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Abstract: Uncrewed aerial systems (UASs) have emerged as powerful ecological observation plat-
forms capable of filling critical spatial and spectral observation gaps in plant physiological and
phenological traits that have been difficult to measure from space-borne sensors. Despite recent
technological advances, the high cost of drone-borne sensors limits the widespread application of
UAS technology across scientific disciplines. Here, we evaluate the tradeoffs between off-the-shelf
and sophisticated drone-borne sensors for mapping plant species and plant functional types (PFTs)
within a diverse grassland. Specifically, we compared species and PFT mapping accuracies derived
from hyperspectral, multispectral, and RGB imagery fused with light detection and ranging (LiDAR)
or structure-for-motion (SfM)-derived canopy height models (CHM). Sensor-data fusion were used
to consider either a single observation period or near-monthly observation frequencies for integration
of phenological information (i.e., phenometrics). Results indicate that overall classification accuracies
for plant species and PFTs were highest in hyperspectral and LiDAR-CHM fusions (78 and 89%,
respectively), followed by multispectral and phenometric-SfM—CHM fusions (52 and 60%, respec-
tively) and RGB and SIM-CHM fusions (45 and 47%, respectively). Our findings demonstrate clear
tradeoffs in mapping accuracies from economical versus exorbitant sensor networks but highlight
that off-the-shelf multispectral sensors may achieve accuracies comparable to those of sophisticated
UAS sensors by integrating phenometrics into machine learning image classifiers.
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1. Introduction

Recent technological advances in spatial and spectral drone-borne remote sensing
systems provide emerging opportunities to improve knowledge of ecological system dy-
namics (e.g., aboveground vegetation structure) that influence ecosystem function (e.g.,
carbon and nitrogen cycling). Uncrewed aerial systems (UASs) are capable of retrieving
very high-resolution spatial information (i.e., plant communities, functional types, and
species) and spectral information necessary to detect seasonal to interannual patterns of
plant community change, plant physiology, and plant phenology. As such, UAS platforms
cannot only characterize the spatial distribution of vegetation but also detect various pat-
terns of change across natural and human-modified environments. Because UASs can
match the spatial and temporal resolutions of local-scale investigations, they may provide
new insights into patterns of plant community change in response to herbivore activity
in tundra [1], habitat destruction in coastal meadows [2], and grazing management in
grasslands [3]. In human-modified environments, UASs can detect plant physiological
characteristics to monitor disease severity [4-7] and crop productivity [8-10]. Among
the most uniquely apt abilities of UASs is that of readily observing plant phenological
patterns [11-16], which have been challenging to measure from air- and space-borne plat-
forms, ranging from the timing of flowering in deciduous woodlands [17] to aiding in the
identification of individual tree species in forest communities [18].
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Remote sensing of plant phenology (i.e., recurring life stages driven by internal molec-
ular processes that yield externally observable responses) has been widely applied by
space-borne sensors such as the Landsat series, Moderate Resolution Imaging Spectro-
radiometer (MODIS), and the Advanced Very High Resolution Radiometer (AVHRR);
however, their relatively coarse spatial resolution has limited the use of such data-rich bio-
logical metrics in retrieving species and community-specific information. Recent evidence
suggests that the integration of plant phenological metrics (phenometrics; i.e., specific
stages of the seasonal plant growth curve) in very high-resolution drone-borne analyses
may uncover new insights into local-scale controls on regional-scale heterogeneity of plant
species distribution and productivity. For example, Wood et al. [19] found that time-series
phenological data increased plant functional-type mapping accuracy by 5 to 10% relative
to a single-peak summer observation in Montana grasslands. In addition, Berra et al. [17]
used UAS normalized difference vegetation index (NDVI) phenometrics to estimate the
timing of flowering in an array of temperate woodland species, which revealed substantial
local-scale phenological heterogeneity that could not be detected within a single Landsat
pixel. Similarly, the disparity in pixel resolution between drone- and space-borne sensors
resulted in higher nonparametric correlations between ground and UAS observations than
with ground and Sentinel-2 data (p = 0.70 and p = 0.58, respectively) [20]. UAS observations
provide a new wealth of information needed to begin closing observation gaps between
individual plants and landscapes.

However, not all UAS sensor networks are created equal, as some hyperspectral sen-
sors are capable of identifying individual species and plant functional types (PFTs) [4,21-24],
whereas lower spectral resolution optical sensors (e.g., RGB) may be unreliable or have
difficulty discriminating between plant communities [25,26]. For example, UAS RGB im-
agery has been shown to produce lower vegetation classification accuracies over UAS
multispectral imagery (64% and 96% accuracy, respectively) [27]. Although Tait et al. [28]
also found UAS multispectral imagery to produce higher accuracies than UAS RGB, overall
vegetation classification accuracy improved with the combination of RGB and multispec-
tral bands (RGB: 79% accuracy; multispectral: 81% accuracy; combined: 90% accuracy).
Sensor—data fusion was also observed by Nisi et al. [29], who fused UAS hyperspectral data
with a structure-from-motion (5fM) digital surface model (DSM) to identify five unique
tree species. Similarly, Melville et al. [24] applied an object-based random forest (RF)
classifier to hyperspectral and SfM data to identify four grassland communities with an
average of 93% classification accuracy. The combination of imaging spectroscopy with
light detection and ranging (LiDAR) has also been shown to improve vegetation discrim-
ination and mapping [22,23,30,31]. However, the method of DSM creation may impact
classification accuracy; Sankey et al. [23] compared UAS-hyperspectral RF classification
fused with SfM- and LiDAR-derived DSMs for forest monitoring and found that LiDAR
(R? =0.92, p <0.001) produced a higher correlation to ground-sampled data than SfM
(R? = 0.71, p < 0.001). Despite the potential for UAS sensor networks to improve mapping
of vegetation (and their properties) using spectral, LIDAR, and phenometric information,
the tradeoffs in terms of UAS cost and ability to map vegetation remains uncertain.

