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V2X-Sim: Multi-Agent Collaborative Perception
Dataset and Benchmark for Autonomous Driving
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Siheng Chen , and Chen Feng , Member, IEEE

Abstract—Vehicle-to-everything (V2X) communication tech-
niques enable the collaboration between vehicles and many other
entities in the neighboring environment, which could fundamen-
tally improve the perception system for autonomous driving. How-
ever, the lack of a public dataset significantly restricts the re-
search progress of collaborative perception. To fill this gap, we
present V2X-Sim, a comprehensive simulated multi-agent percep-
tion dataset for V2X-aided autonomous driving. V2X-Sim pro-
vides: (1) multi-agent sensor recordings from the road-side unit
(RSU) and multiple vehicles that enable collaborative perception,
(2) multi-modality sensor streams that facilitate multi-modality
perception, and (3) diverse ground truths that support various
perception tasks. Meanwhile, we build an open-source testbed and
provide a benchmark for the state-of-the-art collaborative percep-
tion algorithms on three tasks, including detection, tracking and
segmentation. V2X-Sim seeks to stimulate collaborative perception
research for autonomous driving before realistic datasets become
widely available.

Index Terms—Deep learning for visual perception, multi-robot
systems, data sets for robotic vision.

I. INTRODUCTION

P ERCEPTION is a fundamental capability for autonomous
vehicles, which allows them to represent, identify, and

interpret sensory input for understanding the complex surround-
ings. In literature, single-vehicle perception has been intensively
studied thanks to the well-established driving datasets [1]–[3],
and researchers have proposed various algorithms to deal with
different downstream tasks [4]–[6].

Despite recent advances in single-vehicle perception, the
individual viewpoint often results in degraded perception in
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Fig. 1. (a) Intersection for vehicle-to-everything (V2X) communication. (b)
Workflow of multi-agent collaborative perception with intermediate-/feature-
based strategy. We benchmark collaborative object detection, multi-object track-
ing, and semantic segmentation in the bird’s eye view (BEV).

long-range or occluded areas. A promising solution to this prob-
lem is through vehicle-to-everything (V2X) [7], a cutting-edge
communication technology that enables dialogue between a
vehicle and other entities, including vehicle-to-vehicle (V2V)
and vehicle-to-infrastructure (V2I). With the aid of V2X com-
munication, we are able to upgrade single-vehicle perception
to collaborative perception, which introduces more viewpoints
to help autonomous vehicles see further, better and even see
through occlusion, thereby fundamentally enhancing the capa-
bility of perception.

Collaborative perception naturally draws on communica-
tion and perception. Its development requires expertise from
both communities. Recently, the communication community
has made enormous efforts to promote such a study [8]–[10];
however, only a few works have been proposed from the per-
spective of perception [11]–[15]. One major reason for this is
the lack of well-designed and organized collaborative perception
datasets. Due to the immaturity of V2X and the cost of simul-
taneously operating multiple autonomous vehicles, it is very
expensive and laborious to build such a real dataset for research
communities. Therefore, we synthesize a comprehensive and
publicly available dataset, named as V2X-Sim, to advance the
study of collaborative perception for V2X-communication-aided
autonomous driving.

To generate V2X-Sim, we employ SUMO [16], a micro-traffic
simulation, to produce numerically-realistic traffic flow, and
CARLA [17], a widely-used open-source simulator for au-
tonomous driving research, to retrieve well-synchronized sensor
streams from multiple vehicles as well as the road-side unit
(RSU). Meanwhile, multi-modality sensor streams of different
entities are recorded to enable cross-modality perception. In
addition, diverse annotations including bounding boxes, vehicle
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TABLE I
COMPARISON OF COLLABORATIVE PERCEPTION DATASETS FOR AUTONOMOUS

