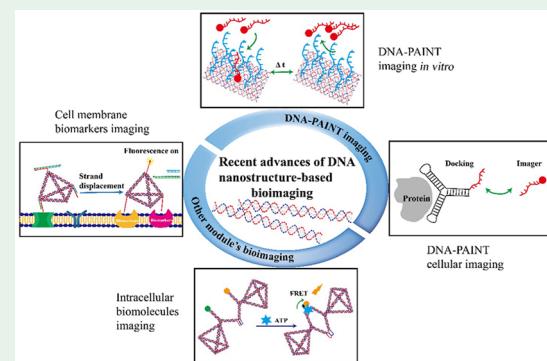


Recent Advances in Self-Assembled DNA Nanostructures for Bioimaging

Qi Yang, Xu Chang, Jung Yeon Lee, Tiffany Olivera, Minu Saji, Henry Wisniewski, Suchan Kim, and Fei Zhang*

Cite This: <https://doi.org/10.1021/acsabm.2c00128>


Read Online

ACCESS |

Metrics & More

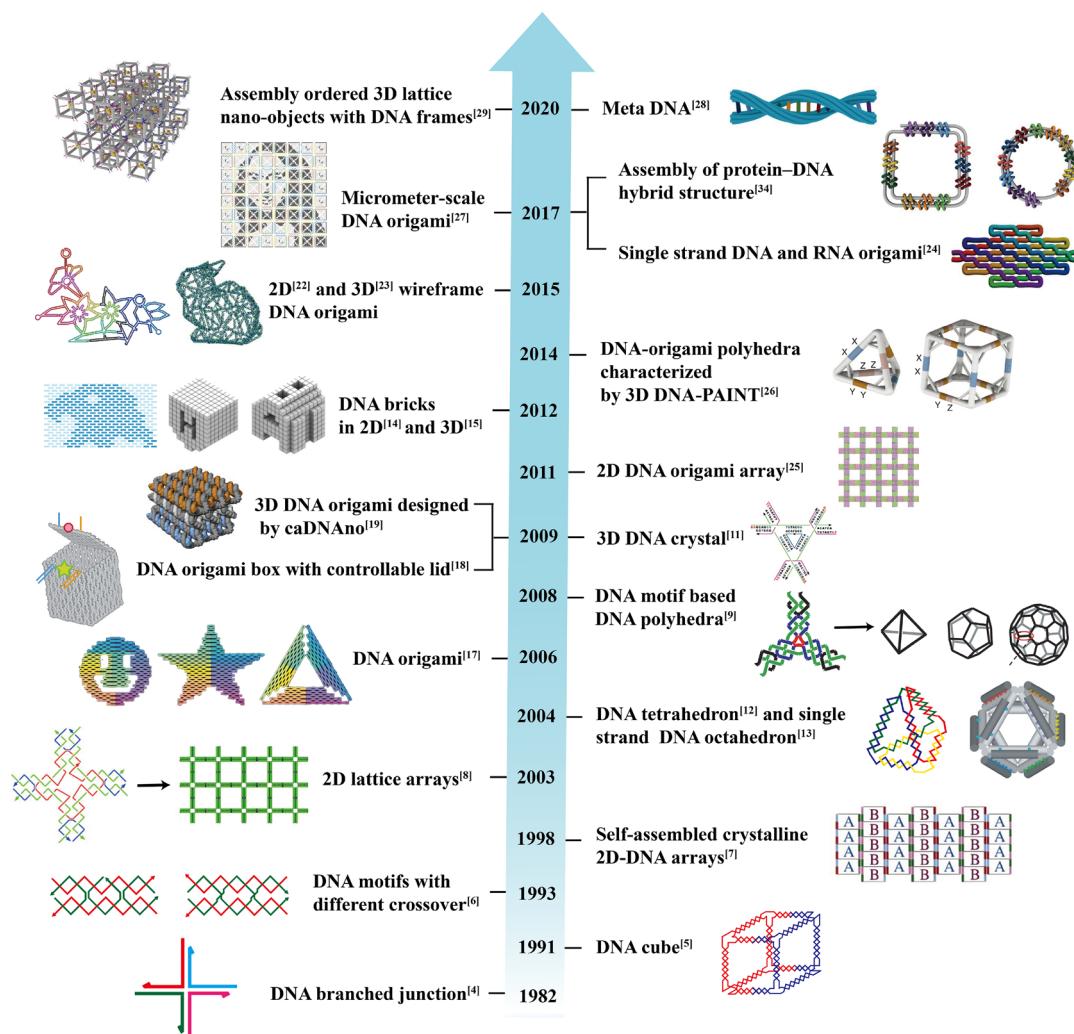
Article Recommendations

ABSTRACT: DNA nanotechnology has proven to be a powerful platform to assist the development of imaging probes for biomedical research. The attractive features of DNA nanostructures, such as nanometer precision, controllable size, programmable functions, and biocompatibility, have enabled researchers to design and customize DNA nanoprobes for bioimaging applications. However, DNA probes with low molecular weights (e.g., 10–100 nt) generally suffer from low stability in physiological buffer environments. To improve the stability of DNA nanoprobes in such environments, the DNA nanostructures can be designed with relatively larger sizes and defined shapes. In addition, the established modification methods for DNA nanostructures are also essential in enhancing their properties and performances in a physiological environment. In this review, we begin with a brief recap of the development of DNA nanostructures including DNA tiles, DNA origami, and multifunctional DNA nanostructures with modifications. Then we highlight the recent advances of DNA nanostructures for bioimaging, emphasizing the latest developments in probe modifications and DNA-PAINT imaging. Multiple imaging modules for intracellular biomolecular imaging and cell membrane biomarkers recognition are also summarized. In the end, we discuss the advantages and challenges of applying DNA nanostructures in bioimaging research and speculate on its future developments.

KEYWORDS: DNA nanotechnology, DNA-PAINT imaging, bioimaging modules, biomolecules, cellular imaging, *in vitro*

1. INTRODUCTION

Bioimaging is an essential technique to provide intuitive and multidimensional information for disease diagnosis, cancer treatments, and basic pathological studies. A good number of imaging techniques are used for clinical trials including magnetic resonance imaging (MRI), fluorescence imaging (FLI), positron emission tomography (PET), computed tomography (CT), single-photon emission computed tomography (SPECT), and optical super-resolution imaging. Although imaging methods vary, the requirements for ideal imaging probes, such as low toxicity and cost, high signal-to-noise ratio, and biocompatibility, remain consistent. However, it is still challenging to fabricate an imaging probe with ideal size, shape, stability, and compatibility.¹


DNA has been exploited as a building material to construct nanoscale architectures based on Watson–Crick base pairing. The control over its shape, size, and dimension can be achieved by sequence design and oligonucleotides arrangement, allowing the creation of almost any arbitrary architecture from one-dimensional (1D), two-dimensional (2D) arrays, and even three-dimensional (3D) crystals with atomic precision.² DNA nanostructure materials provide unique templates for the

precise arrangement of guest molecules and functional materials with defined numbers and addresses.³ For example, small molecules such as dyes, drugs, peptides, and proteins have been integrated with DNA nanostructures with accurate amounts and locations as diagnostic imaging or therapeutic DNA nanodevices. Furthermore, reconfigurable DNA nanostructures perform dynamic switching in response to specific stimuli, showing their usage in biomolecular sensing and imaging. Here, we first list a general timeline of structural DNA nanotechnology (Figure 1) and discuss the recent strategies for constructing DNA nanostructure-based probes and labels for bioimaging applications. In particular, we will focus on the current developments of DNA-based point accumulation for imaging in nanoscale topography (DNA-PAINT) imaging *in*

Special Issue: Self-Assembling Biomaterials from Proteins, Peptides, and DNA

Received: February 13, 2022

Accepted: April 28, 2022

Figure 1. Brief timeline of the development of structural DNA nanostructures. DNA branched junction.⁴ DNA cube.⁵ DNA motifs with different crossover.⁶ Self-assembled crystalline 2D-DNA arrays. Reproduced with permission from ref 7. Copyright Springer Nature 1998. 2D lattice arrays. Reproduced with permission from ref 8. Copyright Association for the Advancement of Science (AAAS) 2003. DNA tetrahedron.¹² Single-stranded DNA octahedron. Reproduced with permission from ref 13. Copyright Springer Nature 2004. DNA origami. Reproduced with permission from ref 17. Copyright Springer Nature 2006. DNA motif-based DNA polyhedral. Reproduced with permission from ref 9. Copyright Springer Nature 2008. 3D DNA crystal. Reproduced with permission from ref 11. Copyright Springer Nature 2009. DNA origami box with controllable lid. Reproduced with permission from ref 18. Copyright Springer Nature 2009. 3D DNA origami designed by caDNAno. Reproduced with permission from ref 19. Copyright Springer Nature 2009. 2D DNA origami array. Reproduced with permission from ref 25. Copyright Wiley-VCH 2011. DNA bricks in 2D. Reproduced with permission from ref 14. Copyright Springer Nature 2012. DNA bricks in 3D. Reproduced with permission from ref 15. Copyright AAAS 2012. DNA-origami polyhedral characterized by 3D DNA-PAINT. Reproduced with permission from ref 26. Copyright AAAS 2014. 2D wireframe DNA origami. Reproduced with permission from ref 22. Copyright Springer Nature 2015. 3D wireframe DNA origami. Reproduced with permission from ref 23. Copyright Springer Nature 2015. Single strand DNA and RNA origami. Reproduced with permission from ref 24. Copyright AAAS 2017. Assembly of protein-DNA hybrid structure. Reproduced with permission from ref 34. Copyright AAAS 2019. Micrometer-scale DNA origami. Reproduced with permission from ref 27. Copyright Springer Nature 2017. Meta DNA. Reproduced with permission from ref 28. Copyright Springer Nature 2020. Assembly ordered 3D lattice nano-objects with DNA frames. Reproduced with permission from ref 29. Copyright Springer Nature 2020.

in vitro and the recent studies of modified DNA nanostructures for cellular and *in vivo* imaging.

2. SELF-ASSEMBLED DNA NANOSTRUCTURES

2.1. DNA Tiles. The concept of DNA nanotechnology was first proposed by Ned Seeman in 1982.⁴ He proposed the use of several short single-stranded DNA oligos to self-assemble into an immobile Holliday Junction (HJ) tile through hybridization. By employing sticky-end interactions between tiles, HJ DNA tiles can be linked with each other through complementary sequences to form 2D arrays. In 1991, Seeman

and co-workers demonstrated a self-assembled DNA cube.⁵ To increase the rigidity of the DNA tile, Seeman et al. designed the DNA double-crossover molecule (DX) by introducing two crossovers between two DNA double helices.⁶ Later on, Erik Yan et al. extended the DX tiles to a more rigid DNA 4×4 tile with four arms pointing to different directions.⁸ They used a long central strand to tighten the four arms together into one tile, and the monomer tiles could be assembled into nanoribbons and 2D grid-like lattices. After this, small

79 repeating DNA motifs that were assembled into 2D and 3D
80 lattices have been reported. For example, He et al. presented
81 the polyhedral nanostructures assembled from fixed numbers
82 of DNA three-arm junction motifs.⁹ These three-arm junction
83 tiles were programmable and easily modified. They could serve
84 as a novel platform to carry biological and inorganic
85 nanocomponents to form 2D or 3D arrays with precise
86 control in nanoscale. Carter et al. reported that peptides could
87 recognize and bind with gold nanoparticles and generate a self-
88 assembled superstructure of DNA peptides and gold nano-
89 particles by integrating peptide-coupled DNA with the 4×4
90 cross-tile system.¹⁰ Furthermore, Zheng et al. proposed the
91 self-assembled 3D crystal with 4 Å resolution based on the
92 DNA tensegrity triangle tiles.¹¹

93 More recently, Goodman et al. presented a DNA tetrahedral
94 nanostructure by annealing four properly designed single
95 strands together.¹² This nanostructure had excellent rigidity
96 and adaptability, showing great potential to cage other
97 molecules. Around the same time, Shih et al. reported an
98 octahedron-shaped DNA nanostructure constructed mainly by
99 a 1.7-kilobase single-stranded DNA scaffold.¹³ The scaffold is
100 bound with five 40-nucleotide staples to form a branched arm
101 structure, connected by paranemic-cohesions at the end of
102 each arm. Later, to assemble finite and more complex 2D and
103 3D structures, the Yin group first proposed the “DNA bricks”
104 concept.¹⁴ The DNA bricks are single-stranded tiles (SST),
105 consisting of defined lengths of single DNA strands with
106 different sequences composed entirely of concatenated sticky
107 ends. Each strand would bind to four local neighbors during
108 annealing and finally grow into complex 2D and 3D
109 shapes.^{14,15} Notably, with the precise design of sequence and
110 connection, 3D nanostructures such as a teddy bear, a bunny,
111 and a helicoid were achieved as well.¹⁶

112 **2.2. DNA Origami.** In 2006, Paul Rothemund reported a
113 novel DNA origami method for DNA self-assembly.¹⁷ He used
114 a long single-stranded DNA as a scaffold and mixed it with
115 hundreds of short DNA oligos as staples to self-assemble into a
116 defined shape. The intrinsic composition of DNA origami
117 allowed the design of different structures with molecular
118 precision by manipulating the sequence. On this basis, a variety
119 of prescribed 2D shapes with different sizes have been
120 constructed including a triangle, a rectangle, a smiley face,
121 and a star. Following this, Andersen et al. extended the 2D
122 DNA origami method into 3D structures designing by creating
123 a box-shaped DNA origami structure with a controllable lid in
124 2009.¹⁸ This DNA box had a large cavity that could be filled
125 with a ribosome or a poliovirus. This device had the potential
126 to sense or deliver biomolecular targets for *in vivo* therapeutic
127 applications. In the meantime, Douglas et al. developed a
128 software, caDNAno.¹⁹ With the help of caDNAno, they
129 designed many 3D DNA origami shapes with precisely
130 controlled dimensions ranging from 10 to 100 nm including
131 a monolith, a square nut, a railed bridge, a genie bottle, a
132 stacked cross, and a slotted cross.²⁰ Moreover, they
133 successfully fabricated twisted or curved DNA bundles with
134 quantitatively controlled angles by manipulating the insertions
135 and deletions of base pairs.²¹ After that, the development of
136 wireframe structures made the origami family more extensive.
137 For example, the 2D wireframe patterns including a star, a
138 Penrose tiling, a wavy grid, a fishnet, and a flower-and-bird
139 pattern were reported by Zhang et al.,²² and the 3D wireframe
140 structures, such as icosahedron, a rod, a waving stickman, a
141 bottle, and a bunny, were presented by Benson et al.²³

