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Abstract— In this paper, we introduce a novel means of
control design for probabilistic movement primitives (ProMPs).
ProMPs are a powerful tool to define a distribution of trajecto-
ries for robots or other dynamic systems. However, existing
control methods to execute desired motions suffer from a
number of drawbacks such as a reliance on linear control
approaches and sensitivity to initial parameters. We propose
the use of feedback linearization, quadratic programming, and
multiple control barrier functions to guide a system along a
trajectory within the distribution defined by a ProMP, while
guaranteeing that the system state never leaves more than
a desired distance from the distribution mean. This allows
for better performance on nonlinear systems and offers firm
stability and known bounds on the system state. Furthermore,
we highlight how the proposed method may allow a designer
to emphasize certain objectives that are more important than
the others. A series of simulations demonstrate the efficacy of
our approach and show it can run in real time.

I. INTRODUCTION

Research in robot motion planning has provided a vari-
ety of successful frameworks to generate trajectories [1].
However, these frameworks can be difficult to implement
in environments without a predefined static map. Further-
more, motion planning typically requires the selection of
algorithms, the design of cost functions, and other tasks that
are outside the expertise of nontechnical users. Learning from
demonstration is a paradigm that has played an important
role in addressing the issue of scaling up robot learning [2],
[3]. It can avert the drawbacks of traditional robot motion
planning by relying on the presence of a human teacher.

One approach to learning via demonstration is the use of
parameterized movements, known as movement primitives
(MPs), to encode and generalize human demonstrations for
training robots. MPs are modeled through a compact repre-
sentation of implicitly continuous and high-dimensional tra-
jectories. For example, dynamic motion primitives (DMPs)
use demonstrations to learn a model of the control effort
necessary to produce a desired trajectory for a stabilized
dynamic system [4], [5]. However, DMPs can be inflexible
in that they can only deliver the demonstrated trajectory.
Capturing the natural variation in a human demonstration of
a task can help a robot overcome uncertainty and deviation
between the training regime and actual task execution [6].
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Fig. 1: A set of robot trajectories generated by our demonstration
and control method. The controller guarantees the system never
leaves a neighborhood defined by the training set and provides a
simple way to define trajectories that enforce safety constraints.

Probabilistic movement primitives (ProMPs) are a concept
whereby a distribution of trajectories is learned from multiple
demonstrations. In [7], the design of a stochastic ProMP
feedback controller was studied by exploiting the property of
the covariance derivatives, which can be explicitly computed.
A model-free ProMP controller that adapts movement to
force-torque input was designed in [8]. In [9], the authors
designed a model predictive control-based ProMP controller
for a linear discrete time system model.

Nevertheless, ProMP methods suffer from some notable
deficiencies. In the aforementioned works, a linearized model
of the system is used for designing the controller. This makes
the controller less applicable for nonlinear systems such as
robotics and autonomous vehicles. In addition, ProMPs and
their resulting controllers are often difficult to implement,
sensitive to noise, and highly dependent upon design param-
eters and initial conditions. This reduces their usability for
non-experts. Finally, since ProMPs are by definition stochas-
tic, the distribution of trajectories may have a large support
and result in trajectories that deviate from the training set.

Real-time safety in safety-critical dynamical systems is
an important problem that has received attention in recent
years [10]. This problem has been investigated by designing
polynomial barrier certificates/functions, using offline iter-
ative algorithms based on sum-of-squares optimization, to
verify safety for a given dynamical system [11]. The concept
of barrier certificates/functions was extended for synthesizing
real-time safe control laws for dynamical systems via control
barrier functions (CBFs) [12].

CBFs integrate seamlessly with control Lyapunov func-
tions (CLFs) to offer stability while respecting limits and



safe regions of the state space [13]–[15]. Additionally, CBF
and CLF controllers typically solve a constrained quadratic
program (QP) to find an optimal controller at runtime. This
allows the system to minimize the control effort while
ensuring stability and safety. Other tasks formulated as
cost functions or constraints can be included as well. One
downside to CBFs and CLFs is the complexity in defining
the barriers and trajectories. Recent efforts to automate the
definition of CBFs and CLFs include mapping temporal
logic statements with respect to performance requirements
[16] and fitting piecewise-linear barrier functions to trained
obstacles or regions [17].

