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ABSTRACT

Augmented reality (AR) devices perform visual simultaneous lo-
calization and mapping (SLAM) to map the real world and localize
themselves in it, enabling them to render the virtual holograms
appropriately. Current multi-user AR platforms fall short in that
they only allow asymmetric sharing of this SLAM information, re-
sulting in multiple “secondary” devices viewing holograms placed
by a single “primary” device, instead of equal participation. The
goal of this work is to enable all AR devices to participate equally,
by constructing a common global map to which all AR devices
can contribute. However, doing so with low latency and high ac-
curacy is challenging on resource-constrained mobile devices. This
work proposes an appropriate partitioning between clients and a
server to achieve high-throughput, low latency, multi-user SLAM.
In our system, SLAM-Share, the edge server performs the complex
SLAM computations so that the client devices need only perform
lightweight operations. The server utilizes shared memory and effi-
cient map merging to build and update a global map from different
clients. It also exploits the parallelism of GPU processing to achieve
high-performance tracking. Evaluations show that SLAM-Share is
able to achieve significant tracking speedups (up to 50% reduction
compared to alternative approaches), maintain good localization
accuracy, and merge and update maps within 200 ms.
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(a) Asymmetric sharing. Either User B can localize in A’s map, or
User A can localize in B’s map, but not both.
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(b) In SLAM-Share, all users can localize in a shared map.

Figure 1: Current approaches [22, 36] only allow asymmetric
map sharing, while SLAM-Share allows all devices to con-
tribute and localize in a shared global map.

1 INTRODUCTION

In augmented reality (AR), holograms are anchored to the real-
world environment. For example, holographic graffiti should be
anchored to a wall in the real world and remain there even as
users move around the real world [12]. In order for an AR device
to understand where the wall and the user are, and render the
holographic graffiti at the right location on its display, an AR device
creates a 3D map of the world (containing the wall) and localizes
itself in that map [22, 39]. The process of creating the 3D map
and tracking the device (localization) is commonly done using
Simultaneous Localization and Mapping (SLAM), relying on camera
and IMU sensors. Multiple works [14, 17, 27, 36] have shown that
SLAM is a very expensive operation for mobile devices.

It is becoming increasingly common for multiple users to partic-
ipate in a joint AR session. This may be for safety applications such
as autonomous driving or driver-assistance [34], training applica-
tions, or a multi-player AR game [21, 32]. For example, in an AR
game, if Player A goes to a new, unexplored room in the physical
world to draw virtual graffiti, her 3D map should be updated with
knowledge of the new room and then shared with the other AR
player’s devices; that way, if Player B enters the new room, his AR
device will immediately recognize the new room and render the
new graffiti on its display.
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Edge computing can significantly facilitate AR in general and
multi-user AR in particular. The simple and obvious reason is that
edge computing can alleviate the burden of these computationally
expensive tracking and 3D mapping operations of SLAM. For multi-
user applications, an edge server can also serve as a central location
to facilitate information sharing between AR devices on the current
state of an AR task. Finally, edge computing helps compensate for
the heterogeneous compute capabilities of different AR devices.
Without edge computing, if devices have vastly varying compute
power (e.g., some devices have a higher power CPU, a GPU, or more
memory), some devices may perform worse than their peers.

However, it is not straightforward for the edge server to provide
the desired support for AR devices. The main reason is that the
latency requirement of the multi-user AR application is tight. A
naive implementation on an edge server may not meet the latency
requirements due to all the moving parts that have to operate in
sync. multi-user AR is inherently a distributed problem that is chal-
lenging to perform in real time. All of the AR SLAM computations
- tracking and 3D mapping - need to be performed quickly so that
users see the right holograms in the right positions. Tracking must
be done in real-time because stale tracking results will cause out-
dated positions for the hologram(s) on the display as the user moves
around (see Fig. 2b, which we discuss in §2). Stale mapping can have
serious consequences in terms of misplaced holograms as seen by
different users (see Fig. 2c). This is because each user’s view is de-
pendent on the merged maps from the other users. Hence, quickly
merging all the users’ 3D maps to create a consistent view is critical.

Recent approaches to using the edge cloud to support SLAM are
insufficient because they focus either on single/few non-concurrent
users or asymmetric information sharing. For example, Edge-
SLAM [14] offloads some SLAM computations to an edge server
for a single user. CarMap [8] performs map merging on the cloud
for 1-2 vehicles that are not simultaneously operating. ARCore [22]
and SPAR [36] only allow asymmetric sharing, as shown in Fig. 1a.
On the left side of the figure, holograms can be placed by one host
device (User A) and viewed by all resolver devices (such as User
B). However, User B cannot place a hologram and have it viewed
by User A without starting a new AR session with B as host (right
side of figure). Several works [11, 29, 35, 45] focus on low-latency
object detection in AR, which is orthogonal to this work. None
enable SLAM for AR with multiple concurrent users, symmetric
information sharing, low latency, and high accuracy.

In this paper, we take a first step towards answering the ques-
tion: What techniques can help SLAM quickly and accurately per-
form tracking and 3D map merging for multiple AR devices? The
fundamental complexity of multi-user AR is that the “state” of
the system (i.e., the shared merged map) needs to be updated and
communicated to the clients through the tracking and mapping
processes. Current approaches splinter this state across multiple
devices (Fig. 1a), introducing complexity because it is updated and
accessed by multiple user devices in a distributed, asynchronous
manner. To overcome this, the main architectural approach we ex-
plore in this paper is the judicious use of edge computing for multi-
user SLAM for AR. We carefully choose the essential functions to
be performed on an end-user’s device versus the edge server, lever-
aging both visual and IMU-based sensing. Our focus is on a server
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design that unifies all the work performed on behalf of the users,
consolidating the state into a consolidated shared map (Fig. 1b).

In brief, the AR devices upload camera frames in real-time to
an edge cloud server, which serves as a central vantage point to
perform the AR SLAM computations and return only the key re-
sults (poses of devices and holograms) to the devices. Thus, the
client processes access the shared information on the server for
high-throughput, low latency merging of maps across users. This
architecture leverages the increasing network bandwidth and low
latency provided by current and future wireless networks.

Contributions. Our first contribution shifts the majority of the
SLAM tracking and mapping computations to a server while run-
ning only very lightweight tracking computations on the device.
The device performs inertial movement unit (IMU)-based computa-
tion only to provide the pose over the short-term while the device
is waiting for the server to return a more accurate SLAM-computed
pose. The server leverages hardware accelerators often found in
edge servers (e.g., GPU) for speed-up tracking.

In parallel with tracking, the 3D maps present on the edge server
are merged together to provide a common view for all the devices.
The 3D maps used by AR devices for SLAM can be quite large,
nearly 40 MB for a minute-long time sequence (see Table 1 in §2),
so transferring them over the network, or between processes on
a server, to a common thread for merging can be time-consuming.

Our second contribution is a shared memory approach that en-
ables the merging process to access each 3D map quickly. With all
the 3D maps gathered in place, our third contribution is the map
merging algorithm itself. Our method uses overlapping regions
between multiple maps to identify how they are oriented and po-
sitioned with respect to each other, then merge them into a global
map located in shared memory. The devices then use this global
map as a basis for further tracking.

Our implementation, SLAM-Share, is built around a state-of-the-
art SLAM framework, ORB-SLAM3 [16]. SLAM-Share reduces the
tracking latency by up to 50% using the GPU compared to CPU-
only processing and reduces the map merging latency by at least
30x compared to a baseline approach without shared memory.We
utilize absolute trajectory error (ATE) to measure the accuracy of
SLAM-Share. ATE is the average deviation of a device’s estimated
position from the ground truth, typically measured as the root
mean squared error (RMSE). The map produced by SLAM-Share
enables multiple devices to achieve positional accuracy as good as a
single user observing the same environment (< 10cm. (ATE)). The
open-source code is available!.