DRIVING. THERE ARE NO PUBLIC DATASETS WHICH SUPPORT BOTH V2V AND

V2I RESEARCH: MULTI-AGENT DATA ARE EITHER GENERATED BY

SIMULATORS [12], [20] OR CREATED BY SELECTING CONSECUTIVE FRAMES

FROM SINGLE-AGENT REAL DATASETS [11], [21], [22]. SEVERAL WORKS

COLLECT DATA FROM MULTIPLE INFRASTRUCTURE SENSORS: [23] IN

SIMULATION, [24], [25] IN REAL WORLD. OUR DATASET IS THE FIRST PUBLIC

MULTI-AGENT MULTI-MODALITY DATASET WHICH SUPPORTS DIFFERENT

COLLABORATIVE PERCEPTION TASKS.

trajectories, and semantic labels are provided to facilitate various
downstream tasks. To better serve multi-agent, multi-modality,
and multi-task perception research for autonomous driving,
we further provide a benchmark for three crucial perception
tasks (collaborative detection, tracking, and segmentation) on
the proposed dataset using the state-of-the-art collaboration
strategies [12], [13], [18], [19]. In summary, our contributions
are two-fold:
� We propose V2X-Sim, a comprehensive V2X perception

dataset for autonomous driving, to support multi-agent
multi-modality multi-task perception research.

� We create an open-source testbed for collaborative percep-
tion methods, and provide a benchmark on three tasks to
encourage more research in this field.

II. RELATED WORK

Autonomous driving dataset: Since the pioneering dataset
KITTI [2] was released, the autonomous driving community has
been trying to increase the dataset comprehensiveness in terms of
driving scenarios, sensor modalities, and data annotations. Re-
garding driving scenarios, current datasets cover crowded urban
scenes [29], adverse weather conditions [30], night scenes [31],
and multiple cities [1] to enrich the data distribution. As for
sensor modalities, nuScenes [1] collects data with Radar, RGB
cameras, and LiDAR in a 360◦ viewpoint; WoodScape [32]
captures data with fisheye cameras. Regarding data annotations,
semantic labels in both images [33]–[36] and point clouds [37],
[38] are provided to enable semantic segmentation; 2D/3D
box trajectories are offered [39], [40] to facilitate tracking and
prediction. In summary, most real datasets emphasize the data
comprehensiveness in single-vehicle situations, but ignore the
multi-vehicle scenarios.

V2X system and dataset: By sharing information with other
vehicles or the RSU, V2X mitigates the shortcomings of single-
vehicle perception and planning such as the limited sensing
range and frequent occlusion [7]. Previous research [41] has
developed an enhanced cooperative microscopic traffic model
in V2X scenarios, and studied the effect of V2X in traffic
disturbance scenarios. [42] proposes a multi-modal cooperative
perception system that provides see-through, lifted-seat, satellite
and all-around views to drivers. More recently, COOPER [11]
investigates raw-data level collaborative perception to improve
the detection capability for autonomous driving. V2VNet [12]

proposes intermediate-feature level collaboration to promote the
vehicle’s perception and prediction capability. Several works
use multiple infrastructure sensors to jointly perceive the en-
vironment and employ output-level collaboration with vehicle-
to-infrastructure communication [23], [24]. As for the datasets,
[11], [21], [22] simulate the V2V scenarios with different frames
from KITTI [2]. Yet, these datasets are unrealistic multi-agent
datasets for the measurements are not captured by different
viewpoints. Some other works use a platoon strategy for data
capture [43], [44], but they are biased because the observations
were highly correlated with each other. The most relevant work
is V2V-Sim [12], which is based on a high-quality LiDAR sim-
ulator [26]. Unfortunately, V2V-Sim does not include the V2I
scenario and is not publicly available. Moreover, OPV2V [20]
and CODD [28] only support the detection task in the V2V
scenario. Existing collaborative perception datasets are summa-
rized in Table I: V2X-Sim1 is currently the most comprehensive
one with multi-agent multi-modality sensory streams in both
V2V and V2I scenarios, and can support various downstream
tasks such as multi-agent collaborative detection, tracking, and
semantic segmentation.

