

based tracking problem. However, [17] does not focus on

multiple vehicles. In [18], the authors address the relative

localization in a centralized manner. The approach relies on a

powerful ground station to resolve localization and tracking.

Moreover, only simulation results and evaluations on datasets

are presented. In [19], the tracking problem is resolved

without explicit perception consensus among agents as well

as bypassing the challenges related to deploying these ap-

proaches onto SWaP constrained robots. Furthermore, similar

to [21] the authors employ only a specific filtering solution

without comparative analysis. Finally, our previous work [20]

only considered the detection and tracking problems in a

centralized manner from a VR-headset. Conversely, in [22]

the authors compare several tracking filtering solutions, but

only provide simulation results and do not address the speci-

ficity of vision-based multi-tracking problem in different

conditions neither the perception consensus. They also do

not address the real-time deployment on SWaP constrained

robots. Other works [23], [24] achieve indirect relative

localization by sharing a set of characteristic landmarks

across the agents. Although these works relax the line-of-

sight requirements, they require communication among the

agents to share and store local maps. Recently, learning-

based solutions for multi-target tracking have also surged in

popularity [25]. However, these methods are computationally

expensive to run on SWaP constrained robots.

The contributions of this paper are twofold. First, we

design several decentralized Bayesian vision-based multi-

tracking filtering strategies to resolve the association problem

between the incoming unsorted measurements obtained from

a visual detector with perception consensus such that all

observing drones agree on tracking targets’ IDs. We compare

their accuracy in different operating conditions as well as

their scalability according to the number of agents in the

team. Second, we show how the proposed setup including a

Deep Neural Network (DNN) acting as visual target detector

is able to run on-board in real-time on a small fleet of SWaP

constraint MAVs concurrently with planning and control. The

proposed pipeline utilizes only a minimalistic sensor suite

composed of a single camera and IMU. To the best of our

knowledge, this work shows the first vision-based detection

and tracking for multiple MAVs in a decentralized manner

where each agent is only equipped with a single camera

and IMU while concurrently running planning and control in

real-time. Overall, this approach can be deployed on±demand

without relying on any external infrastructure or marker with

the potential to scale to swarms of aerial robots.

The paper is organized as follows. Section II describes

the proposed approach. Section III analyzes the accuracy,

computational complexity, and scalability of the methods.

Section IV presents the experimental results, Section V

discusses the results, and Section VI concludes the paper.

II. METHODOLOGY

A. Preliminaries

We consider a system of robots equipped with a camera

and an IMU. Without loss of generality, we assume that

for each robot, the camera and IMU frames are coincident

with the robot frame. An external calibration procedure can

compute the relative transformation between the frames.

Our algorithm provides the state of each tracked agent in

each robot or camera frame. We focus on the tracking

problem without considering the relative pose problem (i.e.,

the estimated pose of each agent) that can be solved in

parallel as in [20], [26]. In the following, we describe

the multi-tracking procedure from an observing drone of a

generic agent i. We design and analyze three Bayesian filters

most representatives of several multi-target tracking filtering

categories. Specifically, we design a Kalman Filter with the

maximum likelihood of association (unimodal approach), a

Joint Probabilistic Association filter (explicit computation

of all possible association), and a Probability Hypothesis

Density filter (random finite sets). These differ in the way

each incoming jth measurement z
j
k ∈ Zk obtained in the

camera frame at time k from a visual target detector (e.g.,

a DNN in our settings in Section IV) is associated with an

existing tracked agent xi
k with i ∈ {1 · · ·n}. We denote

the jth measurement associated with a tracked agent xi
k

as z
i,j
k ∈ Zk. In the filters, the IMU is used for the filter

prediction whereas the visual measurements as update.