2 BACKGROUND & MOTIVATION

SLAM is a foundational algorithm used in applications such as AR
and robotics. The SLAM process typically involves two parallel
steps, tracking and mapping. We next provide background on each
of these steps to motivate SLAM-Share’s design.

Background on tracking. Tracking lets a client determine its
pose (i.e., position and orientation) in the real world. We call this
process Local Tracking in Process A of Fig. 3. First, Local Tracking
decodes images (potentially extracted from video) obtained from the

Uhttps://github.com/network-lab2/slam-share
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User A’s view

User B's view (ground truth)
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Case (a): Without map
merging, no holograms appear

Case (b): With slow tracking,
holograms may appear later
but accurately placed
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Case (c): With slow map
merging, holograms may appear
quickly but inaccurately placed

Figure 2: Different AR views. User B placed a holographic character and user A wants to view it. (a) Current approaches [14, 22, 36]
do not provide map merging sharing capabilities, so no holograms would appear. (b) Tracking latency (e.g., 15 FPS [14]) would
increase viewing latency, and (c) map merging latency (e.g., > 2 s in our experiments) would reduce hologram placement accuracy.

client’s camera and extracts their image features (Feature extrac-
tion in Fig. 3). ORB-SLAM3 uses ORB (Oriented FAST and Rotated
BRIEF); FAST (Features from Accelerated Segment Test) [38] finds
corner features in an image, while Rotated BRIEF are the descrip-
tors for those found features. FAST detects a feature when a pixel’s
intensity differs greatly from its surroundings. A number (~1000) of
ORB features are extracted per image frame, which are compared
with the features already seen by the device (Search local point)
in its local map (described below) in order to localize the device.
Rapid tracking (30 FPS) is critical to a good AR user experience.
Fig. 2 shows a mock example with two users. User B (leftmost fig-
ure) has placed a holographic character near the intersection (think
of User B as the lead vehicle in a networked vehicular safety appli-
cation). User A (e.g., the vehicle behind that needs to be aware of an
obstacle in front) then approaches the same area. If tracking is slow,
as in case (b), it takes some time for User A to track its position. Thus,
the hologram would only be displayed later (by which time User A
may possibly be very close to the intersection). Hence, rapid tracking
is critical for a good AR user experience because it allows the user to
view the holograms quickly. The criticality of timely tracking for ap-
plications such as autonomous driving and driver assistance follows.
Why offload tracking to an edge server? While ORB-SLAM3’s
localization runs in real-time on a desktop [16], it is not able to
run consistently in real-time (30 FPS) on a resource-constrained
device such as an Android phone or an Nvidia Jetson TX2 in our
experience. In our experience, when running ORB-SLAM2 on an
Android device (ORB-SLAMS3, released in 2021, does not yet have an
Android version), the user experience is significantly impacted by
considerable lag. There were particular slowdowns during certain
complex parts of the trajectory, such as turns, where the visual in-
formation being processed is more complex. [14] similarly reports
frame rate reductions to 15 FPS near turns. A key reason for this
is the feature extraction step, which constitutes a majority (57%)
of the tracking latency [16]. This motivates running tracking on an
edge server in SLAM-Share to achieve real-time performance.
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Table 1: EuRoC MHO04 [15] dataset map size.

No. of Keyframes | No. of Mappoints | Map Size (MBytes)
10 825 2.74
20 1213 4.53
30 1435 6.33
40 2002 8.10
50 2551 10.03
210 (Full MH04) 8415 38.81

Background on mapping. SLAM clients create a local map
representing the real world concurrently with tracking. We call
this process Local Mapping in Process A of Fig. 3. If the image
read in by Local Tracking is from a previously unseen location
and therefore not present on the local map, then SLAM marks the
frame as a Keyframe. It next computes the poses of the Keyframe’s
features, known as Mappoints, and inserts them into the local map
(Mappoint creation). Periodically, Local Bundle Adjustment
runs to correct the pose error of each Mappoint.

When there are multiple users, their maps need to be merged
into a global map (Map Merging) by synchronizing the coordinate
system each client uses to describe its map. This allows devices to
have a global map with a common coordinate system to describe the
position and orientation of virtual holograms with respect to the
real world. Current methods [22, 36] use shared visual landmarks
to locate, for example, device B inside device A’s map, but do not
have true map merging and still rely on a single device’s map (e.g.,
user A, shown on the left side of Fig. 1a) only. In such cases where
map merging is unavailable, as shown in Fig. 2a, User A will not be
able to see the holograms placed by User B because User A has no
idea of User B’s map and the holograms contained therein. If map
merging is slow or incomplete, then User A will see an inaccurately
placed hologram, as shown in Fig. 2(c), because User A is tracking
itself in an incomplete global map (without user B’s information)
and cannot accurately compute its location with respect to the
holograms. Hence rapid mapping is critical to the AR user experience
because it allows the user to view the holograms accurately.
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Figure 3: Overview of SLAM-Share. (1) Device A performs IMU tracking and (2) Uploads frames to Process A on the edge server
(3) Server performs local tracking (4) Server returns pose to device. Meanwhile, local mapping in Process A (5) produces map to
be loaded (6) into global map using shared memory and merged with existing data where A and B’s trajectories overlap (7).
Device B also reads the updated global map (8) and tracks itself (9).

Why offload mapping to the edge server? The mapping pro-
cess has two significant limitations. First, the processing capacity
and memory on a mobile user device are typically limited. Having
real-time SLAM with a large map is a challenge for these devices.
Merging maps on a server takes more than 2 seconds just for the
computation (§5.2), and would be even slower on a mobile device.
Second, the task of merging the maps of the different users requires
them to be brought together in a merging thread. Exchanging new
versions of the local maps generated by all clients requires addi-
tional processing and network bandwidth. This can dramatically
increase latency, particularly when the map sizes are large, as shown
in Table 1. Hence performing the mapping on an edge server is
preferable to such a peer-to-peer approach.

What about communication costs? One consideration is the
communication cost of shipping frames to the edge before tracking
is performed on the edge server. In our experience, this is quite
small, requiring approximately 1 Mbit/s when the frames are en-
coded as an H.264 video stream and uploaded to the edge server
as in SLAM-Share (see §4.2.3). In contrast, even if tracking is per-
formed on the client and is rapid enough (e.g., mobile GPU) it would
consume much higher bandwidth (approx. 4 Mbits/s) and energy
to send the tracking results to the server for map merging, and
get the results back, (based on sending Keyframes and Mappoints
similar to [14]). Thus, tracking and mapping on an edge server in
SLAM-Share, and transferring video from the client, requires far
fewer network resources than alternative architectures.

3 RELATED WORK

SLAM frameworKks. State-of-the-art SLAM frameworks [16, 33]
do not provide a mechanism to share maps between clients because
they are designed for single-user operation. Edge-SLAM [14] per-
forms single-user SLAM by tracking wholly on the client while
mapping is performed on the server. This could be extended to the
multi-user scenario considered here, but merging existing maps on
the server requires serialization and de-serialization of the maps to
transfer them to a common merging thread (e.g., Process M in Fig. 3),
costing time and overhead. Minimizing this delay is very important,
as it impacts how frequently map merging can occur. [14] also does
not utilize accelerators (e.g., GPU) to speed up tracking, resulting in

lower frame rates during complex movements. A baseline derived
from such an architecture [14] is evaluated for comparison in §5.
A few other SLAM frameworks [18, 23, 40, 43, 47] are designed
for multiple collaborating robots, where clients create local maps,
which are then remotely merged. However, this incurs heavy com-
munication cost, having to send large Mappoints and/or Keyframes
between the clients and the server, despite compression methods.
Multi-user AR. Google Play Services for AR [22] allows multi-
ple AR users to share maps at the beginning of an AR session with-
out further updates as the session progresses, unlike SLAM-Share
which provides true map merging. AVR [17] and MARVEL [17]
assume an offline 3D map is provided rather than computing it
on-the-fly through SLAM. Like SLAM-Share, CarMap [8] focuses
on vehicular scenarios and includes map stitching functionality but
requires GPS to aid in feature matching due to its use of sparse 3D
maps. However, GPS may not be available in indoor AR environ-
ments and is not accurate enough on its for the centimeter-level co-
ordinate synchronization required by AR. SPAR [36] allows one user
to track itself in another user’s map by doing a one-time map align-
ment, but has no map merging capabilities, as stated in §1 and Fig. 1.
SEAR [46] offloads object recognition to the edge to support multi-
ple users. Here, we focus on tracking and mapping, key components
of AR. Finally, many works [8, 34, 36, 40] rely on older frameworks
such as ORB-SLAM2 [30] or VINS-Mono [33], which typically per-
form worse than the state-of-the-art ORB-SLAM3 [16] we use here.

