

CoNEXT ’22, December 6–9, 2022, Roma, Italy Aditya Dhakal et al.

Edge computing can signi�cantly facilitate AR in general and

multi-user AR in particular. The simple and obvious reason is that

edge computing can alleviate the burden of these computationally

expensive tracking and 3D mapping operations of SLAM. For multi-

user applications, an edge server can also serve as a central location

to facilitate information sharing between AR devices on the current

state of an AR task. Finally, edge computing helps compensate for

the heterogeneous compute capabilities of di�erent AR devices.

Without edge computing, if devices have vastly varying compute

power (e.g., some devices have a higher power CPU, a GPU, or more

memory), some devices may perform worse than their peers.

However, it is not straightforward for the edge server to provide

the desired support for AR devices. The main reason is that the

latency requirement of the multi-user AR application is tight. A

naive implementation on an edge server may not meet the latency

requirements due to all the moving parts that have to operate in

sync. multi-user AR is inherently a distributed problem that is chal-

lenging to perform in real time. All of the AR SLAM computations

– tracking and 3D mapping – need to be performed quickly so that

users see the right holograms in the right positions. Tracking must

be done in real-time because stale tracking results will cause out-

dated positions for the hologram(s) on the display as the user moves

around (see Fig. 2b, which we discuss in §2). Stale mapping can have

serious consequences in terms of misplaced holograms as seen by

di�erent users (see Fig. 2c). This is because each user’s view is de-

pendent on the merged maps from the other users. Hence, quickly

merging all the users’ 3D maps to create a consistent view is critical.

Recent approaches to using the edge cloud to support SLAM are

insu�cient because they focus either on single/few non-concurrent

users or asymmetric information sharing. For example, Edge-

SLAM [14] o�oads some SLAM computations to an edge server

for a single user. CarMap [8] performs map merging on the cloud

for 1-2 vehicles that are not simultaneously operating. ARCore [22]

and SPAR [36] only allow asymmetric sharing, as shown in Fig. 1a.

On the left side of the �gure, holograms can be placed by one host

device (User A) and viewed by all resolver devices (such as User

B). However, User B cannot place a hologram and have it viewed

by User A without starting a new AR session with B as host (right

side of �gure). Several works [11, 29, 35, 45] focus on low-latency

object detection in AR, which is orthogonal to this work. None

enable SLAM for AR with multiple concurrent users, symmetric

information sharing, low latency, and high accuracy.

In this paper, we take a �rst step towards answering the ques-

tion: What techniques can help SLAM quickly and accurately per-

form tracking and 3D map merging for multiple AR devices? The

fundamental complexity of multi-user AR is that the “state” of

the system (i.e., the shared merged map) needs to be updated and

communicated to the clients through the tracking and mapping

processes. Current approaches splinter this state across multiple

devices (Fig. 1a), introducing complexity because it is updated and

accessed by multiple user devices in a distributed, asynchronous

manner. To overcome this, the main architectural approach we ex-

plore in this paper is the judicious use of edge computing for multi-

user SLAM for AR. We carefully choose the essential functions to

be performed on an end-user’s device versus the edge server, lever-

aging both visual and IMU-based sensing. Our focus is on a server

design that uni�es all the work performed on behalf of the users,

consolidating the state into a consolidated shared map (Fig. 1b).

In brief, the AR devices upload camera frames in real-time to

an edge cloud server, which serves as a central vantage point to

perform the AR SLAM computations and return only the key re-

sults (poses of devices and holograms) to the devices. Thus, the

client processes access the shared information on the server for

high-throughput, low latency merging of maps across users. This

architecture leverages the increasing network bandwidth and low

latency provided by current and future wireless networks.

Contributions. Our �rst contribution shifts the majority of the

SLAM tracking and mapping computations to a server while run-

ning only very lightweight tracking computations on the device.

The device performs inertial movement unit (IMU)-based computa-

tion only to provide the pose over the short-term while the device

is waiting for the server to return a more accurate SLAM-computed

pose. The server leverages hardware accelerators often found in

edge servers (e.g., GPU) for speed-up tracking.

In parallel with tracking, the 3D maps present on the edge server

are merged together to provide a common view for all the devices.

The 3D maps used by AR devices for SLAM can be quite large,

nearly 40 MB for a minute-long time sequence (see Table 1 in §2),

so transferring them over the network, or between processes on

a server, to a common thread for merging can be time-consuming.