III. V2X-SIM DATASET

V2X-Sim could enable more research on the collaboration
strategy among vehicles to achieve a more robust perception.
This could fundamentally benefit autonomous driving, intelli-
gent transportation systems, smart cities, etc..

A. Sensor Suite on Vehicles and RSU

Multi-modality data is essential for robust perception. To
ensure the comprehensiveness of our dataset, we equip each
vehicle with a sensor suite composed of RGB cameras, LiDAR,
GPS, IMU, and RSU with RGB cameras and LiDAR.

Sensor configuration: On both the vehicle and RSU, the
camera and LiDAR cover 360◦ horizontally to enable full-view
perception. Specifically, each vehicle carries six RGB cameras
following the nuScenes configuration [1]; the RSU is equipped
with four RGB cameras toward four directions at the cross-
road. We employ depth camera, semantic segmentation camera,
semantic LiDAR, and BEV semantic segmentation camera in
CARLA to obtain the corresponding ground-truth for each RGB
camera. Note that the BEV semantic segmentation camera is
based on orthogonal projection while the ego-vehicle seman-
tic segmentation camera uses perspective projection. Table II
summarizes the detailed sensor specification.

Sensor layout and coordinate system: The overall sensor
layout and coordinate system is shown in Fig. 2. The BEV
semantic camera shares the same x, y position with LiDAR yet
is placed higher to ensure a certain size of field of view. Note that
we invert the y-axis in CARLA and use a right-hand coordinate
system following nuScenes [1].

Diverse annotations: To assist downstream tasks including
detection, tracking and semantic segmentation, we provide var-
ious annotations such as 3D bounding boxes, pixel-wise and
point-wise semantic labels. Each box is defined by the location of
its center in x, y, z coordinates, and its width, length, and height.
In total, there are 23 categories such as the pedestrian, building,
ground, etc. In addition, precise depth values are provided for
depth estimation.

1This work extends the LiDAR-based V2V data in our previous work [13]
with more modalities, scenarios and downstream tasks.
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TABLE II
SENSOR SUITE OF VEHICLE (V) AND INTERSECTION (I).

B. CARLA-SUMO Co-Simulation

We consider it a realistic V2X scenario when multiple vehicles
with their own routes are simultaneously located in the same
intersection. Each intersection is also equipped with one RSU
with sensing capability. Regarding the traffic simulation, there
are several non-public simulators which can explicitly generate
data tailored for collaborative perception such as scenes with
occlusion, and sensor range limitations [45], [46]. Yet in this
work, we use open-source CARLA-SUMO co-simulation for
traffic flow simulation and data recording. Vehicles are spawned
in CARLA via SUMO to roam around in the town with random
routes. Hundreds of vehicles are spawned in different towns
(Town03,Town04 andTown05 that have crossroads as well as
T-junctions in both the crowded downtown and suburb highway).
We record several log files in different towns. Afterwards, at
different junctions, we read out 100 scenes from the log files.
Each scene has a 20-second duration, and we choose M(M =
2, 3, 4, 5) vehicles as well as one RSU in each scene as intelligent
agents to share information. Example scenarios are shown in
Fig. 3(a).

C. Downstream Tasks

Our dataset not only supports single-agent perception tasks
such as 3D object detection, tracking, image-/point-cloud-based
semantic segmentation, depth estimation, but also enables col-
laborative perception such as collaborative 3D object detection,
tracking, and collaborative BEV semantic segmentation in ur-
ban driving scenes. We provide a benchmark for collaborative
perception algorithms.