4 DESIGN OF SLAM-SHARE

4.1 Overview & Workflow

We illustrate the architecture and workflow of SLAM-Share through
a running example, and the overall architecture of SLAM-Share is
shown in Fig. 3. Consider the case where there are multiple users
flying drones through an AR interface [28]. The users see what
the drones see, and the AR interface highlights obstacles in the
environment that the user must quickly navigate away from to
avoid crashing the drone. The position and orientation of the AR
highlights are stored in the shared map. Therefore, a drone needs
accurate tracking in the shared map in order to understand where
the obstacles are and draw the appropriate AR highlights.
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(b) Baseline approach (multi-user extension of [14]) where track-
ing is local and global mapping is remote.

Figure 4: Workflow of SLAM-Share vs. Baseline. Red (blue)
arrows indicate tracking (mapping) data flow. SLAM-Share
keeps the shared map consistent on the server, while the
baseline distributes mapping across client and server, causing
stale map updates and tracking results.

1) Tracking. As drone A flies into a room, it uses its IMU to
obtain an initial pose estimate (1) in Fig. 3, §4.2.2). It also records
camera frames, encodes them as a video, and streams them (@,
§4.2.3) to process A running on the edge server. Process A performs
local tracking (3), using the GPU to speed up feature extraction
(§4.2.1), and determine the drone’s pose in the room. Obstacles
in the room are also detected and highlighted on the AR display
(although not covered in this work, techniques such as [35] can
be used). The computed pose is returned to drone/device A (4),
enabling it to record precisely where the obstacles are in the room.

2) Initial map merge. In parallel to local tracking, process
A generates a local map (5) and inputs its map into the global
map maintained in shared memory (§4.3.2) across processes (6).
Process M merges it with the existing global map ((7), (§4.3.1). This
allows drone B, which flies into the same room shortly thereafter, to
quickly localize itself by reading the global map in shared memory
and performing local tracking (9). Drone/device B can then view
the highlighted obstacles and quickly navigate away from them. If
latency is too high without SLAM-Share, process A may not finish
merging its map with the global map before drone B arrives in the
room; in that case, drone B would view the highlighted obstacle late.

3) Subsequent map updates. The shared global map is contin-
uously updated with new observations from drones A and B using
SLAM-Share’s methods (§4.3.1, §4.3.2) to improve the fidelity of
its representation of the real world. If B explores the room further
and finds the obstacle is actually closer than A originally marked,
it updates this information in the global map (8). Because SLAM-
Share enables fast map merging, both the initial map merge and
subsequent map updates can be done continuously.

Operation sequence timeline. We created a timeline of the
above workflow in Fig. 4a. The timeline runs from left to right, and
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Figure 5: ORB-SLAM3 tracking latency with CPU. ORB-
Extraction is a large portion of tracking latency.

the shaded grey areas indicate when data travels between a client
and a server. The arrow width is proportional to the size of the
network data transmissions. For tracking, frames sent by the client
are indicated by thick red arrows at the top periodically, every 33
ms as frames are captured from the camera. They are sent to the
server for SLAM processing. The frame is received and tracking
is performed by the server. Then the pose (thin red arrow) is com-
puted and returned to the client. Map merging occurs in parallel
with tracking and takes around 190 ms. It occurs asynchronously,
whenever a client observes something that matches the global map.
The insertion of a map update in the global map is indicated by a
blue arrow. Thus, in SLAM-Share, the state (shared map) is kept
consistent because it’s located and updated at a single server. Keep-
ing tracking and mapping tasks together allows clients access to
much more up-to-date and consistent state (i.e., fresh map updates
are automatically incorporated into tracking results).

We contrast SLAM-Share’s approach to a representative of the
state-of-the-art (by extending [14] to multiple users, evaluated in
§5), where tracking is performed locally on the client and map
merging is on the server. In Fig. 4b, the tracking results are batched
and sent to the server for map merging. The shared map is only
periodically updated on a client (e.g., every 5 seconds), resulting in
the client potentially having outdated maps to perform tracking in.
In essence, the state is distributed (local map on client, global map
on server), which leads to poor tracking results when the local and
global states are inconsistent . This results in misplaced holograms.

4.2 Tracking Enhancements: GPU Tracking,
IMU Assistance, & Video Transfers

SLAM-Share offloads the tracking to the edge server. We now de-
scribe the tracking enhancement in SLAM-Share, which uses GPU
to achieve real-time tracking, client’s IMU to increase tracking
resiliency, and video to reduce bandwidth usage.

4.2.1 Real-time Tracking with GPU

Problem. Digging deeper into the root cause for the high track-
ing latency in SLAM, we find that feature extraction and search
local points, the first crucial steps in SLAM tracking, are the bot-
tleneck. We show a breakdown of the average tracking time in
ORB-SLAMS3 [30] in our testbed (details in §5.1) in Fig. 5. The ORB-
SLAMS3 feature extraction (red) takes more than 50% of the total
tracking time, while search local points (grey) takes about 30%.
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This holds across different datasets (KITTI [20], EuRoC V202 [15],
TUM [41], and RGBD [41]), as well as different numbers of cam-
eras (mono and stereo), and has also been recognized by others as
being slow. [9] The slow feature extraction time in ORB-SLAM3’s
case leads to higher total tracking times (>34 ms) for a majority of
datasets, making it impossible to track the device’s pose in real-time
(i.e,, 30 FPS) and render the holograms at the right locations. Our
measurements also align with published benchmarks [30]. Thus,
lowering the tracking time is a necessity for real-time AR.
Our approach. To address this, SLAM-Share performs tracking
on the edge server, using a GPU to speed up its two slow steps:
feature extraction and 3D point matching. For feature extraction,
the key capability we introduce is the parallelization of “FAST” cor-
ner detection [38], needed in SLAM, with the GPU. FAST identifies
images features used to find correspondences across images (see
§2). This is in contrast to the default approach of searching for the
FAST features sequentially in each frame. After GPU processing,
the FAST features are transferred to the CPU for SLAM processing.
Our second speedup is to parallelize the code for the search local
point module, which tries to match the Mappoints extracted from
each frame with the Mappoints that exist in a small region of the
entire map (known as a local map). The default implementation
of search local point loops through all the Mappoints from a frame
and sequentially matches them with the Mappoints in the local
map. We parallelize this matching process in the GPU by creating a
local tracking CUDA kernel, performing identical computation as
in the original CPU version of the code, but parallelizing the loop
iterations to benefit from parallel computations in the GPU.
While others have explored using GPUs to speedup ORB-SLAM2
[1-3, 9] or SLAM algorithm variants requiring 3D depth maps as
input [26, 37], in this work we focus on the newer ORB-SLAM3
(released in 2021) without requiring 3D depth maps, as is common
on smartphone-based AR devices. Not all SLAM operations can
benefit from the parallelism offered by the GPU. SLAM’s merging
process includes many of random memory lookups (for Mappoints,
Keyframes) and serialized operations (e.g., bundle adjustment) that
do not benefit from the GPU speedup. Tracking, however, can be
parallelized and benefit from GPU acceleration. To the best of our
knowledge, ours is the first to use a GPU for the acceleration of
select ORB-SLAMS3 functions beyond ORB extraction. Our GPU
speedup methods improve both feature extraction, in line with previ-
ous work [9], as well as the “search local points” function, a key sig-
nificant contributor to tracking latency. Furthermore, SLAM-Share
utilizes spatio-temporal sharing of the GPU [19] to extract features
simultaneously and search local points on the data received from
multiple client updates. With this, SLAM-Share achieves higher
processing throughput and reduces SLAM latency.

