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ABSTRACT 
 

Among various elements of urban infrastructure, there is significant opportunity to 

improve existing buildings’ sustainability, considering that approximately 40% of the 

total primary energy consumption and 72% of electricity consumption in United States 

is consumed by the building sector. Many different efforts focus on reducing the energy 

consumption of residential buildings. Data-validated building energy modeling 

methods serve the role of supporting this effort, by enabling the identification of the 

potential savings associated with different potential retrofit strategies. However there 

are many uncertainties that can impact the accuracy of energy model results, one of 

which is the weather input data. Measured weather data inputs located at each building 

can help address this concern, however, weather station data collection for each 

building is also costly and typically not feasible. Some weather station data is already 

collected, however, these are generally located at airports rather than near buildings, 

and thus do not capture local, spatially-varying weather conditions which are 

documented to occur, particularly in urban areas. In this study we address the impact 

of spatial temperature differences on residential building energy use. An energy model 

was developed in EnergyPlus for a residential building located in Mueller 

neighborhood of Austin, TX, and was validated using actual hourly measured 

electricity consumption. Using the validated model, the impact of measured spatial 

temperature differences on building energy consumption were investigated using 

multiple weather stations located throughout the urban area with different urban 

fractions. The results indicate that energy consumption of a residential building in a 

city with a 10% higher urban fraction would increase by approximately 10%. This 

variation in energy consumption is likely due to the impact of UHI effects occurring in 

urban areas with high densities. 

 

 

INTRODUCTION 

 

In the United States, buildings were responsible for 1.03E+14 MJ of energy 

consumption in 2017, or about 39% of the total primary energy consumption, 

2.11E+13, or about 21%, of which originated from residential buildings (U.S. Energy 

Information Administration 2015). The residential sector is also responsible for 
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approximately 20% of U.S. carbon emissions, or about 4% of the world’s total carbon 

emissions in total (Liu 2012). Therefore, designing buildings that use considerably less 

energy than existing buildings is an overarching goal for building designers and 

architects. Reduction in energy consumption in the residential sector will significantly 

reduce the carbon emissions and work toward achieving climate change goals 

(European Commission 2018). In some cases, aggressive energy saving goals work 

towards achieving 40% or better than code, to net zero-energy buildings designed to 

minimize the energy consumption and environmental impacts. In high performance 

buildings many possibilities exist to achieve these goals, such as modifications to 

building material selection, daylighting, natural ventilation, mixed mode ventilation, 

photovoltaic (PV), and passive solar strategies. These methods were developed with 

the goal of using less energy than comparable code-compliant buildings, and in most 

cases, their building envelope exceeds currently adopted ASHRAE 90.1 

recommendations (American Society of Heating 2013).  

An important part of the implementation of energy savings measures is being 

able to accuracy model the predicted energy savings associated with various energy 

savings measures; this is often best accomplished through estimates produced from 

building energy simulation. Recent research efforts in the building energy simulation 

field recognize the significant uncertainties associated with estimating the energy 

performance of buildings using the results of energy simulation software and associated 

methods. For example, the results of recent work on high performance buildings 

indicate that better energy performance is achieved than standard practices, including 

net source energy savings among six buildings studied ranging from 22%, to 77% and 

energy cost savings ranging from 12% to 67% (Torcellini et al. 2004).  However, it has 

also been noted that when compared to actual performance, most buildings do not 

perform exactly as predicted (Torcellini et al. 2004). This can be due to variations in a 

wide range of input variables, including the weather conditions, building systems 

components, occupants loads and occupant behaviors among others (De Wilde 2014). 

These fundamental uncertainties involved in building energy modeling impact the gap 

often observed between the actual performance and designed models. To bridge this 

gap, these uncertainties must be better addressed. One of the important and impactful 

input parameters for energy models is the weather data inputs. Outdoor temperature in 

particular is a crucial parameter, and is widely recognized as such. For example, Yang 

et al. (Yang, Yan, and Lam 2014) identified different models that simulate the 

correlation between indoor temperature and outdoor temperature, indicating that an 

increase in outdoor air temperature would increase indoor operative temperature which 

results in higher energy consumption 

For building energy model validation and verification, it is thus important to 

have the accurate weather input to ultimately work towards bridging the energy 

performance gap between measured and predicted consumption. Currently weather 

data typically utilized for building energy performance efforts is mainly based on 

measured data from ground-based weather stations generally located at airports 

throughout the United States (Stewart and Oke 2012). Most of the time these weather 

stations are based outside of the city, thus the weather data collected does not see the 

impacts of Urban Heat Island (UHI) effects in a city that the majority of the buildings 
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in that city would experience. UHI is typically defined as the increase in the ambient 

temperature of an urban area due to an increased level of impervious surfaces as 

compared to more rural areas. This impact is caused in part by the delayed release of 

heat by buildings and paved surfaces which absorb the heat during the day, combined 

with heat from vehicular traffic and from HVAC system heat exhaust (H.Akbari 2009). 

