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Amidst global shifts in the distribution and abundance of wildlife and
livestock, we have only a rudimentary understanding of ungulate parasite
communities and parasite-sharing patterns. We used qPCR and DNA
metabarcoding of fecal samples to characterize gastrointestinal nematode
(Strongylida) community composition and sharing among 17 sympatric
species of wild and domestic large mammalian herbivore in central
Kenya. We tested a suite of hypothesis-driven predictions about the role
of host traits and phylogenetic relatedness in describing parasite infections.
Host species identity explained 27–53% of individual variation in parasite
prevalence, richness, community composition and phylogenetic diversity.
Host and parasite phylogenies were congruent, host gut morphology pre-
dicted parasite community composition and prevalence, and hosts with
low evolutionary distinctiveness were centrally positioned in the parasite-
sharing network. We found no evidence that host body size, social-group
size or feeding height were correlated with parasite composition. Our results
highlight the interwoven evolutionary and ecological histories of large her-
bivores and their gastrointestinal nematodes and suggest that host identity,
phylogeny and gut architecture—a phylogenetically conserved trait related
to parasite habitat—are the overriding influences on parasite communities.
These findings have implications for wildlife management and conservation
as wild herbivores are increasingly replaced by livestock.

1. Introduction
Parasites account for a large fraction of animal diversity and are key constituents
of food webs [1]. They are also pivotal in determining the health, fitness, popu-
lation dynamics, and community composition of their hosts [2]. Nonetheless, our
understanding of parasite diversity remains limited. Owing largely to logistical
constraints, many studies focus on single-host/single-parasite interactions, yet
most parasites are capable of infecting multiple hosts [3] and most host individ-
uals are infected by diverse parasite assemblages [4]. The relatively few studies of
multi-host/multi-parasite networks have revealed fresh insights into parasite
transmission and host–parasite coevolution [5], prompting calls for more
research onmulti-parasitism and consideration of how host biology and environ-
mental factors structure parasite communities [6,7]. These needs are acute given
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human-induced global changes in host species distributions
[8,9] and biodiversity [10]. Particularly important, in terms
of both ecological dynamics and human livelihoods, is to
understand drivers of cross-species parasite transmission in
a world where wildlife are increasingly overlapping with
people and their livestock [11].

Historically, sampling limitations have impeded
community-level multi-host/multi-parasite analyses. Gastroin-
testinal nematodes parasitize many different large mammalian
herbivore species, yet accurate taxonomic identifications—
necessary to quantify diversity and identify host-sharing
networks—typically requires retrieving adult specimens from
dead hosts or culturing larvae. Moreover, while several data-
bases document host-species–parasite relationships [12,13],
data are aggregated over many times and places, obscuring
host–parasite sharing patterns among co-occurring individuals.
Molecular methods offer a potentially powerful solution to this
problem by enabling cheap and efficient sample screening to
characterize parasite communities [14,15]. DNAmetabarcoding,
which involves amplifying and sequencing a short, taxonomi-
cally informative genetic region from DNA mixtures (e.g.
faeces), is increasingly used in disease ecology [16]. Although
applications in parasitology remain nascent [17], they have
potential to address questions about multi-parasitism [14,16].

For diverse large-herbivore assemblages, such as those
found in African savannahs, such approaches could address
knowledge gaps about patterns and determinants of parasite
prevalence, diversity and sharing in locations where wild and
domestic hosts overlap [18]. Several studies have suggested
that parasite richness and community composition are similar
among individuals of the same or phylogenetically similar
host species [19,20], reflecting the role of host phylogeny in pre-
serving deep coevolutionary linkages between parasites and
hosts [21,22] and illuminating the extent to which parasites
might switch between and successfully propagate in closely
related hosts. However, predictors of parasite richness and com-
position other than host identity are challenging to disentangle
[23,24], due in part to the difficulty of identifying parasites
using non-invasive sampling, which is essential for threatened
species. Parasite phylogenetic diversity has rarely been investi-
gated, but it has been hypothesized that closely related parasite
species occupy similar ecological niches, exhibiting phyloge-
netic niche conservatism [25]; accordingly, host species with
high parasite richness may not necessarily have high parasite
phylogenetic diversity, and vice versa.