In this work, we propose a novel control method that uses
the distribution delivered by a ProMP to define a set of
CLFs and CBFs. This idea addresses each of the previously
mentioned issues with ProMPs, CLFs, and CBFs. CLF and
CBF controllers are fundamentally based on the nonlinear
kinematic/dynamic equations of the system and overcome the
inherent linearity of ProMP controllers. Our controller not
only enjoys the stability and robustness guarantees possessed
by CLF and CBF controllers, but it can also guarantee
that the system never leaves a neighborhood defined by
the training set. Moreover, our approach provides a simple
way to define trajectories for CLFs and barriers for CBFs
using the mean, standard deviation, or other moments of the
distribution. We provide a stability analysis for the proposed
control laws, and we demonstrate their effectiveness and
computational efficiency through simulations of a 2-link and
a 6-link robot. Examples of generated control trajectories for
a Universal Robots UR5 are shown in Fig. 1.

The remainder of this paper is structured as follows. In
Section II, ProMPs, CBFs, and CLFs are reviewed. The
problem is described in Section III. Our approach for a
ProMP controller based on CLFs and CBFs is provided in
Section IV. In Section V, simulation results are presented.
Finally, we conclude in Section VI with a discussion on
future work.

II. BACKGROUND

In this section we provide essential background informa-
tion on ProMPs, CBFs, and CLFs.

Notation: Given a matrix A, let A> denote its transpose.
Let the identity and zero matrices, with appropriate dimen-
sions, be denoted by I and 0, respectively. We denote ? as
the symmetric entries of a matrix. For a vector field fi(x)
and vector of vector fields F (x) = [f1(x), ..., fn(x)], let Lfi
and LF denote, respectively, the Lie derivative along fi(x)
and the vector of Lie derivatives in the directions fi(x) :
LF = [Lf1 , ..., Lfn ]. Zero-mean i.i.d. Gaussian distribution
with mean m and (co)variance Σ is denoted N (m,Σ), and
the number of joints for a robot arm is represented by n.

A. Probabilistic Movement Primitives

ProMPs provide a parametric representation of trajectories
that can be executed in multiple ways through the use of a
probability distribution. Basis functions are used to reduce
model parameters and aid learning over the demonstrated

trajectories. The trajectory distribution can be defined and
generated in any space that accommodates the system (e.g.,
joint or task spaces). We consider joint space trajectories.

Within a ProMP, the execution of a trajectory is mod-
eled as the set of robot positions, ζi = {qi(k)}, where
k = 0, . . . ,K , qi(k) ∈ R is the state variable sampled at
time k, and i ∈ {1, . . . , n} is the joint index of a robot. Let
wi ∈ R1×L be a weight matrix with L terms. A linear basis
function model is then given by

xi(k) =

[
qi(k)
q̇i(k)

]
= Φ(k)wi + ξxi ,

where Φ(k) =
[
φ(k) φ̇(k)

]> ∈ R2×L is the time-
dependent basis function matrix, and L is the number of basis
functions. Gaussian noise is described by ξxi ∼ N (0,Σxi).
Thus, the ProMP trajectory is represented by a Gaussian
distribution over the weight vector wi and the parameter
vector θi = {µwi

,Σwi
}, which simplifies the estimation of

the parameters.
We marginalize out wi to create the trajectory distribution

p(ζi, θi) =

∫
p(ζi |wi)p(wi; θi)dwi. (1)

Here, the distribution p(ζi, θi) defines a hierarchical
Bayesian model over the trajectories ζi [7] and p(wi | θi) =
N (wi |µwi ,Σwi). In an MP representation, the parameters
of a single primitive must be easy to obtain from demonstra-
tions. The distribution of the state p(xi(k) ; θi) is

p(xi(k); θi)=N (xi(k) |Φ(k)µwi ,Φ(k)ΣwiΦ(k)>+Σxi). (2)

The trajectory can be generated from the ProMP distribution
using wi, the basis function Φ(k), and (2). The basis function
is chosen based on the type of robot movement which can
be either rhythmic or stroke-based. From (2), the mean
µ̃i(k) ∈ R2 of the ProMP trajectory at k is Φ(k)µwi

and
the covariance Σi(k) is Φ(k)ΣwiΦ(k)> + Σxi .

