 

Insulatio

n 

Duct 

Leakag

e 

Cooling 

Efficienc

y 

Conditione

d Area 

Water 

Heater Fuel 

Heatin

g Fuel 

Windows Type  1.00 
      

Attic Insulation 0.23 1.00 
     

Duct Leakage -0.13 -0.22 1.00 
    

Cooling System Efficiency 0.01 0.04 -0.05 1.00 
   

Conditioned Area  0.03 0.03 -0.01 -0.01 1.00 
  

Water Heater Fuel Type 0.06 -0.03 0.04 -0.04 -0.01 1.00 
 

Heating Fuel Type 0.08 -0.03 0.01 -0.07 -0.01 0.66 1.00 
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4.1.2 Genetic Algorithm Numerical Moment Matching technique (GA-NMM) 

Applying the GA-NMM technique using these six variables results in 3 PMF positions with their associated weights 

for each variable and the average error which are shown in Table 4. These discrete distribution functions for each 

feature are next combined to generate a junction distribution which consists of 13 indices that reflect the population 

characteristics.  

Table 5, shows the final 13 indices, with their associated weights that represent the population characteristics. Since 

the summation of the weights should be equal to one, the weigh for index 1 is calculated using 𝑤1 = 1 − ∑ 𝑤𝑖
13
2 . This 

would result in a negative weight value for index 1 that has no physical meaning, but mathematically this would 

influence on the computation of expected value and standard deviation.  

Table 4. PMF positions for each of the building variables utilized in GA-NMM 

Variables L1 L2 L3 W1 W2 W3 

Avg. 

final 

error 

(%) 

Conditioned Area (m2) 4,065 2,169 1,068 0.05 0.48 0.48 2.32E-15 

Duct Leakage (%) 10 22 42 0.43 0.49 0.08 0 

Cooling Efficiency 

(SEER) 
15 12 7 0.13 0.72 0.15 2.51E-10 

Attic Insulation 

(m2K/W) 
1.94 (R11) 4.23 (R24) 6.87 (R39) 0.31 0.57 0.12 1.33E-14 

Windows Type 1 2 3 0.63 0.34 0.02 2.13E-07 

Heating Fuel Type 1 2 3 0.39 0.59 0.02 0 

Note: For windows:  1 = single pane, clear; 2 = double pane (clear, metal frame, air-filled); 3 = double pane (low-

E, non-metal frame, air filled); For heating fuel type: 1 = electric; 2 = gas; 3 = propane 

Table 5. Index building characteristics 

Index 
Conditioned 

Area (m2) 

Duct 

Leakage 

(%) 

Cooling 

System 

Efficiency 

(SEER) 

Heating 

Fuel Type 

Attic 

Insulation 

(m2K/W) 

Windows 

Type 
Weights 

1 2,169 22 12 2 4.23 (R24) 2 -1.982 

2 4,065 22 12 2 4.23 (R24) 2 0.048 

3 1,068 22 12 2 4.23 (R24) 2 0.476 

4 2,169 10 12 2 4.23 (R24) 2 0.428 

5 2,169 42 12 2 4.23 (R24) 2 0.081 

6 2,169 22 15 2 4.23 (R24) 2 0.126 

7 2,169 22 7 2 4.23 (R24) 2 0.154 

8 2,169 22 12 1 4.23 (R24) 2 0.390 

9 2,169 22 12 3 4.23 (R24) 2 0.200 

10 2,169 22 12 2 1.94 (R11) 2 0.308 

11 2,169 22 12 2 6.87 (R39) 2 0.118 

12 2,169 22 12 2 4.23 (R24) 1 0.633 

13 2,169 22 12 2 4.23 (R24) 3 0.021 
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Note: For heating fuel: 1, 2, and 3 = electric, gas and propane respectively; For windows: 1, 2, and 3 = single pane 

(clear), double pane (clear, metal frame, air filled), and double pane (low E, nonmetal frame, air filled) 

4.1.3 Model validation with measured data 

The expected electricity consumption from the model results along with their uncertainty bands for 2009 and 2011 are 

shown in Figure 2. As it can be seen in both plots, when the energy consumption increases during cooling season the 

uncertainty of the estimation also increases which can be due to the impact of different characteristics of the index 

buildings (given in  

Table 5) on electricity consumption during cooling seasons. The electricity consumption profiles of index buildings 

for 2009 and 2011 are shown in Figure A 1 in Appendix. 