4.2.2 Cooperative Client-IMU and Server Tracking

Problem. Tracking is a critical component of AR since it allows
devices to update their poses in real-time and thus render the holo-
grams at their correct locations on display. Since AR applications
like drone navigation, autonomous driving, etc. require low-latency
localization, it is imperative that the tracking results be available
nearly every frame to prevent navigational errors. But tracking in
SLAM using a device’s camera and IMU is difficult to perform in
real-time on mobile devices, as discussed in §2. While we sped up
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Figure 6: IMU-assisted pose estimation. Frame 1 (fI) sent
to the server; meanwhile, the device uses IMU for tracking.
Resulting pose(f1) from server is incorporated into tracking,.

feature extraction and tracking by doing them on a server, SLAM-
Share needs to be resilient to variable communication delays.
Our approach. To increase tracking resiliency, we utilize the IMU-
based tracking used in ORB-SLAM3 to compute pose in the client
itself over a short timescale. Most AR devices (e.g., smartphones,
Hololens) have an IMU that provides sensor readings at a high sam-
pling rate (e.g., 1000 Hz [25]), from which position and orientation
can be computed. Unlike ORB-SLAM3, which performs both SLAM
and IMU-based tracking on the client device, SLAM-Share only
performs IMU-based pose prediction on the client. We still depend
on the SLAM-based tracking performed at the server since relying
on the IMU alone for long periods of time is known to introduce
drift errors [25]. Prior approaches [14, 16, 36] have not considered
this split processing between the client and server.

We show the client-and-server based tracking timeline in Fig. 6.
First video frame 1 (f1) is captured by the camera and transferred to
the server for SLAM (red arrow). Meanwhile, the client computes
the pose based solely on the IMU since it does not yet have pose
information from the server (white box). Once f1’s pose information
is obtained from the server, the client’s tracking is updated (red box)
by solving an optimization problem that minimizes the residual
error from the IMU-based pose and the server-based pose, trying
to ensure that the two sets of observations are consistent with each
other [16]; i.e., the optimization problem solves for the pose that
best agrees with both sets of observations (using a weighted sum).
This should happen when Frame 2 (f2) is captured in order for track-
ing to be real-time. Incorporating both sources of information (IMU
from the client, vision-based pose from the server) achieves higher
accuracy than relying on the IMU alone (details in Appendix A).

One potential concern is if it takes too long to get an update
from the server. Since tracking based on the IMU alone becomes
inaccurate over time because of accumulated drift-related errors, we
rely on the IMU-based tracking only during the brief interim period
while the client waits for results to be returned from the edge server.
In SLAM-Share, with this combination, we limit the accumulated
drift error over this short time interval to be very small. This is
validated by our experimental results in (§5.3). In the worst case,
if the RTT is very high, then a client can fall back to single-user
operation with tracking in a local map for the short-term.
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Figure 7: EuRoc MH4 dataset. Green: Original global map, Red: Map made by new client. Blue dots: Keyframes. SLAM-Share

merges the red and green maps into a shared map.

4.2.3 Using Video Transfers in SLAM-Share

Problem. Many open-source visual SLAM systems rely on images
(e.g., images in PNG format), and many popular SLAM datasets [15,
41] also provide separate images captured at a certain frame rate.
However, each image file can be quite large, and many images are
needed to achieve a high enough frame rate. For example, the EuRoC
machine hall and Vicon room datasets [15] have PNG images of 331
Kilobytes on average. The KITTI driving dataset’s average image
size is 225 Kilobytes. Transferring the image files at 30 frames/sec.
requires almost 80 Mbps. Stereo SLAM, with two images of that
size, doubles the required bandwidth per user. This may be difficult
to sustain, especially with wireless uplinks.

Our Approach: As explored in the past [13], SLAM-Share encodes
images as a H.264 video stream to reduce the bandwidth consump-
tion, rather than transferring PNG compressed images. We quantify
the savings compared to network image transfers in §5.4.

4.3 Mapping Innovations: Multi-Map Merging
Using Shared Memory

To minimize the overhead of communicating individual maps for
multiple users, SLAM-Share merges the maps (§4.3.1) using a shared
memory framework (§4.3.2) to consolidate all the users’ maps.

4.3.1 Merging Maps Between Multiple Clients

Problem. In multi-user AR, each user needs to view the same
holograms at the same locations and orientations as other users.
However, by default, each SLAM client constructs its own real-
world map, with each device having a different origin point (i.e.,
local coordinate (0,0, 0)) for its map. In multi-user scenarios, this
poses difficulties because each device has its own understanding
of where a hologram, (e.g., with coordinates (1, 0,0)) is located in
the real world. A mechanism to merge the maps of the individual
clients, and determine a common coordinate system in which the
coordinates of the virtual holograms can be represented, is neces-
sary. This problem differs from that in prior approaches [22, 36]
,which perform alignment but not true map merging (Fig. 1).

Our Approach. We create a common, shared global map rep-
resenting the real world that all the clients can access. This global
map has a common coordinate system in which the positions of
the virtual holograms can be accurately represented. The advan-
tage of co-locating mapping and tracking together on the server,
compared to distributing them across client and server [14, 40],
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is two-fold. First, the tracking can immediately take advantage of
any map updates without waiting for the usual map refinement
processes (e.g., global bundle adjustment) to complete. In contrast,
if the shared map needs to be sent to the client for tracking, the
map needs to be fully refined before being sent, incurring delays
(e.g., global bundle adjustment takes multiple seconds). Second, the
reduction of downlink data volume saves time since only the track-
ing pose updates need to be sent in SLAM-Share (which is a small
4x4 matrix), instead of the maps themselves (Table 1).

To correctly merge the individual maps and generate a global
map, it is necessary to find where in the global map a client map “fits”
or overlaps. Based on those overlapping regions, the two maps can
be aligned, and duplicate regions of the map can be merged. Instead
of designing our own ad hoc alignment algorithm, we leverage
existing alignment techniques in ORB-SLAM3 [16] that can merge
two maps of a single user — however, we modify these methods
to merge two maps from two different users. By leveraging these
mature methods, we expect to achieve good accuracy, thus robustly
extending the techniques to the multi-user case (see Appendix B).

Although conceptually simple, it is not easy to make this work
in practice. First, when multiple clients merge their maps, there are
conflicts between their Keyframe and Mappoint indices, because
each client normally starts its indexing with 0. Therefore, we set dif-
ferent starting indices for each client. This involved careful pointer
updates and keeping track of relationship Mappoints/Keyframes be-
long and clients. Second, the multi-user scenario requires merging
two existing client maps; this occurs, for example, if one client de-
cides to join the multi-user AR session later and wishes to contribute
its own existing map to the global map. The original single-user map
merging in ORB-SLAMS3 can only trigger a merge based on newly
arrived camera frames but does not use previously seen Keyframes
in an existing map to trigger a merge, as it assumes past Keyframes
have already been checked for a possible merge opportunity. In
other words, if we naively extended ORB-SLAM3 to multiple clients,
a client that joins later would have to wait until it saw a view with
enough overlap with the global map to trigger a merge, instead
of merging its map immediately upon joining. To overcome this,
when the client joins the session, SLAM-Share checks all of the
Keyframes in the client’s map for merging opportunities.