Our second contribution is a shared memory approach that en-

ables the merging process to access each 3D map quickly. With all

the 3D maps gathered in place, our third contribution is the map

merging algorithm itself. Our method uses overlapping regions

between multiple maps to identify how they are oriented and po-

sitioned with respect to each other, then merge them into a global

map located in shared memory. The devices then use this global

map as a basis for further tracking.

Our implementation, SLAM-Share, is built around a state-of-the-

art SLAM framework, ORB-SLAM3 [16]. SLAM-Share reduces the

tracking latency by up to 50% using the GPU compared to CPU-

only processing and reduces the map merging latency by at least

30× compared to a baseline approach without shared memory.We

utilize absolute trajectory error (ATE) to measure the accuracy of

SLAM-Share. ATE is the average deviation of a device’s estimated

position from the ground truth, typically measured as the root

mean squared error (RMSE). The map produced by SLAM-Share

enables multiple devices to achieve positional accuracy as good as a

single user observing the same environment (< 10cm. (ATE)). The

open-source code is available1.

2 BACKGROUND & MOTIVATION

SLAM is a foundational algorithm used in applications such as AR

and robotics. The SLAM process typically involves two parallel

steps, tracking and mapping. We next provide background on each

of these steps to motivate SLAM-Share’s design.

Background on tracking. Tracking lets a client determine its

pose (i.e., position and orientation) in the real world. We call this

process Local Tracking in Process A of Fig. 3. First, Local Tracking

decodes images (potentially extracted from video) obtained from the

1https://github.com/network-lab2/slam-share

294

CoNEXT ’22, December 6–9, 2022, Roma, Italy Aditya Dhakal et al.

EdJe VeUYeU

FeaWXUe e[WUacWLRQ
(�4.3.1)

LRcaO WUacNLQJ

SeaUcK
ORcaO SRLQW

MaSSRLQW
CUeaWLRQ

LRcaO PaSSLQJ

LRcaO bXQdOe
adMXVWPeQW

LRRS
deWecWLRQ

GORbaO bXQdOe
adMXVWPeQW

MaS PeUJLQJ (�4.3.2)

PURceVV A PURceVV BPURceVV M

FeaWXUe
e[WUacWLRQ

SeaUcK ORcaO
SRLQW

MaSSRLQW
CUeaWLRQ

LRcaO bXQdOe
adMXVWPeQW

LRcaO PaSSLQJ

MaS LQLWLaOL]aWLRQ

SKaUed PePRU\
aOORcaWLRQ (�4.3.3)

DeYLce
SRVe

DeYLce
 SRVe

2

3

5
4 7

91

IMU WUacNLQJ
(�4.2.1)

DeYLce A

IMU WUacNLQJ

DeYLce B
LRcaO WUacNLQJ

VLdeR
FUaPeV

VLdeR
FUaPeV
(�4.2.2)

SKaUed
PePRU\

GORbaO PaS

6 8

Figure 3: Overview of SLAM-Share. (1) Device A performs IMU tracking and (2) Uploads frames to Process A on the edge server

(3) Server performs local tracking (4) Server returns pose to device. Meanwhile, local mapping in Process A (5) produces map to

be loaded (6) into global map using shared memory and merged with existing data where A and B’s trajectories overlap (7).

Device B also reads the updated global map (8) and tracks itself (9).

Why o�load mapping to the edge server? The mapping pro-

cess has two signi�cant limitations. First, the processing capacity

and memory on a mobile user device are typically limited. Having

real-time SLAM with a large map is a challenge for these devices.

Merging maps on a server takes more than 2 seconds just for the

computation (§5.2), and would be even slower on a mobile device.

Second, the task of merging the maps of the di�erent users requires

them to be brought together in a merging thread. Exchanging new

versions of the local maps generated by all clients requires addi-

tional processing and network bandwidth. This can dramatically

increase latency, particularly when themap sizes are large, as shown

in Table 1. Hence performing the mapping on an edge server is

preferable to such a peer-to-peer approach.