 

Figure 2. Expected monthly site electricity use data and the confidence interval band obtained from model for years 

2009 and 2011. 

 

Moreover, the measured average monthly electricity use for SFHs in Austin in 2009 and 2011 were compared with 

the expected electricity consumption from the model results for each year.  There is good agreement between measured 

data and model results in both 2009 and 2011. To quantified this agreement the MBE and CV-RMSE values were 
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calculated separately for each year (Table 6). The results indicate that the model results for 2009 were an MBE of 

3.6% and CV-RMSE of 18.7%; for 2011, they were an MBE of -6.7% and CV-RMSE of 24.1%. In both years the 

MBE and CV-RMSE are close, but slightly above the recommended maximum monthly acceptance criteria in 

ASHRAE Guideline 14 (American Society of Heating; Refrigerating and Air-Conditioning Engineers 2002).  
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Table 6. Monthly electricity use (kWh) comparison between GA-NMM model results and measured data for SFHs in 

the City of Austin for 2009 and 2011 

 Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2
0

0
9
 

Measured 

data  
906 708 653 664 794 1,115 1,511 1,457 1,353 924 682 753 

GA-NMM 

model  
843 532 589 532 907 1,316 1,729 1,695 1,050 704 509 705 

Difference % 7% 25% 10% 20% -14% -18% -14% -16% 22% 24% 25% 6% 

2
0

1
1
 

Measured 

data 

862 884 701 713 901 1,213 1,481 1,527 1,565 993 732 710 

GA-NMM 

model 
777 756 544 832 1,041 1,604 1,875 2,062 1,513 975 571 556 

Difference % 10% 14% 22% -17% -16% -32% -27% -35% 3% 2% 22% 22% 

  

The expected yearly site electricity consumption of single family buildings in Austin for 2009 and 2011 is calculated 

to be 11,110 kWh, and 13,107 kWh with standard deviation of 2,502 kWh and 3,298 kWh per year respectively. The 

annual difference between model results and the measured annual electricity use for SFHs in Austin in 2009 and 2011 

is 4% and -7%, respectively.  A review of other studies on building energy modeling indicates that the performance 

of the developed model is acceptable. For example, in a study by (Shimoda et al. 2007), the total energy consumption 

in Osaka City is simulated; the difference between simulated total energy consumption and the actual primary energy 

supply was 1%.  

4.2 Potential electricity saving and peak demand reduction 

To investigate the potential peak demand reduction and electricity saving, two retrofits were investigated. First the 

improvement in cooling system efficiency and second, an attic insulation retrofit. The reason that these two retrofits 

were chosen is that in the state of Texas, both HVAC efficiency and insulation are ranked highest for suggested energy 

improvements for single family homes (National Renewable Energy Laboratory (NREL)). For each of the practices, 

different scenarios were investigated and compared to evaluate the sensitivity of the application toward saving energy 

and peak demand reduction. The impact of these retrofits was then evaluated to assess impacts during the heatwave 

of 2009, since the results of 2009 model showed a better agreement with measured data. The results of the retrofit are 

reported on an hourly, monthly and yearly bases. 

4.2.1 Cooling system efficiency improvement 

To investigate the impact of cooling system efficiency improvement on electricity saving during heatwave events, 10, 

20 and 30 percent improvement were applied to baseline SEER values for cooling system efficiency of the 
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representative index buildings. The hourly demand reduction during the studied heatwave event in 2009 is reported in 

Figure 3a-c. Both the 90% percentile temperature and 90% load exceedance of that year of data are shown in the 

graphs using the darker and lighter band respectively. The results indicate during the peak periods, the maximum 

hourly electricity demand reduction that can be achieved from the retrofits of 10, 20 and 30 percent are 14%, 19%, 

and 23% and the average hourly demand reduction during peak hours are 12%, 16% and 21% respectively. Moreover, 

for the aforementioned retrofit scenarios, the total electricity use during peak hours can be reduced by 12%, 16% and 