The extent of UHI effect, i.e. the rise in temperature, depends on various urban 

parameters including the land use/land cover type(s), the amount of impervious 

surfaces, building sizes and heights and surface albedo, emissivity, and heat capacity 

of materials used in urban construction. These differences between the weather 

conditions experienced by buildings in an urban area and measured weather data in a 

non-urban area is the one source of uncertainty between model prediction and actual 

energy consumption.  

Coupled with the global temperature rise there is a rising trend in an urban 

population in the United States, an estimated 18.8 % increase in the percent of the 

population living in cities between 2000 and 2020 (“Research Application Laboratory” 

2019). Tewari and Chen (Salamanca et al. 2011) reported that due to anthropogenic 

activities the temperature would increase up to 2 degrees C in the denser urban areas. 

Also, a study for the major metropolitan areas in the U.S. concluded that the peak 

electricity load would increase by 1.5–2% for every 0.5°C increase in ambient 

temperature (Dahlman 2017). Thus, accounting for the UHI effect in energy modeling 

will help to reduce the uncertainties associated with predicting energy consumption 

trends. In order to investigate the impact of urbanization on different aspect of energy 

consumption, it is essential to capture land surface physical characteristics as albedo, 

emissivity, vegetation fraction, and roughness, which control land‐atmosphere 
interactions. Urban fraction is obtained from Land cover data which is based on the 
National Land Cover Data (NLCD) and has three classes of spatial resolutions (30m, 
100m, 1km). NLCD includes three urban types, which correspond to the three 
aforementioned urban categories as low-intensity residential, high-intensity 
residential, and industrial/commercial (Vahmani and Ban-Weiss 2014). 

As such further study is needed to understand the potential impacts of correcting 

for spatial variations in weather conditions that differ from those predicted from the 

utilization of weather station-based data. This study works to investigate the impact of 

UHI on energy consumption of residential buildings through the use of a local weather 

station dataset in Austin, TX, compared to the energy consumption predictions of a 

calibrated energy model using urban and non-urban weather station data. The results 

of this work help to contribute to a better understanding of energy prediction impacts 

and motivate further study in this area.  

 

METHODOLOGY 

 

The methodology is divided into two sections. First is the development of an energy 

model for the studied residential building and validation of this model using actual, 

measured electricity consumption data. The outcome of this step is a validated model 

that can be used for investigating the impact of spatial temperature variation on annual 

energy consumption, which is the second step of this study. To investigate the impact 

of spatial temperature variation effect, the measured data from several weather stations 
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which have different levels of urbanization were used. These stations were chosen to 

represent the impact of urban characteristics on temperature and consequently on 

electricity consumptions of residential buildings.  

 

Observational data 

Ground-based weather station data was collected from a dataset of 40 weather stations 

located in the Austin, TX area. Most weather stations are installed at schools, stadiums 

and businesses (Earth Networks 2014a). At each weather station, temperature (+/- 0.5 

ᵒC), humidity (+/- 3.5%), wind direction (+/- 3 degrees), wind speed (+/- 3 kph), 

pressure (+/- 1.7 hPa), and rainfall (+/- 1%) are measured (Earth Networks 2014b). All 

the data undergo data quality control procedures and are assigned a tag to represent the 

level of data verification (Earth Networks 2014a). Data was available from 2011 to 

2018, however not all 40 weather stations were collecting data at any given time. The 

weather data time window utilized for running validated energy model, is from 19 

August 2011 to 3 September 2011. During this time period the most significant 

heatwave happened in Austin TX (Jahani et al. 2019).  

 

For energy consumption data, the Pecan Street Research Institute’s (PSRI) Dataport 

was utilized. This databased includes 1-minute level electricity consumption data, 

including whole-home and disaggregated data for nearly 1,000 single family homes 

and apartments in the Austin, TX area (“Data Port” 2019). It also includes information 

on the physical characteristic of a portion of the monitored buildings, as well as energy 

audit data for some homes.  