Here, we used a suite of passive and active sensors onboard three UASs to evaluate
the sensor—data fusion approach for mapping plant species and PFTs in a diverse tall-grass
prairie. We used a combination of off-the-shelf UAS RGB and multispectral sensors, as
well as state-of-the-art hyperspectral sensor networks fused with three-dimensional canopy
height models (CHM) computed using SfM and LiDAR datasets. We used combinations
of UAS datasets acquired from a single time period (i.e., peak growing season) and over
the entire growing season (i.e., near-monthly observation frequencies) to evaluate random
forest map accuracies and overall performance. Results demonstrate the tradeoffs between
vegetation mapping accuracies with economical off-the-shelf UAS sensors and exorbitant
state-of-the-art UAS sensor networks, providing recommendations for minimizing costs
and maximizing mapping accuracies in diverse temperate grasslands.
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2. Materials and Methods
2.1. Study Site

Our study site was located within a 35-acre restored native tallgrass prairie in Urbana,
Ilinois (latitude: 40.11°, longitude: —88.18°). The prairie was restored in 2003 and regularly
burned every couple of years in the spring by the Urbana Park District (e.g., 2011, 2015,
and 2017). The mean annual temperature, rainfall, and snowfall were 11.2 °C, 103.9 cm,
and 52.8 cm, respectively (NOAA National Centers for Environmental Information U.S.
Climate Normals, 1991-2020). Elevation across the prairie slightly varied from 219 to
224 m.a.s.l. (USGS Map Quadrant, accessed November 2021). Similar to other grasslands,
plant community composition varies along elevation gradients due to differential patterns
in soil drainage [32].

Prairies in central Illinois are typically classified as tallgrass black soil prairies, where
the dominant plant species include Andropogon gerardii (big bluestem) and Sorghastrum nu-
tans (yellow Indiangrass) [33]. In addition to these dominant plant species, Symphyotrichum
pilosum (frost aster), Eupatorium serotinum (late boneset), Eryngium yuccifolium (rattlesnake
master), Juniperus virginiana (Eastern red cedar), and Cornus drummondii (roughleaf dog-
wood) were observed and included in this assessment. Although we also considered
Solidago (goldenrods), sedges, and deciduous saplings within our analysis, they were not
identified to species. These dominant tallgrass prairie species represent five distinct plant
functional types (PFTs), as described by Piper et al. [34] (Table 1).

Table 1. Plant species and plant functional types considered in this study adapted with permission
from Piper et al. [34]. Note: sedges and deciduous saplings were not identified to species.

Plant Functional Type Plant Species (Common Name)
Andropogon gerardii (Big bluestem)
C4 Grasses Sorghastrum nutans (Yellow Indiangrass)
C3 Sedges Sedges
Deciduous saplings
Woody Species Cornus drummondii (Roughleaf dogwood)

Juniperus virginiana (Eastern red cedar)
Eupatorium serotinum (Late boneset)

Perennial Late Flowering (PLF) Solidago (Goldenrod)
Symphyotrichum pilosum (Frost aster)
Perennial Early Flowering (PEF) Eryngium yuccifolium (Rattlesnake master)

The following sections describe field surveys (Section 2.2) used for training and testing
UAS data-fusion products (Section 2.3) with random forest models (Section 2.4). A subset of
field survey data was used to independently validate and evaluate the accuracy of resulting
plant species and PFT maps (Sections 2.5 and 2.6).

2.2. Field Surveys

Two methods were used to collect ground-truth data for UAS image classification
and to assess map accuracy, (1) species cover and abundance, and (2) randomized cluster
sampling. Species cover and abundance data were collected during peak growing season
(i.e., 03 August 2020) within fourteen 5 x 5 m? plots set up every 10 m along two 170 m
parallel belt transects. Transects were orientated from north to south to capture patterns of
vegetation compositional change along a natural soil moisture gradient (Figure 1, Table 2).
All species cover and abundance datasets were measured following protocols described in
Daubenmire [35]. We used nine of the fourteen field-surveyed plots that overlapped all UAS
image products to evaluate map accuracy. A stratified random cluster sampling approach
was used to measure spectral samples for random forest classifications and an independent
assessment of map accuracy using a confusion matrix. We measured 77 ground-truth data
points (outside of 5 x 5 m? plots) corresponding to the dominant plant species and an
additional ~15 points within the canopy of each individual to capture the species-specific
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spectral variability associated with leaf geometry [36], resulting in a point dataset with a
total of 612 points. All ground-truth data points were measured using a differential global
positioning system (dGPS; Emlid ReachView 3 RTK) and post-processed to 2 cm accuracy
using the National Continuously Operating Reference Station (CORS) system provided by
the National Oceanic and Atmospheric Administration’s National Geodetic Survey.
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Figure 1. Tallgrass prairie study site in Champaign County, Illinois. Species cover and abundance
plots (black, field survey plots) with randomized ground-truth data points. Plot numbers associate
with Table 2.

Table 2. Randomized dGPS points used to train and test classification models for each plant species.
Corresponding percent cover values for each plant species are included for each of the fourteen
5 x 5 m? survey plots (Figure 1). Plot numbers with asterisks indicate the percent cover data used for
validation (see Section 3.4). Not all plots add up to 100% cover. Note: sedges and deciduous saplings
were not identified to species.