30%. Across the studied 24-hour period, the electricity saving during peak hours is approximately 65% of the total 

daily electricity saving.  As depicted in Figure 3, the maximum demand reduction occurs during the peak demand 

hours, which at a larger scale, would benefit the electric grid.  Furthermore, as shown in Figure 3, in all the retrofit 

scenarios, there are similar trends for electricity demand reduction across the course of the 24-hour period, with 

different magnitudes.  For example, the minimum electricity demand reduction is seen early morning from 7 to 8 am, 

and the maximum occurs in the afternoon from 3 to 7 pm.  
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Figure 3. Electricity demand (kW) reduction due to overall cooling system efficiency improvement of (a) 10%, (b) 

20%, and (c) 30% for single family residential buildings during a 4-day heatwave event in 2009. (Note: The darker 

band indicates the hours of the day that temperature exceeds the 90% percentile and the lighter band indicate the 

ERCOT electric grid load exceedance of the 90% percentile in the south central region) 

A boxplot of the hourly demand reduction potential across each month of the year for each scenario is shown in Figure 

3. The electricity savings for cooling system efficiency improvements begin in March and last until November. This 

is consistent with the periods of the year during which the cooling system is in operation in this region and associated 

climate conditions (hot-humid). Moreover, during transition months such as March, April, May, June, October, and 

November, the demand reduction values vary between zero to the maximum demand reduction ponteital across the 

year. However, during July, August, September, this demand reduction is much less variable, and closer to the 

maximum demand reduction potential. 
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Figure 4. A boxplot of hourly demand reduction potential across each month of the year 2009 due to 10, 20 and 

30% cooling system efficiency improvements for single family residential homes in Austin. 

Figure 4 shows a comparison of the hourly demand values of the combined baseline index building model results (x-

axis) compared to the maximum demand reduction potential percentage (y-axis) of the three levels of retrofits. This 

shows that, in general, as the electricity demand increases, the demand reduction potential also increase until it reaches 

a threshold then remains relatively constant. During warm hours 

when the demand is high due to cooling system operations, the retrofits in cooling systems can have their maximum 

impact on electricity demand reduction, but this impact is limited by the relative amount of electricty the HVAC 

system requires compared to the overal building electricity demands.  It should be noted that in all the scenarios, the 

values for demand reduction are relatively higher than the median values when the hourly demand of the original 

model is near 1 kW. Reviewing the studied heatwave event in 2009 indicates that the median of the expected hourly 

electricity demand is 1.98 kW, while the median for the entire year is 0.92 kW. Therefore, during a heatwave event, 

the expected demand reduction is not as high as the maximum demand reduction.  
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Figure 5. A comparison of the hourly demand values of the baseline index building models (single family residential 

buildings in Austin, TX in 2009) versus the percentage of potential demand reduction for 10%, 20%, and 30% 

retrofits in cooling system efficiency. 

The annual electricity savings achieved for improving the cooling system efficiency by 10%, 20%, and 30% are 8%, 

11% and 13% respectively, calculated by summing the decrease in monthly site electricity consumption for the cooling 

system efficiency improvements across the studied year of data (Table 7).  Comparing the monthly values between 

scenarios indicates that the impact of retrofit scenarios is not constant throughout the year. During July and August, 

the reductions in electricity consumption due to retrofits are more significant than the reduced electricity consumption 

during May, June, September and October. 

Table 7. Monthly electricity saving comparison by level of cooling system efficiency improvement  

Cooling 

efficiency 

retrofit  

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
Annual 

saving  

10% 0.5% 0.2% 1.9% 4.5% 9.6% 11.6% 11.7% 11.9% 10.3% 6.8% 3.1% 0.4% 8% 

20%  0.0% 0.0% 2.0% 6.0% 13.2% 16.2% 16.9% 17.1% 14.3% 9.2% 4.1% 0.0% 11% 

30%  0.0% 0.0% 2.4% 7.0% 16.1% 20.1% 21.2% 21.4% 17.6% 11.2% 4.9% 0.0% 13% 
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4.2.2 Attic insulation retrofit 

The other electricity saving retrofit examined in this study is additional attic insulation to increase the attic R-value. 