Example. We illustrate the steps of map merging in an example
scenario of a drone that enters a previously explored area, shown
in Fig. 7. The map merging is driven by traces from the EuRoc
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MH4 dataset [15]. The blue dots in the figure indicate Keyframes
in the global map, while the green lines represent the relationship
between the Keyframes in the global map. The red line is the map
created by a new client, to be merged with the global map.

The leftmost map (Fig. 7a) shows a small map initially created by
the new client ("New Client Map") when it enters the room. How-
ever, the client’s map is not aligned correctly with the global map.
SLAM-Share finds where the client’s map fits on the global map,
merges the two, and runs bundle adjustment to correct the pose
of the client’s Keyframes and Mappoints. These actions result in
the client’s map having the correct pose relative to the global map.
Fig. 7b shows the maps immediately after merging and bundle ad-
justment. The pose of the client’s Keyframes and Mappoints are cor-
rected and thus, the client’s small red trajectory snaps to the correct
place in the global map (see the position of the "New Client Map").
As the client continues to explore the room, new images from the
environment are processed to update the global map. Fig. 7c shows
the entire scenario, where the client continues extending the global
map (longer red line). The result is a shared map with the client’s in-
formation incorporated into the original map, analogous to Fig. 1b.

4.3.2 Shared Memory for Merging Maps
Problem. Transferring a large amount of data (1-2 MB or more in
Table 1) for the maps of 1-2 secs either across the network (for client-
client and client-server) or even between processes in the same
node involves considerable overhead in terms of serialization and
deserialization of the map, protocol stack processing, and network
delays. These overheads impede sharing map updates in real-time.
Our approach. In SLAM-Share, we place the global map in
a shared memory buffer accessible by all the mapping processes
corresponding to each client. Clients localize themselves based
on this shared global map and also update the map. The shared
memory approach avoids the problem of large file transfers and
consequent delays. All the mapping processes are co-located on
the edge server (thus no communication over the network). They
can access the data directly in the shared memory buffer (no inter-
process communication time). The shared memory approach avoids
data serialization / de-serialization because the data is placed di-
rectly in a memory buffer with all the data structures preserved.
Having a single global map in the shared memory implies that any
change in the map is instantly available to all the clients. Thus, there
are no synchronization delays between the client processes. Finally,
shared memory allows zero-copy operations, reducing processing
overhead. Once a data structure is initialized in shared memory, it
can be accessed by all cooperating client processes, eliminating the
need to copy the data or place it in each process’ memory.
Utilizing shared memory brings new challenges. Existing li-
braries such as OpenCV and ORB-SLAM3 do not natively utilize
a shared memory buffer. We implemented the necessary construc-
tors, and other primitives and refactored existing ORB-SLAM3 code
to exploit the shared memory. ORB-SLAM3 utilizes mutexes to
synchronize updates of crucial data structures, such as keyframes
and mappoints. In SLAM-Share, we use these mutexes to mediate
access to shared memory. To avoid clients idling on a lock, we use
Boost’s [4] named-utilities, which helps us implement a share-
able mutex that allows concurrent reads of shared data by threads
of multiple processes, while restricting writes to be serialized. This
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allows SLAM-Share to reduce the amount of locking used for ac-
cessing data structures in shared memory. Thus, we do not expect
shared memory to be a bottleneck even with more (tens) of users.
An alternative approach to SLAM-Share using a separate SLAM
process per client could be to spawn new CPU threads within a
single SLAM process for each new client. However, this "new thread
per client" approach brings additional complexity and the potential
for interference between threads. Even a single SLAM client already
requires multiple threads to perform all of SLAM’s operations [24].
Thus, it requires additional effort to provide the needed perfor-
mance isolation and management of the threadpool, all of which is
avoided with SLAM-Share. Furthermore, SLAM-Share’s one process
per client model enables portability to containers to take advantage
of the horizontal scaling provided by cloud-based services.
Implementation details. We utilize the Boost interprocess
library [4] in C++ to create a shared memory framework (gray
block at the bottom of Fig. 3). This memory is allocated by an
orchestrator process (not shown), separate from the clients using
SLAM. We allocate 2 GB of memory buffer for the shared memory.
We selected this value based on the size of maps created by different
datasets, e.g., EuRoC MH-04 [15] requires approximately 40 MBytes
of memory for a map made from the entire trajectory 1. When
Process A on the server starts (see Fig. 3), it searches and attaches
the shared memory buffer to its own virtual address space. Then,
when Process A receives video frames from Device A and generates
new Keyframes and Mappoints, it writes those updates to the global
map in shared memory (as well as reads others’ updates). We created
special allocators to allocate complex variable types used in the
map directly in the shared memory buffer. We modified ~2000 lines
of code from the original ORB-SLAM3 to implement SLAM-Share.

5 EXPERIMENTAL EVALUATION

We first describe the setup (§5.1), then evaluate individual compo-
nents of the framework (§5.2-5.4) , followed by overall accuracy
and latency (§5.5), hologram positioning (§5.6), impact of network
conditions (§5.7), and resource utilization (§5.8)

5.1 Setup

Testbed. Our testbed used a Dell PowerEdge R740xd with Intel(R)
Xeon(R) Gold 6148 CPU with 40 cores, 256 GB of system memory,
one NVIDIA Tesla V100 GPU, and an Intel X710 10GbE quadport
NIC as our edge server. The evaluation datasets were the EuRoC [15]
and KITTI [20] datasets. The former contains trajectories of drones
flying around a large room, while the latter contains vehicular
traces. We specifically used the MH04 and MHO5 traces from Eu-
RoC, comprising 68 seconds (2032 frames) and 75 seconds (2273
frames) respectively. We also used KITTI-00 and KITTI-05 com-
prising 151 sec (4541 frames) and 92 sec (2762 frames), respectively.
Some experiments use the full 10 Gbit/s client-server link with
negligible delay. We also used tc [5] to modify the link in both di-
rections, adding either delay (300 ms) or bandwidth constraints (18.7
Mbit/s or 9.4 Mbit/s). 18.7 Mb/s is the minimum bandwidth for the
server to send the largest map to the client within 5 seconds, in the
baseline method described below, without the map’s packets incur-
ring significant queuing delay waiting for transmission on the link.
Then, we further restrict the bandwidth to half of that (9.4 Mbit/s).
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Metrics. We evaluate two main metrics: latency and absolute
trajectory error (ATE). Rendering times are typically a tiny propor-
tion of the overall AR pipeline [11, 44], so we neglect this latency
component. We measure the cumulative ATE (along the whole
trajectory of the client), and the short-term ATE (along the last 5
seconds of the client’s trajectory). The former is the typical ATE
measurement for SLAM, while the latter represents the user’s most
recent experience (see Appendix C). If the ATE is high, then the
hologram will be misplaced on the user’s display [39]. We also
measured the FPS for all experiments.

Baseline. Our baseline is a multi-user extension of [14], with
each client performing tracking and mapping locally (no GPU). The
map merging takes place on a server, as in [18] (see Fig. 4b). This
local map at the client is serialized, i.e., local map’s data (Keyframes,
Mappoints, and their relationship) is stored in a single transmittable
buffer to send across the network to the server. At the server it
is deserialized, i.e., converted to map data usable by the SLAM
program and merged with any other maps present. A portion of the
global map (containing approximately 6 keyframes) is sent back to
the client and merged with its existing local map. Tracking then
continues on this local map. This occurs every 150 frames. We
implemented this baseline from scratch.