D. Dataset Statistics

Annotation statistics: We provide statistics on the annotations
and objects to highlight the inclusiveness and diversity of our
dataset. In Fig. 3(b) we analyze the size of the cars’ bounding
boxes within a 70 m range from ego vehicles in each frame. The
great variation of car sizes indicates that our scenes contain a
diverse set of car makes and models that well includes most of
the common real-world vehicles. Fig. 3(c) shows the annotation
count in each frame for vehicles within 0-30 m, 30-50 m, and
50-70 m ranges from each ego vehicle. It suggests that our
dataset features both crowded scenes (up to 100 annotations
within 50-70 m from the ego vehicle) and less crowded driving
scenarios (as low as 10 annotations within 30 m from the ego
vehicle). Fig. 3(d) contains statistics on the number of LiDAR
points per annotation for single-agent and multi-agent scenarios

Fig. 2. Sensor layout and coordinate systems.

respectively. The number of total LiDAR points of each object
annotation increases when there are more than one agents ob-
serving the same object. Specifically, for a single agent, there
are 183.83 points in each annotation on average, but the number
goes up to 875.59 points per annotation for multiple agents.

Scene features: We analyze the distance between each two ego
vehicles for every frame, as shown in Fig. 3(e). An overwhelm-
ing percentage of the ego vehicles are presented within 20-30
meters from each other, suggesting they are geographically
closely connected. The speed of cars within 70 m from ego
vehicles are shown in Fig. 3(f). Given the fact that our scenes
are selected near intersections, we notice that a major fraction
of vehicles are slower than 10 km/h. However, the maximum
speed is as high as 90+ km/h. Fig. 3(g) shows the percentage of
annotations observed by a certain number of ego vehicles, up to
5. Over 60% of the annotations are observed by at least two ego
vehicles.

IV. COLLABORATIVE PERCEPTION BENCHMARK

We benchmark three crucial perception tasks in autonomous
driving within the collaboration setting: detection, tracking, and
semantic segmentation. The three tasks have been extensively
studied since they generate essential perception knowledge for
autonomous vehicles to make safer decisions. For performance
evaluation, we follow the same evaluation protocol of the three
tasks in the single-agent scenario, except that we utilize the infor-
mation shared by other agents while the single-agent perception
do not have access to such information. We report the results in
two scenarios: (1) V2V only, and (2) V2X (V2V + V2I).

Dataset format and split: Our V2X-Sim dataset follows the
same storage format of nuScenes [1], an authoritative multi-
modality single-agent autonomous driving dataset. nuScenes
collected real-world single-agent driving data to promote the
single-agent autonomous driving research; while we simulate
multi-agent scenarios to facilitate the next-generation V2X-
aided collaborative perception technology. Each scene in our
dataset contains a 20 s traffic flow at a certain intersection
of three CARLA towns, and the multi-modality multi-agent
sensory streams are recorded at 5 Hz, meaning each scene is
composed of 100 frames. We generate 100 scenes with a total
of 10,000 frames, and in each scene, 2-5 vehicles are selected
as the collaboration agents. We use 8,000/1,000/1,000 frames
for training/validation/testing respectively, and we ensure that
there is no overlap in terms of the intersections across train-
ing/validation/testing set. Each frame has data sampled from
multiple agents (vehicles and RSU). There are 37,200 samples
in the training set, 5,000 samples in the validation set, and 5,000
samples in the test set. The split is shared across tasks.
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Fig. 3. (a) Visualizations of the bird’s eye view point cloud from different scenes. Gray denotes the point cloud captured by the RSU LiDAR. Each color (except
for gray) represents a vehicle, and the orange boxes denote the vehicles in the scene. (b) Statistics for car bounding box sizes. (c) Counts for annotations per
keyframe where the annotated vehicles are presented within 0-30 m, 30-50 m, and 50-70 m of the ego vehicles. (d) Counts for LiDAR points per annotation.
(e) Statistics of the distance between every two ego vehicles for all frames. (f) Speed of cars located within 70 m from ego vehicles. (g) Percentage of annotated
vehicles observed by 1-5 ego vehicles.