Three host-specific predictors are often proposed as corre-
lates of parasite species richness across systems and species:
body size (and thus parasite habitat size and opportunity to
accumulate in large-bodied, long-lived hosts), geographical
range size (and thus interspecific transmission opportunities
and range of environmental conditions), and population den-
sity (and thus intraspecific transmission opportunities) [4,26].
A recent meta-analysis [24] showed that these factors tend to
correlate positively with parasite species richness, but that
relationships vary depending on whether analyses focus on
individuals, populations or species. At the individual level,
social-group size may also correlate with parasite richness,
as it represents fine-scale intraspecific transmission opportu-
nities [27]. Surprisingly, although transmission in many
ungulates occurs via feeding, and many gastrointestinal para-
sites occupy specific niches within the digestive tract [28],
herbivore feeding strategy and digestive strategy are less
commonly tested as predictors of parasite community

structure; previous work suggests that these factors are
related to parasite prevalence and intensity in herbivores
[18], and dietary preferences have been linked to parasite
composition in other taxa such as birds and fish [29,30].

Because sympatric herbivores share many of the same food
and water resources that serve as transmission routes for gas-
trointestinal parasites [31], studies have constructed parasite-
sharing networks (hosts connected to other hosts via shared
parasites) using literature records or morphological identifi-
cations [18,32]. Such networks are useful because node-
specific metrics can be used to identify hosts that are central
in various ways, such as (a) those having many links to other
species via their parasites (high degree); (b) those sharing para-
siteswithmany other hosts (high closeness centrality); (c) those
sharing parasites with distinct groups, acting as bridges (high
betweenness centrality); and (d) those sharing parasites with
other well-connected hosts, thereby occupying core positions
(high eigenvector centrality). Central hosts may be likely to
affect transmission dynamics formany other species. Likewise,
bipartite host–parasite networks can illuminate potential para-
site coextinctions when host species are lost, which should be
greatest for hosts with many unique parasite links [33].

We used DNA metabarcoding of the ITS-2 region to ana-
lyse gastrointestinal nematode DNA (Strongylida) in fecal
samples from a diverse community of wild and domestic
large herbivores (greater than or equal to 5 kg) in an East Afri-
can rangeland. Strongylida are among the most common
metazoan parasite groups in large herbivores and infect var-
ious parts of the digestive tract, including the stomach and
intestines. While taxonomic reference data for nematodes
remain limited, DNA metabarcoding enables comparative
analysis of diversity and composition by clustering sequences
by similarity even when taxonomic names are lacking, as has
been validated for both parasitic and free-living nematodes
[34,35] (see also [36,37]). We addressed three questions about
the diversity, composition and sharing patterns of Strongylid
(henceforth ‘parasite’) communities in this diverse assemblage.

First, to what extent can host characteristics predict total
parasite prevalence (i.e. proportion of hosts infected by at least
1 molecular operational taxonomic unit (mOTU)), richness
and phylogenetic diversity? We hypothesized that, in addition
to strong effects of host species identity on parasite assem-
blages [19], hosts that feed on understorey plants would have
higher parasite richness and prevalence than overstorey feeders,
because the former aremore likely to consume infective parasite
larvae and eggs [32,38]. Because foregut fermenters (here, 12
ruminants and 2 pseudoruminants) have more complex guts
that may provide a wider range of parasite niches [28], we pre-
dicted that parasite diversity would be higher in those species
compared to hindgut fermenters. We likewise hypothesized
that after accounting for host relatedness, total prevalence, rich-
ness, and phylogenetic diversity would increasewith host body
size (which is correlatedwith home-range size) and social-group
size. Second, which factors explain dissimilarities in parasite
community composition among herbivores? We expected that
the same host traits predicted to influence parasite prevalence
and diversity would structure community composition, with
strong effects of host species identity, and that host and parasite
phylogenies would be congruent, consistent with host–parasite
coevolution [22]. Third, to what extent are parasite mOTUs
shared among hosts, and which host species play key roles in
a parasite-sharing network?We expected host–parasite linkages
to have an aggregated distribution (i.e. that most parasites
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specialize on only one or two host species and few generalize
across many different hosts, as is typical in host–parasite net-
works [39]). We further expected that a host–host network
(with host species connected by shared parasites) would link
closely related hosts, including both domestic and wild species,
and that network centrality would increase with decreasing
evolutionary distinctiveness [40].