Plant Species dGPS Percent Cover by Field Survey Plot #
(lelmmon M 9 2+ 3% 4+ 5 6+ 7+ 8§ 9 10* 11* 12 13* 14*
ame)
Frost aster 43 60 40 14
Big bluestem 118 25 15 16 10 25 60 78 10 60 20 70 40
Late boneset 49 20 18 10
Red cedar 22 15 8 30
Roughleaf
Dogwood 28 10 20
Goldenrod 126 15 30 74 55 60 5 25 40 70 20 2 25
Rattlesnake 7 2 2
master
Sapling 28 10 10 3 10
Sedge 52 20
Yellow

Indiangrass 88 13 5 22 3 10
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2.3. Uncrewed Aerial Systems (LLASs)

Hyperspectral and LiDAR data were acquired concurrently with a Headwall Nano-
Hyperspec visible near-infrared (VNIR) sensor (Headwall Photonics, Bolton, MA, USA)
and a Velodyne Puck lite LIDAR sensor onboard a DJI Matrice 600 Pro hexacopter (DJI,
Shenzhen, China) (Figure 2A). The Nano-Hyperspec is a push-broom sensor that collects
270 spectral bands from 640 spatial bands in the 400-1000 nm wavelength range. The Velo-
dyne Puck LITE LiDAR sensor is a 16-channel, dual-return LiDAR with a high-performing
GPS/IMU capable of 300,000 points per second. Universal Ground Control (UgCS) mission-
planning software (SHP Engineering, Riga, Latvia) was used to control the Matrice 600 Pro
with the following flight parameters: altitude of 60 m, speed of 2 m/s, and side overlap
of 40%. These flight parameters enabled the acquisition of hyperspectral imagery at a
3 cm ground-sample distance (GSD) and high LiDAR point densities. The altitude of the
drone was adjusted with surface topography to minimize variation in GSD throughout
the mission.

Figure 2. UAS sensor combinations used in the study: (A) DJI Matrice 600 Pro with Headwall
Nano-Hyperspec VNIR and Velodyne Puck lite LIDAR sensors, (B) DJI Inspire II with MicaSense
Rededge multispectral sensor, and (C) Autel Evo II with Sony 1”7 CMOS 20 RGB sensor.

Multispectral data were acquired with a MicaSense Rededge-M sensor (MicaSense Inc.,
Seattle, WA, USA) onboard a DJI Inspire II quadcopter (DJI, Shenzhen, China) (Figure 2B).
The MicaSense Rededge sensor measures the following five narrow spectral bands: blue
(475 nm), green (560 nm), red (668 nm), red edge (717 nm), and NIR (842 nm). UgCS
mission-planning software was also used to control the Inspire II drone with the following
flight parameters: altitude of 20 m, speed of 4 m/s, and front and side overlap of 65%. Each
mission covered ~1.5 ha with a GSD of 1.5 cm.

Three-band RGB data were acquired with a Sony 1”7 CMOS 20 megapixel sensor
onboard an Autel Evo II quadcopter (Autel Robotics, Bothell, WA, USA) (Figure 2C).
Similar to multispectral data collection, each mission covered ~1.5 ha of prairie with a GSD
of 0.26 cm and the following flight parameters: altitude of 20 m, speed of 2 m/s, and front
and side overlap of 80% and 75%, respectively.

2.4. UAS Data Collection and Processing

Drone-borne hyperspectral, multispectral, and RGB data were acquired during peak
growing season (i.e., late July to early August 2020; Figure 3). However, only multispectral
data were collected monthly between May and October to estimate seasonal plant phe-
nological metrics (adverse weather conditions varied with respect to the exact timing of
image recapture by approximately one week per month).
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Figure 3. Landsat-derived seasonal patterns of green-up and senescence (acquired between 2004 and
2021) at our tallgrass prairie sites. UAS data acquired during 2020 are overlaid on a 5-day moving
average (solid grey line).

2.4.1. Hyperspectral and LiDAR Data Processing

Raw LiDAR point clouds were imported into LiDAR Tools (Headwall Photonics,
Bolton, MA), where rotational offset values were adjusted and point clouds were inspected
and outliers were removed (Figure 4). A digital surface model (DSM) and digital terrain
model (DTM) were created with 10 cm spacing using only maximum and minimum
elevation values, respectively. A LiDAR-CHM was derived by differencing the DSM

and DTM [37].
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Figure 4. Uncrewed aerial system (UAS) data-processing workflow.

We processed hyperspectral data cubes with SpectralView software (Headwall Pho-
tonics, Inc., Bolton, MA, USA); one image cube contained 270 bands, with 3 cm pixel
dimensions of 639 x 1999. Hyperspectral data cubes were corrected for “dark current”
noise levels (i.e., electric current flowing in the photoelectric sensor not exposed to incident
illumination) and calibrated to surface reflectance using a white reference panel collected
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prior to data collection [38]. Although fifty-nine hyperspectral data cubes were acquired,
only twelve were used in the analysis due to non-overlapping field surveys (i.e., reference
data). The twelve hyperspectral data cubes were orthorectified using the LIDAR-DEM and
corrected for rotational offsets (i.e., —1 pitch). Both dGPS ground control and check points
were used for a block adjustment of the orthomosaic and to quantify the geopositioning
accuracy within ArcMap (Esri, West Redlands, CA, USA).

Orthomosaics were imported into ENVI (L3Harris Technologies, Melbourne, FL, USA)
to perform the minimum noise fraction (MNF) dimensionality reduction algorithm. Such
dimensionality reduction techniques reduce classification computation time while elimi-
nating redundant spectral information [39]. Hyperspectral and LiDAR data fusion were
reduced using an MNF forward rotation from 270 bands to 10 bands; 9 bands were spectral,
and 1 was a CHM. The selected bands had the highest eigenvalues produced by the noise
reduction analysis, and bands with eigenvalues less than 1.0 were not accepted due to low
spectral variance.

2.4.2. Multispectral and RGB Data Collection and Processing

Both multispectral and RGB drone-borne imagery were processed using data acquired
during peak growing season (i.e., 30 July to 2 August; Figure 3), following the same
workflow in Agisoft Metashape Professional (Agisoft LLC, St. Petersburg, Russia). Aerial
images were aligned using an alignment optimization tool to generate a georeferenced
dense point cloud. Using the set of overlapping images, an SfM technique [40] was used
to create a DEM. This photogrammetrically derived product was used to orthorectify
the multispectral and RGB photomosaic. However, specific to multispectral imagery,
radiometric correction and reflectance calibrations were derived with pre- and post-flight
white reference panel data. Both dGPS ground control and check points were used for
block adjustment of the orthomosaic and to quantify the geopositioning accuracies.