5.2 Real-Time Server GPU Tracking

In this set of experiments, we examined the tracking latency of the
default ORB-SLAMS3 running on the server without GPU and SLAM-
Share on the server using our GPU speedup techniques (§4.2.1). We
show the breakdown of tracking time in Fig. 8, including feature
extraction (ORB-Extraction), feature matching (ORB-Matching),
pose prediction, and finally search local point. SLAM-Share’s ORB
feature extraction (peach bars) reduces the tracking latency by more
than 50% compared to the default ORB-SLAM3. SLAM-Share also
achieves a 25-50% reduction in the local tracking time (gray blocks)
compared to the default ORB-SLAM3. Overall, SLAM-Share reduces
the total tracking latency by ~40% with monocular datasets and by
more than 50% with stereo datasets. Thus, SLAM-Share can achieve
real-time performance (< 33 ms per frame).

5.3 Client-IMU Assist for Tracking

We present experimental results validating §4.2.2 to show the us-
ability of IMU for accurate tracking over short periods of time. A
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Figure 9: Map of MHO04 dataset with a small region (black
dashed line) where server contact is lost.

Table 2: Accuracy of IMU-compensated pose computation
with increasing RTT.

Whole Map Small Map Region
RTT(ms) | s TE RMSE (cm) | ATE RMSE (cm)

0 (baseline) 5.91 241
30 591 241

60 591 241

90 5.92 245

167 5.97 2.61

200 6.08 2.67
300 6.12 2.71
1000 6.58 3.13

Table 3: Video vs. image transfer, monocular & stereo. SLAM-
Share consumes less bandwidth.

Image Transfer SLAM-Share
KITTI-00 MH-05 || KITTI-00 | MH-05
Stereo Mono Stereo Mono
30-fps Bitrate | 131 (Mbits/s) 81 1.93 1.1
Encoding (ms) - - 2.7 2.6
Decoding (ms) 1.2 1.1 1.2 1.1
ATE RMSE (m) 1.31 0.07 1.31 0.07

ground truth trajectory (gold color) from the EuRoC dataset (trajec-
tory ID MHO04) is plotted in Fig. 9. The client starts at the bottom
middle and moves around the room in the direction of arrows 1-6.
We also show how the loss of server pose information in a small
region of the map (dashed black line) for a period of time can affect
the device’s tracking accuracy. SLAM-Share’s client uses the last
SLAM-based pose returned from the server, i.e., at @ combined
with the client’s IMU motion model to estimate the pose in that
region. We chose this region of the map with a sharp turn as a
stress test. We varied the time span when the pose returned from
the server is delayed (i.e, the RTT) and measured the ATE in Table 2.
When using IMU-based tracking for a short period of time, both the
overall accuracy of the map and the accuracy of the small section
of the map do not decrease significantly. In situations where RTT is
high (100ms-300ms), SLAM-Share still creates a very accurate map
with ATE, similar to the 0 RTT ATE. Even when the pose for an
entire second (30 frames) is missing from the server, the accuracy
is only reduced slightly. This is in contrast to IMU-alone based
tracking, which suffers from 300 cm error after 10 seconds [42].
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(a) Cumulative ATE vs. time of SLAM-Share’s
global map (EuRoC dataset) at 30 FPS.

(b) Final trajectory with 3 clients, corre- (¢) Cumulative ATE vs. time of SLAM-Share’s
sponding to Fig. 10a.

global map (KITTI-05 dataset) at 30 FPS.

Figure 10: SLAM-Share maintains high accuracy (low cumulative ATE) as multiple clients maps merge with global map.

5.4 Video from Client in SLAM-Share

We show the benefits of uploading video from the client camera
rather than individual images and the subsequent bandwidth sav-
ings. The maximum bandwidth between the client and server is 1
Gbps, so the link was not the bottleneck. As seen in the top half of
Table 3, sending images at 30 FPS requires wireless bandwidth of
80 Mbits/sec for monocular SLAM. It only takes an average 1.1 of
Mbits/sec to transfer the images as video frames (over TCP). Note
that there is a small delay to encode the video on the client (< 3
millisec), unlike images. At the receiver, both video and images
have to be decoded to raw pixel values before processing by SLAM,
taking approximately the same time for decoding. The ATE when
using images versus video as input to vanilla ORB-SLAM3 is about
the same. Video transfers in SLAM-Share provide accurate inputs
for SLAM and are much more efficient than image transfers.

5.5

Accuracy. We consider a timeline of three clients creating their
local maps, merging them on the server into a global map, and con-
tinuously updating the global map (§4.3.1). We show the accuracy
of the global map compared to the ground truth over this period.
First, a global map using 200 frames is created by client A (based
on MHO04). Then, client B joins with its local map containing 200
frames (based on MHO05). We show the progression of the resulting
accuracy in terms of ATE in Fig. 10a. At first, before merging client
B’s local map into the global map, the ATE of the global map is very
high (55.1 ¢cm). This is because the two maps exist separately as
two different fragments with different origins, and are not aligned
correctly (similar to Fig. 7a). SLAM-Share performs map merging
at the 6.67 second mark (“Before Merge 1” in Fig. 10a). The ATE
immediately drops to 1.01 cm upon merging (“After Merge 1” in
Fig. 10a) because the pose from the client B’s map is adjusted to the
pose of the global map (similar to Fig. 7b). This reduces the error.
After the initial map merge, both clients A and B move and add
to the global map. The Keyframe count increases with time, as
the larger global map is built. The ATE grows slightly, with the
increase being higher (e.g., 25-30 s) in a difficult part of the trajectory
(clients A and B are at the top corner in Fig. 10b). After 40 seconds,
user A stops and a 3™ client (client C) joins the AR session and
adds its local map containing 200 frames. This results in the ATE
initially going up to about 15 cm (“Before Merge 2” in Fig. 10a),
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but immediately drops back down after merging completes (“After
Merge 2”). Subsequently, only clients B and C continue. The ATE is
flat (~6.5cm vs. 7.1cm for baseline), which is highly desirable.

With regards to scalability, a possible concern is that as more
clients join and as each contributes information to the global map,
the ATE might increase drastically. This may be because the map
covers a larger area and it is difficult to have good tracking perfor-
mance (low error) in all parts of the map. However, Fig. 10a suggests
this is not an issue. While the ATE does spike initially when user B
or C joins, it reduces immediately after the merge.

We illustrate the corresponding shared map estimated by SLAM-
Share in the above experiment in Fig. 10b. The estimated trajectory
is shown by the blue line (Client A), red dash-dot line (Client B), and
black dashed line (Client C). These trajectories are overlaid over the
ground truth of their trajectories shown in the same but lighter col-
ors. Clients A and B start from the same location and move towards
the northeast using different paths. Meanwhile, client C starts in
the middle and moves southeast. We can see that the estimated tra-
jectories are close to the ground truth. Thus, SLAM-Share’s merged
global map is accurate for tracking.

Vehicular dataset. We perform a similar experiment using a ve-
hicular KITTI-05 dataset in Fig. 10c. We divide the KITTI-05 dataset
into 3 parts, with each segment considered as a different client
driving on the street in an area of 500 x 600 square meters. Client
A starts initially, and at the 6.5 second mark, client B joins. The
map error increases to 28.1 meters, but once SLAM-Share merges
client B’s map with the global map (in about 150 ms), the map’s
accuracy comes back to a relatively low error of 0.6 m. Another
merge occurs at about 20 seconds. This third client’s map is merged
into the global map, and the ATE increases prior to the merge but
again decreases to a low value once the merge is completed in
about 180 ms. Finally, the ATE remains about 1.68 meters until the
end of the trajectory. For comparison, the single user ORB-SLAM3
baseline ATE was 1.72 m. Overall, these results show SLAM-Share
successfully merges multiple maps into a global map, and multiple
clients can continue simultaneously updating it with high accuracy.