Multiple demonstrations are needed to learn a distribu-
tion over wi. We use a combination of radial basis and
polynomial basis functions for training the ProMP. From
the demonstrations, the parameters θi can be estimated
using maximum likelihood estimation [18]. However, this
may result in unstable estimates of the ProMP parameters
when there are insufficient demonstrations. Our method uses
regularization to estimate the ProMP distribution similar to
the work by Gomez-Gonzalez et al. [6]. We maximize θi for
the posterior distribution over the ProMP using expectation
maximization,

p(θi |xi(k)) ∝ p(θi)p(xi(k) | θi). (3)

In addition, we use a Normal-Inverse-Wishart as a prior
distribution p(θi) to increase stability when training the
ProMP parameters [6].

B. Control Barrier and Control Lyapunov Functions

Consider the affine, nonlinear system

ẋ = f(x) + G̃(x)u, (4)

where x ∈ Rn denotes the state, u ∈ Rm is the control input,
G̃ = [g1, ..., gm], and f : Rn → Rn and gi : Rn → Rn are



locally Lipschitz vector fields. It is assumed that the system
in (4) is controllable.

1) Control Barrier Functions: A smooth function h(x) :
Rn → R is defined to encode a constraint on the state x of
system. The constraint is satisfied if h(x) > 0 and violated
if h(x) ≤ 0. Consider the set C defined by

C = {η : h(η) ≥ 0},
∂C = {η : h(η) = 0},
Int(C) = {η : h(η) > 0},

(5)

where h : Rn → R is a continuously differentiable function.
Existing approaches to define CBFs include exponential

CBFs, zeroing CBFs, and reciprocal CBFs [12], [19]. How-
ever, these methods have trade-offs in terms of ease of
definition, boundedness of velocities, speed of convergence,
etc. We investigate the use of a reciprocal CBF. This type
of CBF has a small value when the states are far from
the constraints and becomes unbounded when the states
approach the constraint.

Definition 1. Given C and h, a function B : C → R is a
CBF if there exists class K functions α1, α2, and a constant
scalar γ > 0 such that

1

α1(h(x))
≤ B(x) ≤ 1

α2(h(x))
,

LfB(x) + LG̃B(x)u− γ

B(x)
≤ 0.

(6)

2) Control Lyapunov Functions: A CLF is a Lyapunov
function for a dynamical system with inputs, and it can be
used to design the control inputs to ensure objectives such
as stability, convergence to the origin (or other set point),
or convergence to a desired trajectory. In order to have sim-
ilar constructions as CBFs, we will consider exponentially
stabilizing CLFs [20].

Definition 2. In a domain X ⊂ Rn, a continuously
differentiable function V : X → R is an exponentially
stabilizing CLF (ES-CLF) if, ∀x ∈ X , there exists positive
scalar constants c1, c2, c3 > 0 such that

c1||x||2 ≤ V (x) ≤ c2||x||2,
LfV (x) + LG̃V (x)u+ c3V (x) ≤ 0.

(7)

Having established a CBF (to accomplish safety) and CLF
(to achieve control performance objectives), they can be
combined through a QP. Consequently, safe control laws
may be computed using the QP to solve the constrained
optimization problems at each point in time [12].

III. PROBLEM FORMULATION

A. System Modeling

We consider the equations of motion for a robot given in
the general form by the Euler-Lagrange equations

D(q)q̈ +H(q, q̇) = Eu, (8)

where q ∈ Q is a generalized coordinate position. Suppose
that Q ⊂ Rn is the configuration space of the robot, D(q) is
the inertia matrix, H(q, q̇) = C(q, q̇)q̇ + K(q) is a vector
containing the Coriolis and gravity terms, and E is the
actuation matrix that determines the way in which the inputs,

Robot

DemonstrationProMP
Model

CLF/CBF
Controller

Feedback
Linearization 
Controller

Fig. 2: A block diagram illustrating the general structure of the
proposed system.

u, actuate the system. Then, the system description in (8) can
be converted to an ODE of the form in (4) where x = [q, q̇]>

and

f(x) =

[
q̇

−D−1(q)H(q, q̇)

]
, g(x) =

[
0

D−1(q)E

]
. (9)

B. Problem Definition

Our primary goal is to design a controller such that the
system output tracks a trajectory within the distribution
generated by a ProMP. To this end, we first construct a
nonlinear inner-loop control law founded on the feedback
linearization of (8). Then, an outer-loop controller based on
a CLF-CBF is designed using the distribution parameters,
µ̃i and Σi. This is summarized as the following problem
objectives.