 

Developing a Calibrated Energy Model for Residential Buildings 

Several steps were followed to develop and validate a residential building energy 

model. For developing the model, energy audit data and high-frequency electricity 

consumption of a residential building Mueller region were used.  A home with both 

detailed energy audit data 100% of one year of hourly whole-home energy use data was 

chosen. A building energy model of the building was then developed. It was assumed 

the house utilized a rectangular building plan, the dimensions of which are 46 x 30 ft 

on the first floor and 32 x 30 ft on the second floor.  Based on another study’s findings 

(Bhandari, Shrestha, and New 2012), it is not anticipated that this layout will have more 

than 2.3% impact on the accuracy of the predicted energy consumption.  

To model energy consumption for the building, the EnergyPlus-based building 

energy modeling software was used. BEopt (Building Energy Optimization) (version 

2.8.0.0) is capable of evaluating residential building designs and cost analysis. BEopt 

can be used to analyze both new construction and existing home retrofits, as well as all 

types of residential buildings such as single-family detached and multi-family 

buildings (National Renewable Energy Laboratory (NREL) 2019a). In this study the 

energy model was created in BEopt, using the relevant inputs on building 

characteristics acquired from the PSRI data. Values that are not available in the 

database for the building, were based on assumptions in the Building America House 

Simulation Protocols (Wilson et al. 2014). For the remainder of the parameters, default 

BEopt values were utilized (Wilson et al. 2014).  
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Input real weather data for the home’s location in the required .epw format is 

needed for validation. The weather data from the closest available location to the 

building that is associated with the time period of the utilized energy consumption data 

(1 year, in 2014) is used; this data originated from the NSRDB (The National Solar 

Radiation Database) (National Renewable Energy Laboratory (NREL) 2019b). The 

applicable weather data available included dry bulb temperature, dew point 

temperature, relative humidity, pressure, wind speed, wind direction, cloud cover, 

direct and diffuse solar radiation, and albedo. These values were arranged in the .epw 

file format (BigLadder Software 2019) to be used as an input for energy model.  

For validating the model, the energy consumption from the energy simulation 

was compared with the actual energy consumption for the entire year in 2014 and MBE 

(mean bias error) and CV-RSME (coefficient of variation of root mean square error) 

are calculated. Following the recommendations of ASHRAE Guideline 14, the 

acceptable tolerances for comparison are +/- 10 % for MBE and +/- 30 % for CV-

RSME for hourly data (Femp 2015). Thus the model is generally considered to be 

validated if it is within this range for both values. Several trials were implemented to 

reduce the MBE and CV-RSME of the original model and are discussed in the results 

below. 

 

Investigating Spatial Temperature Variation Impact on Residential Buildings 

With a validated energy model, to predict the impact of spatial temperature variation 

on annual energy consumption of the studied building, 11 ground-base stations were 

used in which five have values for two different spatial resolutions of urban fraction 

(30m, 100m) and 9 stations have the values for just the lower 1 km urban fraction. 

Using the stations in each urban fraction class (30m, 100m, 1 km), all possible 

combination of the two stations were developed and the difference between each pair 

of stations were calculated and compared with the average daily temperature difference 

between the pairs. Linear regression is applied to determine the relationship between 

the urban fraction difference and average daily temperature difference between each 

pair of the stations. In this study, to indicate the maximum impact of temperature 

variation on annual building energy consumption, 6 stations which have the highest 

average daily temperature difference due to variation in urban fraction were chosen to 

estimate their impact on annual building energy consumption. All of the selected sites 

are located in urban area but with different urban fractions. The calibrated energy 

model was then run using the weather data developed from each of these weather 

datasets.  

 

RESULTS AND DISCUSSION 

This section is divided into two main subsections. In the first section, the results for 

validating energy model are discussed. In second section, the energy modeling results 

using the calibrated model for the two different weather stations in an urban and a non-

urban area are reported to investigate the impact of spatial temperature difference on 

energy consumption.   
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Energy Model Validation 

For model validation, the results of the model were initially compared with the actual 

electricity consumption on the monthly level. As shown in Figure 1, in the initial stages 

of validation, the monthly electricity consumption in winter closely matches the results 

from the model, while in summer the actual electricity consumption is higher than the 

modeled electricity consumption. To capture more detail, the hourly electricity 

consumption for both model and actual data were compared for 10 days in winter 

(Figure 2) and 10 days in summer (Figure 3).  

As shown in Figure 2 and Figure 3, the peak values of actual electricity 

consumption is higher than the values for the model, which was found to originate from 

occasional charging of an electric car owned by the home owners. Since charging 

electrics cars does not impact the energy performance of a building and is not 

represented in a building energy model, the sub metered data was used to determine 

the demand of the electric car, which was then eliminated from calculated values for 

actual energy consumption of the building. As shown in Figure 4 the elimination of 

electric car charging improved model results and decreased the differences between 

model prediction and actual values.  