Compared with traditional tightly packed DNA origami structures,
142 the wireframe structures would be easily incorporated with
143 mechanical springs or tensegrity properties into the addressable
144 edges to construct responsive nanodevices.
145 Furthermore, Han et al. designed and synthesized an unknotted
146 compact origami structure with a long single DNA or RNA strand,
147 demonstrating facile replication of the strand *in vitro* and in living cells.²⁴

148 All the origami units discussed above have defined size and
149 good monodispersibility. However, the scale of DNA origami
150 is limited by the length of the scaffold. To assemble larger
151 DNA structures, the primary method is connecting the
152 monodispersed origami units into large periodic lattices.
153 There are two types of general methods of gluing origami
154 units together. One method is using sticky-end connections
155 based on sequence-specific base pairings between origami
156 monomers. The connection between DNA origami monomers
157 is precisely designed with unique interactions. For instance, Liu
158 et al. constructed a cross-shaped origami tile and assembled
159 large 2D lattices through sticky end binding.²⁵ Yin’s group
160 reported a stiff DNA origami “tripod” monomer with precisely
161 controlled arm lengths and interarm angles for the hierarchical
162 self-assembly of polyhedrons.²⁶ The tripod monomers were
163 bound through sticky ends and were precisely assembled into
164 the target tetrahedron and hexagonal structure. Later,
165 Tikhomirov et al. produced the DNA origami arrays with
166 sizes up to 0.5 square micrometer by tuning the number of
167 weak sticky end interactions on each edge, allowing the
168 rendering of images such as the Mona Lisa and a rooster.²⁷
169 More recently, Yao et al. proposed the “Meta DNA” concept to
170 assemble diverse and complex structures on the micrometer
171 scale based on the specific base pairing between different DNA
172 six-helix bundles.²⁸ Meanwhile, Tian et al. assembled
173 polyhedral origami structures into multiple superlattice frame-
174 works by introducing several single linker strands with sticky
175 ends to the vertex of the DNA origami structures and
176 cocrystallized them with nanoparticles of different composi-
177 tions.²⁹ Additionally, assigning protruding strands to prede-
178 fined positions enabled the polyhedral origami structures to be
179 filled with gold nanoparticles with high efficiency and
180 addressability, which is meaningful for the orderly arrangement
181 of inorganic nanoparticles.
182

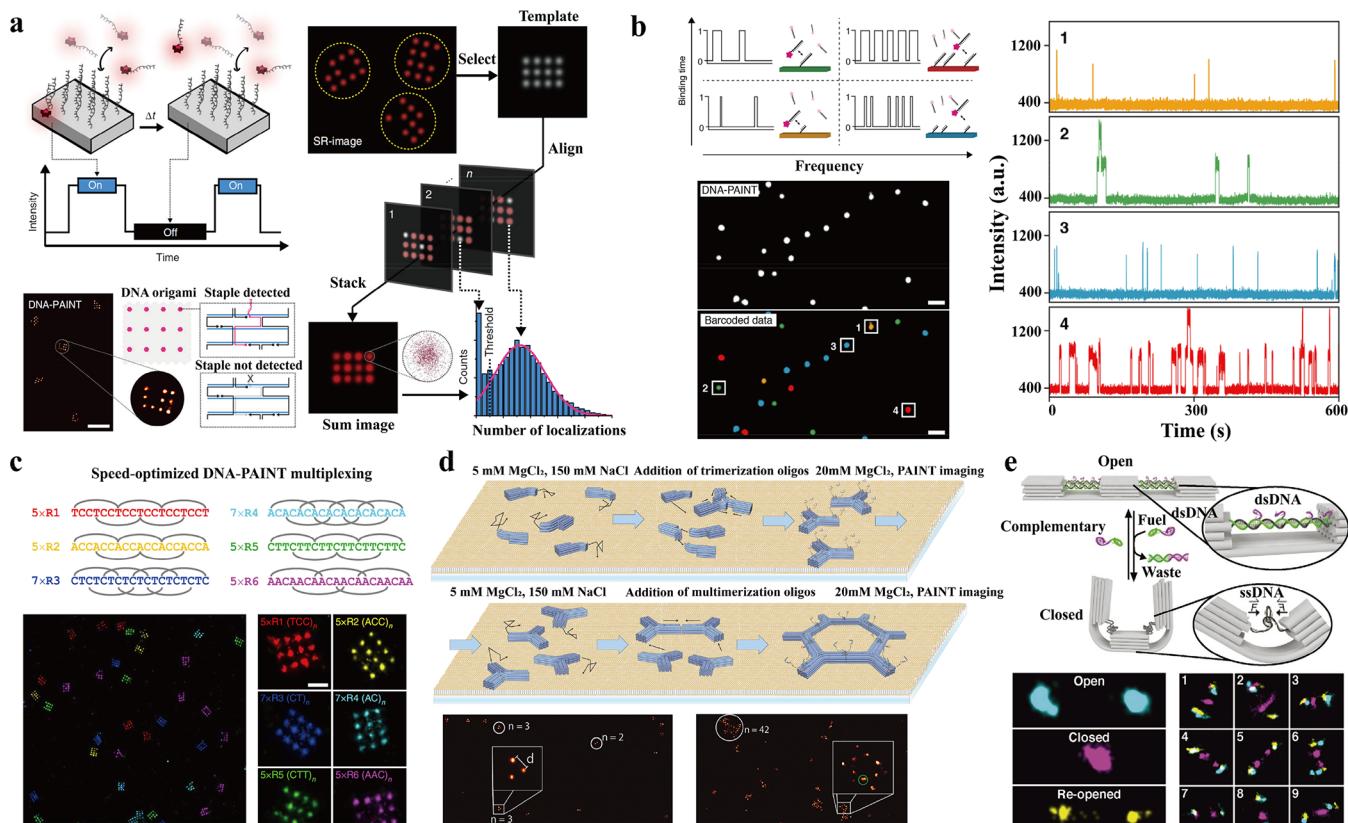
183 The second strategy to connect DNA origami monomers is
184 using base-stacking interactions of blunt ends from parallel
185 DNA helices. In 2011, Rothemund et al. proposed that the
186 geometric arrangement of blunt-end stacking interactions
187 could help create varied bonds.³⁰ They programmed the
188 blunt end stacking interactions into binary, or shape codes, to
189 achieve specific hybridization. More recently, Gerling et al.
190 discussed the rules of shape complementarity to specifically
191 self-assemble discrete 3D DNA components.³¹ They found
192 that the base stacking interactions could stabilize the origami
193 units’ assembly by counteracting electrostatic repulsion
194 between component interfaces. Furthermore, the balance
195 between stacking force and electrostatic repulsion of DNA
196 was susceptible to changes in ion concentration and temper-
197 ature. By adjusting the Mg²⁺ concentration and temperature,
198 they controlled the interaction between the origami units
199 switching between “on” and “off” states.
200

201 **2.3. Modifications of DNA Nanostructures.** DNA
202 nanostructures made of pure DNA strands generally have
203 limited applications due to the inherent properties of the DNA
204 material. To increase the diversity of functional DNA

205 nanostructures, a wide variety of materials have been
206 introduced and modified on DNA including small organic
207 molecules (dyes), proteins, and inorganic nanoparticles. The
208 key to modifying DNA with other materials lies in creating
209 connections between DNA and the guest materials. These
210 connections can be covalent, noncovalent, or electrostatic
211 binding. As we know, nucleotides are the basic building blocks
212 to create a DNA strand, and each of them consists of three
213 subunits: a nitrogenous base, a five-carbon sugar moiety, and a
214 phosphate backbone. The functional groups on these subunits
215 provide a lot of reaction possibilities for chemical modifications
216 of DNA nanostructures. DNA strands as anionic polymers can
217 also electrostatically bind with ionic polymers or particles that
218 tremendously broaden the diversity of guest materials.

219 Small molecules can directly react with a nucleotide and
220 generate covalent connection. For example, generating
221 covalent bonds between DNA and dyes is an efficient and
222 reliable method.³² DNA can be tracked and visualized after
223 their modification with dye molecules, allowing the sensing
224 and imaging of specific targets based on DNA recognition.
225 Moreover, DNA origami structures are known to have high
226 addressability. Researchers can randomly select specific
227 locations and seed the dye molecules on them. By doing so,
228 only a small amount of the dye molecules needs to be loaded,
229 and fluorescent quenching induced by dye aggregation can be
230 avoided.³³

231 DNA–protein conjugates can be formed by a covalent
232 connection between DNA and protein. For example,
233 Biotinylated oligonucleotide is a typical conjugate with a
234 covalent bond, which has high production yield and becomes a
235 commercial DNA–protein conjugated product. An early
236 example of DNA tiles consisting of biotinylated oligonucleo-
237 tides was reported in 2003 by Yan et al.⁸ The biotinylated
238 oligonucleotides were preassembled into 4×4 DNA tiles and
239 then into a 2D lattice by base pairing. By exploiting biotin–
240 streptavidin specific interactions and the DNA 2D lattice
241 template, they could assemble a periodic protein array. Some
242 proteins can specifically bind with unique DNA sequences,
243 bringing new insight into DNA–protein conjugates production
244 and bioimaging application. Praetorius et al. proposed a new
245 approach to combining the DNA strands with proteins by
246 specific sequence binding.³⁴ They customized a set of staple
247 proteins to recognize and link two distinct double-helical DNA
248 sequences at different positions on a DNA template, thus
249 folding a double stranded DNA template into a user-defined
250 shape. More recently, researchers found that small structures
251 like aptamers, peptides, and enzymes can selectively capture
252 the target proteins with high affinity. This selective binding
253 with target proteins opened a new way for recruiting multiple
254 proteins onto DNA nanostructures. For example, Li et al.
255 constructed a thrombin-loaded origami structure with its edges
256 locked by AS1411 DNA aptamer.³⁵ Overexpressed nucleolin
257 binding could open the AS1411 aptamer ‘lock’ when the
258 locked-state origami structure approached the target tumor site
259 *in vivo*. Then the loaded thrombin molecules were exposed,
260 which induced coagulation inside of blood vessels, thus
261 forming intravascular thrombosis and inhibiting tumor growth.
262 Various inorganic nanoparticles such as silver nanoparticles,
263 gold nanoparticles, lanthanide-doped upconversion nano-
264 particles (UCNPs), and iron oxide nanoparticles have been
265 modified onto DNA nanostructures by electrostatic binding.
266 With the help of the magnetic or optical features of these
267 nanoparticles, DNA nanostructures can be adapted to different


268 imaging modules. The connection between DNA and 269 nanoparticles is mainly based on chemical bonds or electro- 270 static attraction. For example, Ge et al. reported the method of 271 creating DNA-modified UCNPs.³⁶ These conjugate nano- 272 particles had a luminescent UCNPs core, which exhibited great 273 potential as multifunctional imaging agents or therapeutic 274 candidates for biomedical applications.
274

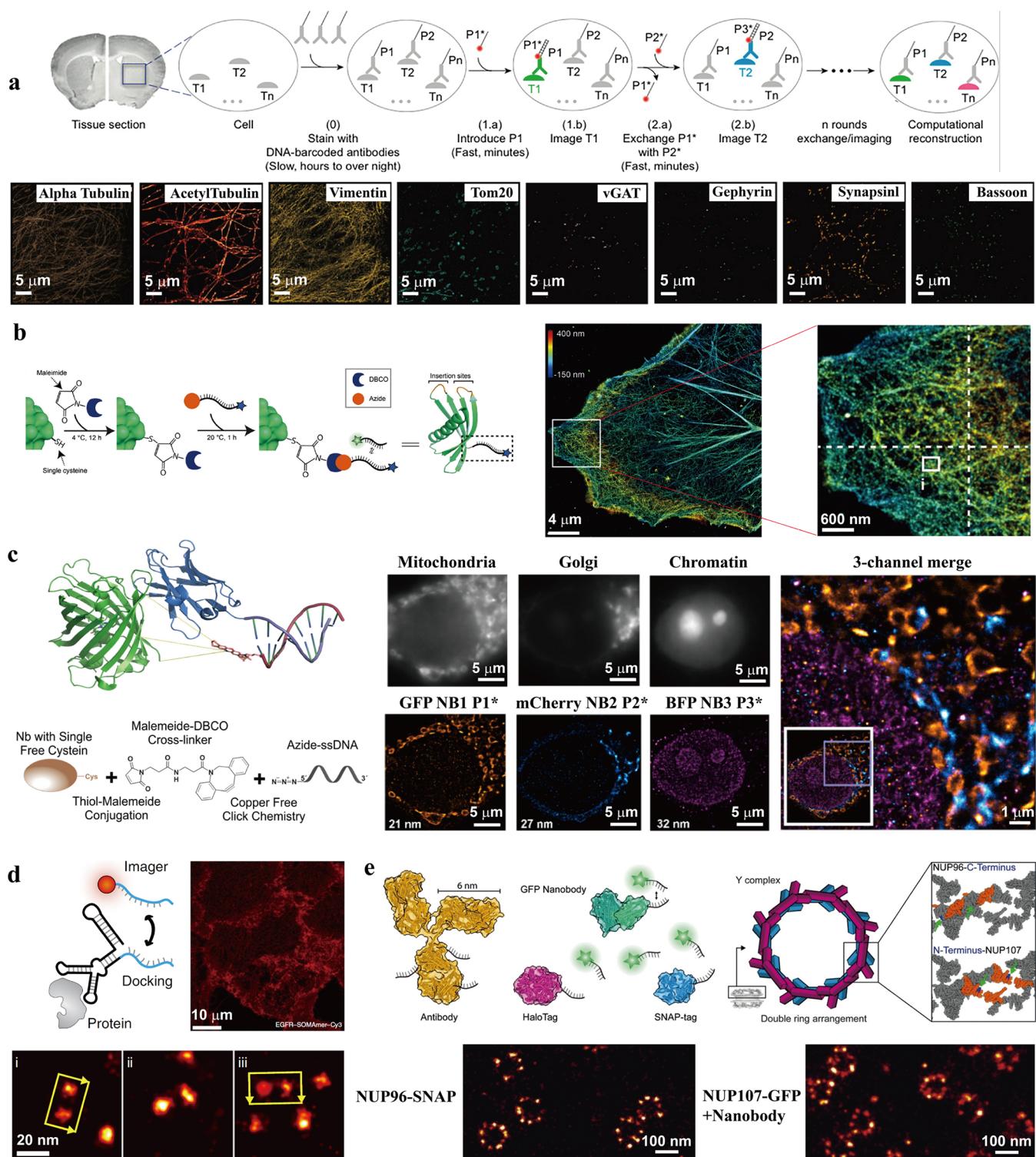
3. DNA-PAINT TECHNIQUE AND ITS RECENT ADVANCES