What about communication costs? One consideration is the

communication cost of shipping frames to the edge before tracking

is performed on the edge server. In our experience, this is quite

small, requiring approximately 1 Mbit/s when the frames are en-

coded as an H.264 video stream and uploaded to the edge server

as in SLAM-Share (see §4.2.3). In contrast, even if tracking is per-

formed on the client and is rapid enough (e.g.,mobile GPU) it would

consume much higher bandwidth (approx. 4 Mbits/s) and energy

to send the tracking results to the server for map merging, and

get the results back, (based on sending Keyframes and Mappoints

similar to [14]). Thus, tracking and mapping on an edge server in

SLAM-Share, and transferring video from the client, requires far

fewer network resources than alternative architectures.

3 RELATED WORK

SLAM frameworks. State-of-the-art SLAM frameworks [16, 33]

do not provide a mechanism to share maps between clients because

they are designed for single-user operation. Edge-SLAM [14] per-

forms single-user SLAM by tracking wholly on the client while

mapping is performed on the server. This could be extended to the

multi-user scenario considered here, but merging existing maps on

the server requires serialization and de-serialization of the maps to

transfer them to a commonmerging thread (e.g., Process M in Fig. 3),

costing time and overhead. Minimizing this delay is very important,

as it impacts how frequently map merging can occur. [14] also does

not utilize accelerators (e.g., GPU) to speed up tracking, resulting in

lower frame rates during complex movements. A baseline derived

from such an architecture [14] is evaluated for comparison in §5.

A few other SLAM frameworks [18, 23, 40, 43, 47] are designed

for multiple collaborating robots, where clients create local maps,

which are then remotely merged. However, this incurs heavy com-

munication cost, having to send large Mappoints and/or Keyframes

between the clients and the server, despite compression methods.

Multi-user AR. Google Play Services for AR [22] allows multi-

ple AR users to share maps at the beginning of an AR session with-

out further updates as the session progresses, unlike SLAM-Share

which provides true map merging. AVR [17] and MARVEL [17]

assume an o�ine 3D map is provided rather than computing it

on-the-�y through SLAM. Like SLAM-Share, CarMap [8] focuses

on vehicular scenarios and includes map stitching functionality but

requires GPS to aid in feature matching due to its use of sparse 3D

maps. However, GPS may not be available in indoor AR environ-

ments and is not accurate enough on its for the centimeter-level co-

ordinate synchronization required by AR. SPAR [36] allows one user

to track itself in another user’s map by doing a one-time map align-

ment, but has no map merging capabilities, as stated in §1 and Fig. 1.

SEAR [46] o�oads object recognition to the edge to support multi-

ple users. Here, we focus on tracking and mapping, key components

of AR. Finally, many works [8, 34, 36, 40] rely on older frameworks

such as ORB-SLAM2 [30] or VINS-Mono [33], which typically per-

form worse than the state-of-the-art ORB-SLAM3 [16] we use here.

4 DESIGN OF SLAM-SHARE

4.1 Overview & Work�ow

We illustrate the architecture and work�ow of SLAM-Share through

a running example, and the overall architecture of SLAM-Share is

shown in Fig. 3. Consider the case where there are multiple users

�ying drones through an AR interface [28]. The users see what

the drones see, and the AR interface highlights obstacles in the

environment that the user must quickly navigate away from to

avoid crashing the drone. The position and orientation of the AR

highlights are stored in the shared map. Therefore, a drone needs

accurate tracking in the shared map in order to understand where

the obstacles are and draw the appropriate AR highlights.

296

CoNEXT ’22, December 6–9, 2022, Roma, Italy Aditya Dhakal et al.

This holds across di�erent datasets (KITTI [20], EuRoC V202 [15],

TUM [41], and RGBD [41]), as well as di�erent numbers of cam-

eras (mono and stereo), and has also been recognized by others as

being slow. [9] The slow feature extraction time in ORB-SLAM3’s

case leads to higher total tracking times (>34 ms) for a majority of

datasets, making it impossible to track the device’s pose in real-time

(i.e., 30 FPS) and render the holograms at the right locations. Our

measurements also align with published benchmarks [30]. Thus,

lowering the tracking time is a necessity for real-time AR.

Our approach. To address this, SLAM-Share performs tracking

on the edge server, using a GPU to speed up its two slow steps:

feature extraction and 3D point matching. For feature extraction,

the key capability we introduce is the parallelization of “FAST” cor-

ner detection [38], needed in SLAM, with the GPU. FAST identi�es

images features used to �nd correspondences across images (see

§2). This is in contrast to the default approach of searching for the

FAST features sequentially in each frame. After GPU processing,

the FAST features are transferred to the CPU for SLAM processing.