To evaluate this impact, the minimum existing R-value within the index buildings was improved by 200%, 300%, and 

500%. The index buildings where the R-value was above R11were not modified. The hourly profile of the demand 

reduction for each retrofit scenario during the heatwave is shown in Figure 6a-c. As seen in these profiles, from 12 

am to 9 am, during the night and early morning, when the outdoor temperature is closer to buildings’ indoor 

temperature and solar radiation is minimal, the larger levels of insulation have a minimal or slightly negative impact 

on energy demand, consistent with other literature (Kośny et al. 2014), (Bourne and Hoeschele 1988).  

However, during warmer hours of the day when the difference between indoor and outdoor temperatures is higher, 

and solar radiation is significant, coincident with when electricity demand is high, the improvement in attic R-values 

help to reduce electricity demand. This benefits the grid during the peak hours, and also economically benefits 

homeowners, particularly in the case where a dynamic or other time-based pricing scheme is used. The maximum 

demand reduction in the case of 200%, 300%, and 500% R-value retrofits for low R-value existing buildings is 7%, 

8% and 10%, respectively, all of which occurred during peak demand hours.  
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Figure 6. Electricity demand (kW) reduction (%) due to attic insulation improvement of (a) 200%, (b) 300%, and (c) 

500% for single family residential buildings during a 4-day heatwave event in 2009. (Note: The darker band 

indicates the hours of the day that temperature exceeds the 90% percentile and the lighter band indicate the ERCOT 

electric grid load exceedance of the 90% percentile in the south central region) 

The hourly demand reduction potential across each month of the year 2009 is shown in a boxplot for each retrofit 

scenarios (Figure 7) . As seen in Figure 7, the median values for all retrofit scenarios are very close to zero. During 

January, February, March and December the electricity demand reduction is almost zero, which indicates that during 

heating season the impact of attic retrofit is minimal on electricity. However, during cooling season in Austin (April, 

May, June, July, August, September, October, November) the majority of the demand reduction values are distributed 

on the positive side.    
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Figure 7. A boxplot of hourly demand reduction potential across each month in 2009 due to R value improvements 

of 200, 300 and 500% for single family residential homes in Austin. 

 

As shown in Figure 8, in all retrofit scenarios there are some hours that the retrofits cause an increase in demand. 

However, this increase in demand occur during the hours where the demand is low. As the demand increases, all 

retrofits scenarios act to increasingly reduce the demand.  Although higher retrofit values have higher impacts on 

reducing demand during high demand hours, their negative impacts during low demand hours are also high. Therefore, 

the total electricity saving due to these retrofits scenarios are similar with a relatively small change in impact with an 

increase in insulation level. Overall, since attic insulation’s impact on electricity demands varies based on the weather 

conditions relative to the indoor environmental conditions, the electricity savings on an annual basis are not as notable 

in this climate region, compared to colder regions where the benefits would be greater. As shown in Table 8, the 

annual electricity savings for 200%, 300% and 500% improvement in R-value are 1.6%, 2%, and 3% respectively.  
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Figure 8. A comparison of the hourly demand values of the baseline index building model (single family residential 

buildings in Austin, TX in 2009) versus the percentage of potential demand reduction for 200%, 300%, and 500% 

attic R value retrofits. 

Table 8. Monthly electricity saving comparison by level of attic R value improvements  

Attic R value 

retrofit 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

 Annual 

savings 

200%  0% 0% 1% 2% 3% 2% 2% 2% 1% 1% 0% 0% 1.6% 

300%  0% 0% 1% 3% 4% 3% 3% 3% 2% 1% 1% 1% 2% 

500%  0% 0% 1% 3% 5% 4% 4% 4% 2% 1% 1% 1% 3% 

Moreover, since the heating systems in Austin region are, in part, gas-fueled, the impact of attic insulation a portion 

of the homes’ insulation improvements are not benefiting the electricity savings reported for the heating season. These 

results are consistent with (Bourne and Hoeschele 1988), where it was found the improved attic insulation had larger 

benefits for demand reduction compared to electricity saving. Attic insulation retrofits were found to benefit electric 

utilities by reducing summer on-peak energy use and demand, however this was also found to slightly increase the 

off-peak energy use in warm climate (Bourne and Hoeschele 1988). 