Implementation details: Bird’s-eye-view (BEV) is a widely
used and powerful representation in autonomous driving be-
cause it can describe the surrounding objects and overall context
via a compact top-down 2D map [47]. Therefore, BEV-based
representation is adopted in all three tasks: we use a 3D voxel
grid to represent the 3D world, employ binary representation,
and assign each voxel a positive label if the voxel contains
point cloud data. Since the generated 3D voxel grid can be
considered as a pseudo-image whose height dimension is the
channel dimension, we can perform the efficient 2D convolution
instead of the heavy 3D convolution. Specifically, we crop the
points located in the region of [−32, 32]× [−32, 32]× [−3, 2]
meters for vehicles defined in the ego-vehicle Euclidean coor-
dinate and [−32, 32]× [−32, 32]× [−8,−3] meters for RSU.
The width and length of each voxel are 0.25 m, and the height
is 0.4 m, meaning the generated BEV-based pseudo-image has
a dimension of 256× 256× 13 (W × L×H). Note that the
models in all the tasks consume the 3D BEV map and generate
perception results in 2D BEV.

Benchmark models: We aim to benchmark collaborative
perception strategies rather than the well-studied individual
perception methods. We consider early/intermediate/late/no
collaboration models for the benchmark. The intermediate mod-
els, including DiscoNet [13], V2VNet [12], When2com [18],
and Who2com [19], are based on the communication of the
intermediate features of the neural network. The methods in
our benchmark are as follows:
� Lower-bound: The single-agent perception model without

collaboration which processes a single-view point cloud is
considered as the lower-bound.

� Co-lower-bound: Collaborative lower-bound fuses the out-
put from different single-agent perception models.

� Upper-bound: The early collaboration model which trans-
mits raw point cloud data is the upper-bound.

� DiscoNet [13]: DiscoNet uses a directed collaboration
graph with matrix-valued edge weight to adaptively high-
light the informative spatial regions and reject the noisy
regions of the messages sent by the partners. After adaptive
message fusion, the updated features will be transmitted to
the output head for perception.

� V2VNet [12]: V2VNet uses a pose-aware graph neural
network to propagate agents’ information, and employs
a convolutional gated recurrent unit based module to ag-
gregate other agents’ information. After several rounds of
neural message passing, the updated features are fed into
the output head to generate perception results.

� When2com [18]: When2com employs attention-based
mechanism for communication group construction: the
partners with satisfactory correlation scores will be se-
lected as the collaborators. After the attention-score-based
weighted fusion, the updated features will be fed into
the output head for perceptions. The model with pose
information is marked by ∗.

� Who2com [19]: Who2com shares a similar idea with
When2com, yet it uses handshake mechanism to select the
collaborator: the partner with the highest score will be se-
lected as the collaborator. The model with pose information
is marked by ∗.

We implement a 3D perception pipeline that can be integrated
with all of the communication methods mentioned above. Since
the source codes of V2VNet is not publicly available, we re-
implement the V2VNet in PyTorch according to its pseudo-
code. For when2com/who2com, we borrow their communica-
tion modules from its official code. All of the intermediate
collaboration modules use the same architecture and conduct
collaboration at the same intermediate feature layer. Moreover,
all of the methods are trained with the same setting to ensure
that the performance gain comes from the collaboration instead
of irrelevant techniques.

A. Collaborative Object Detection in BEV

Problem definition: As the most crucial perception task in
autonomous driving, 3D object detection aims to recognize and
localize the objects in 3D scenes given a single frame, with the
following tracking, prediction and planning modules all heavily
relying on the detections. The models consume voxelized point
cloud and output BEV bounding boxes.

Backbone and evaluation: We use a classic anchor-based
detector composed of a convolutional encoder, a convolutional
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Fig. 4. Visualizations of BEV detection on V2X-Sim. Red and green boxes are the predictions and ground-truths respectively.