Our second speedup is to parallelize the code for the search local

point module, which tries to match the Mappoints extracted from

each frame with the Mappoints that exist in a small region of the

entire map (known as a local map). The default implementation

of search local point loops through all the Mappoints from a frame

and sequentially matches them with the Mappoints in the local

map. We parallelize this matching process in the GPU by creating a

local tracking CUDA kernel, performing identical computation as

in the original CPU version of the code, but parallelizing the loop

iterations to bene�t from parallel computations in the GPU.

While others have explored using GPUs to speedup ORB-SLAM2

[1–3, 9] or SLAM algorithm variants requiring 3D depth maps as

input [26, 37], in this work we focus on the newer ORB-SLAM3

(released in 2021) without requiring 3D depth maps, as is common

on smartphone-based AR devices. Not all SLAM operations can

bene�t from the parallelism o�ered by the GPU. SLAM’s merging

process includes many of random memory lookups (for Mappoints,

Keyframes) and serialized operations (e.g., bundle adjustment) that

do not bene�t from the GPU speedup. Tracking, however, can be

parallelized and bene�t from GPU acceleration. To the best of our

knowledge, ours is the �rst to use a GPU for the acceleration of

select ORB-SLAM3 functions beyond ORB extraction. Our GPU

speedupmethods improve both feature extraction, in linewith previ-

ous work [9], as well as the “search local points” function, a key sig-

ni�cant contributor to tracking latency. Furthermore, SLAM-Share

utilizes spatio-temporal sharing of the GPU [19] to extract features

simultaneously and search local points on the data received from

multiple client updates. With this, SLAM-Share achieves higher

processing throughput and reduces SLAM latency.

4.2.2 Cooperative Client-IMU and Server Tracking

Problem. Tracking is a critical component of AR since it allows

devices to update their poses in real-time and thus render the holo-

grams at their correct locations on display. Since AR applications

like drone navigation, autonomous driving, etc. require low-latency

localization, it is imperative that the tracking results be available

nearly every frame to prevent navigational errors. But tracking in

SLAM using a device’s camera and IMU is di�cult to perform in

real-time on mobile devices, as discussed in §2. While we sped up

client

IMU

IMU +
SRVe(I1)

IMU +
SRVe(I2)

IMU +
SRVe(I2) WLPe

I1 caSWXUe
I1 UeQdeU
I2 caSWXUe

I3 caSWXUe
I2 UeQdeU

I3 UeQdeU

Yisual input
¬& output netZork

I4 caSWXUe
..
.

I1
SRVe (I1)

I2
SRVe(I2)

I3
SRVe(I3)

serYertracking

Figure 6: IMU-assisted pose estimation. Frame 1 (f1) sent

to the server; meanwhile, the device uses IMU for tracking.

Resulting pose(f1) from server is incorporated into tracking.

feature extraction and tracking by doing them on a server, SLAM-

Share needs to be resilient to variable communication delays.

Our approach. To increase tracking resiliency, we utilize the IMU-

based tracking used in ORB-SLAM3 to compute pose in the client

itself over a short timescale. Most AR devices (e.g., smartphones,

Hololens) have an IMU that provides sensor readings at a high sam-

pling rate (e.g., 1000 Hz [25]), from which position and orientation

can be computed. Unlike ORB-SLAM3, which performs both SLAM

and IMU-based tracking on the client device, SLAM-Share only

performs IMU-based pose prediction on the client. We still depend

on the SLAM-based tracking performed at the server since relying

on the IMU alone for long periods of time is known to introduce

drift errors [25]. Prior approaches [14, 16, 36] have not considered

this split processing between the client and server.

We show the client-and-server based tracking timeline in Fig. 6.

First video frame 1 (f1) is captured by the camera and transferred to

the server for SLAM (red arrow). Meanwhile, the client computes

the pose based solely on the IMU since it does not yet have pose

information from the server (white box). Once f1’s pose information

is obtained from the server, the client’s tracking is updated (red box)

by solving an optimization problem that minimizes the residual

error from the IMU-based pose and the server-based pose, trying

to ensure that the two sets of observations are consistent with each

other [16]; i.e., the optimization problem solves for the pose that

best agrees with both sets of observations (using a weighted sum).

This should happen when Frame 2 (f2) is captured in order for track-

ing to be real-time. Incorporating both sources of information (IMU

from the client, vision-based pose from the server) achieves higher

accuracy than relying on the IMU alone (details in Appendix A).