2. Material and methods
Mpala Research Centre and Conservancy (0°170 N, 37°520 E)
comprises 200 km2 of semi-arid thorn-scrub savannah managed
for wildlife conservation and livestock production [41,42]. The
large-herbivore assemblage includes two-dozen wild species and 5
livestock species (in 2021, approximately 1300 cattle, approximately
300 sheep and goats, approximately 130 camels, and somedonkeys).

(a) DNA sequencing and data processing
Detailed DNA extraction, qPCR, PCR and metabarcoding, and
bioinformatic methods are in Appendix I; we provide a summary
below. Prevalence was assessed using qPCR on 550 fecal samples;
community metrics were assessed on 281 of these samples
that contained strongylid DNA. Samples were collected during
six sampling bouts over five years (2013–2017), including a substan-
tial subset of those analysed for plant and bacterial DNA in [43] and
a set of zebra samples analysed in [35]. Samples were broadly dis-
persed and interspersed in space and time [43]; individual
identities are unknown, but the spatio-temporal breadth and low
ratio of sample sizes to species’ abundances [44] means that dupli-
cate samples from a given individual are highly unlikely. These
samples represent 20 large-herbivore species (electronic sup-
plementary material, Appendix I: table S1), which together
account for approximately 95% of individuals in the community
[44], span orders of magnitude in body mass (5–5000 kg), and
differ in digestive system (foregut/hindgut fermentation), diet
(1%–97% grass [45]), social behaviour (solitary/gregarious), evol-
utionary history (3 orders, 7 families, 15 wild and 5 domesticated
species) and conservation status (2 endangered, 2 vulnerable, 2
near threatened, 9 least concern [46]). Among domesticated species,
sheep and goats are regularly treatedwith anthelminthics (albenda-
zole, Endotape), cattle are treated at weaning and occasionally
thereafter, and camels and donkeys are not routinely treated (D.
Hewett, Mpala Ranch manager, 2021, personal communication).

We performed duplicate qPCR on all 550 DNA extracts to
detect Strongylida DNA (NC1/NC2 primers for ITS-2 gene;
[47]). As a sensitivity check, we compared qPCR results to fecal
egg counts for 37 impala and warthog samples sequenced in this
run; we detected eggs in 35/37 qPCR-positive samples, and
cycle threshold (Ct) values were correlated with egg-counts
(ρ =−0.51, p = 0.001). Samples with mean Ct less than 35 were con-
sidered positive for parasite DNA; this threshold corresponded to
approximately 20 eggs per gram and fell below the detection
threshold of the Modified McMaster technique (40–50 eggs per
gram) [48]. We focused sequencing effort on a subset of qPCR-
positive samples (n = 323), which we re-amplified using dual-
indexed primers, multiplexed, purified and sequenced together
with 502 samples from another study alongwith positive, negative
and extraction controls (Illumina MiSeq: 2 × 300 bp, 24 M reads).

Sequences were demultiplexed, filtered and clustered into
mOTUs at both 98% and 99% similarity (using OBITools [49]).
We used the nemabiome database (https://www.nemabiome.
ca/) [50] for taxonomic assignments. Inferences about diversity
and network structure may be sensitive to the threshold used to
cluster mOTUs; we present results from the 98% similarity
threshold in the main text [35], but results were qualitatively simi-
lar using the 99% threshold (electronic supplementary material,

Appendix II). We filtered the sample-by-mOTU table to account
for any low-abundance reads in negative controls (microDecon
package [51]), dropped samples with fewer than 1000 reads,
excluded mOTUs with less than 2% relative read abundance
(RRA) per sample, and rarefied to 748 reads, the minimum
number in any sample (validation of this approach is in electronic
supplementary material, appendix I; see also [52]). We excluded
one sample that was probably erroneously identified and one
that lacked metadata (electronic supplementary material, appen-
dix I). All sheep, all goat and the two waterbuck samples were
qPCR-negative and were excluded from subsequent analyses.
Anthelminthic treatment in cattle probably altered their parasite
communities, so we excluded them from analyses of species’
traits on parasite patterns but retained them in all other analyses.