Each agent i is tracked directly in the image plane using a

4-dimensional vector which contain the track positions and

velocities along the u and v image axes

xi
k =

[

piu ṗiu piv ṗiv
]⊤

. (1)

The relative motion between observed and target drones can

then be represented by a stochastic nonlinear differential

equation with a constant speed motion model

xi
k+1 = f

(

xi
k,uk, q

)

= Akx
i
k +Bk

(

xi
k

)

uk +Qk, (2)

Ak =









1 δt 0 0
0 1 0 0
0 0 1 δt
0 0 0 1









, Qk = q









δt2

2
0 0 0

0 δt 0 0

0 0 δt2

2
0

0 0 0 δ









(3)

Bk = δt













(pi

u
−cu)(pi

v
−cv)

f
−
(pi

u
−cu)

2

f
− f piv − cv

0 0 0

f +
(pi

v
−cv)

2

f
−
(pi

u
−cu)(pi

v
−cv)

f
−piu + cu

0 0 0













(4)

where uk is the angular velocity provided by the IMU in the

robot frame of the observing agent, Ak is the state transition

matrix, Bk is derived from the optical flow equation, and Qk

is the process noise covariance matrix. Specifically, δt is the

sampling time at frame k, q is the acceleration of the drones

in px/s2 assumed to be a Gaussian random variable, (cu, cv)
are the principal point coordinates, f is the focal length. The

reader can refer to [20] for more details of this model.

B. Multi-Target Tracking

1) Kalman Filter: At every iteration of the Kalman filter,

the algorithm includes a prediction and update steps.

381

Authorized licensed use limited to: New York University. Downloaded on December 30,2022 at 17:41:27 UTC from IEEE Xplore. Restrictions apply.

Prediction step: In this step, the robot computes the

predicted state of each target using classic Kalman filter

equations for the predicted mean and covariance based on

the motion model equation defined in eq. (2).

Update step: In the update step, before incorporating

the measurement information for each tracked agent, it is

necessary to associate each tracked agent xi
k with a given

measurement j to apply the Kalman filter update equations

obtained as updated mean and covariance respectively

µ
i
k|k = µ

i
k|k−1 +Kky

i
k,

Pi
k|k−1 = Fk−1P

i
k−1F

⊤
k−1 +Qk−1,

Fk = Ak +
∂Bk

∂xi
k

uk,

(5)

where yi
k = z

i,j
k − Hkµ

i
k|k−1

is the innovation term, Ki
k

is the Kalman gain, µ
i
k|k−1

is the predicted mean of the

state xi
k at the prediction step, Hk is the measurement model

defined in [20]. The association probability p of the tracked

agent i with a measurement j at time k denoted as βi,j
k

is obtained according to [27] by selecting the maximum

posterior distribution with respect to xi
k, z

j
k pair as

p
(

βi,j
k | zjk,x

i
k

)

∝ p
(

z
j
k | βi,j

k ,xi
k

)

p
(

βi,j
k

)

=

N
(

z
j
k − µ

i
k|k−1,P

i
k|k−1

)

p
(

βi,j
k

) (6)

where N is a normal distribution.

2) Joint Probabilistic Data Association Filter: The

JPDAF is also divided into a prediction and update steps.

Prediction step: In this step, the robot computes the

predicted state in the same way as in the Kalman filter case.

Update step: Similar to the Kalman filter, before incor-

porating the measurement information, the JPDAF explicitly

resolves the association problem by computing all possible

associations between the tracked agents and the incoming

measurements. These associations are represented in a matrix

form as βi
k. For each agent i, the update is performed using

eq. (5), considering

yi
k =

Zk
∑

j=1

βi,j
k

(

z
i,j
k −Hkµ

i
k|k−1

)

,

βi
k =

∑

∀χ

P {χ | Zk} · I(χ)

(7)

where P {χ | Zk} the probability corresponding to each

hypothesis matrix for the event χ and measurements Zk,

and I(χ) the hypothesis matrix, βi,j
k is the jth column of

βi
k. While there are heuristics to reduce the computational

burden associated with the explicit computation of all pos-

sible associations, such as proximity threshold, generating a

hypothesis matrix for all possibilities can be computationally

challenging once the number of tracked agents increases. the

filter’s computational complexity is discussed in Section III.

3) Gaussian Mixture PHD Filter: The GM-PHD is di-

vided into a prediction and update step. It represents the

measurement z
j
k and agent state xi

k using Random Finite Sets

(RFS) instead of explicitly associating all possible matches

between the tracks and measurements. The tracked states can

then be represented with density functions over the state

space of targets, where the GM-PHD describes the first

moment of distribution over the RFS. Each tracked agent

state xi
k can be described as a single intensity vik consisting

of a weighted sum of Gaussian components in the form

vik
(

xi
k

)

=

Jk
∑

l=1

wl
kN

(

xi
k;µ

l
k,P

l
k

)

, (8)

where the Gaussian components N for the state xi
k is charac-

terized by the weight wl
k, mean µ

l
k, state covariance Pl

k, with

Jk the number of tracked agents. Given the measurement

and targets’ previous states, the Gaussian components are

propagated through the prediction and update steps.

