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A B S T R A C T   

Non-ideal heterogeneous mixing models are developed and incorporated within advanced closed-loop control 
strategies utilizing high-resolution sensing to maximize the resiliency and minimize the energy consumption of 
water treatment processes with intelligent model-based decision-making approaches. The proposed non-ideal 
heterogeneous mixing models capture continuity (heat and mass conservation), yet are extremely simple with 
few parameters, so they lend themselves to fast online prediction (with extrapolation capabilities) and regular 
recalibration. Further, they are more accurate than computational fluid dynamics (CFD) (60% less error) and 
symbolic regression data-driven models (73% less error). Real-time high-resolution sensor data are collected for 
observing spatiotemporal responses of state variables (conductivity, pH, and temperature) to transient influent 
shocks. Deterministic global dynamic optimization is used for training and recalibration of the non-ideal het
erogeneous mixing models to guarantee the best-possible fits to the sensor data. The models are then deployed 
within standard model-predictive control and two economic model-predictive control strategies to demonstrate 
model-based decision-making for disturbance rejection and optimal operation of aeration in a continuous flow 
nitrification system utilizing high-resolution sensor data from several spatial positions. The new technology 
platform, consisting of high-resolution sensors, non-ideal heterogeneous mixing modeling, deterministic global 
dynamic optimization, and model-predictive control, offers superior performance over current approaches in 
water and wastewater treatment processes.   

1. Introduction 

The urgent demand for enhanced water quality, high resilience, high 
treatment efficiency, low costs, and environmentally-friendly operations 
have promoted the development of model-based decision-making and 
control strategies in water and wastewater treatment plants (WTPs and 
WWTPs) [1–4]. The prerequisite to an effective control system is the 
ability to measure important water quality information (e.g., conduc
tivity, pH, temperature, etc.) by high-fidelity sensing technologies, that 
can then be used to build reliable predictive models as well as for real- 
time state measurement. Though classical, purely physics-based unit 
operations models (e.g., activated sludge model (ASM) [5–8], a hy
draulic model [9], and a sedimentation tank model [1,10]) have been 
used extensively in the past, they have their limitations. For example, 

building models is time-consuming and some necessary parameters (e. 
g., cell growth rate, biomass yield) in these models are unmeasurable in 
WTP/WWTPs in real-time. Such variables are normally determined by 
offline analyses in the laboratory, causing serious time delays [1,11,12] 
in operator response. As a consequence, transients and spatial hetero
geneity in process units go undetected, hampering efficiency improve
ment efforts due to an incomplete understanding of the transport 
processes of water quality information [13–15]. 

In situ data-driven approaches could overcome the existing modeling 
drawbacks by enabling the identification of the “black box” systems (e. 
g., aeration tanks) using data from the practical process under real 
operating conditions [16,17]. However, traditional data-driven methods 
in WTPs/WWTPs have two obstacles. First, some data-driven models are 
developed based on markedly large data acquisition and processing over 

* Corresponding authors. 
E-mail addresses: stuber@alum.mit.edu (M.D. Stuber), baikun.li@uconn.edu (B. Li).   

1 Tianbao Wang and Chenyu Wang share co-first authorship. 

Contents lists available at ScienceDirect 

Chemical Engineering Journal 

journal homepage: www.elsevier.com/locate/cej 

https://doi.org/10.1016/j.cej.2021.132819 
Received 22 May 2021; Received in revised form 2 October 2021; Accepted 3 October 2021   

mailto:stuber@alum.mit.edu
mailto:baikun.li@uconn.edu
www.sciencedirect.com/science/journal/13858947
https://www.elsevier.com/locate/cej
https://doi.org/10.1016/j.cej.2021.132819
https://doi.org/10.1016/j.cej.2021.132819
https://doi.org/10.1016/j.cej.2021.132819
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cej.2021.132819&domain=pdf


Chemical Engineering Journal 430 (2022) 132819

2

long periods. Unfortunately, in many situations only a small amount of 
data points have a critical influence on the system. Thus, using excess 
data will dilute important signals, and is unsuitable for identifying 
transient situations (e.g., fast chemical transport processes) [13]. The 
second limitation is that pure data-driven approaches are based on 
regression without considering physical principles, even for less 
complicated phenomena (e.g., dynamic neural network prediction of 
flow rate [18]) in WTP/WWTPs, and are therefore limited to interpo
lated prediction. These data-driven identification techniques may 
perform well for complicated systems since empirical correlations and 
first-principles may not accurately capture the behavior of the system 
due to limited information [18,19]. As a result, these models are unable 
to capture important fundamental mechanisms, and thus are generally 
less functional for further model-based control applications where 
extrapolative prediction is needed. Fortunately, well-understood phe
nomena, like heat and mass transport, can be readily and accurately 
modeled using first-principles. 