Latency. We break down the components of the map merging
time for SLAM-Share and the baseline. We take the average across
10 runs of the EuRoC dataset for this breakdown, shown in Table 4.
The data transfer time is measured from when the data transmis-
sion starts at the sender to when the final ACK is received back.
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Table 4: Avg. Latency breakdown of SLAM-Share & baseline.

Component Baseline (ms) | SLAM-Share (ms)
1. Hold-down Time 5000 N/A
2. Serialization 78.1 N/A
3. Encoding N/A 3
4. Data Transfer 1 66 0.11
5. Deserialization 390.8 N/A
6. Map Merging 2339 190
7. Data Processing 132 N/A
8. Data Transfer 2 6.4 0.1
9. Load Map 19.8 N/A
Total 8006 193

The total latency of the baseline approach ranges from 5.8 to 10.8
seconds, depending on the map size and complexity - 8 seconds on
average. The major components contributing to the baseline’s total
latency are the user-specified hold-down time and the map merging
time. The hold-down time is needed to batch enough data to send
to the server for map merging; a shorter time would result in more
frequent network communications and increased overhead. The
map merging time is long for the baseline because it first needs to
wait for the client to send the map update information to the server
(serialization, data transfer 1, and de-serialization steps) and then
perform full map merging before sending the updated map back
to the client (data transfer 2). In contrast, SLAM-Share operates di-
rectly with the map in memory without communicating large map
updates back and forth. This results in SLAM-Share taking only
193 ms on average. Overall, SLAM-Share reduces latency at least
30x for merging two maps compared to the baseline. Subsequently,
SLAM-Share takes less than 200 ms for map updates thereafter,
whereas the baseline requires > 5.8 seconds every merging round.

In terms of frame rate, our method always achieves at least 30
FPS for all traces throughout the entire device trajectory, even with
turns (see trajectory examples in Figs. 7, 9, 10b). This is in contrast
to prior work [14], which reported lower frame rates, especially
at difficult turns. The key enablers of this are SLAM-Share’s IMU-
based tracking when network delay is high and fast computations
at the server, allowed results to be returned in < 33 ms.

5.6 Impact of Sharing on Positioning

To illustrate the impact of ATE on hologram positioning, we plot
the position of a common hologram as perceived by users B and C
in Fig. 11. The scenario considered is as follows. User B first places
a hologram and then moves around as in Fig. 10b. Subsequently,
when user C joins and locates the hologram on her viewport, we
capture a snapshot of the hologram’s position as perceived by each
user. Fig. 11a shows the perceived positions of the hologram in the
real world if no map merging is available, and Fig. 11b shows the
hologram’s perceived positions with SLAM-Share. The only infor-
mation shared between users is the coordinates of the hologram.
Ideally, all users should perceive the hologram’s position identically
(i.e., all the dots should be on top of each other in the plot). With
SLAM-Share (Fig. 11b), this is indeed the case (the slight dissimilari-
ties are a result of small amounts of ATE). However without sharing
(Fig. 11a), device C’s estimated hologram position (black dot) is 6.94
m away from the ground truth (green dot). This is because device
C starts at a different place compared to user B and does not know
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Figure 11: (a) Without sharing, clients B and C have inconsis-
tent views of the hologram’s position. (b) With sharing, the
clients’ estimated hologram positions are close to the truth.

where it is located on the shared map. Device C assumes that its
starting location is the origin and erroneously places the hologram
relative to that origin. This result quantifies the benefit of sharing
with SLAM-Share compared to the no map merging scenario.

5.7 Impact of Network Conditions

We now evaluate SLAM-Share and the baseline for the same
scenario as Fig. 10b, to demonstrate the resilience of SLAM-Share
as network conditions (bandwidth, delay) change.

Cumulative ATE. In Fig. 12a, we present the cuamulative ATE of
SLAM-Share for the multi-user trajectory as in Fig. 10b, just from
user B’s perspective (MHO05). We examine it with added delay (300
ms) or bandwidth constraints (18.7 Mbit/s or 9.4 Mbits/sec), as de-
scribed in §5.1. We also plot the cumulative ATE of by a single client
following the same trajectory (MHO05) in the vanilla ORB-SLAM3
(the “ORBSLAM3” line in Fig. 12a). From Fig. 12a, we see that all
the cumulative ATEs show a rise in ATE upto ~30 seconds, after
which the ATE levels off, achieving close to the final ATE values
reported in [16]. We find that even with increased network delay
or decreased bandwidth, SLAM-Share provides about the same or
better (lower) ATE compared to the single-user ORB-SLAM3 at the
same point of time in the trajectory, despite supporting multiple
clients. SLAM-Share’s low bandwidth requirement for client-server
communication, as well as the use of IMU to produce accurate pose
even when with the network delay, enables it to create maps with
accuracy as good or better than single-user ORB-SLAM3.

Short-term ATE. The short-term ATE (the last 5 seconds of the
device’s trajectory) reflects the device’s most recent tracking error
(see Appendix C). Therefore, we evaluate the impact of increased
delay and reduced bandwidth on the short-term ATE, for both the
baseline and SLAM-Share. Fig. 12b shows the impact of adding a
300 ms delay. SLAM-Share has a better (lower) short-term ATE
compared to the baseline. For example, SLAM-Share’s short-term
ATE consistently stays below 4 cm, whereas the baseline’s ATE
fluctuates and can reach 12 cm due to the additional delay, as the
baseline does not get updates from the server in real-time. On the
other hand, SLAM-Share has the IMU to help compensate for the
delayed responses from the server.

Fig. 12c shows the impact of bandwidth on performance. Again,
we see that SLAM-Share is able to consistently maintain a low ATE,
regardless of the bandwidth restriction. However, the baseline’s
short-term ATE with 18.7 Mbit/s is already higher than without
any bandwidth restriction (compare with “Baseline (no delay)” in
Fig. 12b. This is because, with even more bandwidth, the baseline’s
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Figure 12: Impact of network conditions on SLAM-Share and the baseline. Bandwidth restrictions or increased delay hurt the
baseline’s performance (higher ATE), while SLAM-Share is robust to different network conditions and maintains lower ATE.
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Figure 13: Client B’s CPU usage comparison between baseline
and SLAM-Share. Client is moving along the MHO5 trajectory.

client receives the server map updates more quickly and positions it-
self earlier, reducing the short-term ATE. The baseline’s short-term
ATE increases even more when the bandwidth is halved, because its
high bandwidth requirement is unmet and updates from the server
arrive late. In fact, by the end of the trajectory, a baseline client
misses 38% of the updates from the server, and thus suffers from
higher ATE. Finally, note that the baseline’s ATE rises in the middle
part of the trajectory because it is a challenging region where client
B makes a quick turn. However, SLAM-Share is able to maintain low
ATE because the server provides client B with global information
about that region, seen by user A.

With regard to resilience to communication constraints, SLAM-
Share requires approximately 1-2 Mbit/s on the uplink (Table 3)
per client and is not significantly affected by moderate bandwidth
restrictions (Fig. 12c¢), unlike the baseline that requires nearly 20
Mbit/s per client. With typical 5G uplink bandwidths exceeding 200
Mbps [31] and WiFi exceeding 300 Mbps [6], the network seems
unlikely to be a bottleneck impacting SLAM-Share’s performance
even as the number of clients increases. Also note that the typical
scale we envisage for a multi-user AR scenario of clients sharing
the same physical space and global map, as studied in this work,
would be on the order of tens of users.

5.8 Resource Utilization

Since client devices may be battery-powered mobile devices, we
believe SLAM-Share can provide considerable energy savings, as
the computation tasks performed on the client are considerably
simplified, We focus on computation tasks because communication
tasks in multi-user AR generally consume less energy [10]). SLAM-
Share requires the client to perform much less processing on the
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client in terms of device tracking, local bundle adjustment, map
merging, etc. Even though a SLAM-Share client still has to perform
video compression, we expect it to use less CPU (and hence energy)
than a baseline client, which has to run full SLAM.