275 Over the past decade, developments in fluorescence super- 276 resolution microscopy have enabled the visualization of 277 biological systems at the molecular scale with unprecedented 278 high resolutions. DNA-PAINT can achieve super-resolution 279 imaging by using the stochastic and transient binding of 280 fluorescently labeled DNA probes. DNA-PAINT also can be 281 easily implemented on any sensitive wide-field fluorescence 282 microscope without further modification.³⁷ However, current 283 DNA-PAINT strategies have some limitations such as low 284 throughput and excessive acquisition time. In this section, we 285 will briefly review the DNA-PAINT technique and discuss the 286 recent progressions and applications of this technique for *in* 287 *vitro* and cellular imaging.
288

289 **3.1. Brief Introduction of DNA-PAINT Imaging.** DNA- 289 PAINT imaging is a super-resolution imaging method based 290 on capturing blinking signals generated by transient binding 291 and unbinding between short dye-labeled DNA oligonucleo- 292 tides. During imaging, the targets are labeled with a short DNA 293 strand acting as immobilized “docking sites”, while a 294 complementary DNA strand is labeled with a dye molecule 295 as a free “imager” in solution. When the imager strand is 296 hybridized with the docking sites, an increased fluorescence 297 signal, an “on” state, was observed. In contrast, a decreased 298 fluorescence signal, an “off” state, would be found after the 299 imager strand left the “docking sites”. The fluorescence signals 300 of the nanoscale targets were visualized in real-time with the 301 acquired data being readily analyzed.
302

303 With the development of DNA nanotechnology, a DNA 303 origami structure can serve as a substrate with suitable docking 304 sites for DNA-PAINT *in vitro* imaging, owing to its 305 programmability and spatial addressability. In 2010, Jungmann 306 et al. first demonstrated a DNA-PAINT technique with DNA 307 origami substrates as docking sites.³⁷ They constructed a 2D 308 long rectangular origami structure with three, spaced apart, 309 docking strand sites (~ 130 nm). Small dye-labeled DNA 310 imager strands are reversibly and specifically hybridized with 311 the docking strands on the surface of DNA origami structures.
312 The precise and transient interactions between the docking 313 strands and the imager strands enabled the locating of the 314 docking sites on the origami surface. Furthermore, DNA- 315 PAINT imaging has also been used for the visualization of 3D 316 origami structures in solution. For example, Iinuma et al.
317 designed a stiff three-arm-junction DNA origami tile motif 318 with precisely controlled arm lengths and angles for the 319 hierarchical assembly of polyhedral 3D structures including 320 tetrahedrons, triangular prisms, cubes, pentagonal prisms, and 321 hexagonal prisms.²⁶ They successfully characterized these near- 322 solution shaped 3D origami structures with DNA-PAINT 323 imaging. Unlike the Cryo-EM, which relies on a class of images 324 averaging, DNA-PAINT is a relatively straightforward and fast 325 technique to obtain real-time images of individual 3D 326 structures.
327

Figure 2. Recent technique developments of DNA-PAINT imaging *in vitro*. (a) Quantitative analysis of staples in origami via DNA-PAINT imaging including the concept of DNA-PAINT and the general workflow for assessing the abundance of docking sites. Reproduced with permission from ref 40. Copyright Springer Nature 2018. (b) Multiplexed DNA-PAINT imaging by engineering blinking kinetics allows the creation of “barcodes” for simultaneous multiplexing and only using a single imager strand species. Reproduced with permission from ref 42. Copyright American Chemical Society 2019. (c) Design and proof-of-concept experiments of concatenated speed-optimized motifs (the six orthogonal binding motifs) for multiplexing in Exchange-PAINT experiments. Reproduced with permission from ref 44. Copyright Springer Nature 2020. (d) Process of stop-and-go assembly of triskelion structures and hexagonal lattices and the corresponding DNA-PAINT images. Reproduced with permission from ref 45. Copyright American Chemical Society 2019. (e) Overview of the DNA origami switch design and visualization of the different states of individual switches by DNA-PAINT imaging. Reproduced with permission from ref 46. Copyright Wiley-VCH 2021.


Visualizing several distinct cellular species is difficult to implement with the traditional DNA-PAINT technique. Jungmann et al. proposed the idea of Exchange-PAINT imaging for cellular structure detection.³⁸ On the basis of multiplexed-PAINT, orthogonal sequences were employed to label distinct docking sites to achieve imaging specificity. The multiplexing approach could be adjusted by tuning the binding strength and concentration of the imager strands, allowing the sequential imaging of multiple targets with only a single dye molecule and a single laser source. Exchange-PAINT is a new multiplexing approach in which the imager strands are sequentially applied to recognize the different targets on the same sample. In each round of imaging, only one imager strand was introduced to capture the specific target docking sites, followed by a washing step to remove the imager strand. The imaging and washing steps were repeated until all desired targets were imaged, and the multicolor image of the target sample was produced after aligning and combining the collected images. In the end, they achieved the multiplexed 2D and 3D DNA-PAINT imaging of different protein components in fixed cells by linking DNA-PAINT docking strands to antibodies.

One of the problems in obtaining the super-resolution images of thick biological samples is the requirement of increasingly complex hardware. Schueder et al. combined the

3D DNA-PAINT with a spinning disk confocal (SDC) hardware to overcome the sample thickness limitation for imaging.³⁹ They demonstrated that this method could be applied to imaging the interior of cells for various cellular targets including DNA, RNA, and proteins. The multiplexed 3D super-resolution imaging at sample depths of up to ~10 μm could achieve resolution as much as 20 nm planar and 80 nm axial, leading to the high-resolution DNA-PAINT technique for whole cell imaging.

3.2. Applications of DNA-PAINT Imaging In Vitro. A DNA origami structure with great programmability and addressability can serve as a suitable docking site for DNA-PAINT imaging. Using DNA nanostructures as docking sites are classified as DNA-PAINT imaging *in vitro*. The latest progress of *in vitro* DNA-PAINT imaging will be discussed with emphasis on the quantitative analysis of docking sites’ binding rates, multiplexing imaging, acquisition efficiency improvement, and dynamic motion observation.

DNA strands can be modified with functional entities and assembled into functionalized DNA nanostructures. However, the quantification and efficiency of functional entity attachments are less studied. As shown in Figure 2a, Strauss et al. used DNA-PAINT to quantify both the incorporation and accessibility of all individual strands in a DNA origami structure with molecular resolution in 2018.⁴⁰ They found

Figure 3. Recent advances of DNA-PAINT technique in cellular imaging. (a) Schematic of DNA exchange imaging and its application for the imaging of eight-target proteins in primary neurons. Reproduced with permission from ref 48. Copyright American Chemical Society 2017. (b) Site-specific DNA labeling of Affimer reagents and DNA-PAINT images of actin filaments in a Cos7 cell. Reproduced with permission from ref 49. Copyright Wiley-VCH 2018. (c) Click- and thiol-based strategy to conjugate nanobodies to a docking DNA strand and exchange PAINT imaging of individual target fluorophores. Reproduced with permission from ref 50. Copyright Wiley-VCH 2021. (d) Quantitative, high-resolution DNA-PAINT imaging of SOMAmer labeling probes for EGFR targeting. Reproduced from with permission from ref 52. Copyright Springer Nature 2018. (e) Genetically encoded self-labeling enzymes modified DNA strands for DNA-PAINT imaging of NUP96 proteins. Reproduced with permission from ref 53. Copyright Elsevier 2019.

378 that the strand incorporation rates were strongly correlated
379 with the position of docking sites inside of the DNA origami
380 structure, ranging from a minimum of 48% on the edges to a

maximum of 95% in the center. This work provided a good 381 example for quantitative analysis of the docking sites' binding 382 rates, which may also apply to the characterization of the 383

384 labeling efficiency of antibodies, nucleic acids, and other
385 cellular components. Then Hahn et al. applied DNA-PAINT
386 to visualize the availability of handle sites and leash sites on a
387 catenane DNA template.⁴¹ This revealed that the availability of
388 programmed handles was measured to be 93%, which was
389 consistent with previously reported yields,⁴⁰ indicating DNA-
390 PAINT as a reliable, quantitative analysis method.

391 A high acquisition efficiency is necessary for exploring the
392 detailed molecular workings of complex cellular machinery.
393 However, the early staged multiplexed DNA imaging required
394 a very long acquisition time due to the single type of
395 fluorophore and sequential imaging processing cycles.³⁸ To
396 improve the acquisition speed, Wade et al. introduced a new
397 barcoding approach for multiplexed DNA-PAINT imaging by
398 modulating the binding kinetics of transient hybridization. As
399 shown in Figure 2b, they designed DNA origami structures
400 docking sites and assigned multiple binding sites to single
401 origami surfaces for analyzing the kinetic barcoding approach
402 *in vitro*. The binding kinetics of programmable DNA probes,
403 such as blinking frequency and duration, were tuned precisely
404 and used downstream as barcodes for multiplexed detection
405 enabling hundreds or more targets to be imaged simulta-
406 neously. As a result, DNA-PAINT was able to reach 124-plex
407 within minutes *in vitro* and *in situ*. Besides, Schueder et al.
408 demonstrated that one can design and optimize DNA
409 sequences and buffer conditions to improve the acquisition
410 speed. In this way, DNA-PAINT could achieve an order of
411 magnitude faster imaging speed without compromising image
412 quality or spatial resolution either *in vitro* with DNA origami or
413 *in situ* using cell samples.⁴³ However, this improvement did not
414 reach the ultimate speed limit and was only applicable for
415 single target imaging. Therefore, Strauss et al. recently
416 introduced concatenated periodic DNA sequence motifs to
417 further improve the acquisition speed, leading up to a 100-fold
418 imaging speed amplification compared to the traditional DNA-
419 PAINT.⁴⁴ As shown in Figure 2c, they applied this method in
420 six orthogonal sequence models. Each of the sequences
421 contained five or seven pieces of overlapping motifs, which
422 were complementary with corresponding imager strands. This
423 method achieved speed-optimized multiplex imaging with
424 lower imager concentrations and improved the signal-to-noise
425 ratio.

426 DNA-PAINT imaging as a solution-based super-resolution
427 imaging technique provides a valuable tool for observing the
428 dynamic process of binding and unbinding between docking
429 sites and imager strands. Recently, DNA nanostructure-based
430 dynamic devices have been studied as convenient models to
431 explore nanoscale dynamic assembly progress. For example,
432 Kempter et al. found that the behavior of DNA nanostructures
433 and their assembly into higher-order membrane-bound lattices
434 can be controlled in a stop-and-go manner. DNA-PAINT
435 imaging was used to monitor the dynamic process of the DNA
436 nanostructure assembly into lattices.⁴⁵ As shown in Figure 2d,
437 they designed DNA triskelions and transiently immobilized
438 them on glass-supported lipid bilayers by changing the mono-
439 and divalent cation concentrations inside the surrounding
440 buffer. Then they exchanged the buffer and added another set
441 of oligonucleotides, which triggered the triskelions to diffuse
442 and assemble into hexagonal 2D lattices. This work provided
443 an excellent example in the controlling and observation of the
444 diffusion behavior of DNA nanostructures on lipid membranes.
445 Recently, Gür et al. fabricated a self-assembled DNA origami
446 switch that utilized a strand displacement reaction to achieve

an internally reversible conformational change.⁴⁶ In Figure 2e,
447 the open and closed states of a DNA origami structure were
448 clearly observed by DNA-PAINT imaging based on the
449 transition between double-stranded and single-stranded DNA.
450 The nine different overlay images of the three imaging rounds
451 indicated good repeatability in the switching of the origami
452 structure between the two states. The dynamic states of DNA
453 origami structures also demonstrated their continuous
454 configuration variability in solution. In addition, Scheckenbach
455 et al. applied the DNA-PAINT technique to monitor the self-
456 regeneration and self-healing of DNA origami nanostruc-
457 tures.⁴⁷ The reconfiguration of DNA origami nanostructures
458 induced by the self-repair of enzymatic damage and photo-
459 induced defects could be intuitively visualized by DNA-PAINT
460 imaging.
461

3.3. Applications of DNA-PAINT Technique for Cellular Imaging. Imagers and DNA docking sites are required to be labeled with small and efficient labeling molecules for high spatial resolution observation of cellular targets. Multifunctional DNA nanostructures provide more options for the designing of imagers and docking sites. Generally, dyes, antibodies, genetically encoded self-labeling enzymes, and DNA aptamers can be conjugated to a single DNA strand with high yield and efficiency. Functionalized DNA strands can easily be constructed into more compact DNA nanostructures to improve structural stability and cell internalization efficiency. By employing these functionalized DNA nanostructures, cellular DNA-PAINT imaging can be achieved with great precision, super-resolution, multiplexing imaging, and a fast acquisition speed.
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

Wang et al. exploited single-round immunostaining with DNA-barcoded antibodies to overcome the acquisition speed restrictions.⁴⁸ In Figure 3a, the orthogonal DNA docking strands (P) were first conjugated with the distinct targets (T) labeled with corresponding antibodies. Then the imager strands (P*) were sequentially introduced to visualize target signals, followed by the rapid (<10 min) buffer exchange of fluorophore-bearing DNA imager strands. Eight targets in cultured neurons could be distinguished by multiplexed DNA-PAINT, proving a rapid and versatile multiplexed imaging technique for super-resolution imaging of *in situ* cells or tissues.
477
478
479
480
481
482
483
484
485
486
487

Most antibodies face size defects to achieve higher efficiency of quantitative DNA-PAINT imaging. Unlike normal antibodies, Affimer reagents have quantitative labeling capabilities and smaller sizes, which are favorable labeling reagents for the docking sites and imager strands. To tackle the limitation of antibody size, Schlichthaerle et al. site-specifically attached an Affimer reagent to a single DNA strand by cysteine-maleimide conjugation and successfully imaged the Affimer-labeled actin network in fixed Cos7 cells with high efficiency via DNA-PAINT imaging (Figure 3b).⁴⁹ Subsequently, Sograte-Idrissi et al. used click chemistry reactions to connect the single-stranded DNA with small nanobodies.⁵⁰ The nanobodies also were known as small labeling reagents. As shown in Figure 3c, the immunostaining of three different proteins in different organelles with three specific nanobodies such as anti EGFP, mCherry, and mTagBFP allowed them to become fluorescent so that the three corresponding cellular targets could be visualized with 20 nm resolution and within 35 min of acquisition time per target. Recently, Filius et al. proposed that the modification of imager strands also could shorten the acquisition time.⁵¹ The imager strands were loaded into protein Argonaute (Ago). Next, the Ago prearranged the DNA