This study explores an innovative approach to obtain high-resolution 
spatiotemporal data from real-time in-situ water quality sensors, build 
and validate accurate models for the measured water quality parame
ters, and deploy those models for precise model-based control of WTP/ 
WWTPs. Simple non-ideal heterogeneous mixing models are developed 
to simulate and predict heterogeneous mass transport in WTP/WWTPs. 
In order to achieve visualization of the whole system, the transport 
characteristics of three important attributes of water quality (conduc
tivity [20], pH [21], and temperature [22]) are elucidated with only a 
small volume of data collected within short periods (e.g., 2–10 min). 
These models are then utilized within a technology platform for the 
precise control of WTP/WWTPs using several different control strategies 
and architectures, including conventional and economic model- 
predictive control for improving energy and chemical-use efficiency in 
WTP/WWTPs. 

One novel contribution of this study is that deterministic global 
(dynamic) optimization [23–27] is employed for better understanding 
the heterogeneous mixing phenomena via rigorous parameter estima
tion. Finding a global optimum is far more difficult than finding an 
arbitrary local solution; yet, a mismatch between the model and the data 
cannot be declared unless the best-possible fit is verified. Therefore, this 
approach provides additional benefits for preventing erroneously inva
lidating proposed mechanisms in cases where local algorithms return 
poor, suboptimal fits. A comparison between local and global optimal 

solutions within this context is shown in Fig. 1, illustrating the con
ductivity profile in different positions of a tank. As shown, the subop
timal solution obtained by a local optimization algorithm [28,29] differs 
significantly from a global solution. The advantages of the developed 
non-ideal heterogeneous mixing models are demonstrated through their 
straightforward, interpretable mathematical expressions able to achieve 
a better fit as compared to both pure data-driven symbolic regression 
machine learning approaches using Eureqa® (Version 1.24.0 (build 
9367), DataRobot) [66] and a pure computational fluid dynamics (CFD) 
approach. Furthermore, the predictive capabilities are also validated by 
additional experimental datasets of chemical species (e.g., KCl, MgSO4, 
NaOH), verifying that provided models could work for model-predictive 
control (MPC) in a broad spectrum of operating scenarios. 

This paper is organized as follows. In Section 2, the Materials and 
Methods used in this study are presented. Summarily, the experimental 
methods are discussed as well as the model development, rigorous 
parameter estimation, and the control architectures for precise control 
of WWTPs. Section 3 contains the Results and Discussion, whereby the 
performance of the non-ideal heterogeneous mixing models is demon
strated, as are the control architectures for precise control of WWTPs. 
Conclusions follow in Section 4. 

2. Materials and methods 

Fig. 2 illustrates at a high level, the methods used in this study. In 
Fig. 2a, we illustrate the experimental methods for data acquisition as 
discussed in Section 2.1. Fig. 2b illustrates the overall schematics of 
calibration (detailed in Section 2.3) and advanced control strategies of 
WTP/WWTPs developed in this work (detailed in Section 2.4). Fig. 2c 
illustrates a continuous flow nitrification reactor representative of a 
commercial WWTP operation (detailed in Section 2.4). 

2.1. Non-ideal mixing profiling using Milli-Electrode array (MEA) sensors 

All three types of MEA sensors (each size: 2 cm × 0.5 cm) targeting 
three water quality parameters (conductivity, pH, and temperature) 
were precisely printed on Kapton polyimide film (FPC, thickness: 127 
µm, American Durafilm) by a Dimatix Materials Printer (ModelDMP- 
2800, FUJIFILM Dimatix, Inc.) as previously reported [30,31]. Three 
assemblies of MEA sensors of each were deployed at three locations 
(high position: 40 mm below the water surface; middle position: 85 mm 
below the water surface; low position: 130 mm below the water surface) 
of a batch stirred reactor (diameter: 62 mm, height: 180 mm) (Fig. 2a) to 
accurately profile the whole reactor. 