Similarly, multispectral and RGB CHMs were computed in Agisoft Metashape Pro-
fessional by differencing the DSM and DTMs. The DSM was created, and the DTM was
created through ground point identification of surface points derived by modifying the
maximum angle from the ground, the maximum distance between cells, and ground point
cell size parameters. A DTM was then constructed using only ground-classified points. The
multispectral and RGB photogrammetry-derived CHM was combined with the five-band
and three-band orthomosaics, respectively (Figure 4).

In addition, we used all six multispectral image acquisitions collected throughout the
growing season (Figure 3) to compute fifteen plant phenology metrics (Table 3) using the
CropPhenology R package [41]. These metrics used repeated observations of the NDVI to
derive the following phenometrics: (1) onset of NDVI value, (2) onset time, (3) maximum
NDVI value, (4) time of maximum NDVI, (5) offset NDVI Value, (6) offset time, (7) length
of growing season, (8) length of growing season before MaxT, (9) length of growing season
after MaxT, (10) growth rate between onset and MaxT, (11) growth rate between MaxT and
offset, (12) area under the NDVI curve, (13) area under the NDVI curve between onset
and MaxT, (14) area under the NDVI curve between MaxT and offset, and (15) measure of
asymmetry between NDVIBeforeMax and NDVIAfterMax. Refer to Table 3 for a complete
definition and description of each phenometric.

Table 3. NDVI phenology metrics computed in CropPhenology R package, adapted with permission
from Araya et al. [41].

Phenometric Definition Description
Onset NDVI Value NDVI valu? measured at the start .0an Identifies new leaf emergence
(OnsetV) continuous positive slope above the minimum and early growth stages
NDVI value before the NDVI peak
Onset Time Image acquisition time when OnsetV Shows the month when early
(OnsetT) is derived growing stages occur
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Table 3. Cont.

Phenometric Definition Description
Maximum NDVI Value Maximum NDYI VaIU.? achieved in the ’
(MaxV) time series Peak growing month
MaxV = Maximum (NDVI1;:NDVIg)
Time of Maximum NDVI Image acquisition time when MaxV Shows the month with highest
(MaxT) is derived productivity
Offset NDVI Value NDVI value measured as the lowest slope Signifies the end of the
(OffsetV) before the minimum NDVI value growing season
Offset Time Image acquisition time when OffsetV Shows the month when
(OffsetT) is derived growing season ends
Length of Growing Season Duration of time that the Vf?getatlon takes to go Higher values indicate a
(LengthGS) through all growing stages longer growing season
LengthGS = OffsetT — OnsetT
Length of Growing Season Length of time from OnsetT to MaxT Duration of time
Before MaxT BeforeMaxT = MaxT — OnsetT from emergence to flowerin,
(BeforeMaxT) - & &
Length of Growing Length of time from MaxT to OffsetT Durat{on of time
Seasons After MaxT AfterMaxT = OffsetT — MaxT from flowering to the end of
(AfterMaxT) - the growing period
Grgﬁ;}e‘ tlzirg ?Z:)Y,F en GreenUpSlope = Duration of time
(MaxV — OnsetV)/(MaxT — OnsetT) from emergence to flowering
(GreenUpSlope)
Growth Rate Between Duration of time
MaxT and Offset BrownDownSlope = from post-flowering to end of
(MaxV — OffsetV)/(OffsetT — MaxT) P . &
(BrownDownSlope) growing season
Area Under the Area under the NDVI curve between OnsetT and A measure of biomass
NDVI Curve OffsetT; estimated using trapezoidal productivity in the
(TINDVI) numerical integration growing season
Area Under the NDVI Numerical integration of NDVI between . .
Curve between s Shows biomass accumulation
OnsetT and MaxT; indicates plant .
Onset and MaxT rowth pre-flowerin before flowering occurs
(TINDVIBeforeMax) & P &
Area Under the NDVI Numerical integration of NDVI between .
Curve between Shows biomass accumulated
MaxT and OffsetT; .
MaxT and Offset indicates erowth after flowerin after flowering occurs
(TINDVIAfterMax) & &
Measure of Asymmetry Measures whlich part 9f the growing . .
season attains relatively higher Displays the asymmetry of biomass
between NDVIBeforeMax o
accumulated NDVI values before and after flowering in the
and NDVIAfterMax Asymmetry = rowing season
(Asymmetry) Y y= & )

TINDVIBeforeMax — TINDVIAfterMax

2.4.3. UAS Data Fusion

To evaluate the influence of various spectral and canopy structural (via SfM and LiDAR)
datasets on plant species and PFT classifications, we generated a series of sensor-data-fusion
products: (1) “Hyperspectral + LIDAR — CHM” (10 bands), (2) “Hyperspectral” (9 bands),
(8) “Multispectral + SfM — CHM + Phenology” (21 bands), (4) “Multispectral + SfM — CHM”
(6 bands), (5) “Multispectral” (5 bands), (6) “RGB + SfM — CHM” (4 bands), and (7) “RGB”
(3 bands). Prior to fusing data, we georeferenced all products to the same ground control
points (centimeter precision) and resampled all products to 3 cm spatial resolution. These
sensor data-fusion products were used in random forest classifications to evaluate UAS

sensor network vegetation mapping accuracies.
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2.5. Random Forest Classification

Random forest (RF) classification was selected due to its ability to adjust for any
correlation or interaction among predictor variables [42] and its ability to deal with many
features (i.e., bands) but only requiring two user-defined parameters: (1) the number of
decision trees and (2) the number of features per subset. This machine learning algorithm
produces each decision tree independently, as it splits each node of the tree using a number
of features [43,44]. Features are randomly selected and evaluated in each tree during
classification, and the optimal value for the number of features per subset is determined. As
random subsets of the training data are sampled, those subsets not selected are considered
out-of-bag (OOB) data, which are used to measure variable importance (i.e., important
features or bands used in classification) and calculate OOB error rates [45].