Figure 4. Recent application of DNA nanostructures for intracellular biomolecules imaging. (a) Synthesis of a photocontrollable UCNP and DNAzyme-based nanodevice and its response to Zn^{2+} in early embryos and larvae of zebrafish. Reproduced with permission ref 60. Copyright American Chemical Society 2017. (b) Scheme of I-SceI activation of the DNAzyme for intracellular imaging of Mg^{2+} . Reproduced with permission from ref 61. Copyright Wiley-VCH 2019. (c) Design and characterization of TDNs probe in response to lysosomal acidity and ATP binding in living cells. Reproduced with permission from ref 66. Copyright Wiley-VCH 2019. (d) Mechanism of the aptamer-linked tripartite DNA probe assembly and fluorescence imaging of the surviving mRNA in different tumor-bearing mice with tripartite DNA probes. Reproduced with permission from ref 72. Copyright Royal Society of Chemistry 2020. (e) Illustrating the mechanism of FNA logic circuits and the response to mRNA expression in living cells. Reproduced with permission from ref 74. Copyright Wiley-VCH 2020. (f) Schematic of DNA-based molecular sieve for size-selective molecular imaging in living cells. Reproduced with permission from ref 76. Copyright Springer Nature 2020.

s10 imager strands into a helical conformation, which allowed a
s11 faster binding between the imager strand and complementary
s12 strand. Furthermore, they compared the Ago-assisted DNA-
s13 PAINT (Ago-PAINT) with the general DNA-PAINT method
s14 by using a 2D DNA origami structure as the docking site and
s15 found that the Ago-assisted method could speed up the
s16 acquisition time by an order of magnitude and maintained
s17 higher spatial resolution.

s18 Additionally, small and highly specific labeling reagents also
s19 help to obtain higher imaging resolution. For example, Strauss
s20 et al. employed seven different slow off-rate modified aptamers
s21 (SOMAmers, known as tiny DNA nanostructures) to label the
s22 docking sites.⁵² This work was the first example of using DNA-
s23 PAINT imaging in living cells and tracking their membrane
s24 targets in their native state. As shown in Figure 3d, the
s25 preimmobilization of the living cells was not required with the
s26 help of the staining of transmembrane receptor (EGFR) with
s27 SOMAmers. More importantly, the average localization
s28 precision of SOMAmer-labeled EGFR proteins was about 3.2
s29 nm, and the full-width at half-maximum-limited resolution was
s30 less than 8 nm, allowing quantitative sub-10 nm cellular DNA-
s31 PAINT imaging. This work also discussed SOMAmers that are
s32 specific for GFP-labeled Nup107, suggesting the flexibility of
s33 labeling the intracellular targets. Moreover, the genetically
s34 encoded self-labeling enzymes can be applied for DNA-PAINT

as well. Schlichthaerle et al. presented an approach by using
535 genetically encoded self-labeling enzymes such as SNAP-tag
536 and HaloTag, to achieve higher resolution.⁵³ They tested BG-
537 modified docking strands targeting SNAP-tags, which were C-
538 terminally fused to NUP96 proteins in U2OS cell lines created
539 by CRISPR/Cas9 engineering. In Figure 3e, the 2D DNA-
540 PAINT images revealed the 8-fold symmetry of NUP96
541 proteins in the Y-complex of the nuclear pore complex with the
542 spacing of only ~12 nm apart and the single copies of
543 nucleoporins in the human Y-complex in three dimensions
544 with the precision of ~3 nm. This work provided a high-
545 resolution imaging tool to investigate individual proteins of
546 higher-order protein complexes in cells.⁵⁴⁷

4. OTHER BIOIMAGING EXAMPLES BASED ON DNA NANOSTRUCTURES

Bioimaging plays an important role in the early diagnosis and treatment of diseases. However, the internal, physiological environment is crowded with complex biomolecules and is highly compartmentalized by physiological barriers and membranes. This complexity may lead to the poor performance of synthetic imaging probes in living systems. Imaging probes with high stability, biocompatibility, and low toxicity

557 under physiological conditions need to be fabricated to
558 improve the performance of imaging in living systems.

559 DNA materials provide a new strategy for bioimaging probe
560 construction. Functionalized DNA nanostructures can be used
561 for biomolecules or cell capture.⁵⁴ Scientists successfully
562 assembled several DNA strands into a defined and compact
563 structure to improve its stability. For example, framework
564 nucleic acids (FNA) structures (including a tetrahedron, an
565 octahedron, a DNA triangular prism, and DNA nanotubes)
566 have good biocompatibility, size controllability, and antide-
567 gradation ability, all of which can help the structures to
568 maintain their structural integrity in a complex biological
569 environment for several hours and even days.⁵⁵ Moreover,
570 combining the DNA materials with inorganic nanoparticles
571 (such as gold nanoparticles, upconversion nanoparticles, and
572 graphene, etc.) could also improve the stability of the DNA
573 materials. In this section, we will focus on the recent advances
574 of other bioimaging methods and targets.

575 **4.1. DNA Nanostructure-Based Intracellular Biomole-
576 cules Imaging.** The visualization of biomolecules in cells at a
577 nanometer scale led to a greater understanding of how
578 biological processes operated and provided useful information
579 for disease diagnosis. However, only a few biomolecules (metal
580 ions, ATP, RNA, telomerase, and histidine, etc.) were able to
581 achieve sufficiently high resolution for bioimaging applications.
582 DNA nanostructures are competitive candidates serving as
583 imaging agents to tackle this problem due to their specific
584 binding ability for biological targets, outstanding biocompat-
585 ability, and stability. DNA nanostructures can be further
586 conjugated with dyes, proteins, and inorganic nanoparticles to
587 achieve diverse features and become a versatile imager, trigger,
588 or carrier for *in vivo* imaging of specific targets that can adapt
589 to different functional imaging modules.

590 **4.1.1. Metal Ion Imaging.** In a biological system, metal ions
591 play important roles in stabilizing the conformations of
592 biomolecules and helping catalyze enzymatic reactions. It is
593 crucial to probe the distribution of metal ions because their
594 abnormal distribution can lead to various diseases including
595 neural malfunction, osmolarity imbalance, and cancers.
596 DNAzymes, also known as deoxyribozymes, which catalyze a
597 specific reaction and require metal ions as cofactors, have
598 emerged as a new class of activity-based metal ions imaging
599 agents. The DNAzyme substrate has different melting
600 temperatures before and after the metal-ion-dependent
601 cleavage. The general strategy to construct DNAzymes-based
602 probes is attaching a fluorophore and a quencher to a
603 DNAzyme complex. The cleavage of the DNAzyme structure
604 will release the fluorophore from its quencher to create an “on”
605 fluorescent signal, which allows the imaging of the target metal
606 ions. In 2013, Wu et al. first demonstrated the application of
607 DNAzymes for imaging intracellular metal ions.⁵⁶ They
608 conjugated the uranyl-specific 39E DNAzyme with gold
609 nanoparticles, then the DNAzyme would deliver into cultured
610 cells, and the exonuclease-based degradation of DNAzyme
611 ends could be slowed down. The DNAzyme with gold
612 nanoparticles only cleaves the fluorophore-labeled substrate
613 strand in the presence of uranyl, resulting in an increased
614 fluorescence signal and demonstrating the selectivity for
615 imaging of uranyl inside live cells. After this work, a set of
616 DNAzymes-based imaging probes has been reported for the
617 cellular imaging of Na^+ ,⁵⁷ Cu^{2+} ,⁵⁸ and Pb^{2+} .⁵⁹

618 Recently, Yang et al. reported a Zn^{2+} -specific near-infrared
619 (NIR) DNAzyme nanoprobe for real-time metal ion tracking

620 in early embryos and the larvae of zebrafish.⁶⁰ In Figure 4a,
621 they functionalized the UCNP of a photocaged DNAzyme by
622 attaching a fluorophore (F) and two quenchers (Q1, Q2) to
623 the UCNP. The UCNP generated fluorescence emission at
624 365 nm wavelength and removed the protection of the 2'-
625 nitrobenzyl photocage group (PG) for the ribonucleotide
626 adenosine (rA) site under 980 nm laser irradiation. Then the
627 Zn^{2+} specific cleavage of the single substrate strand, leading to
628 an “on” fluorescence signal due to the fluorophore dissociating
629 from the enzyme strand. This study achieved spatial and
630 temporal optical control of the DNAzyme-UCNP system for
631 higher penetration depth metal ions detection *in vivo*.
632

633 More recently, Lin et al. introduced an approach of using
634 homing endonuclease (I-SceI) to activate the DNAzyme for
635 the fluorescent imaging of Mg^{2+} in living cells.⁶¹ As shown in
636 Figure 4b, the bioorthogonal method for activating the
637 DNAzyme catalytic ability is carried out by conjugating the
638 I-SceI enzyme recognition site with the DNAzyme binding
639 arms. When the cell expressed I-SceI, the recognition site
640 cleaved and converted the DNAzyme into its active
641 conformation, enabling it to catalyze the cleavage of the
642 substrate strand in the presence of Mg^{2+} . Then a fluorescent
643 signal was detected from the releasing of the strand containing
644 the fluorophore. The endogenous and bioorthogonal control of
645 a DNAzyme led to its specific binding to Mg^{2+} , which made it
646 important for the understanding of the distribution and
647 fluctuation of Mg^{2+} in living cells. Using DNAzyme-based
648 probes for detection of other metal ions has also been reported
649 such as K^+ , Ag^+ , Hg^{2+} , and Co^{2+} .⁶² Since metal ions are related
650 to many diseases, these works help researchers understand the
651 roles of metal ions in many physiological processes.
652

653 **4.1.2. ATP Imaging.** The characterization of ATP dynamics
654 is essential for exploring the processes that range from
655 neurotransmission to the chemotaxis of immune cells.
656 Researchers found that DNA aptamer-based probes can be
657 applied for ATP imaging in live cells.⁶³ These self-assembled
658 DNA probes possessed excellent cell membrane permeability
659 and biocompatibility. For example, Zheng et al. designed an
660 ATP aptamer-based DNA probe for ATP imaging in living
661 cells.⁶⁴ They anchored two split ATP aptamers labeled with
662 donor and acceptor fluorophores on a DNA triangular prism.
663 In the presence of ATP, two aptamer strands were brought
664 closer and generated a FRET signal, thus enabling the
665 intracellular ATP imaging. Moreover, the DNA triangular
666 prism provided the reasonable protection of the split aptamer
667 from nuclease degradation. Using the split aptamer with “off–
668 on” mechanism of FRET could efficiently avoid false-positive
669 signals.
670

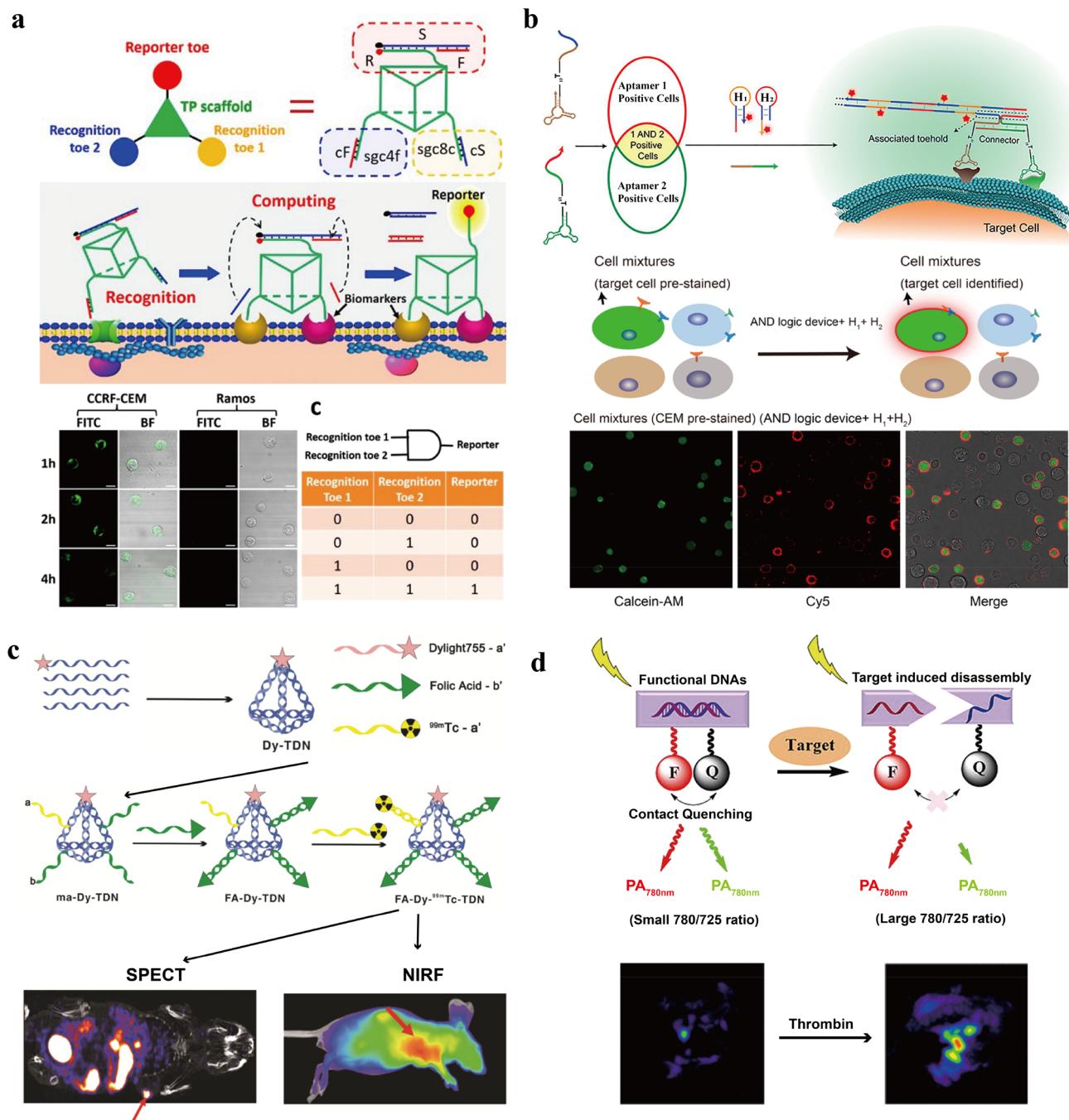
671 Structure-switching aptamers were also involved in DNA
672 bioimaging probe design. Zhao et al. reported a luminescence-
673 activatable DNA nanodevice probe composed of DNA
674 aptamer and UCNP to detect ATP in a living system.⁶⁵ The
675 aptamer strand modified with a fluorophore Cy3 was initially
676 locked by a complementary DNA strand conjugated with a
677 quencher strand and a photocleavable (PC) group, providing a
678 low fluorescence background and preventing its ATP binding
679 activity. Upon UV light irradiation, the complementary DNA
680 strand split into two short strands due to the photolysis of the
681 PC group. The aptamer switched its structure to bind ATP,
682 resulting in the dissociation of the quencher strand and the
683 significant increase of the fluorescent signal for ATP imaging.
684 This approach provided a general method for the NIR-
685

683 controlled imaging of various targets by incorporating different
684 aptamers with UCNPs.