The sensor readings were recorded by a multi-channel potentiostat 
(1040C 8-channel potentiostat, CH Instruments, Inc.) every 2 s. It took 
10 min to reach steady-state operation with continuous stirring with a 
rotation rate of 50 RPM. Then, different species (chemicals purchased 
from Fisher Science, Co.) were individually injected into the reactor to 
simulate transient shocks. Specifically, for conductivity shocks, 200 μL 
(100 g/L) sodium chloride was injected into the reactor on the three 
locations (high, middle, and low) respectively. For pH shock, 200 μL (1 
M) potassium hydroxide solution mixed in 2 mg/L sodium chloride so
lution (pH = 14) was injected into the reactor (initial pH: 7.22) on the 
three locations (high, middle, and low) in turn. For temperature shock, 
the water solution in the reactor (initial temperature: 18.5 ± 0.12 ◦C, 
room temperature) was placed on a heating plate that was heated to 200 
◦C within 30 s and then shut off. All shock tests were conducted with 
three repeated experiments and the average values were calculated to 
compensate for the uncertainty in experimental procedure. Validation 
tests were carried out under the same conditions, except the shock 
substance was changed to 200 μL KCl solution (100 g/L) and 200 μL 
MgSO4 solution (100 g/L) for conductivity model validation, and to 200 
μL NaOH solution (1 M) for pH shock validation. These shock substances 
were only injected into the high zone of the reactor. 

Fig. 1. Comparison of the conductivity profiles using local optimization (black 
dashed lines) and global optimization (blue solid lines) are presented in this 
figure. The conductivity model is a dynamic system under a pulse response. The 
three trajectories represent profiles in three different positions of the tank (high, 
middle, and low zones). 
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2.2. Non-ideal mixing model development 

Non-ideal heterogeneous mixing models were developed to simulate 
conductivity, pH, and heat transport processes inside the reactor. Spe
cifically, to capture the spatiotemporal heterogeneity of the conductivity 
and pH profiles, the tank reactor was modeled using multiple regions 
with interchange [32]. The models were established based on heat and 
mass conservation that characterize the observed physical phenomena. 
These models were then used within a continuous flow nitrification 

reactor model for precise control. 

2.2.1. Conductivity mixing model 
In this section, non-ideal mixing models are developed to capture the 

conductivity heterogeneity with respect to sensor measurements at 
different positions. The tank was partitioned into different nominal 
zones based on the positions of three MEA conductivity sensors (Fig. 3a- 
3c). The high, middle, and low zones represent the regions corre
sponding with the sensor assigned within that location. The mixing zone 

Fig. 2. (a) The experimental setup is illustrated for profiling tests along the batch reactor depth under the conductivity shock, pH shock, and temperature shock 
measured by the MEA sensors. (b) A schematic of the application of non-ideal heterogeneous mixing models in an online model-predictive controller (MPC) system is 
illustrated. (c) The simulated continuous stirred tank nitrification reactor is illustrated with inflows and outflows located at high, middle, and low zones, and a PI 
controller or MPC for controlling aeration. 

Fig. 3. Schematics of the NaCl electrolyte conductivity transport model are illustrated for shocks injected at (a) high zone, (b) middle zone, and (c) low zone, and the 
hydroxide ion transport model with shocks injected at (d) high zone, (e) middle zone, and (f) low zone. 
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represents the region where the stirrer resides on the bottom of the 
reactor. The dominant mechanism for mixing is forced convection, 
which is significantly greater than the diffusive mixing between each 
zone [33]. Thus, it was assumed that the stirring power dominates the 
mass transfer in the reactor under fast stirring, while the diffusion be
tween adjacent zones could be neglected. The Reynolds number for the 
conductivity experiments is Re = 1198.76 (calculation process is intro
duced in Section 3.1), which coincides with the laminar/turbulent 
transition region in an agitated cylindrical tank. The ion transport be
tween the mixing zone and each sensor zone is defined as: 

dCi

dt
=

1
4V

ki(C0 + C4 − Ci), i = 1, 2, 3,

dC4

dt
=

1
4V

k4(C1 + C2 + C3 − 3C4)