1) Design a feedback linearization controller to obtain a
linear and decoupled input-output closed-loop relation-
ship for the error signal.

2) Use the demonstrated trajectories of a robot to train and
estimate a ProMP distribution. The ProMP provides the
time-varying mean and variance of a trajectory.

3) Design a CLF to stabilize the system such that
∀i, qi → µi, where µi is the first element of µ̃i.

4) Design a CBF to guarantee that the error ei = qi − µi
satisfies the safety constraint ∀i, |ei| < σi, where σi is
the (1, 1) element of Σi.

The general structure of our proposed system is shown in
Fig. 2.

IV. CONTROL CONSTRUCTION

We define the error and trajectory vectors as e =
[e1, . . . , en]> and µ = [µ1, . . . , µn]>, respectively. Using (4)
and taking the derivative r times along f(x) and g(x), we
obtain

e(r)(x) = L
(r)
f e(x) + LgL

(r−1)
f e(x)︸ ︷︷ ︸

Γ

u− µ(r). (10)

Assume the decoupling matrix, Γ, is well-defined and has
full rank. This implies that the system in (4) is feedback
linearizable and we can prescribe the control law

u(x) = Γ−1
(
−L(r)

f e(x) + µ(r) + v
)
, (11)

where v is an auxiliary feedback control value. This yields
the rth order linear system from input v to output e,

e(r) = v. (12)



In this work, we limit ourselves to relative degree-two
systems (i.e., r = 2). By defining η = [e, ė]>, (12) can
be written as a linear time invariant system

η̇ =

[
0 I
0 0

]
η +

[
0
I

]
v. (13)

From there, n decoupled systems can be obtained from (13),

η̇i = Fηi +Gvi, i = 1, . . . , n, (14)

where ηi = [ei, ėi]
>, F =

[
0 1
0 0

]
, and G = [0 1]>.

To accomplish problem objective 3, it is sufficient to
ensure ei → 0. This is accomplished through designing
an appropriate CLF. To satisfy problem objective 4, it is
sufficient to make |ei| < σi. This objective is satisfied by
defining appropriate CBFs. In the ensuing subsections, the
appropriate CLFs and CBFs are defined for the system in
(14). Moreover, the ith controller for each system in (14) is
designed by combining the corresponding CLFs and CBFs
through a QP problem.

A. Control Lyapunov Function

Consider the following rapidly exponentially stabilizing-
CLF (RES-CLF) [21],

Vεi(ηi) = η>i

[
1/εiI 0

0 I

]
P

[
1/εiI 0

0 I

]
ηi, (15)

where εi is a positive scalar and P is a symmetric positive
definite matrix that can be obtained by solving the continuous
time algebraic Riccati equation

F>P + PF − PGG>P + I = 0. (16)

In order to exponentially stabilize the system, we want to
find vi such that

V̇εi(ηi) = LFVεi(ηi) + LGVεi(ηi)vi ≤ −
c3i
εi
Vεi(ηi), (17)

where c3i is a positive constant value. To guarantee a feasible
solution for the QP, the CLF constraint can be relaxed by
δi > 0 [20] resulting in

LFVεi(ηi) + LGVεi(ηi)vi +
c3i
εi
Vεi(ηi) ≤ δi. (18)

This relaxation parameter will be minimized in the QP
cost function. It is worth mentioning that by providing a
weighting factor on the relaxation parameter δi, the QP can
mediate a trade-off among performance and safety objectives
in a way that safety is always satisfied.