(b) Statistical analyses
Analyses were performed in R v. 4.1.1 [53].

(i) Parasite mOTU prevalence, richness and phylogenetic diversity
We determined parasite richness by summing the number of
mOTUs detected in each sample. We calculated Faith’s phyloge-
netic diversity (PD) with the pd function in picante [54], using a
phylogenetic tree of parasite mOTUs generated from metabar-
coding data (electronic supplementary material, figure S10).
Because taxonomic richness correlates with phylogenetic diver-
sity, we also calculated standardized PD (sesPD) to determine if
phylogenetic diversity in certain samples differed from expec-
tations while controlling for mOTU richness. To avoid biases
[55], we excluded the root of the phylogeny, resulting in exclu-
sion of 12 samples with one parasite mOTU (n = 245 for PD
and sesPD analyses after also omitting cattle).

We used two sets of models to analyse the effects of host
species identity, traits and phylogeny on prevalence, richness
and phylogenetic diversity. First, we used GLMs (with Binomial,
Poisson and Gaussian error structures for prevalence, richness
and phylogenetic diversity, respectively) to determine the pro-
portion of variance described by host species identity. Second,
we tested whether log-transformed body mass, proportion of
understorey vegetation in the diet (for each sample), and diges-
tion type (foregut/hindgut) predicted parasite prevalence,
richness and phylogenetic diversity using GLMMs (MCMCglmm
[8]) with random effects for host species and sampling bout. We
ran models with and without controlling for host phylogeny [56].
We did not include range size because it was highly correlated
with body mass (ρ = 0.89, p < 0.001).

Weusedbodysizemeasurements fromPanTHERIA [57].Group
sizes and home range sizes were obtained from publications from
our study site whenever possible, or otherwise from PanTHERIA
or by using averages from a literature search (details in electronic
supplementarymaterial, table S2). To calculate understoreydiet pro-
portion for each sample, we summed the RRA of plant mOTUs less
than 2 m tall for individual fecal samples based on diet data in [43]
and localplant-heightdata [42]; for 60 samples not present in thediet
dataset, we used the host’s species-wide mean.

(ii) Host characteristics and parasite community composition
To visualize patterns of parasite community composition among
host species, we ordinated Bray–Curtis dissimilarities calculated
from the sample-by-mOTU matrix using non-metric multidimen-
sional scaling (NMDS; k = 3 dimensions) in vegan [58]. We
compared parasite community composition among host species
using perMANOVA (adonis2 function). To evaluate temporal
variation, we analysed the effect of sampling period for a
subset of six broadly sampled species (n≥ 5 samples for at
least 2 periods), first by comparing period and host identity
when considering all species together and then by testing the
effect of period for each species. To account for phylogenetic
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similarity among mOTUs, we repeated analyses using weighted
UniFrac distances [59] of the same 281 samples, including cattle
( phyloseq [60]).

To investigate drivers of taxonomic and phylogenetic para-
site community composition, we created a host species-by-
mOTU matrix (n = 16 hosts, excluding cattle). We calculated
Bray–Curtis dissimilarity and UniFrac distance matrices and
used perMANOVA to test the effects of log-transformed body
size, group size, understorey foraging and digestive strategy.

We performed a Procrustes cophylogenetic analysis [61]
using paco [62]. We calculated a goodness-of-fit statistic (m2

XY)
for the data and 1000 random permutations to assess whether
observed links between hosts and parasites showed greater phy-
logenetic congruence (cophylogeny) than expected by chance.

(iii) Parasite sharing and host centrality
We built a bipartite species-level network for host species (n = 16,
including cattle but excluding kudu, for which only three samples
had metabarcoding data; electronic supplementary material, table
S1). Because parasite-sharing networks may be sensitive to low-
abundance links (e.g. arising from consumption and passage of
eggs and larvae that do not infect the host), we excluded associ-
ations when mean RRA across individuals of a species for a
given mOTU was less than 2% (see electronic supplementary
material, figure S2 and appendix III for sensitivity analyses of
RRA thresholds). To investigate the distribution of parasite host
breadth (i.e. the number of host species infected by each parasite
mOTU), we compared Akaike’s information criterion (AIC) for
increasingly aggregated (right-skewed) distributions fitted to the
data by maximum-likelihood ( fitdistrplus [63]). Aggregated
distributions indicate many specialists and few generalists.

