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Abstract

As the energy consumption from residential and commercial buildings makes up approximately
three-quarters of the U.S. electricity loads, analyzing building energy consumption behavior be-
comes essential for effective power grid operation. An accurate physics-based building energy
simulator that is built on first principles can predict an individual building’s energy response,
such as energy consumption and indoor environmental conditions under different weather and
operational control scenarios. In the building energy simulator, several parameters that specify
building characteristics need to be set a priori. Among those parameters, some parameters are
season-dependent, whereas other parameters should be globally employed throughout a year.
Existing studies in parameter calibration ignore such heterogeneity, which causes suboptimal
calibration results. This study presents a new calibration approach that considers the seasonal
dependency.
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1 Introduction

A physics-based building energy model (BEM), which simulates the building energy operations, has become
an essential part in optimizing the building design and operations. In the building energy simulator, several
parameters that specify building characteristics need to be set a priori. These parameters are referred to as
calibration parameters. Physical laws to identify appropriate values of those parameters are often unavail-
able. Parameter calibration is a process to estimate the parameters using field data.

A predominant approach in the parameter calibration literature is the Bayesian calibration [1]. However,
this approach is computationally expensive and inefficient when data size is large. A lightweight Bayesian
calibration that uses a linear regression emulator is proposed for dynamic building energy models [2]. In [3]
Hamiltonian Monte Carlo sampling is employed to obtain the posterior distribution in Bayesian calibration
more efficiently. Chong and Lam [4] reduce the computational cost by using a representative subset of the en-
tire dataset. While these approaches improve the computational efficiency, our prior study suggests that the
Bayesian approach provides inadequate posterior when the mean of the prior distribution is not set around
the unknown true value [5]. Alternatively, gradient-based algorithms are employed in [6] to choose sensitive
parameters and calibrate the model parameters. A detailed review on the BEM parameter calibration is
available in [7].

Typically there are a large number of calibration parameters in the BEM. Calibrating all these parame-
ters is not practical. Thus, selecting influential parameters is important for successful model calibration.
Massimiliano et al. [8] choose parameters that are related to climatic conditions, location, lighting, control
and operation, water loop, air loop, air handling units, and domestic hot water (DHW). Chong et al. [9]
select the building wall and material parameters. Building upon these studies and the domain knowledge,
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this paper focuses on calibrating parameters related to lighting, ventilation, DHW, window material (optical
properties), heating and cooling systems, which substantially influence the building energy use.

Among these parameters, lighting, DHW, window material, and ventilation parameters can be considered
as global parameters which need to be applied in the year-long simulation. On the contrary, heating and
cooling parameters are season-dependent. The aforementioned existing studies do not take the seasonal de-
pendency into consideration in their analysis. In this study, we devise a new optimization algorithm, referred
to as block gradient decent (BGD), to account for the seasonal dependency in the optimization procedure.
The proposed approach is a gradient-based optimization. The innovation in BGD is that we categorize the
parameters into three groups, global parameters, heating season parameters, and cooling season parameters,
and optimize them in each group sequentially and iteratively.

When the simulator is a black box computer model, no mathematical closed-form expression is available
to quantify the output, given the simulation input. It implies that no gradient information can be directly
available or computed. We approximate the gradient using first-order difference. Doing so requires an
additional simulation run for every parameter in every gradient approximation. Further, in the gradient
descent-based approach, an appropriate step size needs to be employed in deciding how much each parame-
ter can be updated. We employ the backtracking line search method, which is known to make the gradient
descent algorithm converge quickly to a critical point. The line search method decides an appropriate step
size iteratively, so it requires a new simulation run for each trial of step size. While pursuing efficiency, this
additional loop in the line search slows down the calibration process. To reduce computational time, we
employ the multi-threads programming technique. Specifically, we approximate all gradients concurrently
with multiple threads and also conduct the line search in a parallel way instead of doing sequentially. This
multi-thread computing mechanism speeds up the computation by fourteen times faster than the typical
computation without multi-thread parallel computing.