Spectral information was extracted from ground-truth data points (Figure 1) and split
(50:50) into model training and testing subsets. We used the same reference datasets to
train RF algorithms for the classification of the seven sensor-data fusion orthomosaics.
For RGB and multispectral products, a “shadow” class was added to the training data to
mask canopy shadows from plant species. Shadows were removed from hyperspectral
orthomosaics during MNF rotation. Using the RF package in R (R Core Team), we used
500 decision trees to train each classifier.

2.6. Random Forest Model Evaluation

Models were validated using 10-fold cross validations, which are commonly used to
test algorithm accuracy and reduce variability [46]. Model accuracy was assessed according
to OOB errors and Kappa coefficients; low OOB percentages and Kappa values closest to
1 correlate with minimal error in the model [47]. Classification prediction was validated
according to confusion matrices and RF model Kappa coefficients. Confusion matrices com-
puted the producer, user, and overall map accuracies, which describe the correspondence
between the independent reference (i.e., testing dataset) and modeled data [48] used to eval-
uate the map accuracy of plant species and PFT classifications (Table 1) [34]. Overall classi-
fication accuracies include only vegetation classes, excluding “shadow” and “bare-ground”
classes. Independent 5 x 5 m? plot species and PFT percent cover datasets (Figure 1)
were used to validate predictions made by each sensor and sensor-fusion product. PFT
classification maps were synthesized by merging the corresponding plant species classes.

3. Results
3.1. Model Performance

Random forest model performance varied for each sensor-data fusion product and was
validated with cross validation, confusion matrices, and independent percent cover accuracy
assessments. Models using hyperspectral data-fusion products outperformed all others, yet
all data-fusion products had relatively high cross-validation Kappa coefficients (Kappacy)
(Table 4). The lowest out-of-bag (OOB) error rate was identified in “Hyperspectral + CHM”,
with an OOB error rate of 29.8% (Table 4). Without the CHM, the “Hyperspectral” product
slightly increased the OOB error rate to 33.9%. Multispectral data-fusion products progressively
increased the OOB error from “Multispectral + CHM + Phenology”, “Multispectral + CHM”,
and “Multispectral”, with error rates of 46.6, 58.6, and 70.7%, respectively. Random forest
models with RGB data-fusion products had the highest OOB error rate, as “RGB + CHM”
and “RBG” products had 66.5 and 80.5% OOB error rates, respectively.

Variable importance statistics revealed CHMs to be the most important bands included
in all RF models (Figure 5). The CHM within the “Hyperspectral + CHM” data-fusion
classification had the highest variable importance, followed by steadily decreasing MNF
eigenvalue bands. These decreasing MNF eigenvalue bands also explained the most
spectral variability in the “Hyperspectral” data-fusion product. Similarly, considering
the “Multispectral + CHM + Phenology” data-fusion product, the most important variable
was the CHM, followed by phenometrics: (i) time-integrated NDVI, (ii) maxNDVI, and
(iii) time-integrated NDVI before maxNDVI, as well as the red band. These patterns were
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similar for the “Multispectral + CHM” and “Multispectral” product, as the highest to lowest
variable importance values were CHM (only in “Multispectral + CHM”), red, blue, red-edge,
NIR, and green bands (Figure 5). The highest to lowest variable importance values for
“RGB + CHM” and “RGB” data-fusion products were the CHM (only in “RGB + CHM"),
red, blue, and green bands.

Table 4. Random forest (RF) model parameters and cross-validation statistics for each data-fusion
product. The number of random variables (mtry), OOB error, and Kappacy are described for each
product. Tree number was constant at 500 for all RF analyses. See text for descriptions of OOB error

and Kappacy.
Data-Fusion Product RF Model RF Cross Validation
mtry OOB Error (%) Kappacy OOB Error (%)
RGB 1 80.2 0.98 1.7
RGB + CHM 2 66.5 0.96 35
Multispectral 2 70.7 0.89 10.0
Multispectral + CHM 2 58.6 0.93 6.0
Multispectral + CHM + 4 16.6 0.84 134
Phenology
Hyperspectral 3 339 0.97 2.3
Hyperspectral + CHM 3 29.8 0.97 2.5
Without CHM With CHM
g cHV
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Figure 5. Variable importance plots for each sensor product (x: bands ranked by im-

portance, y: variable importance values): (A) RGB, (B) RGB + CHM, (C) Multispectral,
(D) Multispectral+ CHM, (E) Multispectral + CHM + Phenology, (F) Hyperspectral, and (G) Hy-
perspectral + CHM.

3.2. Vegetation Classification

We developed seven plant species and PFT classification maps using RF models across
our study site. In line with the OOB error rates (Table 4) the distribution of plant species
and PFTs notably differed by sensor-data fusion product (e.g., Figures 6 and 7). Overall
patterns show that RGB and multispectral products had a higher distribution of woody
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and sedge species compared to hyperspectral products (Table 5). “Hyperspectral” and
“Hyperspectral + CHM” had similar percent cover values for plant species and PFTs (Table 5)
and, spatially, show indistinguishable plant species distribution (Figure 6) but dominant
C4 grasses for “Hyperspectral” and dominant PLF PFTs for “Hyperspectral + CHM” (Figure 7).
Comparatively, total percent cover values show that “Multispectral + CHM + Phenology” had
less Bluestem but more Late boneset and Yellow Indiangrass than “Multispectral + CHM”
(Table 5). This pattern is apparent in the vegetation maps, where Bluestem is the dom-
inant species in “Multispectral + CHM”, and Yellow Indiangrass and Goldenrod are the
dominant species in “Multispectral + CHM + Phenology” (Figure 6). Although plant species
distribution differs considerably in these two products, PFT distribution is nearly iden-
tical (Table 5). For plant species and PFTs, “RGB” and “Multispectral” display similar
patterns for both total percent cover and spatial distributions (Table 5, Figures 6 and 7), and
“RGB + CHM” and “Multispectral + CHM” share similar percent cover distributions across
the study region (Table 5).