We projected the network to a unipartite host species net-
work, weighting edges using the sum product of RRA values
for shared mOTUs. We calculated degree, closeness, eigenvector,

and betweenness centralities for host species using igraph [64].
We fitted phylogenetic generalized least-squares models
(PGLS) (caper [65]) of host node metrics using log-transformed
body mass, social-group size, understorey diet, digestive strategy
and evolutionary distinctiveness (evol.distinct in picante [54]
using the ‘fair proportions’ method [66]) as predictors.

3. Results
(a) Influence of host identity and traits on parasite

prevalence and diversity
We detected 80 parasite mOTUs across 281 sequenced and
filtered samples (mean = 15 868 reads per sample). Total preva-
lence and mean richness were positively correlated (ρ = 0.75,
p = 0.0005; electronic supplementary material, table S1). Host
species identity accounted for 27% of variance in total preva-
lence (n = 519, x216 ¼ 92:94, p < 0.001) and 48% of variation in
mOTU richness (n = 281, x216 ¼ 164:29, p < 0.001). Oryx, ele-
phant, Grevy’s and plains zebras, and Grant’s gazelle had
high total prevalence (all greater than or equal to 0.90) and
mean richness (all greater than or equal to 8.44), while kudu,
buffalo, cattle, warthog and hippo had relatively low preva-
lence and richness (electronic supplementary material, table
S1 and figure S4). Parasite phylogenetic diversity also differed
significantly among host species (PD: R2 = 0.21, x216 ¼ 67:70,
p < 0.001; sesPD: R2 = 0.42, x216 ¼ 181:57, p < 0.001). Cattle and
warthog had low prevalence and richness but higher PD
after controlling for richness (sesPD); giraffe had high richness
and PD. At the other end of the spectrum, plains and Grevy’s
zebras had higher richness but lower sesPD (figure 1; electronic
supplementary material, table S1 and figure S4).
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Figure 1. Mean prevalence and diversity metrics across the host phylogeny and different digestion types (see also boxplots in electronic supplementary material,
figure S5); † denotes that camel and hippo are foregut-fermenting pseudoruminants, and are distinct from other foregut fermenters (all true ruminants). Total
prevalence trended higher and standardized PD (sesPD) trended lower in hindgut fermenters compared to foregut fermenters, although these effects were not
statistically significant after controlling for phylogenetic relatedness (electronic supplementary material, table S4). We found no significant effect of digestive strategy
for richness or phylogenetic diversity (Faith’s PD). (Online version in colour.)
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Although total prevalence and richness trended higher in
hindgut fermenters than foregut fermenters, no-host trait was
significantly associated with prevalence or richness after
accounting for phylogeny (figure 1; electronic supplementary
material, table S4). Similarly, while parasite sesPD trended
lower in hindgut fermenters, this association was non-signifi-
cant after accounting for host phylogeny, and no other
species-level characteristic explained significant variation in
PD or sesPD (electronic supplementary material, table S4).

(b) Host species identity and gut anatomy predict
parasite community composition

Host species identity strongly predicted individual-level
parasite community structure, explaining 53% of compo-
sitional dissimilarity variance (perMANOVA F16,264 = 18.48,
p < 0.001; figure 2a) and 53% of parasite phylogenetic beta-
diversity variance (UniFrac distances) among individuals
(perMANOVA F16,264 = 18.82, p < 0.001). In the six broadly
sampled host species, species identity had far greater expla-
natory power than time period when animals were
considered together (R2

species ¼ 0:49, p = 0.001, R2
period ¼ 0:02,

p = 0.28), and period was nonsignificant for five of six species
when analysed separately, with elephants being the exception

(electronic supplementary material, figure S6). We found sig-
nificant congruence between host and parasite phylogenies
(asymmetric m2