To quantify this, we measured the CPU utilization on clients for
both SLAM-Share and the baseline. We utilize the psutil tool [7] to
capture CPU utilization. We run it in the background while running
the client of baseline or SLAM-Share on a server in our testbed
(§5.1). psutil measures the CPU cycles used by deserializing the
application while executing user-space or kernel-level code, report-
ing the overall CPU utilization as CPU% utilized (for our experiment,
100% CPU utilization means all the 40 CPU cores are fully utilized).
Fig. 13 shows the relative CPU consumption of both methods over
the entire MHO5 trajectory of user B. The baseline uses almost 10
CPU cores throughout the experiment (25% of 40 cores). On the
other hand, SLAM-Share hardly consumes any CPU (0.7% of one
CPU core). We believe this 35X decrease will directly translate to
critical energy savings on battery-powered client devices.

6 CONCLUSIONS

In SLAM-based multi-user AR, the participating devices need to
merge their maps of the real world together into a common shared
map. They use this shared map to localize themselves and ren-
der the virtual holograms. Instead of distributing the shared map
(representing the “state” of the AR session) across different devices,
leading to inconsistent state accesses by different devices and hence
inconsistent hologram visualizations, we propose an edge-centric
architecture that consolidates the work performed on behalf of the
users into a unified state at the server. Our framework, SLAM-Share,
does this quickly and accurately through cooperative tracking be-
tween the server and client and fast map merging using shared
memory. With SLAM-Share, AR devices can achieve tracking rates
of 30 FPS and merge their maps in < 200 ms, enabling devices to
localize themselves accurately and view the virtual holograms in
real-time. This work does not raise ethical issues.
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APPENDIX

A

CLIENT TRACKING ALGORITHM

Algorithm 1: Pose Computation with IMU Model

1 Function ApproxPose_UpdateMM(C_IMU,i):

2

3

4

PF_MM := Poses[i-1] // prev. frame motion model
CRot:= PF_MM.RotXC_IMU.RotA

CPos:= IMUPosition(PF_MM.Pos,C_IMU.PosA)
CVel:= IMUVelocity (PF_MM.Vel,C_IMU.VelA)
Velocity:= PoseVelocity(CRot, CPos, CVel)
CurrentPose:= LastFramePosexVelocity
Poses[i]:= CurrentPose

9 return CurrentPose

10
11

12
13

14

Function Recv_SLAMPose (SLAMPose, SLAMIndex):

PastPoses[SLAMIndex]:= SLAMPose

/* Update Motion Model x/

for j «SLAMIndex to len(Poses) do
ApproxPose_UpdateMM(Poses[j+1],j+1)

end
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The IMU-based pose estimation module used in SLAM-Share
(§4.2.2) isin Algorithm 1. The client uses the ApproxPose _UpdateMM
function to compute each frame’s pose. It uses the previous frame’s
IMU rotation, position and velocity values (lines 3-5) and updates
their values based on the difference between the previous and the
current frames. The updated IMU-based values can then be used
to derive a “velocity” (line 6) that then approximates the current
pose relative to the previous frame’s pose (line 7), and is stored.
This client computation proceeds in parallel with the server’s pose
computation. When a SLAM-based pose is obtained from the server,
Recv_SLAMPose uses the more accurate server-computed pose to
update the IMU-based motion model for subsequent frames, based
on the received pose value (lines 12-13).

B MAP MERGING ALGORITHM

Algorithm 2: Map Merging

1 Function MapMerge (CMap):
2 foreach Mappoint € CMap, Keyframe € CMap do

3 GMap . AddMapPoint (Mappoint)
1 GMap . AddKeyF rame (Keyframe)
5 end

/* Loop through every client’s Keyframe */
6 foreach KF € CMap do

7 LW:= DetectCommonRegion(KF, GMap)
8 if LW> 0 then
5 T:= 3DAlign(KF, LW)

foreach Mappoint visible by KF do

| Mappoint.pose x T

end

if mbLoopDetected then
BundleAdjustment(KFs € CMap &
LocalKFs)
EssentialGraphOptimization()

10

11

12

13
11

15

16 end

17 return GMap // Merged Global Map is returned

We present SLAM-Share’s map merging method (§4.3.1) in greater
detail in Alg. 2. The steps follow the single-user map merge proce-
dure present in ORB-SLAM3, with the differences in SLAM-Share
highlighted below. SLAM-Share initiates map merging as soon as a
client map (CMap) is created and placed in the server’s shared mem-
ory (§4.3.2). As described in §4.3.1, this initiation process differs
from single-user map merging, which only initiates map merging
based on incoming keyframes, not based on an existing map. As
the first step, SLAM-Share adds the Mappoints and Keyframes from
a client’s map into the global map (GMap) data structure (lines 2-
5). SLAM-Share re-numbers the Mappoint and Keyframe indices
from CMap and GMap so that there are no collisions between clients.
As both maps exist in the same server shared memory (unique
to SLAM-Share), this only adds pointers to the global map data-
base, without any data copying. SLAM-Share then iterates through
each Keyframe (denoted “KF” in Alg. 2) from the client’s map and
runs the DetectCommonRegion function to detect common regions
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Figure 14: Illustration of cumulative ATE vs. short-term ATE.

seen in that KF, and in the global map (lines 6-7). This iterative
process is unique to SLAM-Share, as the default ORB-SLAM3 only
checks the current active Keyframe, not all past keyframes in the
CMap. DetectCommonRegion uses a Bag of Words (BoW) to search
through all the global map’s KFs to find the closest ones, which
it returns as a list called LW (line 7). If LW is not empty, ie, if
the algorithm can find a common region between client map and
global map, the program proceeds ahead on aligning the maps, by
finding the 3D alignment T between KF and LW and applying this
alignment to each Mappoint visible in the client’s KF (lines 8-12 in
Alg. 2). This provides an initial merge. Once the initial merge of a
single Keyframe from the client map to the global map is completed,
we check if there is a loop been detected. (line 13) If a loop has
been detected, then run bundle adjustment and essential graph
optimization to reduce the error and correct the map (line 14-15).

C CUMULATIVE VS. SHORT-TERM ATE

In Fig. 14, we illustrate the differences between the cumulative
ATE (a common SLAM evaluation metric [16]), and the short-term
ATE (which reflects the user’s experience in the last 5 seconds). The
cumulative ATE is based on the distance between the estimated
trajectory (red line) and ground truth (black line), for the entire
length of the client’s trajectory until the present time. The short-
term ATE is based on the distance between the last 5 seconds of
the estimated trajectory (green dashed line) and the corresponding
5 seconds of ground truth (portion of black line). We use the short-
term ATE metric for evaluation because it (a) captures the client’s
most recent experience, and (b) since SLAM continuously updates
all parts of the estimated trajectory, we need to take a snapshot of
the ATE for each portion of trajectory as it is walked, to reflect the
client’s real-time position estimate and hologram positioning.

Fig. 14 also helps illustrate why SLAM-Share’s lower data trans-
fers and hence faster server response time improve (reduce) the
short-term ATE. The time in between when a client requests help
from the server and receives a response from the edge server (i.e.,
the portion of the trajectory between the two human figures in
Fig. 14) is generally the most inaccurate part of the trajectory, since
help from the server is pending. If the request/response is slow (as
in the baseline), then the inaccurate portion will be longer, and the
last 5 seconds of the trajectory (green dashed line) will lie fully
within the inaccurate portion, resulting in a higher short-term ATE.
If the request/response is fast (as in SLAM-Share), then the inaccu-
rate portion will be shorter, and the last 5 seconds of the trajectory
will only overlap with the inaccurate portion for a short period,
resulting in a lower short-term ATE.