Prediction step: Each agent state i is still described as RFS

vik|k−1

(

xi
k

)

=

Jk
∑

l=1

wl
k|k−1N

(

xi
k;µ

l
k|k−1,P

l
k|k−1

)

+γ
(

xi
k

)

,

(9)

where Jk is the number of tracked agents of the previous

iteration and the corresponding Gaussian components adhere

to the same motion model discussed in eq. (2) with

wl
k|k−1 = psw

l
k−1,

µ
l
k|k−1 = Ak−1µ

l
k−1 +Bk−1uk−1 +Qk−1,

Pl
k|k−1 = Fk−1P

l
k−1F

⊤
k−1 +Qk−1, Fk = Ak +

∂Bk

∂xi
k

uk.

(10)

Similarly to [19], we also assume an adaptive agent birth

model γ
(

xi
k

)

particular to the PHD filter in which new

Gaussian components are characterized by wi
γ , mean µ

i
γ , and

covariance Pi
γ . We do not have to account for association

problem prior to new measurements, thus each agent’s state

can be set equal to the mean in the prediction step. We set the

probability of survival ps of the target to 1 since we assume

the detected drones remain throughout the experiment.

Update step: Each state RFS is being updated as

vk
(

xi
k

)

= (1− pd) vk|k−1

(

xi
k

)

+

Zk
∑

j=1

Jk
∑

l=1

wj,l
k

(

z
j
k

)

N
(

xi
k;µ

l
k|k,P

l
k|k

)

,
(11)

where pd is the probability of detection. The weight, mean,

covariance, and Kalman gain updates are respectively

wj,l
k =

pdw
l
k|k−1

qlk

(

z
j
k

)

κk +
∑Jk|k−1

l=1
pdkw

l
k|k−1

qlk

(

z
j
k

) ,

µ
j,l

k|k = µ
l
k|k−1 +Kl

k

(

z
j
k −Hkµ

l
k|k−1

)

,

Pl
k|k =

(

I−Kl
kHk

)

Pl
k|k−1,

Kl
k = Pl

k|k−1H
⊤
k

(

HkP
l
k|k−1H

⊤
k +Rk

)−1

,

(12)

where the clutter or the false positive term κk is modeled

as a random uniform distribution within the agent’s field

of view [28], Rk is the measurement noise covariance, and

382

Authorized licensed use limited to: New York University. Downloaded on December 30,2022 at 17:41:27 UTC from IEEE Xplore. Restrictions apply.

3 6 7 8

Number of Drones Tracking

10
-1

10
0

10
1

10
2

10
3

10
4

P
ro

c
e
s
s
in

g
 T

im
e
 (

m
s
e
c
)

Kalman

JPDAF

PHD

Fig. 3: Computation time varying the number of drones.

in each camera view increases, preventing its deployment for

large swarms. Considering 8 drones, the average computation

time required at each iteration to resolve the association

problem reaches 7.218 s. On the other hand, the PHD filter

is significantly faster, employing 0.011 s, thus scaling better

to track a large team. However, this comes at the price of a

slighter lower accuracy compared to the JPDAF as shown in

Fig. 2. Therefore, there is a trade-off between accuracy and

computation since the PHD does not compute all associations

between measurements and tracked agents as in the JPDAF.

B. Noise Performance Evaluation

We analyze the robustness of the proposed filters with

respect to different types and intensities of measurement

noise. We vary the number of false positives (number of

measurement clutter from the environment, see Fig. 4 left

column), injected Gaussian measurement noise (to emulate

the noisy camera and IMU readings, see Fig. 4 center

column), and false positives (probability of false detections,

see Fig. 4 right column) to reflect real-world scenarios. The

parameters of both filters have been set accordingly to match

the various noise conditions. We show the tracking estimation

(Figs. 4(a), 4(c), and 4(b)) with intensities of false positive

(1 and 10 cases of clutter), Gaussian noise (25% and 75%
of the measurement noise covariance), and false negative

(0.97% and 0.80% probability of detection). We also show

the tracking errors (Fig. 4(d)). For each case, we vary the

intensity and analyze how it affects the tracking performance.