One potential concern is if it takes too long to get an update

from the server. Since tracking based on the IMU alone becomes

inaccurate over time because of accumulated drift-related errors, we

rely on the IMU-based tracking only during the brief interim period

while the client waits for results to be returned from the edge server.

In SLAM-Share, with this combination, we limit the accumulated

drift error over this short time interval to be very small. This is

validated by our experimental results in (§5.3). In the worst case,

if the RTT is very high, then a client can fall back to single-user

operation with tracking in a local map for the short-term.

298

CoNEXT ’22, December 6–9, 2022, Roma, Italy Aditya Dhakal et al.

MH4 dataset [15]. The blue dots in the �gure indicate Keyframes

in the global map, while the green lines represent the relationship

between the Keyframes in the global map. The red line is the map

created by a new client, to be merged with the global map.

The leftmost map (Fig. 7a) shows a small map initially created by

the new client ("New Client Map") when it enters the room. How-

ever, the client’s map is not aligned correctly with the global map.

SLAM-Share �nds where the client’s map �ts on the global map,

merges the two, and runs bundle adjustment to correct the pose

of the client’s Keyframes and Mappoints. These actions result in

the client’s map having the correct pose relative to the global map.

Fig. 7b shows the maps immediately after merging and bundle ad-

justment. The pose of the client’s Keyframes and Mappoints are cor-

rected and thus, the client’s small red trajectory snaps to the correct

place in the global map (see the position of the "New Client Map").

As the client continues to explore the room, new images from the

environment are processed to update the global map. Fig. 7c shows

the entire scenario, where the client continues extending the global

map (longer red line). The result is a shared map with the client’s in-

formation incorporated into the original map, analogous to Fig. 1b.

4.3.2 Shared Memory for Merging Maps

Problem. Transferring a large amount of data (1-2 MB or more in

Table 1) for the maps of 1-2 secs either across the network (for client-

client and client-server) or even between processes in the same

node involves considerable overhead in terms of serialization and

deserialization of the map, protocol stack processing, and network

delays. These overheads impede sharing map updates in real-time.

Our approach. In SLAM-Share, we place the global map in

a shared memory bu�er accessible by all the mapping processes

corresponding to each client. Clients localize themselves based

on this shared global map and also update the map. The shared

memory approach avoids the problem of large �le transfers and

consequent delays. All the mapping processes are co-located on

the edge server (thus no communication over the network). They

can access the data directly in the shared memory bu�er (no inter-

process communication time). The shared memory approach avoids

data serialization / de-serialization because the data is placed di-

rectly in a memory bu�er with all the data structures preserved.

Having a single global map in the shared memory implies that any

change in the map is instantly available to all the clients. Thus, there

are no synchronization delays between the client processes. Finally,

shared memory allows zero-copy operations, reducing processing

overhead. Once a data structure is initialized in shared memory, it

can be accessed by all cooperating client processes, eliminating the

need to copy the data or place it in each process’ memory.

Utilizing shared memory brings new challenges. Existing li-

braries such as OpenCV and ORB-SLAM3 do not natively utilize

a shared memory bu�er. We implemented the necessary construc-

tors, and other primitives and refactored existing ORB-SLAM3 code

to exploit the shared memory. ORB-SLAM3 utilizes mutexes to

synchronize updates of crucial data structures, such as keyframes

and mappoints. In SLAM-Share, we use these mutexes to mediate

access to shared memory. To avoid clients idling on a lock, we use

Boost’s [4] named-utilities, which helps us implement a share-

able mutex that allows concurrent reads of shared data by threads

of multiple processes, while restricting writes to be serialized. This

allows SLAM-Share to reduce the amount of locking used for ac-

cessing data structures in shared memory. Thus, we do not expect

shared memory to be a bottleneck even with more (tens) of users.

An alternative approach to SLAM-Share using a separate SLAM

process per client could be to spawn new CPU threads within a

single SLAM process for each new client. However, this "new thread

per client" approach brings additional complexity and the potential

for interference between threads. Even a single SLAM client already

requires multiple threads to perform all of SLAM’s operations [24].

Thus, it requires additional e�ort to provide the needed perfor-

mance isolation and management of the threadpool, all of which is

avoided with SLAM-Share. Furthermore, SLAM-Share’s one process

per client model enables portability to containers to take advantage

of the horizontal scaling provided by cloud-based services.