(1)  

Here, Ci represents the electrolytic conductivity (μS/cm) of the solutions 
in each zone (i = 1,2,3,4), V is the volume of the reactor (0.38 L), and ki 
is a volumetric mass transfer coefficient (L/s) that represents the rate of 
forced convective mass transfer between the mixing zone and zone i. C0 
represents the inlet conductivity in the corresponding zone, which is 
equal to Cv (shock conductivity, μS/cm) in the zone with the injected 
shock during the injection period (i.e., the time duration for which the 
conductivity in the injection zone rises to a peak) or zero for other cases 
(note: nomenclature of all mathematical symbols, subscripts, and su
perscripts appearing in equations are listed in Table S1 of the supple
mentary information (SI)). Three series of experiments were performed, 
where a high-concentration shock solution was injected into each high, 
middle, and low zones. The corresponding model was then developed 
based on the injection position. 

2.2.2. pH mixing model 
In this section, non-ideal mixing models are established to capture 

pH heterogeneity within the high, middle, and low zones of the reactor. 
As the solute, hydroxide ions exhibit anomalously high apparent mo
bilities in aqueous solutions [34,35]. Previous studies found that this 
anomalous transport behavior at the molecular level [36] was attributed 
to continuous interconversion between a hydration complex of hy
droxide ions and water molecules. Thereby, apart from forced convec
tion and diffusive transport, the hydroxide ions undergo electrochemical 
interactions with water molecules, grabbing protons from adjacent 
water molecules to generate hydroxide ion clusters at adjacent new sites. 
The superficial transfer coefficients are introduced to represent these 
multifactorial interactions between each zone (Fig. 3d-3f). Three inde
pendent experiments were conducted with shocks injected at high, 
middle, and low injection positions. Different models are developed 
based on the corresponding transfer mechanism, as illustrated in Fig. 3d- 
3f. For the KOH shock high-zone injection case, the model is established 
as: 

dH1

dt
=

1
v1V

(H0 + κ1H4 − κ1H1),

dH2

dt
=

1
v2V

(κ1H1 + κ2H4 − (κ1 + κ2)H2 ),

dH3

dt
=

1
v3V

((κ1 + κ2)H2 + κ3H4 − (κ1 + κ2 + κ3)H3 ),

dH4

dt
=

1
(1 − v1 − v2 − v3)V

((κ1 + κ2 + κ3)H3 − (κ1 + κ2 + κ3)H4 )

In this model, Hi represents the pH corresponding to each zone (i =

1,2,3,4) in the reactor, vi is the volume fraction of zone i, and κi is the 
superficial transport coefficient, indicating the “flow rate” of OH - be
tween adjacent zones that accounts for both reaction and convection 
transport (L/s). H0 represents the input in the high zone which is equal 
to Hv (shock pH) during the injection period (0–8 s) and is equal to zero 
for the remaining process. The details and the development of pH 

models for middle and low zone injection cases are summarized in 
Section S1 of the SI. 

2.2.3. Temperature profiling model 
Heat transport was assumed to be significantly slower than fluid 

transport [33], indicating that the transport process of heat in each 
sensor zone should be the same (as shown in Fig S1 of the SI). Thus, only 
a single equation is required to accurately model the bulk fluid tem
perature based on the energy balance for the batch system [37]: 

dT
dt

= −
UAc

VρCp
(T − Tc).

Here, T is the temperature of the water solution (◦C) and Ac is the cross- 
sectional area of the cylindrical container (m2) across which heat 
transfer is occurring. ρ and Cp are respectively the density (kg/m3) and 
heat capacity (kJ/(kg⋅◦C)) of the water (ρ = 998.19,Cp = 4.18). Tc is the 
temperature of the inner face of the bottom of the reactor and U is the 
overall heat transfer coefficient of the system (kW/(m2⋅◦C)). The full 
details for the development of the temperature model are presented in 
Section S2 in the SI. 