Without CHM With CHM .
O R TR Plant species
s I Aster I Ground
@@%ﬁ | [] Bluestem [] Rattlesnake
et - I Boneset M Sapling
8 | MM Cedar [] Sedge
[~ I Dogwood [l Shadow
g 4| [ Goldenrod [_] Indiangrass
Phenology + CHM
) SR T
I
(S
o
o
1]
=
S
=
s
-
o
]
a
]
]
o
>
I

Figure 6. Example of random forest plant species maps. Panels represent RGB (A), RGB + CHM (B),
Multispectral (C), Multispectral + CHM (D), Multispectral + CHM + Phenology (E), Hyperspectral (F),
and Hyperspectral + CHM (G) orthorectified UAS RGB imagery superimposed by ground-delineated
reference data by species (H). See Supplementary Material (Tables S1, S3, S5, 57, S9, S11 and S13) for
species summaries of the entire study area derived from our top-performing UAS network.
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Table 5. Classified percent cover for plant species and functional types for each data-fusion product across our tallgrass prairie study site. Shadows and ground (i.e.,
class “other” from Figure 6) are excluded. Note: sedges and deciduous saplings were not identified to species.

Plant Species Plant Functional Types
. Late Red Rattlesnake . Yellow 4 Woody C3

Data-Fusion Product Aster Bluestem Boneset Cedar Dogwood Goldenrod Master Sapling Sedge Indiangrass PLE Grasses Species Sedge PEF

RGB 5.8 249 7.0 1.9 22 23.2 0.5 2.8 5.8 219 36.0 46.8 6.9 5.8 0.5

RGB + CHM 6.7 259 8.5 24 1.4 225 0.2 24 7.6 17.5 37.8 434 6.1 7.6 0.2

Multispectral 4.1 25.6 55 0.8 2.0 249 0.7 2.3 44 21.2 34.6 46.8 5.1 44 0.7

Multispectral + CHM 8.1 28.5 5.0 0.5 1.3 26.2 0.5 3.0 72 15.1 39.3 43.6 4.8 7.2 0.5

Multispectral + CHM 4 55 124 0.5 17 27.1 0.2 24 6.7 37.3 39.6 429 4.6 6.7 0.2
+ Phenology

Hyperspectral 3.0 421 33 0.3 0.5 324 32 0.0 0.8 11.4 38.7 53.6 0.8 0.8 3.2

Hyperspectral + CHM 1.8 424 3.6 0.3 0.6 33.5 3.1 0.0 0.7 11.7 38.9 54.1 1.0 0.7 3.1
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Hyperspectral

Figure 7. Example of random forest plant functional type (PFT) maps. Panels represent RGB (A),
RGB + CHM (B), Multispectral (C), Multispectral + CHM (D), Multispectral + CHM + Phenology (E),
Hyperspectral (F), and Hyperspectral + CHM (G) orthorectified UAS RGB imagery superimposed
by ground-delineated reference data by PFT (H). See Supplementary Material (Tables S2, 54, S6,
S8, 510, S12 and S14) for PFT summaries of the entire study area derived from our top-performing
UAS network.

3.3. Accuracy Assessment

Overall classification accuracies ranged from 78% to 25% for plant species and 89% to
43% for PFT classifications, depending on the data-fusion product (Table 6). The highest to
lowest overall accuracies by product were: (1) “Hyperspectral + CHM”, (2) “Hyperspectral”,
(3) “Multispectral + CHM + Phenology”, (4) “Multispectral + CHM”, (5) “RGB + CHM”,
(6) “Multispectral”, and (7) “RGB”. Accuracy assessments for “Hyperspectral + CHM”
and “Hyperspectral” data-fusion products produced overall accuracies of 78% and 73%
for species and 89% and 86% for PFTs and Kappa coefficients of 0.73 and 0.69, respectively

(mboxtabreftabref:remotesensing-1772524-t006). “Multispectral”, “Multispectral + CHM”,
and “Multispectral + CHM + Phenology” data-fusion products produced overall accuracies
of 27%, 45% and 52% for species; 43%, 61%, and 60% for PFTs; and Kappa coefficients of
0.16, 0.37, and 0.45, respectively. “RGB” and “RGB + CHM” data-fusion products produced
overall accuracies of 25% and 33% for species; 43% and 47% for PFTs; and Kappa coefficients
of 0.12 and 0.22, respectively.

User and producer accuracies generally declined with the aforementioned pattern of
overall accuracies by sensor-data fusion product. User and producer accuracies were relatively
high for all plant species in “Hyperspectral + CHM"” and “Hyperspectral” classifications,
with the exception of Frost aster (user: 48% and producer: 83% and user: 33% and pro-
ducer: 50%, respectively; Figure 8, Supplemental Table S1). These high user and producer
accuracies were maintained in PFT accuracies. “Multispectral + CHM + Phenology” and
“Multispectral + CHM” had similar user and producer accuracies for plant species classifica-
tions, with the exception of saplings (user: 7% and producer: 17% and user: 21% and producer:
23%, respectively) and the absence of Frost aster from the “Multispectral + CHM + Phenology”
product. The limitations of the multispectral data-fusion products in the identification
of sapling species also resulted in low user accuracies for woody PFTs (user: 46% and
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producer: 75%). User and producer accuracies were substantially lower in “Multispectral”,
“RGB + CHM”, and “RGB” data-fusion products. However, the fusion of a CHM with
RGB imagery notably improved both species and PFT accuracies (Figure 8, Supplemental
Table S1). For example, Frost aster was not identified in “RGB” but was found to have the
highest user and producer accuracies in “RGB + CHM” (user: 0% and producer: 0% and
user: 57% and producer: 48%, respectively; Figure 8, Supplemental Table S1).