Implementation details. We utilize the Boost interprocess

library [4] in C++ to create a shared memory framework (gray

block at the bottom of Fig. 3). This memory is allocated by an

orchestrator process (not shown), separate from the clients using

SLAM. We allocate 2 GB of memory bu�er for the shared memory.

We selected this value based on the size of maps created by di�erent

datasets, e.g., EuRoC MH-04 [15] requires approximately 40 MBytes

of memory for a map made from the entire trajectory 1. When

Process A on the server starts (see Fig. 3), it searches and attaches

the shared memory bu�er to its own virtual address space. Then,

when Process A receives video frames from Device A and generates

new Keyframes and Mappoints, it writes those updates to the global

map in sharedmemory (as well as reads others’ updates).We created

special allocators to allocate complex variable types used in the

map directly in the shared memory bu�er. We modi�ed ~2000 lines

of code from the original ORB-SLAM3 to implement SLAM-Share.

5 EXPERIMENTAL EVALUATION

We �rst describe the setup (§5.1), then evaluate individual compo-

nents of the framework (§5.2-5.4) , followed by overall accuracy

and latency (§5.5), hologram positioning (§5.6), impact of network

conditions (§5.7), and resource utilization (§5.8)

5.1 Setup

Testbed. Our testbed used a Dell PowerEdge R740xd with Intel(R)

Xeon(R) Gold 6148 CPU with 40 cores, 256 GB of system memory,

one NVIDIA Tesla V100 GPU, and an Intel X710 10GbE quadport

NIC as our edge server. The evaluation datasets were the EuRoC [15]

and KITTI [20] datasets. The former contains trajectories of drones

�ying around a large room, while the latter contains vehicular

traces. We speci�cally used the MH04 and MH05 traces from Eu-

RoC, comprising 68 seconds (2032 frames) and 75 seconds (2273

frames) respectively. We also used KITTI-00 and KITTI-05 com-

prising 151 sec (4541 frames) and 92 sec (2762 frames), respectively.

Some experiments use the full 10 Gbit/s client-server link with

negligible delay. We also used tc [5] to modify the link in both di-

rections, adding either delay (300ms) or bandwidth constraints (18.7

Mbit/s or 9.4 Mbit/s). 18.7 Mb/s is the minimum bandwidth for the

server to send the largest map to the client within 5 seconds, in the

baseline method described below, without the map’s packets incur-

ring signi�cant queuing delay waiting for transmission on the link.

Then, we further restrict the bandwidth to half of that (9.4 Mbit/s).

300

SLAM-Share: Visual SLAM for Real-time Multi-user AR CoNEXT ’22, December 6–9, 2022, Roma, Italy

REFERENCES
[1] 2019. ORB-SLAM2 4 MatlabSimulink. https://github.com/falfab/orb_slam_cuda.

(2019).
[2] 2019. ORB-SLAM2-GPU. https://github.com/yunchih/

ORB-SLAM2-GPU2016-�nal. (2019).
[3] 2019. ORB_SLAM2_CUDA. https://github.com/thien94/ORB_SLAM2_CUDA.

(2019).
[4] 2021. Boost C++ Libraries. https://www.boost.org/. (2021).
[5] 2021. tc(8) - Linux Manual Page. https://man7.org/linux/man-pages/man8/tc.8.

html. (2021).
[6] 2022. AT&T Speed Test. https://www.highspeedinternet.com/tools/speed-test/att.

(2022).
[7] 2022. psutil library. (2022). Retrieved October 21, 2022 https://psutil.readthedocs.

io/en/latest/.
[8] Fawad Ahmad, Hang Qiu, Ray Eells, Fan Bai, and Ramesh Govindan. 2020.

{CarMap}: Fast 3D Feature Map Updates for Automobiles. In USENIX NSDI.
[9] Stefano Aldegheri, Nicola Bombieri, Domenico D Bloisi, and Alessandro Farinelli.

2019. Data �ow ORB-SLAM for real-time performance on embedded GPU boards.
In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
IEEE.

[10] Kittipat Apicharttrison, Jiasi Chen, Vyas Sekar, Anthony Rowe, and Srikanth
Krishnamurthy. 2022. Breaking edge shackles: Infrastructure-free collaborative
mobile AR. ACM SenSys (2022).