TABLE III
QUANTITATIVE RESULTS OF COLLABORATIVE BEV DETECTION ON V2X-SIM

RSU Denotes the Road-Side Unit. AP Denotes the Average Precision.
Δ is the Absolute Gain in AP Introduced by RSU

decoder, and an output header for classification and regres-
sion [48]. Regarding the loss function, we use the binary cross-
entropy loss to supervise the box classification and the smooth
L1 loss to supervise the box regression, following [48]. We
employ the generic BEV detection evaluation metric: Average
Precision (AP) at Intersection-over-Union (IoU) thresholds of
0.5 and 0.7. We target the vehicle detection and report the results
on the test set.

Quantitative results: Table III demonstrates the quantitative
comparisons on AP (@IoU = 0.5/0.7). We find that: (1) the
upper-bound performs best amongst all methods, and it improves
lower-bound significantly by 41.1% and 51.6% in terms of
AP@0.5 and AP@0.7 in the scenario of V2V only, validating
the necessity of collaboration; (2) V2V and V2I jointly can
generally improve the perception over V2V only with more
viewpoints, e.g., adding V2I can bring an improvement of 9.4%
for upper-bound, and 5.5% for V2VNet in terms of AP@0.5;
(3) among the intermediate models, DiscoNet achieves the
best performance via the well-designed distilled collaboration
graph, V2VNet achieves the second best performance via the
powerful neural message passing, and When2com/Who2com
only achieve comparable performance with lower-bound since
the attention-mechanism is not suitable in point-cloud-based
collaborative perception: the agents usually need complemen-
tary information rather than a highly similar one; (4) the
late collaboration model (co-lower-bound) hurts the detection

performance because of introducing extra false positives from
other vehicles.

Qualitative results: The qualitative results are shown in Fig. 4.
We see that the collaboration can fundamentally mitigate the
problems of long-range perception and occlusion.

B. Collaborative Multi-Object Tracking in BEV

Problem definition: Different from detection, multi-object
tracking requires the generation of temporally consistent per-
ception results. Multi-object tracking in BEV is to use bounding
boxes, object categories, and object identities to track different
objects within a temporal sequence.

Evaluation metrics: We mainly utilize HOTA (Higher Order
Tracking Accuracy) [49] to evaluate our BEV tracking perfor-
mance. HOTA can evaluate detection, association, and local-
ization performance via a single unified metric. In addition, the
classic multi-object tracking accuracy (MOTA) and multi-object
tracking precision (MOTP) [50] are also employed. MOTA can
measure detection errors and association errors. MOTP solely
measures localization accuracy.

Baseline tracker: We implement SORT [51] as our baseline
tracker. Given the detection results, SORT will combine the
Kalman Filter and Hungarian algorithm to achieve an accurate
and efficient tracking performance.

Quantitative results: Quantitative comparisons of BEV track-
ing are shown in Table IV. Similar to BEV detection, upper-
bound achieves the best performance in terms of MOTA and
HOTA. Meanwhile, adding V2I can improve MOTA largely yet
cannot help too much in MOTP. Co-lower-bound shows good
performance in localization accuracy (MOTP). A more advanced
tracker is required to exploit the collaboration for filling the
performance gap.

C. Collaborative Semantic Segmentation in BEV

Problem definition: We aim to conduct semantic segmentation
in BEV using only geometry point cloud. In the collabora-
tive perception scenarios, there are measurements collected by
multiple agents with distinct viewpoints. Therefore, there are
more information in the scene, facilitating the semantic scene
understanding.
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Fig. 5. Visualizations of collaborative BEV semantic segmentation.

TABLE IV
QUANTITATIVE RESULTS OF BEV TRACKING ON V2X-SIM. MOTA: MULTIPLE OBJECT TRACKING ACCURACY. MOTP: MULTIPLE OBJECT TRACKING PRECISION.