Table 6. Summary of the overall accuracy and Kappa coefficients of random forest mapping of 10
plant species and 5 plant functional types (PFTs) as computed from confusion matrices.

(o] 11 A
Data-Fusion Product verall Accuracy

Kappa,¢ Species PFT

RGB 0.12 25% 43%

RGB + CHM 0.22 33% 47%

Multispectral 0.16 27% 43%

Multispectral + CHM 0.37 45% 61%

Multispectral + CHM + 045 50 60%

Phenology
Hyperspectral 0.69 73% 86%
Hyperspectral + CHM 0.73 78% 89%
A C
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Figure 8. User and producer accuracy results for each sensor-fusion product for plant species and
PFTs computed by confusion matrices (available in Supplementary Materials). (A) Producer accuracy
for PFTs, (B) producer accuracy for species, (C) user accuracy for PFTs, and (D) user accuracy
for species.
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3.4. Accuracy Assessment: Percent Cover Validation Plots

The relationships between the observed and predicted species and PFT percent cover
estimates (e.g., 5 x 5 m plots) were compared with and without the addition of CHMs
(Figure 9). For overall plant species cover estimates with CHMSs, correlations were highest in
“Hyperspectral + CHM” (R2 = 0.83, p < 0.0001), “Multispectral + CHM” (R2 =048, p <0.0001),
and “RGB + CHM” (R? = 0.33, p < 0.0001) but lowest in “Multispectral + CHM + Phenology”
(R? =0.06, p < 0.0001) products. Without CHMs, correlations were strongest in “Hyperspec-
tral” (R* = 0.80, p < 0.0001), followed by “Multispectral” and “RGB” (R? = 0.42, p < 0.0001
and R? = 0.38, p < 0.0001) products. Both hyperspectral products had near one-to-one
linear relationships with field-measured cover estimates, whereas multispectral fused
with phenology had a much lower relationship with observed species percent cover than
“Multispectral + CHM” and “Multispectral”, and RGB products had similarly low relation-
ships. Plant species with the highest variation or misclassification across sensor-data fusion
classification products were Big bluestem and Goldenrod (Figure 9A).

Beebalm
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s % Callery Pear

" 06 A e Chickasaw Plum

: Dogwood
* Frost Aster
Goldenrod
Red Cedar
Late Boneset
Milkweed
Ragweed
Rattlesnake Master
Switch Grass
Thistle
* Yellow Foxtail
Yellow Indiangrass

08¢

0.4

0.2

0.4 0.6 0.8 0.8
* Annuals
C4 Grasses
PEF
o PLF
¢ Woody
O RGB
+ Multispectral
<& Hyperspectral
A RGB + CHM
X Multispectral + CHM
* Multispectral + CHM + Pheno
O Hyperspectral + CHM
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= = =Multispectral
— Hyperspectral
—RGB + CHM
= = =Multispectral + CHM
- = =Multispectral + CHM + Pheno
— Hyperspectral + CHM

Predicted Percent Cover Predicted Percent Cover

Figure 9. Observed vs. predicted percent cover estimates for plant species (panels (A-C)) and plant
functional types (panel (D)). Random forest classification performance was compared among sensors
(Hyperspectral, Multispectral, RGB) without CHM data fusion (panel (A)), with CHM data fusion
(panel (B)), overall top-performing species models (panel (C)), and overall top-performing PFT
models (panel (D)). Symbols refer to sensor product and color refers to species or PFT.

PFT percent cover estimates increased observed—predicted correlations across all
sensor-data products with and without CHM data fusion (Figure 9). For overall PFT
estimates with fusion, the highest correlations were observed in “Hyperspectral + CHM”
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(R? = 0.90, p < 0.0001), “Multispectral + CHM” (R?> = 0.54, p < 0.0001), and “RGB + CHM”
(R? = 0.55, p < 0.0001), with the lowest correlations in “Multispectral + CHM+ Phenology”
(R? = 0.49, p < 0.0001). Without CHMs, correlations were strongest in “Hyperspectral”
(R? = 0.88), followed by “Multispectral” and “RGB” (R? = 0.63, p < 0.0001 and R? = 0.45,
p < 0.0002). Woody species exhibited the least amount of variation, and C4 grasses and
perennial late-flowering (PLF) plants had the most variation among all sensor types.

4. Discussion

Our UAS multisensor and data-fusion analyses identified a general stepwise increase
in plant species and PFT classification accuracies with sensor spectral resolution and
the fusion of CHMs. Our analysis identified the most accurate plant species and PFT
maps to be produced with “Hyperspectral + CHM” data-fusion products. These results
are consistent with a study by Sankey et al. [22], who reported that UAS-hyperspectral
fused with LiDAR-DSM had higher classification accuracies than UAS-multispectral fused
with SEM-DSM (Table 4, Figure 6). Although this result was not surprising, as it was also
our most sophisticated UAS sensor network, our results further highlight that the fusion
of plant phenometrics with off-the-shelf multispectral and CHM data may improve the
overall discrimination of plant species (e.g., [40]) and achieve nearly identical accuracies to
those obtained with “Hyperspectral + CHM” within select woody, sedges, and late flowering
species (Figure 8, Supplemental Table S1).