685 More recently, Peng et al. designed an aptamer functionalized FNA nanoplatform that could be dynamically manipulated in living cells for subcellular ATP imaging. The 686 nanoplatform was constructed by two DNA tetrahedrons (TDNs) with different branched vertexes. As depicted in 687 Figure 4c, both of the tetrahedrons carried a bimolecular i- 688 motif and a split ATP aptamer.⁶⁶ The TDNs were assembled 689 into heterodimeric architectures in the lysosomes of living cells 690 due to their acidic environment and in response to endogenous 691 ATP binding. This dimerization process was reversible so that 692 it could be dynamically manipulated by adjusting intracellular 693 pH and ATP levels with external drug stimuli. By monitoring 694 the structural conformation change, the subcellular ATP could 695 be visualized efficiently.

696 **4.1.3. RNA Imaging.** RNA molecules play various significant 697 biological roles such as coding, decoding, regulation, and 698 expression of genes. Monitoring the distribution of RNA in a 699 living system is crucial for understanding the biological 700 functions of RNA and identifying RNA-related diseases. 701 However, it is difficult to image cellular RNA due to its low 702 expression level in cells. To tackle this problem, researchers 703 integrated several signal amplification methods (e.g., hybrid- 704 ization chain reaction (HCR),⁶⁷ catalyzed hairpin assembly 705 (CHA),⁶⁸ fuel stimulant-powered amplification (FSP),⁶⁹ and 706 DNAzyme motor-powered amplification (DMP)⁷⁰) with DNA 707 devices. Inspired by these amplification methods, many novel 708 DNA probes for RNA imaging have been developed. For 709 example, He et al. reported an entropy-driven 3D DNA 710 amplifier (EDTD) for the specific mRNA target imaging based 711 on a CHA strategy.⁷¹ The EDTD amplifier was anchored on a 712 DNA tetrahedral framework to exhibit significantly enhanced 713 biostability and cellular delivery efficiency. With the help of an 714 entropy-driven force, an autonomous DNA circuit was initiated 715 by the mRNA target/EDTD interaction and achieved 716 significant signal amplification for the target mRNA imaging. 717 Recently, Wu et al. reported a DNA probe using the CHA 718 circuit strategy for the detection of the target mRNA that was 719 in low abundance in cells and mice.⁷² In this work, a Y-shaped 720 DNA nanostructure was hybridized with both phosphoro- 721 thioated substrate hairpins and an AS1411 aptamer to fabricate 722 a DNA probe (Figure 4d). The DNA probe could recognize 723 the small amount of the target mRNA with good fluorescence 724 signal *in vivo*, showing great potential for early stage clinical 725 diagnosis and treatment under the guidance of fluorescence 726 imaging. Similarly, Liu et al. demonstrated another Y-shaped 727 DNA nanodevice, which could perform intracellular non- 728 enzymatic *in situ* growth of 3D DNA nanospheres to detect 729 mRNAs or proteins in living cells.⁷³ The locked triggering 730 probe would open in the presence of target mRNA, leading to 731 a fluorescence signal and marking the intracellular position of 732 the target. Then, mediated by the sequential assembly of the Y- 733 shaped structure, the opened triggering hairpin probes 734 activated the gradual growth of spherical structures to obtain 735 images with different fluorescence signal. Finally, these 736 fluorescence images were merged, and it was demonstrated 737 that the target and self-assembled spherical structures were in 738 the same location. As a result, this Y-shaped DNA nanodevice 739 successfully achieved the real-time *in situ* imaging of intra- 740 cellular mRNA.

741 Researchers also introduced logic circuits into DNA 742 nanostructures to achieve high-precision RNA imaging. For 743


744 instance, Wang et al. created two logic circuits, OR-AND and 745 AND-AND cascades, to improve the accuracy of subcellular 746 mRNA imaging (Figure 4e).⁷⁴ They constructed a logical 747 control DNA nanodevice by embedding the i-motif structure 748 and ATP aptamers in a truncated square pyramid cage. Then 749 the assembled nanodevice would release the sensing element 750 and achieve the target mRNA imaging in response to the 751 intracellular H⁺ and ATP.

752 Additionally, an enzyme-propelled RNA walker can be 753 applied for amplifying biorecognition signals of microRNA 754 (miRNA) imaging. For example, Xiao et al. constructed a 755 nanomachine with amplified fluorescence signal outputs for 756 cellular miRNA imaging. They first wrapped a single wall 757 carbon nanotube (SWCNT) with a fluorophore (6-FAM) 758 labeled DNA diblock oligomers.⁷⁵ Then the RNA walker 759 (single-stranded RNA) complementary to DNA oligomers 760 would form DNA/RNA heteroduplexes. In the presence of 761 duplex-specific nuclease (DSN), the selective digestion of 762 DNA in heteroduplexes released the FAM-labeled DNA and 763 led to fluorescence diminishing of the target SWCNT. The 764 released RNA walker would subsequently bind to another 765 DNA strand on the SWCNT and initiate the next cleavage 766 cycle, thus amplifying signal outputs achieved by high target 767 recycling kinetics. Finally, the nanomachine complementary to 768 miRNA and DSN could be delivered to HeLa cells to detect 769 the cellular miRNA effectively.

770 Recently, Fu et al. reported a DNA-based molecular sieve for 771 size-selective molecular recognition in living cells.⁷⁶ As shown 772 in Figure 4f, they encapsulated different functional nucleic acid 773 probes (e.g., DNAzymes, aptamers, and molecular beacons) 774 into the inner cavity of cavity-tunable DNA nanocages. 775 Because of the size limitation, only the small target molecules 776 could enter the cavity for efficient molecular recognition, 777 whereas large molecules were prohibited. Furthermore, the 778 DNA nanocages exhibited enhanced anti-interference ability 779 against nuclease degradation and nonspecific protein binding. 780 They also found that the DNA molecular sieve could 781 selectively recognize the mature microRNA by fluorescence 782 imaging in living cells.

783 **4.1.4. Other Biomolecules Imaging.** Despite imaging 784 cellular metal ions, ATP, and RNA, the imaging of cellular 785 proteins and amino acids has also attracted broad attention. In 786 most intracellular reactions, proteins and amino acids act as the 787 reactive agents or catalysts, which play a vital role in 788 maintaining the cell's homeostasis. Although only a tiny 789 amount of them are inside the cell, a small change of the 790 content may be related to, or even cause, some diseases. Thus, 791 capturing the small changes can help us find more solutions for 792 disease diagnose or therapies, requiring the development of an 793 ultrasensitive imaging probe, telomerase and histidine are 794 among the most popularly studied.

795 The length of telomeres in healthy cells undergoes 796 progressive shortening during cell proliferation but they 797 maintain the original length in most cancer cells by 798 telomerase.⁷⁷ Therefore, telomerase is a promising biomarker 799 for early cancer diagnosis and tumor progression monitoring. 800 In an early study, Pavlov et al. exploited the hemin/G- 801 quadruplex HRP-mimicking DNAzyme for chemiluminescent 802 detection of telomerase.⁷⁸ This method only detected 803 telomerase extracted from HeLa cells. And the chemilumi- 804 nescence intensity correlated to the telomerase content. Note 805 that this imaging probe only applied to *in vitro* assays, which 806 cannot provide information on telomerase activities in living 807

Figure 5. Imaging of biomarkers on cell membrane. (a) DNA triangular prism-based logic gate nanomachine mechanism for imaging the overexpressed cancer cell biomarkers with bispecific recognition sites. Reproduced from ref 93. Copyright American Chemical Society 2018. (b) Design and mechanism for dual-aptamer-based AND logic device for cell identification and isolation. Reproduced from ref 95. Copyright American Chemical Society 2019. (c) Design of dual-modality imaging probe based on double helix DNA tetrahedron for SPECT and NIRF imaging *in vivo*. Reproduced from ref 88. Copyright American Chemical Society 2016. (d) Aptamer-based activatable PA probe for ratiometric PA imaging of target molecule in living mice. Reproduced from ref 92. Copyright American Chemical Society 2017.

systems. Later on, amplification methods with high sensitivity for telomerase detection were developed such as polymerase chain reaction (PCR)-based classic telomeric repeat amplification protocols⁷⁹ and isothermal DNA amplification.⁸⁰ However, they are still limited to working with cell extracts. To realize the amplified detection of telomerase in living cells, Fan et al. introduced a cascade amplification reaction-based (CAR) nanoprobe for intracellular telomerase detection by incorporating MnO_2 nanosheets with DNAzyme and catalytic hairpin assembly.⁷⁷ A large amount of Mn^{2+} ions generated

from MnO_2 nanosheets degradation can activate DNAzyme as a metal cofactor and cleave the telomere sequence (T strand) from DNAzyme strand. The released T strands hybridize to $\text{H}1$ and further trigger the binding to $\text{H}2$, which results in the fluorescence recovering from the $\text{H}2$ strand. This cascade amplification process achieved a higher fluorescence signal output and enabled the ultrasensitive imaging of telomerase in living cells. Following that, Guo et al. reported a surface-enhanced Raman scattering-based DNA tetrahedron probe for the simultaneous *in situ* detection of intracellular telomerase.⁸¹

829 This probe showed excellent specificity and sensitivity in the
830 detection of telomerase, with LODs of 7.6×10^{-16} IU,
831 enabling the distinction between normal cells and cancer cells.
832 These new developments facilitated researchers in under-
833 standing the pathogenesis for clinical therapy.

834 L-Histidine (L-His) is an essential amino acid that cannot be
835 synthesized *de novo* in humans but plays an vital role for
836 human growth, metal transmission, neurotransmission, and
837 neuromodulation.⁸² An abnormal level of histidine or histidine-
838 rich proteins often corresponds to disease development.
839 Therefore, selective and sensitive detection of histidine in
840 urine or living cells has become significant and indispensable.
841 *In vitro* selection of RNA-cleaving DNAzymes (RCDs) found
842 that the L-His-dependent RCDs have excellent specificity and
843 sensitivity of L-His, which brings new insight for L-His
844 detection.⁸³ For example, Kong et al. developed a DNA-
845 zyme-based sensing platform using an endonuclease-based
846 enzymatic recycling cleavage strategy for L-His detection.⁸⁴
847 This enzymatic signal amplification strategy affords high
848 sensitivity, resulting in a detection limit of 200 nM for L-His.
849 Moreover, Meng et al. proposed a DNA dendrimer nanocarrier
850 with histidine-dependent DNAzyme for intracellular L-His and
851 ATP detection.⁸⁵ This nanocarrier successfully self-delivered
852 into living cells with no change in sensitivity or specificity and
853 recognized the histidine and ATP efficiently. To amplify the
854 signal output, He et al. reported an HCR-based DNAzyme
855 fluorescent sensor to detect L-His associated with urine
856 samples.⁸⁶ Here, L-His was a trigger to initiate the cleavage
857 of DNAzyme substrate strands; the released substrates were
858 primers to trigger a cascade of hybridization events. The HCR
859 amplified the oligonucleotide products, allowing more G-
860 quadruplex structures to bind with porphyrin molecules and
861 enhance its fluorescent intensity as efficient signal output.
862 Recently, Xu et al. fabricated an electrochemical nanotool on
863 the basis of rational integration between a nanopipette and
864 synthetic DNAzyme for quantification of amino acids in a
865 single cell, which is exemplified by L-His.⁸⁷ Ionic current
866 rectification response will be efficiently generated upon L-His-
867 provoked cleavage of the DNA molecules. This work
868 demonstrated that synthetic DNAzyme facilitating electro-
869 chemistry quantification could provide a new way for
870 identifying amino acids in living cells.

871 4.2. DNA Nanostructures for Imaging Cell Membrane

872 **Biomarkers.** DNA nanostructure-based imaging agents were
873 widely used for the selective recognition of cell membrane
874 biomarkers. The small DNA structures could be conjugated
875 with other DNA nanostructures or inorganic nanoparticles to
876 achieve high targeting ability, stability, cellular internalization,
877 and versatile functionalities that adapt to different imaging
878 modules. The DNA nanostructure-based materials have been
879 proven to be the specific targeting imaging agents for different
880 imaging modules *in vivo* including near-infrared fluorescent
881 imaging (NIRF),⁸⁸ PET,⁸⁹ MRI,⁹⁰ CT,⁹¹ SPECT,⁸⁸ and
882 photoacoustic imaging (PA).⁹²

883 **4.2.1. Logic Gates Assisted Selective Recognition of**
884 **Target Cancer Cells *In Vitro*.** The precise recognition of
885 target tumor cells among large amounts of normal cells is still
886 challenging. Researchers have developed a series of aptamer
887 logic gate-based DNA nanodevices for the recognition of target
888 cancer cells. For instance, Peng et al. designed a 3D triangular
889 prism (TP) DNA structure as a logic gate (AND gate) to
890 identify bispecific biomarkers.⁹³ They selected two aptamers,
891 sgc8c and sgc4f, as recognition molecules targeting overex-

892 pressed biomarkers in CEM cells. Moreover, the Ramos cell
893 membranes under-expressed these biomarkers, thus making it
894 easy to be distinguished from others. As shown in Figure 5a,
895 the TP nanodevice performed a strand displacement reaction
896 and recombination to turn on the fluorescence signal in the
897 presence of both biomarkers on the same cell only. The change
898 in the fluorescence signal could be observed by fluorescence
899 spectroscopy imaging, flow cytometry, and confocal imaging,
900 thereby enabling the rapid analysis of specific cancer cells.
901 Furthermore, the accuracy of cell identification was signifi-
902 cantly improved by this TP nanodevice compared to linear
903 double strand DNA-based circuits. The TP nanodevice was
904 easily incorporated with all logic units into one triangular
905 scaffold. Similarly, Zhou et al. designed a switchable DNA
906 tetrahedral nanostructure⁹⁴ with AND logic gates for cancer
907 cells recognition. The presence of K⁺ helped to stabilize the
908 formation of G-quadruplexes or T-A•T triplexes between
909 each monomer DNA tetrahedra structure, thus leading to
910 dimer or trimer formation. In contrast, the crown ether or pH
911 conditions separated the dimer/trimer tetrahedral nanostruc-
912 tures. Then they designed selective dimer structures using
913 miRNA so that the dimer structures only formed in the
914 presence of the target miRNA, enabling the specific imaging of
915 cancer cells.