B. Control Barrier Functions

We propose two safety constraints for each system in (14).
More specifically, each system should satisfy −σi < ei < σi.
Consequently, we have the following two safety constraints

hi1 = ei + σi,

hi2 = −ei + σi.
(19)

From (19), it is obvious that we have multiple time-varying
constraints that should be satisfied simultaneously. Moreover,
it is easy to verify that LGei = 0 and LFLGei 6= 0, thus the

safety constraint has a relative degree of 2. For the relative
degree-two constraints, the reciprocal CBF is defined as [22],

Bj(ηi) = − ln

(
hij(ηi)

1 + hij(ηi)

)
+ aEij

bEij ḣij(ηi)
2

1 + bEij ḣij(ηi)2
,

(20)
where j ∈ {1, 2} and aEij , bEij are positive scalars. Note
that by choosing small values for aEij and bEij , the system
will stop far from the constraint surfaces. By choosing large
parameters, the system will stop close to the constraints.
In some cases, especially in the presence of uncertainties,
choosing aEij and bEij to be too large may cause constraint
violations (i.e., no solution exists to the QP problem). As a
result, based on the given application, a compromise needs
be considered for choosing these parameters. The following
control barrier condition should be satisfied for time varying
constraints (which leads to time varying CBFs),

LFBj(ηi) + LGBj(ηi)vi +
∂Bj(ηi)

∂t
− γi
Bj(ηi)

≤ 0. (21)

C. Quadratic Program (QP)

As shown in (19), two safety constraints need to be sat-
isfied simultaneously for each linearized, decoupled system.
Due to this fact, a single controller can be obtained in such
a way that guarantees adherence to both constraints [23]. In
this subsection, n QPs are proposed to unify RES-CLF and
CBFs for each system in (14) into a single controller. The n
QPs for i ∈ {1, . . . , n} are defined as

min
vi=[vi, δi]

>∈R2
v>i Hivi,

subject to

LFVεi(ηi) + LGVεi(ηi)vi +
c3i
εi
Vεi(ηi) ≤ δi (CLF)

LFBj(ηi) + LGBj(ηi)vi +
∂Bj(ηi)

∂t
≤ γi
Bj(ηi)

(CBFs)

(22)

where Hi =

[
1 0
0 psci

]
and psci ∈ R+ is a variable that can

be chosen based on the designer’s assessment of weighting
the control inputs.
Remark 1. We design the ProMP generation and controller
formulation such that the safety constraints are defined on
the independent variance of each joint trajectory distribution.
However, the proposed approach can be easily extended to
the case where we want to encode the coupling between the
joints for ProMP training. Thus, the safety constraints should
be defined based on the covariance matrix. To guarantee
safety in the presence of covariance, we can impose the
following confidence support

e>Σ−1e ≤ kp, with probability 1− p. (23)

The covariance matrix Σ is a symmetric positive definite
matrix. Consequently, it is possible to decompose it into Σ =
Ψ>ΛΨ, where Λ is the diagonal eigenvalue matrix and Ψ
is the orthogonal eigenvector matrix. Due to this fact, from
(23) we get

Ψ>Λ−1Ψ =
∑
i

ν>i λ
−1
i νi ≥ ν>i λ−1

i νi ∀i = 1, . . . , n,
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Fig. 3: Training of the ProMPs for the first joint (top) and second
joint (bottom). The 50 input trajectories are shown in red and the
ProMP mean joint trajectories (µi) are shown in dark green. A
light-green fill shows µi ± σi.

where νi and λi denote, respectively, the eigenvectors and
the eigenvalues of the Σ. This leads to the polytopic bounds

−
√
kpλi ≤ ν>i e ≤

√
kpλi, ∀i = 1, . . . , n. (24)

These conditions can be represented in the form of linear
constraints for the QP. As a result, by solving the QP problem
in the presence of these constraints, safety is assured with
probability of at least 1− p.

V. SIMULATIONS

In this section we demonstrate different aspects and ca-
pabilities of our methodology for the ProMP control of a
robotic system. The system models and proposed real-time
controller are simulated using a MATLAB 2019a environ-
ment. All computations were run on a Dell OptiPlex 7050
machine with an Intel Core i7-7700X CPU and 8 GB of
memory.