XY = 1 741 295, symmetric m2
XY = 0.911, both

p < 0.001 with 1000 permutations).
Parasite communities segregated based on host digestive

type (figure 2; electronic supplementary material, table S5):
foregut fermenters separated strongly from hindgut fermen-
ters. Two foregut-fermenting pseudoruminants (hippo and
camel) were outliers relative to true ruminants (figure 2).
Broadly speaking, hindgut fermenters had higher mean RRA
of Strongylidae, while foregut fermenters had higher RRA of
Cooperiidae, Haemonchidae and Trichostrongylidae (elec-
tronic supplementary material, figure S8). While digestive
strategy and taxonomic order (a proxy for phylogeny) are clo-
sely related and explained similar variance in parasite
composition, we found that a model with both predictors
had the greatest explanatory power (R2

Digestion ¼ 0:21,
R2
Order ¼ 0:32, R2

Order+Digestion = 0.43). Digestive strategy had
an even stronger influence on UniFrac distances, which
accounts for mOTU similarity (R2

Digestion ¼ 0:54, R2
Order ¼ 0:42,

R2
Order+Digestion= 0.58). This is visualized in figure 2c: hindgut-

fermenting species from multiple families cluster closely
together. We found no evidence that body size, social-group
size, or understorey foraging had significant effects on parasite
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community composition (electronic supplementary material,
table S5).

(c) Parasite host specificity and parasite-sharing
patterns

In our network of host–parasite connections (filtered to mean
RRA greater than 2% at the species level), parasite–host
breadth was highly aggregated (right-skewed) and followed
a lognormal distribution (electronic supplementary material,
table S6), indicating many host specialists and few generalists,
as predicted. Host breadth varied among parasite families (1–
10, median 2), but 47% of mOTUs infected just one species and
only 25% infected greater than 3 (electronic supplementary
material, figure S7). The most generalized parasite (10 hosts)
was identified (98% bootstrap identity score) as Cooperia
fuelleborni, and was detected in all foregut fermenters except
cattle and hartebeest.

Network node metrics suggested that giraffe, eland and
camel may be important species in the parasite-sharing
network, as they exhibited relatively high centrality scores
across metrics (figure 3c). Closeness and eigenvector central-
ities were higher in foregut fermenters after controlling for
phylogenetic relatedness, and we found no evidence for
patterns in network centrality associated with other host
characteristics (electronic supplementary material, table S7).
Evolutionary distinctiveness was not predictive of network
centrality metrics in PGLS models because it correlated
with phylogenetic signal. When considered separately,
degree and closeness centrality metrics were negatively

correlated with host evolutionary distinctiveness, and
eigenvector centrality trended similarly (electronic sup-
plementary material, figure S9). Bovids were highly
interconnected, each sharing parasites with 8–14 other hosts
(figure 3a,b). Notably, cattle shared parasites with 8 other
hosts, whereas elephant and warthog each shared just
one mOTU with another species (figure 3a,b; electronic
supplementary material, Appendix IV).