916 Recently, Chang et al. employed multiple DNA aptamers to
917 identify cancer biomarkers based on activation signal
918 integration and amplification.⁹⁵ They demonstrated an AND
919 Boolean logic operation analyzing multiple biomarkers and
920 precisely labeling the targeted cell subtype with the coexistence
921 of large populations of similar cells. As shown in Figure 5b,
922 the logic device consisted of three active elements: the single
923 stranded DNA detector (aptamer-spacer-toehold [Apt-S-T])
924 to reduce steric hindrance of structures, the ssDNA connector
925 to hybridize with different Apt-S-T detectors, and the H1 and
926 H2 hairpin probes to generate HCR amplification. In this
927 work, the double aptamer AND logic device achieved single-
928 step identification and isolation of cancer cells with enhanced
929 sensitivity and accuracy.

930 **4.2.2. DNA-Based Imaging Modulars for Biomarker**
931 **Recognition *In Vivo*.** Radionuclide-based imaging techniques
932 such as SPECT and PET are more widely used imaging
933 modalities in clinics than other molecular imaging techniques
934 due to their great tissue penetration and quantitative analysis
935 ability. Radioisotopes, such as ¹²⁵I, ⁹⁹Tc, and ¹⁸F, coupled with
936 DNA aptamers were able to function as highly specific and
937 sensitive radiopharmaceuticals. However, the SPECT and PET
938 required hazardous ionizing radiation and a time-consuming
939 image reconstruction process. Therefore, there are urgent
940 needs for the development of nonionizing radiation-based real-
941 time imaging methods.

942 Among different imaging methods, FL is the most adapted
943 imaging module due to its low cost and high sensitivity and has
944 been interacted with DNA nanostructures. Jiang et al.
945 proposed a multiple-armed duplex DNA tetrahedron probe
946 that could specifically bind with folate receptor-positive tumor
947 cells.⁸⁸ They first assembled the duplex DNA tetrahedron
948 structures with different protruding strands at each arm chains
949 (Figure 5c). Then they modified the tagged single-strand DNA
950 with NIR fluorescent dye Dylight-755, radioactive isotope label
951 ^{99m}Tc, or folic acid to complement the protruding strands on
952 different arm chains, thereby enabling the target tumor imaging
953 with both NIRF and SPECT modalities. The results showed
954

954 that this probe had good stability and could keep integrity in
955 80% mouse serum at 37 °C for 12 h.

956 In addition to fluorescence imaging, MRI and CT are known
957 as anatomical imaging modalities for clinics imaging with high
958 resolution and a spatial penetration depth. Using aptamers as
959 targeting components, these modalities can be used for
960 biomarkers or tumor imaging *in vivo*. For example, aptamer-
961 based MRI contrast agents are generally designed by
962 combining an aptamer with superparamagnetic iron oxides.
963 Zhao et al. reported a DNA-Mn hybrid nanoflower (DMNF)
964 for tumor site-activated MR imaging,⁹⁶ in which the
965 manganese ions mediated enzymatic biominerization of
966 DNA nanoflowers. The target probe was synthesized by
967 using a long DNA strand as a template via nucleation and
968 growth of Mn₂PPi. Then the DNA template was encoded with
969 a DNA aptamer sequence to achieve enhanced cellular uptake
970 and tumor targeting, while the paramagnetic Mn²⁺ was
971 explored as the cofactor of a DNA polymerase for the
972 extension of the long DNA strand. Because of the acidic
973 environment of tumor sites, the DMNF showed morphology
974 collapse and Mn²⁺ release, resulting in an enhanced T₁-
975 weighted MRI effect for the MR imaging of DMNF-treated
976 tumor sites.

977 Recently, PA imaging with higher penetration depth and
978 excellent spatial resolution has emerged as an alternative
979 method to MRI. Unlike PET and SPECT that suffer from
980 hazardous ionizing radiation and limited spatial resolution, PA
981 imaging is a safer, real-time, and noninvasive imaging method.
982 Aptamer-based PA probes have been investigated for specific
983 targets imaging *in vivo*. For instance, Zhang et al. proposed
984 thrombin activatable DNA aptamer-based PA probes for *in vivo*
985 imaging.⁹² As shown in Figure 5d, the sensing system was
986 based on the contact quenching between the DNA strands
987 conjugated with a NIR dye (IRDye 800CW) and its dark
988 quencher (IRDye QC-1), which was mediated by DNA
989 aptamer through the duplex formation. The thrombin-induced
990 disassembly of the DNA complex would inhibit the contact
991 quenching process and increase the PA signal ratio at 780/725
992 nm. Therefore, the quantitative analysis of the change of PA
993 signal enabled the selective imaging of the aptamer recognized
994 thrombin. In addition, Kim et al. reported that DNA aptamer
995 conjugated with gold nanoparticles were suitable for PA
996 imaging of human matrix metalloproteinase-9 (hMMP-9) *in*
997 *vivo*.⁹⁷ The modification of DNA aptamers enabled sensitive
998 and selective detection of hMMP-9. The gold nanoparticles
999 core enhanced the optical absorption to the first NIR window
1000 and made it suitable for PA imaging. All of these examples
1001 suggest that DNA aptamers, combined with inorganic
1002 nanoparticles, can enhance the targeting ability of probes for
1003 application *in vivo*.

5. CONCLUSION AND OUTLOOK

1004 DNA nanostructures have been demonstrated as great
1005 nanoconstruction material and have shown great potential in
1006 biomedical applications. Studies have demonstrated that self-
1007 assembled DNA nanodevices have higher cellular uptake rate
1008 and greater resistance to nuclease degradation compared to
1009 unassembled DNA.⁹⁸ The modification of DNA nanostruc-
1010 tures allowed these materials to achieve high biocompatibility,
1011 good robustness, competent responsiveness, and improved cell
1012 permeability. This review summarized the recent applications
1013 of self-assembled DNA nanostructures for bioimaging
1014 applications. We focused on DNA-PAINT imaging and

1015 modification methods of the DNA nanodevice probe. Addi-
1016 tionally, DNA nanoprobes for *in vivo* imaging were also
1017 discussed. Despite these great achievements, there are several
1018 remaining challenges, as well as opportunities, in DNA
1019 nanostructure-based bioimaging.

1020 The DNA-PAINT imaging technique has achieved tremen-
1021 dous advances such as in multiplexing, minute level acquisition
1022 speed, and molecular level resolution in fixed cells. DNA-
1023 PAINT technique for live cell imaging enables the ability to
1024 locate dynamic features of intracellular proteins, visualize
1025 protein interactions with super-resolution, and quantify the
1026 concentrations of cellular biomolecules. However, the
1027 resolution of DNA-PAINT imaging in living cells is not as
1028 high as that in fixed cells because the living cells have a more
1029 complex, sensitive, and dynamic environment. Moreover, high-
1030 resolution living cells imaging is influenced by the stability of
1031 DNA materials, potential incorrect interactions between DNA
1032 with cellular nucleic acids or proteins, and targets labeling in
1033 different living cells. These advances and challenges have
1034 opened new opportunities for future research in DNA-PAINT
1035 imaging for living cells. For example, the acquisition speed
1036 needs to be further improved to capture the fast and weak
1037 motions of living cells. In addition, research efforts are needed
1038 on decreasing the nonspecific interactions between DNA
1039 material-based probes and cellular nucleic acids. Finally, it will
1040 be helpful to introduce new functionalities by exploring novel
1041 assembly methods and modification strategies of DNA
1042 nanostructures.

1043 DNA nanostructures, including DNAzyme, DNA aptamers,
1044 and FNA, have been incorporated with small molecules,
1045 proteins, or nanoparticles to fabricate different functional
1046 imaging probes. For example, aptamers have been used to
1047 differentiate disease-specific targets in cancer cell research. In
1048 addition, aptamer-based probes have shown great promise for
1049 targeted cancer diagnostics in a preclinical study. DNA
1050 nanostructures brought exciting features and allowed new
1051 constructions such as multimodal imaging modalities. As
1052 described in section 4, the DNA tetrahedron probes have taken
1053 advantage of the qualitative imaging of NIRF and the high
1054 sensitivity and excellent detecting depth of SPECT. This DNA
1055 tetrahedron served as a NIRF and SPECT dual-modality
1056 tumor target imaging probe, which offered images of the target
1057 tumor with high resolutions and penetration depths. Although
1058 DNA nanostructures have many advantages, applying DNA
1059 nanostructures in physiological environments still has
1060 challenges including limited stability in biological media,
1061 poor cell uptake efficiency, and various immune responses.
1062 For example, most DNA nanostructures need a certain Mg²⁺
1063 concentration to maintain the integrity of the designed
1064 structure. However, physiological environments with lower
1065 Mg²⁺ concentrations and the presence of nucleases will quickly
1066 degrade the DNA nanostructures. Therefore, more external
1067 enzymatic and chemical modification methods need to be
1068 explored in the future to fix these issues. More exciting
1069 functionalities and applications are expected to benefit future
1070 bioimaging studies for disease diagnostics.

1071 In conclusion, the DNA nanostructures-based probes for
1072 bioimaging are undergoing fast development. Many reliable
1073 and practical modification methods have been validated to
1074 improve their properties. These functionalized DNA nano-
1075 structures probes enable fast detection of various targets in the
1076 molecular and cellular level. Future developments in self-
1077

1077 assembled DNA nanostructures offer unprecedented opportunities for bioimaging.
1078

1079 ■ AUTHOR INFORMATION

1080 Corresponding Author

1081 **Fei Zhang** — *Department of Chemistry, Rutgers University,*
1082 *Newark, New Jersey 07102, United States;* orcid.org/0000-0002-3177-7547; Phone: 973-353-5520;
1083 Email: fei.zhang@ruters.edu

1085 Authors

1086 **Qi Yang** — *Department of Chemistry, Rutgers University,*
1087 *Newark, New Jersey 07102, United States*
1088 **Xu Chang** — *Department of Chemistry, Rutgers University,*
1089 *Newark, New Jersey 07102, United States*
1090 **Jung Yeon Lee** — *Department of Chemistry, Rutgers*
1091 *University, Newark, New Jersey 07102, United States*
1092 **Tiffany Olivera** — *Department of Chemistry, Rutgers*
1093 *University, Newark, New Jersey 07102, United States*
1094 **Minu Saji** — *Department of Chemistry, Rutgers University,*
1095 *Newark, New Jersey 07102, United States*
1096 **Henry Wisniewski** — *Department of Chemistry, Rutgers*
1097 *University, Newark, New Jersey 07102, United States*
1098 **Suchan Kim** — *Department of Chemistry, Rutgers University,*
1099 *Newark, New Jersey 07102, United States*

1100 Complete contact information is available at:

1101 <https://pubs.acs.org/10.1021/acsabm.2c00128>

1102 Notes

1103 The authors declare no competing financial interest.

1104 ■ ACKNOWLEDGMENTS

1105 This work is supported by a US National Science Foundation
1106 (NSF) Faculty Early Career Development Award (DMR-
1107 2046835), an NSF grant (CCF-2007821), a Busch Biomedical
1108 Grant, and a faculty Startup Fund from Rutgers University.

1109 ■ REFERENCES

- 1110 (1) Yan, X.; Huang, S.; Wang, Y.; Tang, Y.; Tian, Y. Bottom-Up Self-Assembly Based on DNA Nanotechnology. *Nanomaterials* **2020**, *10* (10), 2047.
- 1111 (2) Li, F.; Li, J.; Dong, B.; Wang, F.; Fan, C.; Zuo, X. DNA nanotechnology-empowered nanoscopic imaging of biomolecules. *Chem. Soc. Rev.* **2021**, *50* (9), 5650–5667.
- 1112 (3) Zeng, Y.; Nixon, R. L.; Liu, W.; Wang, R. The applications of functionalized DNA nanostructures in bioimaging and cancer therapy. *Biomaterials* **2021**, *268*, 120560.
- 1113 (4) Seeman, N. C. Nucleic acid junctions and lattices. *J. Theor. Biol.* **1982**, *99* (2), 237–247.
- 1114 (5) Chen, J.; Seeman, N. C. Synthesis from DNA of a molecule with the connectivity of a cube. *Nature* **1991**, *350* (6319), 631–633.
- 1115 (6) Fu, T. J.; Seeman, N. C. DNA double-crossover molecules. *Biochemistry* **1993**, *32* (13), 3211–3220.
- 1116 (7) Winfree, E.; Liu, F.; Wenzler, L. A.; Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. *Nature* **1998**, *394* (6693), 539–544.
- 1117 (8) Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H. DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires. *science* **2003**, *301* (5641), 1882–1883.
- 1118 (9) He, Y.; Ye, T.; Su, M.; Zhang, C.; Ribbe, A. E.; Jiang, W.; Mao, C. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. *Nature* **2008**, *452* (7184), 198–201.
- 1119 (10) Carter, J. D.; LaBean, T. H. Organization of Inorganic Nanomaterials via Programmable DNA Self-Assembly and Peptide Molecular Recognition. *ACS Nano* **2011**, *5* (3), 2200–2205.