A. Case Study 1: Two-Link Robot

We consider a rigid, two-link robot with the dynamic
model of (8) and the following parameters [24]

D(q) =

[
m1l

2
1 +m2(l21 + l22 + 2l1l2 cos(q2)) ∗
m2(l22 + l1l2 cos(q2)) m2l

2
2

]
,

Fig. 4: A visualization of the 2-link ProMP in the robot workspace.
The robot link positions over time are shown in red, while the end-
effector trajectory following the mean ProMP joint trajectories is
shown in green. The four trajectories of the end effector with joint
combinations µi±σi, i ∈ {1, 2} are illustrated in cyan, blue, yellow
and magenta. The black circles correspond to obstacles.

C(q, q̇) =

[
−m2l1l2 sin(q2)q̇2(2q̇1 + q̇2)

m2l1l2q̇
2
1 sin(q2)

]
,

K(q) =

[
(m1 +m2)gl1 sin(q1) +m2gl2 sin(q1 + q2)

m2gl2 sin(q1 + q2)

]
,

where m1 and m2 are the link masses, l1 and l2 are the
lengths of the links, and g is the gravitational acceleration.
For the simulations, the values of these variables are selected
as m1 = 1, m2 = 1, l1 = 1, l2 = 1, and g = 9.8.

We generated 50 trajectories that achieve a goal position
from various starting positions while avoiding three obsta-
cles. Using this dataset, we train a ProMP with Algorithm
1 from [6]. We use L = 2 basis functions consisting of five
radial basis parameters. The results of the ProMP training
are presented in Fig. 4 where the black circles indicate the
location of obstacles and the 50 input trajectories shown in
red. The ProMP mean joint trajectories, µi, are shown in
dark green, and in a light-green fill we show µi ± σi. A
visualization of the ProMP in the workspace, based on [25],
is displayed in Fig. 4. The robot link positions over time are
highlighted in red with different colors representing key end-
effector trajectories from the ProMP. The green trajectory
is the mean of the ProMP distribution. The other four
trajectories result from combinations of µi ± σi, i ∈ {1, 2}.

Three sets of simulations were conducted. In each sim-
ulation, the CLF parameters are selected as εi = 0.1 and
c3i = 0.5. In the first scenario, greater priority is given to
the CLF than CBF by choosing a high gain, i.e., psci = 200.
Moreover, the CBF design parameters are set to aE11 =
aE12 = 20.1, aE21 = aE22 = 20, bE11 = bE12 = 1,
bE21 = bE22 = 0.9, γ1 = 10.1, and γ2 = 9. In the
second scenario, psci is chosen as psc1 = psc2 = 0.02 which
implies less priority to the CLF in comparison with the CBF.
Moreover, the CBF parameters in this scenario are similar to



Fig. 5: The results of the CLF/CBF-based ProMP controller for
the first joint (top) and second joint (bottom). The safe region of
µi±σi, i ∈ {1, 2} is shown as a filled “tube”. The control results
in different trajectories for distinct values of the weight psci, but
all trajectories remain safe.

the first scenario.
To show the effects of changing the CBF parameters aEij ,

bEij , and γi, we consider another scenario. In the third
scenario, aE11 = aE12 = 1.1, aE21 = aE22 = 1.1, bE11 =
bE12 = 0.4, bE21 = bE22 = 0.5, γ1 = 1.3, and γ2 = 1.51,
with psci = 0.02 as in the second scenario. Consequently,
the effects of changing the CBF parameters can be concluded
by comparing the second and third scenarios.

The simulation results are exhibited in Fig. 5. In the first
scenario, by choosing a large value for psci (more priority
to the CLF than CBF), the system output remains close to
the mean trajectory. However, in the second scenario, by
considering a small value for psci (more priority to the CBF
than CLF), the system remains safely inside the distribution
but does not necessarily stay close to the mean. In the third
scenario, it can be seen that by choosing smaller values
for aEij , bEij , and γi, the system output can have more
deviation from the constraint surfaces, i.e., be closer to the
mean trajectory. In short, our proposed method provides a
valuable option to the designer that grants levels of flexibility

of the trajectory while ensuring safety.
The main computational cost with respect to time of our

controller comes from the fact that it has to solve a set of
QPs at every time step. In the performed simulations, two
QP problems are solved in real time (one for each link).
The average required time (Tave), maximum time (Tmax), and
the standard deviation (std) for solving the QP problems are
Tave = [0.0015, 0.0011], Tmax = [0.1148, 0.0119], std =
[0.0053, 0.0006] where the units are seconds. From these
results, it is clear that the expected execution time of the QP
problems is very small (e.g., in the range of 1 millisecond).
The large maximum times are each a single outlier. Hence,
the controller is appropriate for a real-time implementation.