2.3. Parameter estimation and model validation using global dynamic 
optimization 

Rigorous deterministic global optimization was used to determine 
the uncertain parameters for validation of optimal mixing models to 
capture the mixing dynamics for the three targeted properties (e.g., 
conductivity, pH, and temperature). The general form of the global 
dynamic optimization problem is defined as: 

min
p∈Π⊂Rnp

ϕ(x(p, t1), …, x(p, tNt ), p )

s.t. ẋ(p, t) = f(x(p, t), p, t ), ∀t ∈ I =
[
t0, tf

]

x(p, t0) = x0(p).

(2)  

In this formulation, ϕ is the objective function formulated as the sum of 
squared error (SSE) between the model and the experimental data at 
specific discrete time points t1, ⋯, tNt corresponding with the experi
mental data, for each zone in the tank. x is the generic state variable 
vector which represents C = (C1, C2, C3, C4) for the conductivity model, 
H = (H1, H2, H3, H4) for the pH model (H1, H2, H3, and H4 represent the 
pH value in the corresponding zones), and T for the heat transfer model. 
p is the uncertain parameter vector requiring estimation by optimiza
tion, which belongs to the parameter set Π⊂Rnp . x0 is the initial condi
tion vector for x at t = t0. The optimization problem is nonconvex and 
constrained by a system of ordinary differential equation (ODE) initial 
value problems (IVPs). The specific optimization formulations for con
ductivity and pH mixing models are summarized in Section S3 of the SI. 

There has been active development of novel deterministic methods 
for solving eq(2) to guaranteed global optimality [25,38–41]. In this 
study, for conductivity and pH models, the nonlinearity comes from the 
bilinear terms of the system of ODEs. To solve the parameter estimation 
problems for these models, the models were reformulated into a system 
of nonlinear algebraic equations using an explicit Euler discretization 
and accounted for as equality constraints. As a result, the bilinear terms 
become recursively multiplied, resulting in the feasible set being non
convex. The ANTIGONE v1.0 solver [42] in GAMS v24.7.4 [43] was 
used to solve these parameter estimation problems to guarantee global 
optimality (absolute stopping tolerance is set to 0; relative stopping 
tolerance is set to 0.1; absolute feasibility tolerance is set to 1E-6). All 
global optimization results were obtained within 1.5 h, which is 
important for applications in real-time MPC of WTPs/WWTPs with a 
much longer residence time. The analytical expression for the temper
ature model was derived and applied within the global optimization 
formulation (Section S4 in the SI). The global optimization problem for 
the temperature model was solved using the EAGO v0.2.1 solver (EAGO. 
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jl) [65] in the Julia programming language [44] via the JuMP v0.18 
modeling language (JuMP.jl) [45]. The global results for the tempera
ture model could be obtained within 2 min, which is appropriate for 
prompt temperature control in WTPs/WWTPs. The wall clock times 
were reported for GAMS and JuMP implementations run on a personal 
workstation with an Intel Xeon E3-1270v5 4-core/8-thread processor at 
3.60 GHz/4.00 GHz (base/turbo) frequency running Windows 10 with 
32 GB of ECC memory. 

2.4. Precise control of a wastewater nitrification system 

The non-ideal heterogeneous mixing models for conductivity were 
expanded from a batch system to an unsteady pilot-scale continuous 
flow nitrification CSTR (1000L) to demonstrate their applicability to 
real WWTPs, with a controller being implemented to showcase distur
bance rejection and energy saving operations (Fig. 2c). Three inlet 
streams continuously flow into the tank corresponding to the high, 
middle, and low zones. Similarly, three outlet streams continuously flow 
out of the tank at the corresponding zones. In addition, there is an air 
diffuser at the tank bottom continuously aerating for nitrification to 
oxidize NH4Cl [46]. A conductivity sensor is deployed in each zone to 
measure the corresponding conductivity at 10 s intervals. An impeller is 
in the mixing zone to continuously stir the liquid inside the tank. For 
traditional proportional-integral (PI) control, feedback is provided from 
the high-zone MEA conductivity sensor and a control signal is sent to the 
valve on the air stream at the bottom of the vessel. For MPC and its 
variants, sensors in each zone are utilized for feedback. 