The rest of this paper is organized as follows. In Section 2, we present the proposed season-dependent
parameter calibration methodology. Section 3 presents the advantage of our algorithm with a case study
using real-world data. Finally, Section 4 concludes.

2 Methodology

2.1 Mathematical formulation

Let x ⊆ Rm denote the vector of physically observable input variables of dimension m in a system. Let y(x)
denote the physical process response at input x. Let yc(x,θ) denote the response vector from the computer
model at input x with θ ∈ Θ ⊆ Rp, which is a set of calibration parameters. The goal is to identify the
parameter value θ that minimizes the difference between the real physical process y(x) and the computer
model output yc(x,θ) as follows.

θ∗ = arg min
θ∈Θ

L(θ), (1)

where L(θ) implies a loss function. Among several loss functions, the `2 norm is widely used due to its
mathematical tractability [10]. This type of problem is called parameter calibration in the literature [5].

More specifically, in building energy simulation, let yi denote an observed building energy consumption
record at hour index i. Let yci (x,θ) denote the corresponding output from the simulator at i with the hourly
temperature x and calibration parameters θ. Based on the seasonal dependency of each parameter, we
consider the three loss functions as follows.

Lg(θ) =
1

|Ig|
∑
i∈Ig

(yi − yci (x,θ))2 (2)

Ls(θ) =
1

|Is|
∑
i∈Is

(yi − yci (x,θ))2 (3)
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Lw(θ) =
1

|Iw|
∑
i∈Iw

(yi − yci (x,θ))2 (4)

where Ig is an index set of the entire dataset, Is is an index set for the data collected in heating season, and
Iw is an index set associated with observations collected during cooling season. | · | denotes the size of the
corresponding dataset.

We divide the parameter vector into three groups θ = [θT
g ,θ

T
s ,θ

T
w]T . Here, θs,θw ⊂ θ are the heating season

and cooling season parameters, respectively. Then, we can obtain the parameters by solving the following
three optimization problems with loss functions Lg(θ), Ls(θ), and Lw(θ).

θ∗g = arg min
θg⊂θ

Lg(θ), θ∗s = arg min
θs⊂θ

Ls(θ), θ∗w = arg min
θw⊂θ

Lw(θ) (5)

2.2 Solution Procedure

We design an optimization algorithm to solve the optimization problems in (5). We call the proposed algo-
rithm the block gradient descent (BGD), as we borrow an idea from the block coordinate descent (BCD).
The fundamental idea of BGD is to design a block-type gradient descent algorithm so that the parameters in
different groups can be adaptively calibrated with their own objective functions over iterations. Before pre-
senting the BGD procedure, we would like to mention the difference between BGD and BCD: each objective
(loss) function of the three sub-problems in (5) does not guarantee to be convex, while each sub-problem in
BCD is assumed to be convex. Indeed, our simulator is a black-box computer model, so the convexity of the
three loss functions cannot be explicitly known.

Since the loss functions have no mathematical closed-form expressions due to the black box nature of the
BEM simulator, the gradients cannot be explicitly computed. Thus, we use a first-order (forward) finite-
difference to approximate the gradients for each loss function as follows:

[∇Lg(θ)]j =
∂Lg

∂θg,j
≈ Lg(θ : θg,j + h)− Lg(θ)

h
, ∀j = 1, . . . , |θg|, (6)

[∇Ls(θ)]j =
∂Ls

∂θs,j
≈ Ls(θ : θs,j + h)− Ls(θ)

h
, ∀j = 1, . . . , |θs|, (7)

[∇Lw(θ)]j =
∂Lw

∂θw,j
≈ Lw(θ : θw,j + h)− Lw(θ)

h
, ∀j = 1, . . . , |θw|, (8)

where | · | is the length of each parameter vector and h > 0 is a small perturbation to the jth parameter of
each θg,θs,θw. Let θk

g denote the iterate of θg at the kth iteration. With the gradient information, it can
be updated by

θk+1
g = θk

g − αg∇Lg(θk), (9)

with α being a step size. Likewise, θk
s and θk

w can be updated in a similar manner.