Our results are in line with previous research suggesting that multitemporal pheno-
metrics may increase species and PFT classification accuracies more than monotemporal
UAS observations. For example, the integration of time-series phenometrics improved
the accuracies of (1) invasive grass species from 54 to 64% [16], (2) PFTs in moist and dry
grasslands from 59 to 64% and 51 to 61%, respectively [19], and (3) estimates of crop yields
from 85 to 93% [49]. Although gradual change sin plant phenology throughout the growing
season have proven to be an important factor in improving classification accuracies [50-54]
(e.g., Table 6, Figure 3), new phenological indices derived from synthetic aperture radar
polarimetry have also achieved high species-mapping accuracies (i.e., 86 to 90%) [55]. Col-
lectively, these results suggest that vegetation mapping will be improved by integrating
plant phenometrics into machine learning classifiers, regardless of the retrieval method
(i.e., optical versus active remote sensing).

In addition to plant phenometrics, canopy height models were found to dispropor-
tionately improve plant species and PFT classifications, depending on sensor spectral
resolution. However, we found the importance of such canopy structural information to
decrease with increasing spectral resolution. For example, the fusion of our CHM with
hyperspectral imagery only slightly improved species accuracy from 73 to 78% and PFT
accuracy from 86 to 89%, yet substantially influenced multispectral classifications, increas-
ing from “Multispectral” to “Multispectral + CHM” for both species (27 to 45%), as well as
PFT (43 to 61%) accuracies (Table 6). The minimal increase in hyperspectral accuracy is
comparable to findings of studies by Anderson et al. [30] and Dalponte et al. [31], who
reported that LIDAR fusion increased UAS-hyperspectral ability to discriminate tree species
by 8-9% [30] and 2% [31], respectively. These findings are also consistent with a study by
Sankey et al. [22], who reported that LIDAR-CHM fusions increased overall hyperspectral
classification accuracy from 71 to 87%. Although our results may suggest that SEM-derived
CHMs had the highest influence on classifications, this was likely due to the application
of SIM-CHMs with lower spectral resolution sensors (e.g., RGB and Multispectral), as
numerous studies show LiDAR to consistently outperform SfM photogrammetry meth-
ods due to high point cloud densities [40], 3D characterization of vegetation [56], and
for producing consistent, reliable, and near identical plant height values with respect to
field observations [57].

Although we robustly evaluated plant species and PFT map accuracies using two
independent datasets (Figure 1), we did not account for all spectral, spatial, and tem-
poral data permutations that may have influenced mapping accuracies. For example,
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although we managed to achieve high map accuracies with our hyperspectral VNIR
(400-1000 nm) sensor, it is likely that our discrimination of woody and herbaceous plant
species may have been improved by the combined use of SWIR (1100-1600 nm) and ther-
mal datasets [29,58,59]. In addition, despite using high spatial resolutions (3 cm GSD) for
vegetation mapping, higher resolutions (0.35 cm GSD) have shown the ability to improve
tallgrass and perennial wetland species mapping [60]. Furthermore, if we had increased
our temporal observation frequencies (i.e., monthly to weekly) during green-up and peak
growing season, we may have been able to improve accuracies [61], as many common
annual and perennial species (e.g., asters and goldenrods) germinate, flower, and fruit
within a few weeks. Lastly, although we acknowledge that the performance of various
machine learning algorithms may subtly vary map accuracies [62], the evaluation of such
model differences was beyond the scope of this study. Therefore, to maintain continuity
across our UAS vegetation mapping assessment, we applied a single widely used random
forest learning algorithm [48,63,64] to all our UAS datasets (resampled to 3 cm spatial
resolution) to evaluate the sensor-data fusion approach for mapping vegetation species
and PFTs in midwestern grasslands.

5. Conclusions

We used systematic UAS data acquisition and processing methodologies to determine
the key tradeoffs in plant species and PFT mapping accuracies among sophisticated and
economical drone-borne sensor networks. Our results suggest that the sophisticated UAS
simultaneously measuring hyperspectral and LiDAR-CHMs most accurately mapped plant
species using observations of a single peak growing season. More economical UAS sensor
networks have the potential to match PFT classification accuracies of our sophisticated UAS
sensor network by increasing observation frequencies and fusing the resulting phenometrics
with multispectral and SfM-CHMs; however, these data-fusion products are inadequate to
consistently and reliably detect plant species. With the rising demand for hyperspectral
and LiDAR sensor technology in machine vision, crop phenotyping, precision agriculture,
and many other environmental, industrial, forensic, and medical applications [65-67], the
cost of these cutting-edge sensors is decreasing [19]. Increased accessibility of these sensors
will provide new opportunities for more rapid and accurate detection of the spread of
invasive grassland species (e.g., Microstegium vimineum [68]) while improving knowledge
of the responses of plant communities to environmental change and disturbance.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14143453 /s1, Data that support the findings of this study are
available. Table S1: “RGB” confusion matrix for plant species classification; Table S2: “RGB” confu-
sion matrix for PFT classification (PEF = perennial early flowering, PLF = perennial late flowering);
Table S3: “RGB + CHM” confusion matrix for plant species classification; Table S4: “RGB + CHM”
confusion matrix for PFT classification (PEF = perennial early flowering, PLF = perennial late flow-
ering); Table S5: “Multispectral” confusion matrix for plant species classification; Table S6: “Multi-
spectral” confusion matrix for PFT classification (PEF = perennial early flowering, PLF = perennial
late flowering); Table S7: “Multispectral + CHM” confusion matrix for plant species classification;
Table S8: “Multispectral + CHM” confusion matrix for PFT classification (PEF = perennial early flow-
ering, PLF = perennial late flowering); Table S9: “Multispectral + CHM + Phenology” confusion
matrix for plant species classification; Table S10: “Multispectral + CHM + Phenology” confusion
matrix for PFT classification (PEF = perennial early flowering, PLF = perennial late flowering);
Table S11: “Hyperspectral” confusion matrix for plant species classification; Table S12: “Hyperspec-
tral” confusion matrix for PFT classification (PEF = perennial early flowering, PLF = perennial late
flowering); Table S13: “Hyperspectral + CHM” confusion matrix for plant species classification;
Table S14: “Hyperspectral + CHM” confusion matrix for PFT classification (PEF = perennial early
flowering, PLF = perennial late flowering).
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