A modified conductivity mixing model that accounts for continuous 
operations in this tank is established to simulate the nitrification step: 

dCi

dt
=

1
4V

(
ki(C4 − Ci) + ṁin,iCin,i − ṁout,iCi

)
+ RNH+

4
, i = 1, 2, 3,

dC4

dt
=

1
4V

k4(C1 + C2 + C3 − 3C4) + RNH+
4

,

dcO

dt
= rO + kla

(
c*

O − cO
)
,

(3)  

where ṁin,i and ṁout,i are continuous inlet and outlet flow rate at zone i 
(L/s), respectively, Cin,i represents the conductivity of the inlet stream at 
zone i (μS/cm), and RNH+

4 
is the reaction rate law for NH4

+ consumption 
measured as conductivity (μS/cm/s), cO is the oxygen concentration 
(mg/L), and rO is the oxygen consumption rate described by a reaction 
rate law (mg/L/s). The aeration process is modeled by the rate of mass 
transfer of oxygen into the reactor liquid from air bubbles kla(c*

O − cO), 
where kla is the volumetric mass transfer coefficient (s−1) [47], and c*

O is 
the saturated dissolved oxygen concentration (9.1 mg/L at 20 ◦C) [48]. 
The standard oxygen transfer rate (SOTR, mg/s) is defined as SOTR =

klac*
OV, and represents the amount of oxygen transferred per second at 

20 ◦C. The standard oxygen transfer efficiency (SOTE, %) refers to the 
ratio of oxygen in the inlet air stream dissolved in the liquid at 20 ◦C, 
given by SOTE = SOTR/WO, with WO the mass flow of oxygen in the air 
stream (mg/s). WO can be calculated by an empirical formula: WO =

0.2967Q, where Q is the airflow rate adjusted by the controller. The 
mass transfer coefficients were adjusted to construct a modified model 
that can account for all situations with single or multiple shocks at high, 

middle, and low zones. The model development process, the detailed 
kinetics for the nitrification reaction, and the mechanism for airflow and 
transfer into the liquid are introduced in Section S4 in the SI. 

A case study of removing excess NH4Cl in a nitrification CSTR of a 
WWTP is simulated as shown in Fig. 2c. The input and output variables 
for the control system are given in Table 1. According to the standard of 
moderate municipal wastewater, the concentration of ammonium ions 
in the effluent should not exceed 30 mg N-NH4

+/L [49]. Thus, the 
operating setpoint (SP) is set at 280 µS/cm corresponding to the stan
dard concentration. Independent numerical experiments were con
ducted to assess the behavior of the system under four different influent 
shock conditions (i-iv) and six different operating scenarios to compare 
the system performance with various control approaches. From t =

2100 s to t = 2250 s, influent shocks (as step disturbances) in NH4Cl 
concentration were introduced in each case as: (i) Cin,1 = 320μS/cm, (ii) 
Cin,2 = 320μS/cm, (iii) Cin,3 = 320μS/cm, (iv) Cin,1 = 300μS/cm, Cin,2 =

350μS/cm and Cin,3 = 270μS/cm. 

2.4.1. Proportional-Integral (PI) control 
A traditional closed-loop PI-controller was modeled and tuned for 

rejecting influent conductivity shocks. The PI controller only makes 
decisions based on feedback signals from measurements in the high zone 
and adjusts the mass flow rate of air entering the system. The Internal 
Model Control (IMC) correlations are used to tune the PI parameters at 
first. Then, the parameters are further adjusted manually through sim
ulations until the closed-loop system performs as desired. The details of 
the PI tuning process are introduced in S3 of the SI. An experiment is 
performed on the system with a unit step disturbance to evaluate the 
control performance, the integral time-weighted absolute error (ITAE), 
integral time-weighed squared error (ITSE), integral absolute error (IAE) 
and integral squared error (ISE) are quantified with a settling time set as 
1000 s, as listed in Table 2. The economic performance of the PI 
controller was assessed based on energy consumption and concentration 
disturbance rejection under the four influent shock scenarios. 