The BGD algorithm works by cyclically optimizing one block of parameters each time while keeping other
blocks fixed. Specifically, it iteratively optimizes θg (first) with other parameters fixed, and it optimizes θs

(second) with the previously optimized θg, and then it optimizes θw (third) with the previously optimized θg

and θs until the stopping criteria are satisfied. Algorithm 1 summarizes the BGD algorithm. The stopping
criteria can be set as the relative difference of function values is less than a small tolerance ε, e.g.,:

max{|Lg(θk+1)−Lg(θk)|/|Lg(θk)|, |Ls(θ
k+1)−Ls(θ

k)|/|Ls(θ
k)|, |Lw(θk+1)−Lw(θk)|/|Lw(θk)|} < ε (10)

or the maximum number of iteration is larger than some value.
To adaptively choose the step size, we use the backtracking line search for each inner loop. The procedure
is as follows. We first fix a constant parameter 0 < β < 1 and 0 < c ≤ 1/2, then for each iteration, we start
with α = 1 and find the step size α by updating α← βα while satisfying the following condition:

L(θ − α∇L(θ)) > L(θ)− cα||∇L(θ)||22. (11)

Thus, we can identify an appropriate step size α to ensure the sufficient decrease of the objective functions.
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Algorithm 1 Block Gradient Descent (BGD)

1: Input: y = y(x),ys = ys(x),yw = yw(x)
2: Initialization: Randomly choose θ0 = (θ0

g,θ
0
s,θ

0
w). Set k = 0.

3: while convergence criterion not met do
4: while convergence criterion not met do
5: Set αg using backtracking line search and approximate gradient Gk

g = ∇Lg(θk
g ,θ

k
s ,θ

k
w)

6: Update θk+1
g ← θk

g − αk
gG

k
g

7: end while
8: while convergence criterion not met do
9: Set αs using backtracking line search and approximate gradient Gk

s = ∇Ls(θ
k+1
g ,θk

s ,θ
k
w)

10: Update θk+1
s ← θk

s − αk
sG

k
s

11: end while
12: while convergence criterion not met do
13: Set αw using backtracking line search and approximate gradient Gk

w = ∇Lw(θk+1
g ,θk+1

s ,θk
w)

14: Update θk+1
w ← θk

w − αk
wG

k
w

15: end while
16: Let k ← k + 1.
17: end while

2.3 Multi-thread computing

To accelerate the BGD algorithm, we implement the gradient approximation and line search with multi-
threads programming. Consider the global parameter updating. In the gradient approximation, the jth
thread will run a simulator and approximate the gradient of θg,i. Similarly, in the backtracking line search,
instead of finding α in (11) sequentially, we run a simulator with θ ← θ − βt∇L(θ) in the tth thread,
compute and save the corresponding value of the objective function. Specifically, since we run the line search
concurrently with multi-threads, we find the best step size for θg, for example, as follows.

αg = βt∗ , (12)

where
t∗ = arg min

t∈{1,2,...,NT }
{Lg(θ : θg − βt∇Lg(θ))} (13)

with NT available threads. By running the simulator with multiple threads in parallel, we approximate the
gradients of all parameters at the same time and try different step sizes concurrently.

3 Implementation Results

In this section, we show the performance of our proposed seasonal-dependent calibration method. We
use the EnergyPlus 9.3.0 [11], developed by the U.S. Department of Energy’s National Renewable Energy
Laboratory. We use the year-long energy consumption dataset collected from an actual building located at
Mueller, Austin in Texas.