- 1120 (11) Zheng, J.; Birktoft, J. J.; Chen, Y.; Wang, T.; Sha, R.; Constantinou, P. E.; Ginell, S. L.; Mao, C.; Seeman, N. C. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. *Nature* **2009**, *461* (7260), 74–77.
- 1121 (12) Goodman, R. P.; Berry, R. M.; Turberfield, A. J. The single-step synthesis of a DNA tetrahedron. *Chem. Commun.* **2004**, No. 12, 1372.
- 1122 (13) Shih, W. M.; Quispe, J. D.; Joyce, G. F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. *Nature* **2004**, *427* (6975), 618–621.
- 1123 (14) Wei, B.; Dai, M.; Yin, P. Complex shapes self-assembled from single-stranded DNA tiles. *Nature* **2012**, *485* (7400), 623–626.
- 1124 (15) Ke, Y.; Ong, L. L.; Shih, W. M.; Yin, P. Three-Dimensional Structures Self-Assembled from DNA Bricks. *Science* **2012**, *338* (6111), 1177–1183.
- 1125 (16) Ong, L. L.; Hanikel, N.; Yaghi, O. K.; Grun, C.; Strauss, M. T.; Bron, P.; Lai-Kee-Him, J.; Schueder, F.; Wang, B.; Wang, P.; Kishi, J.; Myhrvold, C.; Zhu, A.; Jungmann, R.; Bellot, G.; Ke, Y.; Yin, P. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. *Nature* **2017**, *552* (7683), 72–77.
- 1126 (17) Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. *Nature* **2006**, *440* (7082), 297–302.
- 1127 (18) Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Subramani, R.; Mamdouh, W.; Golas, M. M.; Sander, B.; Stark, H.; Oliveira, C. L. P.; Pedersen, J. S.; Birkedal, V.; Besenbacher, F.; Gothelf, K. V.; Kjems, J. Self-assembly of a nanoscale DNA box with a controllable lid. *Nature* **2009**, *459* (7243), 73–76.
- 1128 (19) Douglas, S. M.; Dietz, H.; Liedl, T.; Hogberg, B.; Graf, F.; Shih, W. M. Self-assembly of DNA into nanoscale three-dimensional shapes. *Nature* **2009**, *459* (7245), 414–418.
- 1129 (20) Douglas, S. M.; Marblestone, A. H.; Teerapittayanon, S.; Vazquez, A.; Church, G. M.; Shih, W. M. Rapid prototyping of 3D DNA-origami shapes with caDNAno. *Nucleic Acids Res.* **2009**, *37* (15), 5001–5006.
- 1130 (21) Dietz, H.; Douglas, S. M.; Shih, W. M. Folding DNA into Twisted and Curved Nanoscale Shapes. *Science* **2009**, *325* (5941), 725–730.
- 1131 (22) Zhang, F.; Jiang, S.; Wu, S.; Li, Y.; Mao, C.; Liu, Y.; Yan, H. Complex wireframe DNA origami nanostructures with multi-arm junction vertices. *Nat. Nanotechnol.* **2015**, *10* (9), 779–784.
- 1132 (23) Benson, E.; Mohammed, A.; Gardell, J.; Masich, S.; Czeizler, E.; Orponen, P.; Höglberg, B. DNA rendering of polyhedral meshes at the nanoscale. *Nature* **2015**, *523* (7561), 441–444.
- 1133 (24) Han, D.; Qi, X.; Myhrvold, C.; Wang, B.; Dai, M.; Jiang, S.; Bates, M.; Liu, Y.; An, B.; Zhang, F.; Yan, H.; Yin, P. Single-stranded DNA and RNA origami. *Science* **2017**, *358* (6369) DOI: [10.1126/science.aoa2648](https://doi.org/10.1126/science.aoa2648).
- 1134 (25) Liu, W.; Zhong, H.; Wang, R.; Seeman, N. C. Crystalline Two-Dimensional DNA-Origami Arrays. *Angew. Chem., Int. Ed.* **2011**, *50* (1), 264–267.
- 1135 (26) Iinuma, R.; Ke, Y.; Jungmann, R.; Schlichthaerle, T.; Woehrstein, J. B.; Yin, P. Polyhedra Self-Assembled from DNA Tripods and Characterized with 3D DNA-PAINT. *Science* **2014**, *344*, 65–69.
- 1136 (27) Tikhomirov, G.; Petersen, P.; Qian, L. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. *Nature* **2017**, *552* (7683), 67–71.
- 1137 (28) Yao, G.; Zhang, F.; Wang, F.; Peng, T.; Liu, H.; Poppleton, E.; Sulc, P.; Jiang, S.; Liu, L.; Gong, C.; Jing, X.; Liu, X.; Wang, L.; Liu, Y.; Fan, C.; Yan, H. Meta-DNA structures. *Nat. Chem.* **2020**, *12* (11), 1067–1075.
- 1138 (29) Tian, Y.; Lhermitte, J. R.; Bai, L.; Vo, T.; Xin, H. L.; Li, H.; Li, R.; Fukuto, M.; Yager, K. G.; Kahn, J. S.; Xiong, Y.; Minevich, B.; Kumar, S. K.; Gang, O. Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels. *Nat. Mater.* **2020**, *19* (7), 789–796.
- 1139 (30) Woo, S.; Rothemund, P. W. K. Programmable molecular recognition based on the geometry of DNA nanostructures. *Nat. Chem.* **2011**, *3* (8), 620–627.

1205 (31) Gerling, T.; Wagenbauer, K. F.; Neuner, A. M.; Dietz, H. 1206 Dynamic DNA devices and assemblies formed by shape-comple- 1207 mentary, non-base pairing 3D components. *science* **2015**, *347* (6229), 1208 1446–1452.

1209 (32) Cox, W. G.; Singer, V. L. Fluorescent DNA hybridization probe 1210 preparation using amine modification and reactive dye coupling. 1211 *BioTechniques* **2004**, *36* (1), 114–122.

1212 (33) Schröder, T.; Scheible, M. B.; Steiner, F.; Vogelsang, J.; 1213 Tinnefeld, P. Interchromophoric Interactions Determine the Max- 1214 imum Brightness Density in DNA Origami Structures. *Nano Lett.* 1215 **2019**, *19* (2), 1275–1281.

1216 (34) Praetorius, F.; Dietz, H. Self-assembly of genetically encoded 1217 DNA-protein hybrid nanoscale shapes. *Science* **2017**, *355* (6331), 1218 No. eaam5488.

1219 (35) Li, S.; Jiang, Q.; Liu, S.; Zhang, Y.; Tian, Y.; Song, C.; Wang, J.; 1220 Zou, Y.; Anderson, G. J.; Han, J.-Y.; Chang, Y.; Liu, Y.; Zhang, C.; 1221 Chen, L.; Zhou, G.; Nie, G.; Yan, H.; Ding, B.; Zhao, Y. A DNA 1222 nanorobot functions as a cancer therapeutic in response to a 1223 molecular trigger *in vivo*. *Nat. Biotechnol.* **2018**, *36* (3), 258–264.

1224 (36) Ge, H.; Wang, D.; Pan, Y.; Guo, Y.; Li, H.; Zhang, F.; Zhu, X.; 1225 Li, Y.; Zhang, C.; Huang, L. Sequence-Dependent DNA Function- 1226 alization of Upconversion Nanoparticles and Their Programmable 1227 Assemblies. *Angew. Chem., Int. Ed.* **2020**, *59* (21), 8133–8137.

1228 (37) Jungmann, R.; Steinbauer, C.; Scheible, M.; Kuzyk, A.; 1229 Tinnefeld, P.; Simmel, F. C. Single-Molecule Kinetics and Super- 1230 Resolution Microscopy by Fluorescence Imaging of Transient Binding 1231 on DNA Origami. *Nano Lett.* **2010**, *10* (11), 4756–4761.

1232 (38) Jungmann, R.; Avendaño, M. S.; Woehrstein, J. B.; Dai, M.; 1233 Shih, W. M.; Yin, P. Multiplexed 3D cellular super-resolution imaging 1234 with DNA-PAINT and Exchange-PAINT. *Nat. Methods* **2014**, *11* (3), 1235 313–318.

1236 (39) Schueder, F.; Lara-Gutiérrez, J.; Beliveau, B. J.; Saka, S. K.; 1237 Sasaki, H. M.; Woehrstein, J. B.; Strauss, M. T.; Grabmayr, H.; Yin, P.; 1238 Jungmann, R. Multiplexed 3D super-resolution imaging of whole cells 1239 using spinning disk confocal microscopy and DNA-PAINT. *Nat. 1240 Commun.* **2017**, *8*, 2090.

1241 (40) Strauss, M. T.; Schueder, F.; Haas, D.; Nickels, P. C.; 1242 Jungmann, R. Quantifying absolute addressability in DNA origami 1243 with molecular resolution. *Nat. Commun.* **2018**, *9*, 1600.

1244 (41) Hahn, J.; Chou, L. Y. T.; Sørensen, R. S.; Guerra, R. M.; Shih, 1245 W. M. Extrusion of RNA from a DNA-Origami-Based Nanofactory. 1246 *ACS Nano* **2020**, *14* (2), 1550–1559.

1247 (42) Wade, O. K.; Woehrstein, J. B.; Nickels, P. C.; Strauss, S.; Stehr, 1248 F.; Stein, J.; Schueder, F.; Strauss, M. T.; Ganji, M.; Schnitzbauer, J.; 1249 Grabmayr, H.; Yin, P.; Schwille, P.; Jungmann, R. 124-Color Super- 1250 resolution Imaging by Engineering DNA-PAINT Blinking Kinetics. 1251 *Nano Lett.* **2019**, *19* (4), 2641–2646.

1252 (43) Schueder, F.; Stein, J.; Stehr, F.; Auer, A.; Sperl, B.; Strauss, M. 1253 T.; Schwille, P.; Jungmann, R. An order of magnitude faster DNA- 1254 PAINT imaging by optimized sequence design and buffer conditions. 1255 *Nat. Methods* **2019**, *16* (11), 1101–1104.

1256 (44) Strauss, S.; Jungmann, R. Up to 100-fold speed-up and 1257 multiplexing in optimized DNA-PAINT. *Nat. Methods* **2020**, *17* (8), 1258 789–791.

1259 (45) Kempfer, S.; Khmelinskaia, A.; Strauss, M. T.; Schwille, P.; 1260 Jungmann, R.; Liedl, T.; Bae, W. Single Particle Tracking and Super- 1261 Resolution Imaging of Membrane-Assisted Stop-and-Go Diffusion 1262 and Lattice Assembly of DNA Origami. *ACS Nano* **2019**, *13* (2), 1263 996–1002.

1264 (46) Gür, F. N.; Kempfer, S.; Schueder, F.; Sikeler, C.; Urban, M. J.; 1265 Jungmann, R.; Nickels, P. C.; Liedl, T. Double- to Single-Strand 1266 Transition Induces Forces and Motion in DNA Origami Nanostruc- 1267 tures. *Adv. Mater.* **2021**, *33* (37), 2101986.

1268 (47) Scheckenbach, M.; Schubert, T.; Forthmann, C.; Glembockyte, 1269 V.; Tinnefeld, P. Self-Regeneration and Self-Healing in DNA Origami 1270 Nanostructures. *Angew. Chem., Int. Ed.* **2021**, *60* (9), 4931–4938.

1271 (48) Wang, Y.; Woehrstein, J. B.; Donoghue, N.; Dai, M.; Avendaño, 1272 M. S.; Schackmann, R. C. J.; Zoeller, J. J.; Wang, S. S. H.; Tillberg, P. 1273 W.; Park, D.; Lapan, S. W.; Boyden, E. S.; Brugge, J. S.; Kaeser, P. S.; 1274 Church, G. M.; Agasti, S. S.; Jungmann, R.; Yin, P. Rapid Sequential 1275 In Situ Multiplexing with DNA Exchange Imaging in Neuronal Cells 1276 and Tissues. *Nano Lett.* **2017**, *17* (10), 6131–6139.

1277 (49) Schlichthaerle, T.; Eklund, A. S.; Schueder, F.; Strauss, M. T.; 1278 Tiede, C.; Curd, A.; Ries, J.; Peckham, M.; Tomlinson, D. C.; 1279 Jungmann, R. Site-Specific Labeling of Affimers for DNA-PAINT 1279 Microscopy. *Angew. Chem., Int. Ed.* **2018**, *57* (34), 11060–11063.

1280 (50) Sograte-Idrissi, S.; Oleksiwets, N.; Isbaner, S.; Eggert- 1281 Martinez, M.; Enderlein, J.; Tsukanov, R.; Opazo, F. Nanobody 1282 Detection of Standard Fluorescent Proteins Enables Multi-Target 1283 DNA-PAINT with High Resolution and Minimal Displacement 1284 Errors. *Cells* **2019**, *8* (1), 48.

1285 (51) Filius, M.; Cui, T. J.; Ananth, A. N.; Docter, M. W.; Hegge, J. 1286 W.; Van Der Oost, J.; Joo, C. High-Speed Super-Resolution Imaging 1287 Using Protein-Assisted DNA-PAINT. *Nano Lett.* **2020**, *20* (4), 2264– 1288 2270.

1289 (52) Strauss, S.; Nickels, P. C.; Strauss, M. T.; Jimenez Sabinina, V.; 1290 Ellenberg, J.; Carter, J. D.; Gupta, S.; Janjic, N.; Jungmann, R. 1291 Modified aptamers enable quantitative sub-10-nm cellular DNA- 1292 PAINT imaging. *Nat. Methods* **2018**, *15* (9), 685–688.

1293 (53) Schlichthaerle, T.; Strauss, M. T.; Schueder, F.; Auer, A.; 1294 Nijmeijer, B.; Kueblbeck, M.; Jimenez Sabinina, V.; Thevathasan, J. 1295 V.; Ries, J.; Ellenberg, J.; Jungmann, R. Direct Visualization of Single 1296 Nuclear Pore Complex Proteins Using Genetically-Encoded Probes 1297 for DNA-PAINT. *Angew. Chem., Int. Ed.* **2019**, *58* (37), 13004– 1298 13008.

1299 (54) Wang, D.-X.; Wang, J.; Wang, Y.-X.; Du, Y.-C.; Huang, Y.; 1300 Tang, A.-N.; Cui, Y.-X.; Kong, D.-M. DNA nanostructure-based 1301 nucleic acid probes: construction and biological applications. *Chemical 1302 Science* **2021**, *12* (22), 7602–7622.

1303 (55) Li, C.; Luo, S.; Wang, J.; Shen, Z.; Wu, Z.-S. Nuclease-resistant 1304 signaling nanostructures made entirely of DNA oligonucleotides. 1305 *Nanoscale* **2021**, *13* (15), 7034–7051.

1306 (56) Wu, P.; Hwang, K.; Lan, T.; Lu, Y. A DNAzyme-Gold 1307 Nanoparticle Probe for Uranyl Ion in Living Cells. *J. Am. Chem. Soc.* 1308 **2013**, *135* (14), 5254–5257.

1309 (57) Torabi, S. F.; Wu, P.; McGhee, C. E.; Chen, L.; Hwang, K.; 1310 Zheng, N.; Cheng, J.; Lu, Y. In vitro selection of a sodium-specific 1311 DNAzyme and its application in intracellular sensing. *Proc. Natl. Acad. 1312 Sci. U. S. A.* **2015**, *112* (19), 5903–5908.

1313 (58) Li, L.; Feng, J.; Fan, Y.; Tang, B. Simultaneous imaging of 1314 Zn(2+) and Cu(2+) in living cells based on DNAzyme modified gold 1315 nanoparticle. *Anal. Chem.* **2015**, *87* (9), 4829–4835.