 

 
Figure 1. Monthly comparison of actual electricity consumption with BEopt 

model results prior to adjustments made for energy model 

validation 
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Figure 2. Comparison of hourly electricity consumption between actual 

electricity consumption and results of the original energy model 

from Jan 1 to Jan 10, 2014 

  
Figure 3. Comparison of hourly electricity consumption between actual 

electricity consumption and results of the original energy model 

from July 1 to July 10 
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As shown in Figure 4, in general the monthly actual electricity consumption is 

lower than that of the model. During summer, the actual energy consumption is higher 

than the modeled consumption, however, for the transition months such as April and 

October, the monthly energy consumption more closely follows the actual consumption 

patterns. This indicates the issues appears not to be the baseload but the weather-

depended energy use (i.e. the HVAC system). To reduce the difference between model 

prediction and actual demand, the window area and shading conditions were modified 

to better represent the heating load of the building. Lower values of energy 

consumption predicted by the model in winter seasons shows that the demand of 

heating systems were underestimated; the size of HVAC system and the AFUE value 

were thus adjusted slightly. Modifying the model based on monitoring the differences 

between actual electricity demand with model prediction resulted in an improvement 

in MBE values from 4.2% to 1.1 %, which is an acceptable range for model validation. 

The CV-RSME values were improved from 43.1% to 38.8%, which is closer to the 

ASHRAE-recommended +/- 30 %. Other reasons for such variations include occupant 

behavior which is challenging to capture in such a model with current modeling 

methods.  

 
 

 

Figure 4. Monthly comparison of actual electricity consumption with results 

of the calibrated energy model  

Comparison of spatial temperature variation due to urban fraction 

Considering missing weather data for all stations, and also availability of urban 
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pair of the stations.  As shown in Figure 5, the results indicate that in each class of 

urban fraction, with an increase in urban fraction, the average daily temperature 

difference between stations also increases. In other words, the higher urban fraction 

difference between stations results in a larger temperature difference.  

 

Figure 5. The linear relations between urban fraction difference and average 

daily temperature difference in 30m, 100m, 1km urban fractions 

classes.  

Comparison of energy use of selected locations with different urban fractions 

In each class of urban fraction (30 m, 100 m, 1 km) a pair of stations which have the 

highest urban fraction difference and highest temperature difference were chosen. The 

urban fraction differences for each pair of stations in 30 m,100 m and 1 km urban 

fraction datasets are 0.94, 0.61, and 0.66 respectively. The validated energy model was 

used to generate hourly energy use of the representative residential building for the 6 

selected stations during the studied period. The hourly energy difference for each pair 

of stations in each urban fraction class were compared and the percentage of hourly 

energy use difference were reported in a histogram as shown in Figure 6.  
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Figure 6. The hourly energy use difference between the two stations in 30m, 

100m, and 1km urban fraction classes.  

The results indicate that hourly energy use difference in each class of urban 

fraction vary from -.5% to +12%, where negative indicates a higher hourly energy use 

where there a smaller urban fraction, and positive indicates an increase in urban fraction 

(i.e more urban) increases the energy use. However, in the 1 km urban fraction class 

only 1% percent of the values are negative. Moreover, the negative values for the 100 

m and 30 m urban fractions form 15% and 30% of the data respectively.  It should be 

noted that for the 1 km data, for 78% of the cases the energy difference is in the range 

of 3% to 7%. Further detailed information is provided in Figure 7.  

 
Figure 7. The cumulative graph for percentage of difference in energy use in 

three different urban classes. 
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CONCLUSIONS 

In this study an energy model was developed for a residential building in the Mueller 

neighborhood in Austin, TX. The model is validated with an annual hourly MBE of 

1.14 % and an annual hourly CV-RSME of 38.79 %. To investigate the impact of 

spatial temperature difference on building energy consumption, six weather stations in 

an urban area were selected to investigate the impact of temperature variation due to 

various urban density on energy consumption. Using the validated model, the energy 

consumption of the modeled building was compared using six weather datasets. All the 

chosen weather datasets were located in an urban area but with different urban 

densities. The results show that energy use of a building in an urban area with different 

urban fraction can vary to up to 12%, i.e. there can be up to a 12% increase in annual 

energy consumption from being located in an urban versus rural area, due to differences 

in weather conditions.  This indicates the importance of weather data in predicting 

energy consumption of the building. This also points to a need to further study the 

impacts of spatial variations in weather in cities in particular on the predictability of 

energy consumption, as well as the need to better develop methods for more appropriate 

site-specific weather data beyond that taken from airport weather stations.  
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