B. Case Study 2: Universal Robots UR5 6-Link Robot

The equation of motion of the UR5 robot can be written
in the form of (8) with the following parameters [26]

D(q) =

[ 6∑
i=1

miJ
>
viJvi + J>wi

RiImiR
>
i Jwi

]
, (25)

where mi ∈ R is the mass of the ith link, Jvi ∈ R3×6 and
Jwi ∈ R3×6 are the linear and angular part of the Jacobian
matrix Ji, respectively. Ri ∈ R3×3 is the rotation matrix and
Imi
∈ R3×3 is the inertia tensor. The elements of C(q, q̇)

are obtained from the inertia matrix as

cij =
6∑
k=1

1

2

(
∂mij

∂qk
+
∂mik

∂qj
− ∂mkj

∂qi

)
q̇k, (26)

where mij are the entries of the inertia matrix. Moreover,
the elements of gravity vector are obtained from

Ki(q) =
∂P
∂qi

, (27)

where P is the total potential energy of the robot. Additional
information on these equations can be found in [27].

We generate 90 joint-space trajectories with defined goals,
obstacles, and starting positions. The 90 UR5 trajectories
are then used to train a joint-space ProMP using the same
parameters as in the two-link robot case study. The following
set of CLF and CBF parameters are chosen: ε1 = ε2 = ε3 =
ε4 = ε5 = 0.1, ε6 = 0.01, and c3i = 1.1, aEij = 20.1,
bEij = 1, and γi = 10.1, i ∈ {1, ..., 6}, j ∈ {1, 2}. The
simulation environment is depicted in Figs. 1 and 6.

We consider two different scenarios. In the first sce-
nario psci = 200, which gives higher importance to the
CLF. In the second scenario psci = 0.001, which im-
plies the design interest and priority is on the CBF. As
is clear from Fig. 6, in both scenarios the robot can ef-
fectively track the mean of the ProMP and simultaneously
avoid colliding with environmental obstacles. The running
time statistics for solving the QP problems are Tave =
[0.0014, 0.0011, 0.0010, 0.0010, 0.0011, 0.0010], Tmax =
[0.1193, 0.0120, 0.0128, 0.0058, 0.0314, 0.0028], std =
[0.0053, 0.0005, 0.0005, 0.0003, 0.0014, 0.0002]. Again,
the large maximum values are for a single outlier, thus the
expected operation time is well within the needs of a robotic
system. The cause of outlier run times is an avenue of future
research to offer improved performance guarantees.



Fig. 6: The results of the proposed ProMP controller for the UR5.

VI. CONCLUSION AND FUTURE WORK

In this work, a ProMP robot guidance problem was solved
using a CLF/CBF-based controller. The proposed approach
stabilizes the robot and guarantees the system output is
always inside the distribution generated by a ProMP. The
time-varying nature of the ProMP ensures the robot is guided
along the distribution at the desired rate. Moreover, using
our proposed method, it is possible to provide a trade-off
between trajectory performance and safety objectives. These
safety guarantees and performance tuning options are not
available in the native ProMP control design. Our simulation
studies on a 2-link and 6-link robot confirm the viability of
the proposed method for designing the controller.

There are several topics of ongoing work. We are in-
vestigating the trade-offs of various different CBFs (e.g.,
zeroing versus reciprocal), other choices of cost functions,
and constraints in the QP. Additionally, we are seeking
novel methods that automatically define additional barriers
to ensure the safe movement of a co-robot around dynamic
obstacles (e.g., humans). This includes the exploration of
an active learning framework for ProMPs, whereby a co-
robot has the capability to detect when it is outside of
its safe trajectory zone and thus requires assistance from
a human. Finally, experimental validation of the proposed
methodology will be carried out.
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