4. Discussion
(a) Host relatedness and digestive strategy structure

parasite communities
Our analysis revealed powerful signals of host species iden-
tity in determining parasite mOTU prevalence, richness and
phylogenetic diversity, with strong evidence of host–parasite
cophylogeny. This cophylogenetic signal is consistent with
findings in similar host–parasite systems [20,22] and host–
microbiome associations [43,68]. Zebras had high mOTU
richness [18], and equids are known to be infected by a
diverse array of ‘small strongyles’ [69]; indeed hindgut fer-
menters in general were highly parasitized by this family
(Strongylidae). However, Grant’s gazelle and elephant had
comparable mOTU richness to zebras; we have no ready
explanation for this finding, as these species are phylogeneti-
cally and ecologically disparate. Further research that
incorporates information about host immunity and parasite
natural history may provide more mechanistic insight.
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Figure 3. Parasite-sharing networks. (a) Bipartite sharing matrix showing large herbivores connected to parasites. Host–parasite edges comprising greater than or
equal to 2% mean RRA per host species are weighted by mean RRA. Nodes are plotted using the force-directed algorithm [67]. (b) Centrality metrics for host
species, normalized to (0,1) and ordered from left to right by increasing combined centrality scores (sum of normalized metrics). (c) Weighted adjacency matrix from
a unipartite projection of (a) shows the number of mOTUs shared between each pair of species; diagonal edge represents the number of mOTUs found with greater
than or equal to 2% mean RRA per species (note that this differs from total mOTU richness in electronic supplementary material, table S1, which is filtered at the
individual level, rather than species level). (Online version in colour.)
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Consistent with previous work comparing ruminants and
equids in Botswana [18], we found that parasite prevalence in
hindgut-fermenting herbivores trended higher than foregut
fermenters, although this difference was not significant after
accounting for phylogenetic relatedness. Hindgut fermenters
consume large quantities of vegetation to meet energy
requirements and thus may have greater exposure to parasitic
larvae, leading to higher infection probability. However, this
interpretation should also apply to large versus small-bodied
species, which also differ in total biomass consumption [70],
yet we found no effect of body size on any response. Phylo-
geny and digestive strategy explained similar variation in
standardized phylogenetic diversity: with the exception of
warthog, nematodes of hindgut fermenters tended to have
lower sesPD, which might stem from simpler gut archi-
tectures (fewer parasite niches) and/or cophylogenetic
constraints on parasite diversification and persistence
(perissodactyls and proboscideans are less phylogenetically
diverse than artiodactyls, and non-ruminants are a small
and shrinking share of east African faunas [71]). Other
internal factors (e.g. host immune responses) undoubtedly
regulate the relative fitness of parasite taxa and shape
diversity and cooccurrence patterns found here [72,73].

Although some previous studies have linked parasite
richness with host body size [74], range size [26,75] and/
or social-group size [76], none of these traits predicted
individual mOTU richness in our study. This is not unprece-
dented; other studies have failed to detect relationships
between richness and body size [77], or group size [75].
These mixed results may be caused by variability in trait
values across taxa and differing taxonomic and geographical
scales. Population-specific estimates of range size, social-
group size (including interspecific groups that feed together
[32,78]) and body size may be needed to detect fine-scale
effects of these factors on parasite communities. Although
we do not have intraspecific host density estimates for all
species in this assemblage, we doubt that this factor would
explain our results: dik-dik are by far the densest species at
Mpala (up to 100 per km2 [42]) but had intermediate parasite
prevalence and diversity values.

We found that cattle had comparatively high standar-
dized phylogenetic diversity, despite lower parasite
prevalence than other species. At our study site, cattle are
treated with anthelminthics at weaning and irregularly there-
after, perhaps explaining why cattle had low parasite richness
and were free of the most generalized mOTU (putatively
Cooperia fuelleborni). One hypothesis for the high phylogenetic
diversity in cattle is that sporadic anthelminthic treatment
may eliminate common and competitively dominant parasite
taxa, enabling infection by a wider variety of competing taxa.
Indeed, another study in Amboseli National Park, Kenya,
found unexpectedly high parasite richness in livestock,
despite likely treatment with anthelminthics [15]. Elsewhere,
regular deworming significantly reduces parasite diversity
[50], and regular treatment of sheep and goats at Mpala
resulted in the complete absence of Strongylida DNA.
Other domestic animals in the system (donkeys and camels)
were not regularly treated for parasites and had at least
90% prevalence. Given that domestic species shared many
parasites with wild ones and are regionally increasing in
abundance [79], monitoring and managing cross-infections
will be increasingly important for both wildlife conservation
and livestock production.

The dissimilarity of parasite communities across host
species and lineages and the significant results from our
cophylogenetic analysis are consistent with a strong coevolu-
tionary relationship between nematode parasites and their
herbivore hosts. These results mirror previous studies,
especially on parasites of rodents (e.g. [19,80]). While strati-
fied and intensive sampling across periods may reveal finer
within-species patterns of parasite community shifts, our
results suggest that Strongylida community structure may
be largely predictable from host species composition in
African ungulate assemblages, and that the impacts of
species losses or invasions might also be predictable.