5 Conclusions 

A city-scale energy model for SFHs was developed for the city of Austin. TX, using Genetic Algorithm-Numerical 

Moment Matching, and the yearly, monthly and hourly expected electricity consumption were calculated. The model 
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results were then validated with measured data. Utilizing the estimated electricity use profile of the residential 

buildings in the city of Austin during the identified heatwave events, the potential electricity saving and demand 

reduction for different levels of cooling system efficiency improvements and attic insulation retrofits were calculated 

to determine the maximum benefit to demand and consumption that could be achieved. The following main 

conclusions can be drawn from this study: 

• The buildings characteristics of the city of Austin were utilized to estimate the mean behavior of existing 

single family homes, for use in evaluating city-scale impacts of broadly adopted energy efficiency 

retrofits on peak demand reductions.  

• Based on a sensitivity analysis among key variables in building energy consumption and considering 

data availability from energy audit information and assessor’s data, for the hot and humid climate of 

Austin, TX for a “typical” SFH, six influential variables, including attic insulation, duct leakage, cooling 

system efficiency, heating fuel type, windows type, and conditioned area were found to be most 

influential on electricity use.  

• The developed city-scale model for SFHs in the city of Austin was found to have a mean bias error 

(MBE) of 3.6% and -6.7%, and coefficient of variation of root mean squared error (CV-RMSE) of 18.7% 

and 24.1%, respectively, when compared to measured electricity data for the two years with the most 

extreme heatwave events (2009, 2011).  

When evaluating the impact of cooling efficiency improvements across all SFHs in the Austin, TX region:  

• The expected annual electricity savings for cooling efficeincy improvements of 10%, 20% and 30% for 

a SFH in Austin is 8%, 11% and 13%, respectively. 

• During the 2009 heatwave event across 4 days, from June 26 to 29, 65% of the daily electricity savings 

occurred during peak electricity demand hours. This is equivalent to electricity use reduction of 12%, 

16%, and 30% during peak hours.  

When evaluating the impact of attic insulation improvements across all SFHs in the Austin, TX region:  

• Annual electricity savings for attic insulation improvements of the homes with insulation less than R11 

by 200%, 300% and 500% across all buildings is 1.6%, 2% and 3%, respectivly. 
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• During the 2009 heatwave event, the hourly demand reduction in the case of 200%, 300%, and 500% 

attic R value improvements were a maximum of 7%, 8% and 10%, respectively, all of which occurred 

during peak demand hours. 

• It is also noted that attic insulation can negatively impact electricity saving when the outdoor 

temperatures are close to and/or fluctuating around the indoor temperatures, particularly in transition 

seasons and summer nights. This is, in part, why the reported demand reduction is significantly higher 

than the total electricity savings.  

In this study, the limitations are, first, the ECAD dataset is the energy audit for building 10 years or older. Therefore, 

since the energy model developed based on this dataset, the results might slightly overpredict the electricity savings 

and demand reduction potential because newer homes have not been considered and are likely to be more energy 

efficient than the older homes in the baseline case. Second, the studied key variables were limited to the reported 

parameters in the energy audit data. In this case some of the key variables such as electric heating systems’ efficiencies 

or wall insulation that were not reported in the studied energy audit dataset have not been considered in terms of 

possible level of influence on energy performance. However, since energy audit data collected across most companies 

and locations is similar, it is likely that these data are similar in variables to other energy audit datasets that may be 

available and studied elsewhere. Third, the measured electricity data that was used for verification of the model was 

an aggregated dataset in Austin at the monthly level frequency. To evaluate performance at a broader range of data 

frequencies, additional data, such as smart meter data is required. Fifth, the model is designed by a fixed cooling and 

heating setpoint and the behavior term is not considered in the developed model to avoid complication. This 

methodology can be used to forecast the impact of city-wide building energy and demand saving impacts, supporting 

evidence-based decision making for medium- and/or long-term energy demand reduction targets in sustainable urban 

planning contexts. Such a methodology could be helpful for city-level decision makers, managers, and other 

stakeholders interested in assessing energy policies at the city scale. 
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Appendix 

In this section the energy consumption profiles of index buildings are shown seperatley for a) 2009 and b) 2011. The 

characteristics of each index building is given in  

Table 5. 

 

 

Figure A 1. Monthly site electricity use of index buildings obtained from model for a) 2009 and b) 2011. 
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