[11] Kittipat Apicharttrisorn, Xukan Ran, Jiasi Chen, Srikanth V Krishnamurthy, and
Amit K Roy-Chowdhury. 2019. Frugal following: Power thrifty object detection
and tracking for mobile augmented reality. In ACM SenSys.

[12] AT&T Labs. [n. d.]. Air Gra�ti Mobile Application. https://www.att.com/gen/
press-room?pid=22691. ([n. d.]).

[13] Christoph Bachhuber, Alvaro Sanchez Martinez, Rastin Pries, Sebastian Eger,
and Eckehard Steinbach. 2019. Edge cloud-based augmented reality. In IEEE
International Workshop on Multimedia Signal Processing (MMSP).

[14] Ali J Ben Ali, Zakieh Sadat Hashemifar, and Karthik Dantu. 2020. Edge-SLAM:
edge-assisted visual simultaneous localization and mapping. In ACM MobiSys.

[15] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern Rehder,
Sammy Omari, MarkusWAchtelik, and Roland Siegwart. 2016. The EuRoCmicro
aerial vehicle datasets. The International Journal of Robotics Research (2016).

[16] Carlos Campos, Richard Elvira, Juan J Gómez Rodríguez, José MM Montiel, and
Juan D Tardós. 2021. Orb-slam3: An accurate open-source library for visual,
visual–inertial, and multimap slam. IEEE Transactions on Robotics 37, 6 (2021),
1874–1890.

[17] Kaifei Chen, Tong Li, Hyung-Sin Kim, David E Culler, and Randy H Katz. 2018.
Marvel: Enabling mobile augmented reality with low energy and low latency. In
ACM SenSys.

[18] HA Daoud, Sabri AQ Md, CK Loo, and AM Mansoor. 2018. SLAMM: Visual
monocular SLAM with continuous mapping using multiple maps. PloS one 13, 4
(2018).

[19] Aditya Dhakal, Sameer G Kulkarni, and KK Ramakrishnan. 2020. Gslice: con-
trolled spatial sharing of gpus for a scalable inference platform. In ACM Sympo-
sium on Cloud Computing (SoCC).

[20] Andreas Geiger, Philip Lenz, and Raquel Urtasun. 2012. Are we ready for Au-
tonomous Driving? The KITTI Vision Benchmark Suite. In IEEE CVPR.

[21] Google. [n. d.]. Just a Line - Draw anywhere, withAR. https://justaline.withgoogle.
com/. ([n. d.]).

[22] Google. 2022. Cloud Anchors allow di�erent users to share the experience.
https://developers.google.com/ar/develop/cloud-anchors. (2022).

[23] Marco Karrer, Patrik Schmuck, and Margarita Chli. 2018. CVI-
SLAM—collaborative visual-inertial SLAM. IEEE Robotics and Automation Letters
3, 4 (2018), 2762–2769.

[24] Georg Klein and DavidMurray. [n. d.]. Parallel tracking andmapping for small AR
workspaces. In IEEE and ACM International Symposium on Mixed and Augmented
Reality.

[25] Steven LaValle. 2016. Virtual reality. Cambridge University Press.
[26] Donghwa Lee, Hyongjin Kim, and Hyun Myung. 2012. Gpu-based real-time

rgb-d 3d slam. In IEEE International Conference on Ubiquitous Robots and Ambient
Intelligence (URAI).

[27] Peiliang Li, Tong Qin, Botao Hu, Fengyuan Zhu, and Shaojie Shen. 2017. Monoc-
ular visual-inertial state estimation for mobile augmented reality. In IEEE ISMAR.
IEEE, 11–21.

[28] Chuhao Liu and Shaojie Shen. 2020. An Augmented Reality Interaction Interface
for Autonomous Drone. In IEEE/RSJ IROS.

[29] Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge assisted real-time object
detection for mobile augmented reality. In ACM MobiCom.

[30] Raul Mur-Artal and Juan D Tardós. 2017. Orb-slam2: An open-source slam system
for monocular, stereo, and rgb-d cameras. IEEE transactions on robotics 33, 5
(2017), 1255–1262.

[31] Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ahmad Hassan, Shuowei Jin,
Xiao Zhu, Xiaoxuan Zhang, Denis Rybkin, Zhengxuan Yang, Zhuoqing Morley

Mao, et al. 2021. A variegated look at 5G in the wild: performance, power, and
QoE implications. In ACM SIGCOMM.