(b) Parasite host specificity and parasite sharing
patterns

Our finding that host–parasite links were highly aggregated
aligns with previous studies showing that most parasites
specialize on few hosts while only a few have broad host
ranges [18,81]. Parasites with broad host ranges are especially
important when considering potential for parasite sharing at
the wildlife-livestock interface and for predicting missing
links in host–parasite networks [18]. Indeed, we found that
evolutionarily distinct species still shared some parasites
with central species, and that camels and giraffe had high
levels of parasite overlap with bovids (figure 3a,b; electronic
supplementary material, figure S9), demonstrating the role
of a few generalists in connecting the network. The high cen-
trality of giraffe and camel—intriguing given that each is the
only local member of its family and that both feed overwhel-
mingly in the overstorey—suggest that these species are
infected by generalist parasites and may play an important
role in cross-species transmission depending on their move-
ment and density. One clear management implication is
that regularly deworming camels, as done successfully for
sheep and goats at our site, might help limit parasite trans-
mission to wildlife (notably giraffe, a threatened species).
The same is true for donkeys, which had the highest central-
ity of the three equids and are likely to share parasites with
the endangered Grevy’s zebra and near-threatened plains
zebra.

Our finding of phylogenetic influence on network central-
ity metrics is consistent with the likelihood that closely
related hosts share ecological, anatomical and immunological
traits that shape host–parasite coevolution. Indeed, models
based on herbivore parasite records [18] suggest that host–
parasite cophylogeny facilitates prediction of parasite-sharing
networks. Our results captured similar patterns non-
invasively in a single study, showing that the composition
of host assemblages can predict attributes of parasite assem-
blages, including potential patterns of parasite coextinction
arising from loss of evolutionarily distinct species.

(c) Caveats
While the DNA barcode we sequenced can effectively dis-
tinguish parasitic nematode species across a wide range of
hosts [50], it is likely that parasite species have different
ITS-2 copy numbers per cell, different numbers of cells, and
perhaps primer mismatches, which can affect amplification
success and the accuracy of RRA as an indicator of the
relative abundance of parasite species.
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Our raw data contained low-abundance mOTUs that gen-
erated a highly interconnected host–host sharing network,
but filtered data using mean RRA greater than or equal to
2% per species were more concordant with prior studies
[12,13]. While sequencing errors, tag jumps, and contami-
nation can contribute to low-abundance mOTUs distributed
across samples [82], recent work has stressed the challenge
of mitigating such errors while retaining low-abundance
mOTUs that are real and important components of ecological
networks [83,84]. For gastrointestinal-parasite networks, low-
abundance mOTUs could arise from excreted parasites that
do not cause infection, or from ‘satellite species’ that produce
rare low-intensity infections [85]. Further research combining
parasitological work with DNA sequencing will help to opti-
mize methods to enable reliable detection of satellite species
and to enhance reference libraries (e.g. [15,86]).

We could not identify 48% of parasite mOTUs to species
due to gaps in genetic resources for many wildlife parasites
[17]. While these taxa are understudied compared to
human and livestock parasites, they may be important for
wildlife conservation [18]. Efforts to connect DNA sequences
with the taxonomic and natural-history knowledge preserved
in collections will provide further insights. For example,
knowledge of parasite virulence for each host species could
be used to weight edges in host–parasite sharing networks
to identify hosts that are central to costly interactions.
Although metabarcoding is not a substitute for parasitologi-
cal expertise, our results provide compelling evidence for
its potential to greatly augment our understanding of broad
patterns in parasite ecology.

5. Conclusion
We show that host phylogeny and digestive strategy explain a
high degree of variance in parasite community composition
and sharing across a diverse community of wild and dom-
estic large herbivores. While additional work is needed to
maximize the value of parasite metabarcoding data, this
approach holds enormous promise to shed light beneath
the tip of the biodiversity iceberg. Use of these methods in
studies with spatially or temporally stratified sampling
designs will allow researchers to capture multi-host parasite
dynamics that have long remained elusive. Our finding of
substantial parasite sharing at the livestock-wildlife interface

suggests that regularly deworming camels and donkeys
could be an effective local management intervention to
reduce transmission between livestock and several globally
threatened and near-threatened ungulates. More broadly,
our results suggest that changes to domestic animal commu-
nities or their parasite loads (e.g. via stocking density, ranging
patterns or anthelminthic treatment) will impact parasitism in
sympatric wild hosts.
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