HOTA: HIGHER ORDER TRACKING ACCURACY. DETA: DETECTION ACCURACY. ASSA: ASSOCIATION ACCURACY. DETRE: DETECTION RECALL. DETPR:
DETECTION PRECISION. ASSRE: ASSOCIATION RECALL. ASSPR: ASSOCIATION PRECISION. LOCA: LOCALIZATION ACCURACY. THE NUMBER TO THE LEFT OF ()

DENOTES THE PERFORMANCE IN V2V SOLELY. THE NUMBER IN () REPRESENTS THE PERFORMANCE GAIN BY ADDING V2I

TABLE V
QUANTITATIVE RESULTS OF BEV SEGMENTATION ON V2X-SIM. THE NUMBER TO THE LEFT OF () DENOTES THE PERFORMANCE IN V2V SOLELY

The Number in () Represents the Performance Gain by Adding V2I

Baseline segmentation method and evaluation metrics: We
follow the backbone architecture as well as the loss function
of U-Net [52] in our baseline method. The input is a BEV-
based voxelized point cloud, and the output is BEV semantic
segmentation. We label and predict seven categories as listed
in Table V, while the remaining is unlabeled. In our bench-
mark, we evaluate the segmentation performance using mean
Intersection-over-Union (mIoU).

Quantitative results: As illustrated in Table V, we find that:
(1) V2VNet, DiscoNet, and upper-bound achieve comparable
performance in terms of terrain and road categories; (2) the
attention-based methods (i.e., when2com, who2com) performs

worse because the attention-based mechanisms try to find the
collaboration partners with high correlation scores. Whereas,
in 3D perception, the collaborators with complementary in-
formation should be prioritized during the collaboration. Such
nonalignment can make it quite hard for the attention model
to learn; (3) there is a large gap between lower-bound and
upper-bound regarding the two safety-critical categories: vehicle
(45.93% v.s. 64.09%) and pedestrian (20.59% v.s. 31.54%),
proving the values of collaboration; (4) employing V2V and
V2I jointly can generally enhance the vehicle segmentation over
using V2V solely; (5) co-lower-bound performs better than the
lower-bound.
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Fig. 6. Experimental results of a robustness test conducted under various magnitudes of pose noise. AUG. means augmentation which adds pose noise during
training.

Fig. 7. Experimental results of a bandwidth test conducted under various compression ratios.

Qualitative results: Fig. 5 shows the semantics segmentation
results. The results of upper-bound restore the semantic informa-
tion with rich point cloud data. Intermediate-based collaboration
strategies V2VNet and DiscoNet can achieve satisfactory per-
formance yet When2com and Who2com hurt the performance
compared to the lower-bound.

D. Discussions on Pose Noise and Compression Ratio

We further examine the robustness of different intermediate
models against realistic pose noise (Gaussian noise with a mean
of 0.05 m-0.25 m and a standard deviation of 0.02 cm), as
shown in Fig. 6. We can see that the models perform comparably
with or without pose noise in the training phase, and all the
intermediate methods have shown stable performance against
the pose noise. The reason is that the intermediate feature map
has a relatively low spatial resolution (each grid in the feature
map denotes a coverage of 2m× 2m), thus is not vulnerable
to noisy pose. Meanwhile, we employ an 1× 1 autoencoder to
further compress the feature channel of the transmitted feature
map. We test the models with different compression ratios, and
we found that the jointly learned 1× 1 autoencoder can even
improve the performance a little bit, and most intermediate
models achieve comparable performance at different levels of
compression, as shown in Fig. 7.

V. CONCLUSION

We propose V2X-Sim dataset based on CARLA-SUMO
co-simulation, in order to enable multi-agent collaborative per-
ception research in autonomous driving. Our dataset provides

multi-agent multi-modality sensor streams captured by the ve-
hicles and road-side unit (RSU) in realistic traffic flows. Diverse
annotations are provided to support a variety of 3D perception
tasks. In addition, we benchmark several state-of-the-art col-
laborative perception methods in collaborative BEV detection,
tracking, and semantic segmentation tasks. Future works include
the simulation of latency issues as well as the development of
novel evaluation metrics in collaborative perception tasks. We
believe our work can inspire many relevant research areas in-
cluding but not limited to autonomous driving, computer vision,
multi-robot system, communication engineering, and machine
learning.
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