[32] Niantic. 2022. Shared AR Experience with your Buddy. https://niantic.helpshift.
com/hc/en/6-pokemon-go/faq/2146-shared-ar-experience-with-your-buddy/.
(2022).

[33] Tong Qin, Peiliang Li, and Shaojie Shen. 2018. Vins-mono: A robust and versatile
monocular visual-inertial state estimator. IEEE Transactions on Robotics 34, 4
(2018), 1004–1020.

[34] Hang Qiu, Fawad Ahmad, Fan Bai, Marco Gruteser, and Ramesh Govindan. 2018.
Avr: Augmented vehicular reality. In ACM MobiSys.

[35] Xukan Ran, Haoliang Chen, Xiaodan Zhu, Zhenming Liu, and Jiasi Chen. 2018.
Deepdecision: A mobile deep learning framework for edge video analytics. In
IEEE INFOCOM.

[36] Xukan Ran, Carter Slocum, Yi-Zhen Tsai, Kittipat Apicharttrisorn, Maria Gorla-
tova, and Jiasi Chen. 2020. Multi-user augmented reality with communication
e�cient and spatially consistent virtual objects. In ACM CoNEXT.

[37] Adrian Ratter, Claude Sammut, and Matthew McGill. 2013. GPU accelerated
graph SLAM and occupancy voxel based ICP for encoder-free mobile robots. In
IEEE/RSJ International Conference on Intelligent Robots and Systems.

[38] Edward Rosten and Tom Drummond. 2006. Machine learning for high-speed
corner detection. In European conference on computer vision. Springer, 430–443.

[39] Dieter Schmalstieg and Tobias Hollerer. 2016. Augmented reality: principles and
practice. Addison-Wesley Professional.

[40] Patrik Schmuck and Margarita Chli. 2017. Multi-uav collaborative monocular
slam. In IEEE ICRA.

[41] J. Sturm, N. Engelhard, F. Endres,W. Burgard, and D. Cremers. 2012. A Benchmark
for the Evaluation of RGB-D SLAM Systems. In IEEE/RSJ IROS.

[42] Yunshu Wang, Lee Easson, and Feng Wang. 2021. Testbed development for a
novel approach towards high accuracy indoor localization with smartphones. In
ACM Southeast Conference.

[43] Jingao Xu, Hao Cao, Zheng Yang, Longfei Shangguan, Jialin Zhang, Xiaowu He,
and Yunhao Liu. 2022. {SwarmMap}: Scaling Up Real-time Collaborative Visual
{SLAM} at the Edge. In USENIX NSDI.

[44] Wenxiao Zhang, Bo Han, and Pan Hui. 2017. On the networking challenges of
mobile augmented reality. In ACM SIGCOMMWorkshop on Virtual Reality and
Augmented Reality Network.

[45] Wenxiao Zhang, Bo Han, and Pan Hui. 2018. Jaguar: Low latency mobile aug-
mented reality with �exible tracking. In ACM Multimedia.

[46] Wenxiao Zhang, Bo Han, and Pan Hui. 2022. SEAR: Scaling Experiences in
Multi-user Augmented Reality. IEEE Transactions on Visualization & Computer
Graphics (2022).

[47] Danping Zou and Ping Tan. 2012. Coslam: Collaborative visual slam in dynamic
environments. IEEE transactions on pattern analysis and machine intelligence 35,
2 (2012), 354–366.

APPENDIX

A CLIENT TRACKING ALGORITHM

Algorithm 1: Pose Computation with IMU Model

1 Function ApproxPose_UpdateMM(C_IMU,i):

2 PF_MM := Poses[i-1] // prev. frame motion model

3 CRot:= PF_MM.Rot×C_IMU.Rot�

4 CPos:= IMUPosition(PF_MM.Pos,C_IMU.Pos�)

5 CVel:= IMUVelocity(PF_MM.Vel,C_IMU.Vel�)

6 Velocity:= PoseVelocity(CRot, CPos, CVel)

7 CurrentPose:= LastFramePose×Velocity

8 Poses[i]:= CurrentPose

9 return CurrentPose

10 Function Recv_SLAMPose(SLAMPose, SLAMIndex):

11 PastPoses[SLAMIndex]:= SLAMPose

/* Update Motion Model */

12 for 9 ←SLAMIndex to len(Poses) do

13 ApproxPose_UpdateMM(Poses[j+1],j+1)

14 end

305