The Kalman filter loses the agent tracking due to poor

association as shown in Fig. 4(a) (top row) or even switches

tracked agents for large noise value as shown in Fig. 4(a)

(bottom row) compared to corresponding plots of other

filters in Fig.s 4(b) and 4(c). We can observe that in the

evaluation against false positive (see Fig. 4(d) left column),

Gaussian noise (see Fig. 4(d) center column), and false

negative (see Fig. 4(d) right column) the tracking RMSE

is initially higher for the PHD compared to the JPDAF

since the summation of Gaussian components affects the

track. However, this weighted averaging effect proves to be

more robust against high noise where the agent trajectories

are crossing paths. The PHD maintains correct association

during crossing whereas the JPDAF accrues larger error in

intense clutter. For the false positive case of 10 clutters (see

Fig. 4(d) left column), the PHD shows 1.81 RMSE that is

lower compared to 4.34 of the JPDAF. For Gaussian Noise

of 0.75% of measurement noise covariance, PHD also shows

1.74 pixels RMSE which is again lower compared to 2.52
pixels RMSE of the JPDAF. For the false negative case

of 0.8 probability of detection, PHD again shows a lower

RMSE of 0.45 compared to 0.62 that of JPDAF. For all

other cases with lower noise intensities, we can conclude

that the JPDAF shows better performances than the PHD

filter. Similar results hold for different speeds. We do not

include the result of the Kalman filter in Fig. 4(d) for ease

of readability since the scale of the Kalman filter’s RMSE is

10− 100 greater compared to those of the other two filters.

The Kalman filter is 477.63 pixels for the false positive with

10 clutters while the JPDAF’s RMSE is 4.35 pixels. The

high RMSE is due to tracking losses due to poor association

in the Kalman filter compared to JPDAF and PHD filters.

IV. EXPERIMENTAL RESULTS

A. System Setup

We report results from experiments with 3 quadrotors

conducted in an indoor flying space of 10 × 6 × 4 m3

at the Agile Robotics and Perception Lab (ARPL) lab at

New York University. We employ custom small±scale aerial

robots equipped with a Qualcomm® SnapdragonTMFlightTM

Pro board and on-board VIO, planning, and control based on

our previous work [31]. The framework has been developped

in ROS. Communication among drones is implemented using

a synchronized multi-master network module [32]. Although

alternative visual detectors would also work with the pro-

posed tracking strategy, we empirically selected our detector

that offered both robustness and inference speed as discussed

in the next section. Once the tracking resolves the spatio-

temporal association between target drones and the incoming

measurements local to each robot, the perception consensus

guarantees the uniqueness and identical IDs across all agents.

B. Visual Target Detector

We employ a DNN to to predict the 2D object centers as

well as the regressed 2D bounding boxes from each observ-

ing agent’s RGB front camera in real-time. Our approach

is inherited from CenterNet [33]. By directly regressing

the objects’ centers, CenterNet provides accurate and robust

detection. CenterNet has a better tradeoff between speed and

accuracy than YOLOv3 [33]. The architecture is depicted

in Fig. 5. Let I ∈ RW×H×3 be the input image with width

W and height H . A ResNet-34 [34] backbone augmented

by three up-convolutional networks similar to [33] produces

a center keypoint heatmap Ŷ ∈ [0, 1]
W

R
×H

R
×C , where R is

the output stride (set to 4) and C is the number of classes

(set to 1). A local offset Ô ∈ R
W

R
×H

R
×2 is regressed for

each center point to recover the discretization error caused

by the output stride. The object size Ŝ ∈ R
W

R
×H

R
×2 is also

regressed for each center point to obtain the bounding box.

We train our model following [33].

We further adopt Qualcomm® SnapdragonTM Neural Pro-

cessing Engine (SNPE) to deploy on-board our network.

Our solution provides fast and efficient object detection at

7 Hz with on-board GPU. We also noticed that CenterNet-

based architectures are easier to deploy on edge devices

due to the large number of operators compared to YOLOv3

representing another advantage of this approach.

384

Authorized licensed use limited to: New York University. Downloaded on December 30,2022 at 17:41:27 UTC from IEEE Xplore. Restrictions apply.