3.1 Parameter Selection

Before performing a parameter calibration, we first determine a subset of the parameters among hundreds
of parameters in EnergyPlus. This step is important because we need to run simulation in a manageable
time. Thus, we should carefully choose parameters that affects model outputs the most. According to the
previous studies in [8, 9], we choose parameters from the following aspects: lighting, ventilation, DHW, win-
dow material (optical properties), heating and cooling system. Finally, we divide the parameters into three
groups: global parameters θg (i.e., the parameters that are used throughout a year), heating season param-
eters θs (i.e., the parameters that are used in heating season) and cooling season parameters θw (i.e., the
parameters that are used in cooling season). Table 1 summarizes the parameters and their schedule in Texas.
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Table 1: Parameter selection

Parameter group Parameter Description Schedule (month)

global parameter θg

θ1 solar transmittance

January through December

θ2 solar reflectance
θ3 lighting level
θ4 ceiling fan design level
θ9 cooling supply air flow rate
θ10 heating supply air flow rate
θ11 maximum supply air temperature
θ12 heater thermal efficiency
θ13 fan total efficiency
θ14 ventilation design flow rate

heating season θ5 gross rated cooling COP March through Novemberparameter θs θ6 furnace heating coil nominal capacity

cooling season θ7 gross rated total cooling capacity January through April,
parameter θw θ8 burner efficiency November, December

3.2 Parameter Setting

In Algorithm 1, we set a tolerance ε = 10−4 and a small perturbation h = 10−4. We also set the maximum
number of iteration to be 300 for each inner loop and 300 for an outer loop. For the multi-thread computing,
we use 14 available threads. In the backtracking line search, β is usually set as 0.9 or 0.8. However, we
get 0.914 ≈ 0.22877 and 0.814 ≈ 0.04398, which means the search ranges are unduly narrow. Therefore, in
our implementation, we set β = 0.6 to have 0.614 ≈ 7.83642 × 10−4. We consider this search range is wide
enough to cover an appropriate step size.

3.3 Implementation Result

We compare our season-dependent calibration procedure with the general procedure that does not account for
the seasonality. For this alternative method, we employ a gradient descent (GD) and calibrate all parameters
with year-long data. We evaluate the performance of the proposed BGD with GD in terms of MSE. Figure 1
shows that the parameter calibration that considers seasonal dependency (BGD) achieves a lower MSE and
requires a smaller number of iterations than the one that does not (GD).

Figure 1: MSE of GD and BGD over iterations until convergence (blue line is GD and orange line is BGD)

Table 2 compares the MSEs from BGD and GD with that from the baseline setting. The baseline parameer
setting was obtained from the Building America House Simulation Protocol [12]. Both BGD and GD achieve
lower MSEs than the original baseline setting. Further, BGD outperforms GD, because BGD runs simula-
tions with a schedule that considers seasonality whereas GD ignores the seasonal dependency. Specifically,
BGD obtains the gradients of θs and θw with the respective seasonal portion of observational data and cor-
responding simulation outcomes, but GD uses the year-long data, which misguides the calibration direction.
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Table 2: Results of BGD, GD and Baseline

BGD GD Baseline

MSE 0.32431 0.34868 0.38341

4 Conclusion and future research

We show that the discrepancy between the actual energy consumption and the simulated energy consumption
can be reduced, when we take the seasonal dependency of parameters into consideration. To demonstrate
the performance of the proposed season-dependent calibration method, we design the BGD algorithm and
compare with GD in terms of MSE and the number of iterations until convergence. The results show that
BGD outperforms the GD procedure.

Several studies devise new approaches to improve GD-based updates in the optimization process, such as
adding a momentum, an exponential moving average of all the past gradients at parameter update [13].
The algorithms with those ideas, e.g., AdaGrad, RMSProp, Adam, etc. have been successfully applied in
neural networks. In the future, we plan to incorporate such algorithms into the season-dependent calibration
framework. Further, as many researchers and practitioners use Bayesian calibration for the BEM parameter
calibration, we will compare our approach with the Bayesian calibration method.
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