1316 (59) Qiu, L.; Zhang, T.; Jiang, J.; Wu, C.; Zhu, G.; You, M.; Chen, 1317 X.; Zhang, L.; Cui, C.; Yu, R.; Tan, W. Cell membrane-anchored 1318 biosensors for real-time monitoring of the cellular microenvironment. 1319 *J. Am. Chem. Soc.* **2014**, *136* (38), 13090–13093.

1320 (60) Yang, Z.; Loh, K. Y.; Chu, Y.-T.; Feng, R.; Satyavolu, N. S. R.; 1321 Xiong, M.; Nakamata Huynh, S. M.; Hwang, K.; Li, L.; Xing, H.; 1322 Zhang, X.; Chemla, Y. R.; Gruebele, M.; Lu, Y. Optical Control of 1323 Metal Ion Probes in Cells and Zebrafish Using Highly Selective 1324 DNAzymes Conjugated to Upconversion Nanoparticles. *J. Am. Chem. 1325 Soc.* **2018**, *140* (50), 17656–17665.

1326 (61) Lin, Y.; Yang, Z.; Lake, R. J.; Zheng, C.; Lu, Y. Enzyme- 1327 Mediated Endogenous and Bioorthogonal Control of a DNAzyme 1328 Fluorescent Sensor for Imaging Metal Ions in Living Cells. *Angew. 1329 Chem., Int. Ed.* **2019**, *58* (47), 17061–17067.

1330 (62) Xiao, M.; Lai, W.; Man, T.; Chang, B.; Li, L.; Chandrasekaran, 1331 A. R.; Pei, H. Rationally Engineered Nucleic Acid Architectures for 1332 Biosensing Applications. *Chem. Rev.* **2019**, *119* (22), 11631–11717.

1333 (63) Meng, H. M.; Liu, H.; Kuai, H.; Peng, R.; Mo, L.; Zhang, X. B. 1334 Aptamer-integrated DNA nanostructures for biosensing, bioimaging 1335 and cancer therapy. *Chem. Soc. Rev.* **2016**, *45* (9), 2583–2602.

1336 (64) Zheng, X.; Peng, R.; Jiang, X.; Wang, Y.; Xu, S.; Ke, G.; Fu, T.; 1337 Liu, Q.; Huan, S.; Zhang, X. Fluorescence Resonance Energy 1338 Transfer-Based DNA Nanoprism with a Split Aptamer for Adenosine 1339 Triphosphate Sensing in Living Cells. *Anal. Chem.* **2017**, *89* (20), 1340 10941–10947.

1341

1342 (65) Zhao, J.; Gao, J.; Xue, W.; Di, Z.; Xing, H.; Lu, Y.; Li, L. 1343 Upconversion Luminescence-Activated DNA Nanodevice for ATP 1344 Sensing in Living Cells. *J. Am. Chem. Soc.* **2018**, *140* (2), 578–581.

1345 (66) Peng, P.; Du, Y.; Zheng, J.; Wang, H.; Li, T. Reconfigurable 1346 Bioinspired Framework Nucleic Acid Nanoplatform Dynamically 1347 Manipulated in Living Cells for Subcellular Imaging. *Angew. Chem.*, 1348 *Int. Ed.* **2019**, *58* (6), 1648–1653.

1349 (67) Cheglakov, Z.; Cronin, T. M.; He, C.; Weizmann, Y. Live Cell 1350 MicroRNA Imaging Using Cascade Hybridization Reaction. *J. Am.* 1351 *Chem. Soc.* **2015**, *137* (19), 6116–6119.

1352 (68) Karunananayake Mudiyanselage, A.; Yu, Q.; Leon-Duque, M. A.; 1353 Zhao, B.; Wu, R.; You, M. Genetically Encoded Catalytic Hairpin 1354 Assembly for Sensitive RNA Imaging in Live Cells. *J. Am. Chem. Soc.* 1355 **2018**, *140* (28), 8739–8745.

1356 (69) Liang, C. P.; Ma, P. Q.; Liu, H.; Guo, X.; Yin, B. C.; Ye, B. C. 1357 Rational Engineering of a Dynamic, Entropy-Driven DNA Nano- 1358 machine for Intracellular MicroRNA Imaging. *Angew. Chem., Int. Ed.* 1359 *Engl.* **2017**, *56* (31), 9077–9081.

1360 (70) Meng, X.; Dai, W.; Zhang, K.; Dong, H.; Zhang, X. Imaging 1361 multiple microRNAs in living cells using ATP self-powered strand- 1362 displacement cascade amplification. *Chem. Sci.* **2018**, *9* (5), 1184– 1363 1190.

1364 (71) He, L.; Lu, D.; Liang, H.; Xie, S.; Zhang, X.; Liu, Q.; Yuan, Q.; 1365 Tan, W. mRNA-Initiated, Three-Dimensional DNA Amplifier Able to 1366 Function inside Living Cells. *J. Am. Chem. Soc.* **2018**, *140* (1), 258– 1367 263.

1368 (72) Wu, H.; Zhou, W.-J.; Liu, L.; Fan, Z.; Tang, H.; Yu, R.-Q.; 1369 Jiang, J.-H. In vivo mRNA imaging based on tripartite DNA probe 1370 mediated catalyzed hairpin assembly. *Chem. Commun.* **2020**, *56* (62), 1371 8782–8785.

1372 (73) Liu, R.; Zhang, S.; Zheng, T. T.; Chen, Y. R.; Wu, J. T.; Wu, Z. 1373 S. Intracellular Nonenzymatic In Situ Growth of Three-Dimensional 1374 DNA Nanostructures for Imaging Specific Biomolecules in Living 1375 Cells. *ACS Nano* **2020**, *14* (8), 9572–9584.

1376 (74) Wang, H.; Peng, P.; Wang, Q.; Du, Y.; Tian, Z.; Li, T. 1377 Environment-Recognizing DNA-Computation Circuits for the Intra- 1378 cellular Transport of Molecular Payloads for mRNA Imaging. *Angew.* 1379 *Chem., Int. Ed. Engl.* **2020**, *59* (15), 6099–6107.

1380 (75) Xiao, M.; Wang, X.; Li, L.; Pei, H. Stochastic RNA Walkers for 1381 Intracellular MicroRNA Imaging. *Anal. Chem.* **2019**, *91* (17), 11253– 1382 11258.

1383 (76) Fu, X.; Ke, G.; Peng, F.; Hu, X.; Li, J.; Shi, Y.; Kong, G.; Zhang, 1384 X. B.; Tan, W. Size-selective molecular recognition based on a 1385 confined DNA molecular sieve using cavity-tunable framework nucleic 1386 acids. *Nat. Commun.* **2020**, *11* (1), 1518.

1387 (77) Fan, H.; Bai, H.; Liu, Q.; Xing, H.; Zhang, X.-B.; Tan, W. 1388 Monitoring Telomerase Activity in Living Cells with High Sensitivity 1389 Using Cascade Amplification Reaction-Based Nanoprobe. *Anal. Chem.* 1390 **2019**, *91* (20), 13143–13151.

1391 (78) Pavlov, V.; Xiao, Y.; Gill, R.; Dishon, A.; Kotler, M.; Willner, I. 1392 Amplified Chemiluminescence Surface Detection of DNA and 1393 Telomerase Activity Using Catalytic Nucleic Acid Labels. *Anal.* 1394 *Chem.* **2004**, *76* (7), 2152–2156.

1395 (79) Herbert, B.-S.; Hochreiter, A. E.; Wright, W. E.; Shay, J. W. 1396 Nonradioactive detection of telomerase activity using the telomeric 1397 repeat amplification protocol. *Nat. Protoc.* **2006**, *1* (3), 1583–1590.

1398 (80) Tian, L.; Weizmann, Y. Real-Time Detection of Telomerase 1399 Activity Using the Exponential Isothermal Amplification of Telomere 1400 Repeat Assay. *J. Am. Chem. Soc.* **2013**, *135* (5), 1661–1664.

1401 (81) Guo, X.; Wu, X.; Sun, M.; Xu, L.; Kuang, H.; Xu, C. 1402 Tetrahedron Probes for Ultrasensitive In Situ Detection of 1403 Telomerase and Surface Glycoprotein Activity in Living Cells. *Anal.* 1404 *Chem.* **2020**, *92* (2), 2310–2315.

1405 (82) Shen, R.; Zou, L.; Wu, S.; Li, T.; Wang, J.; Liu, J.; Ling, L. A 1406 novel label-free fluorescent detection of histidine based upon Cu(2+)- 1407 specific DNAzyme and hybridization chain reaction. *Spectrochim Acta* 1408 *A Mol. Biomol. Spectrosc.* **2019**, *213*, 42–47.

1409 (83) McConnell, E. M.; Cozma, I.; Mou, Q.; Brennan, J. D.; Lu, Y.; Li, Y. Biosensing with DNAzymes. *Chem. Soc. Rev.* **2021**, *50* (16), 1410 8954–8994. 1411

1412 (84) Kong, R. M.; Zhang, X. B.; Chen, Z.; Meng, H. M.; Song, Z. L.; Tan, W.; Shen, G. L.; Yu, R. Q. Unimolecular catalytic DNA 1413 biosensor for amplified detection of L-histidine via an enzymatic 1414 recycling cleavage strategy. *Anal. Chem.* **2011**, *83* (20), 7603–7607. 1415

1416 (85) Meng, H.-M.; Zhang, X.; Lv, Y.; Zhao, Z.; Wang, N.-N.; Fu, T.; Fan, H.; Liang, H.; Qiu, L.; Zhu, G.; Tan, W. DNA Dendrimer: An 1417 Efficient Nanocarrier of Functional Nucleic Acids for Intracellular 1418 Molecular Sensing. *ACS Nano* **2014**, *8* (6), 6171–6181. 1419

1420 (86) He, J.-L.; Zhang, Y.; Yang, C.; Huang, S.-Y.; Wu, L.; Mei, T.-T.; Wang, J.; Cao, Z. Hybridization chain reaction based DNAzyme 1421 fluorescent sensor for l-histidine assay. *Analytical Methods* **2019**, *11* 1422 (16), 2204–2210. 1423

1424 (87) Xu, Y. T.; Ruan, Y. F.; Wang, H. Y.; Yu, S. Y.; Yu, X. D.; Zhao, W. W.; Chen, H. Y.; Xu, J. A Practical Electrochemical Nanotool for 1425 Facile Quantification of Amino Acids in Single Cell. *Small* **2021**, *17* 1426 (26), 2100503. 1427

1428 (88) Jiang, D.; Sun, Y.; Li, J.; Li, Q.; Lv, M.; Zhu, B.; Tian, T.; Cheng, D.; Xia, J.; Zhang, L.; Wang, L.; Huang, Q.; Shi, J.; Fan, C. 1429 Multiple-Armed Tetrahedral DNA Nanostructures for Tumor- 1430 Targeting, Dual-Modality in Vivo Imaging. *ACS Appl. Mater. Interfaces* 1431 **2016**, *8* (7), 4378–4384. 1432

1433 (89) Wang, L.; Jacobson, O.; Avdic, D.; Rotstein, B. H.; Weiss, I. D.; Collier, L.; Chen, X.; Vasdev, N.; Liang, S. H. Ortho-Stabilized 1434 F-Azido Click Agents and their Application in PET Imaging with 1435 Single-Stranded DNA Aptamers. *Angew. Chem., Int. Ed. Engl.* **2015**, *54* 1436 (43), 12777–12781. 1437

1438 (90) Zhu, H.; Zhang, L.; Liu, Y.; Zhou, Y.; Wang, K.; Xie, X.; Song, L.; Wang, D.; Han, C.; Chen, Q. Aptamer-PEG-modified Fe₃O₄@Mn 1439 as a novel T1- and T2- dual-model MRI contrast agent targeting 1440 hypoxia-induced cancer stem cells. *Sci. Rep.* **2016**, *6*, 39245. 1441

1442 (91) Kim, D.; Jeong, Y. Y.; Jon, S. A Drug-Loaded Aptamer-Gold 1443 Nanoparticle Bioconjugate for Combined CT Imaging and Therapy 1444 of Prostate Cancer. *ACS Nano* **2010**, *4* (7), 3689–3696. 1444

1445 (92) Zhang, J.; Smaga, L. P.; Satyavolu, N. S. R.; Chan, J.; Lu, Y. 1446 DNA Aptamer-Based Activatable Probes for Photoacoustic Imaging in 1447 Living Mice. *J. Am. Chem. Soc.* **2017**, *139* (48), 17225–17228. 1447

1448 (93) Peng, R.; Zheng, X.; Lyu, Y.; Xu, L.; Zhang, X.; Ke, G.; Liu, Q.; You, C.; Huan, S.; Tan, W. Engineering a 3D DNA-Logic Gate 1449 Nanomachine for Bispecific Recognition and Computing on Target 1450 Cell Surfaces. *J. Am. Chem. Soc.* **2018**, *140* (31), 9793–9796. 1451

1452 (94) Zhou, Z.; Fan, D.; Wang, J.; Sohn, Y. S.; Nechushtai, R.; 1453 Willner, I. Triggered Dimerization and Trimerization of DNA 1454 Tetrahedra for Multiplexed miRNA Detection and Imaging of Cancer 1455 Cells. *Small* **2021**, *17* (6), No. e2007355. 1455

1456 (95) Chang, X.; Zhang, C.; Lv, C.; Sun, Y.; Zhang, M.; Zhao, Y.; Yang, L.; Han, D.; Tan, W. Construction of a Multiple-Aptamer- 1457 Based DNA Logic Device on Live Cell Membranes via Associative 1458 Toehold Activation for Accurate Cancer Cell Identification. *J. Am.* 1459 *Chem. Soc.* **2019**, *141* (32), 12738–12743. 1460

1461 (96) Zhao, H.; Lv, J.; Li, F.; Zhang, Z.; Zhang, C.; Gu, Z.; Yang, D. 1462 Enzymatical biomineralization of DNA nanoflowers mediated by 1463 manganese ions for tumor site activated magnetic resonance imaging. 1463 *Biomaterials* **2021**, *268*, 120591. 1464

1465 (97) Kim, J.; Yu, A. M.; Kubelick, K. P.; Emelianov, S. Y. Gold 1466 nanoparticles conjugated with DNA aptamer for photoacoustic 1466 detection of human matrix metalloproteinase-9. *Photoacoustics* **2022**, 1467 25, 100307. 1468

1469 (98) Hu, Q.; Li, H.; Wang, L.; Gu, H.; Fan, C. DNA 1470 Nanotechnology-Enabled Drug Delivery Systems. *Chem. Rev.* **2019**, 1470 119 (10), 6459–6506. 1471