2.4.2. Model predictive control (MPC) 
MPC is an advanced control technique widely used in the process 

industries. MPC has been proposed for applications in WTPs/WWTPs to 
deal with the complexities from disturbances in the influent and physical 
and chemical phenomena [50–52]. MPC allows for tunable closed-loop 
response with its primary advantage being its intuition of process dy
namics and capability to naturally handle multi-input/multi-output 
systems. In addition, compared with conventional proportional- 
integral-derivative (PID) control and interval model control (IMC), 
MPC can handle more complicated systems (e.g., time delay, nonline
arity, open-loop instability), and provide a better response with less 
settling time. Therefore, a multi-input MPC was designed to improve 
disturbance (step function) rejection in WTP/WWTPs. The core concept 
of MPC is to solve an optimization problem at predetermined time points 
k to determine a control action that best drives the system towards the 
SP. In this study, the control action step size δ is set as 10 s (i.e., same as 
for PI control). An objective function is formulated as the sum of squares 
of the predicted errors (differences between the SP and the model- 
predicted outputs) over a prediction horizon of P control action steps 
[53]: 

min
uk ,…,uk+M−1

∑3

i=1

∑P

j=1

(
SP − Ĉi,k+j

)2
. (4) 

Table 1 
Input and output variables for the nitrification wastewater system with different 
control strategies are listed in this table.  

Control system PI control MPC, EMPC1, EMPC2 
Input variables Q Airflow rate Q Airflow rate 
Output 

variables 
C1 High zone 

conductivity 
C1 High zone conductivity 
C2 Middle zone 

conductivity 
C3 Low zone conductivity  

Table 2 
The control performance indices quantified by a response to a step disturbance 
change are presented in this table. The settling time is set as 1000 s.  

Performance index ITAE ITSE IAE ISE  
2.817E4 1.606E3 5.414E1  3.185  
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Here, um (m = k,⋯,k + M −1) is the control variable which is equal to 
the airflow rate Q in this study (kg/s), SP is the setpoint (μS/cm), Ĉi is 
the model predicted output (μS/cm) in zone i, and the subscripts indicate 
the sample time (k is the current sample time). P is the number of control 
actions in the prediction horizon (P = 20), and M is the number of 
control actions in the control horizon (M = 3). M control variables uk, ⋯ 
, uk+M−1 are optimized at control action step k, but only the first control 
action uk is implemented. Then, similarly, a new optimization problem is 
solved with respect to M control variables over a prediction horizon of P 
at step k + 1. The dynamic matrix control (DMC) method was used to 
evaluate model predicted process outputs Ĉi [53]. The performance of 
the MPC was assessed based on energy consumption and concentration 
disturbance rejection under the four influent shock scenarios. 

2.4.3. Economic model predictive control (EMPC) 
Economic MPC (EMPC) is a method for accounting for real-time 

process operations with respect to economic performance [54]. As 
such, EMPC can directly account for process economics in the determi
nation of appropriate control response, and therefore is ideal for the 
development of next-generation WTP/WWTPs, such as real-time energy 
management and market-driven production [55,56]. In this study, we 
formulate and implement EMPC with two different objectives: one is 
targeted at reducing environmental discharge (EMPC1); and the other is 
targeted at saving energy (EMPC2). The optimization problem for 
EMPC1 is defined as 

min
uk ,⋯,uk+M−1

∑3

i=1

∑P

j=1
D2

i,k+j + w
(∑M−1

i=0
uk+i + (P − M + 1)uk+M−1

)
, (5)  

where Di is the discharge from zone i (μS/cm), that can be expressed as 
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Fig. 4. Optimal conductivity profiles from the global optimization results are plotted against a subset of data for (a) the high-zone injection model, (b) middle-zone 
injection model, and (c) low-zone injection model. Optimal pH profiles from the global optimization results are plotted against a subset of data for (d) the high-zone 
injection model, (e) middle-zone injection model, and (d) low-zone injection model. 
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Di,k+j =

⎧
⎨

⎩

Ĉi,k+j − SP if
(

Ĉi,k+j − r
)

> 0

0 if
(

Ĉi,k+j − r
)

≤ 0.

The objective is to minimize the overall discharge above the SP over the 

prediction horizon of P. w
(∑M−1

i=1 uk+i +(P − M + 1)uk+M−1

)
in eq(5) is a 

penalty function with respect to the control variables that guarantees the 
lowest oxygen consumption when the discharge is already below the SP 
(the penalty coefficient w is set as 0.03) and penalizes oxygen con
sumption when making control decisions. 

EMPC2 is formulated as the constrained optimization problem: 

min
uk ,⋯,uk+M−1

δ
(∑M−1

i=0
uk+i + (P − M + 1)uk+M−1

)

s.t. Ĉi,k+j − SP ≤ 0, ∀i = 1, 2, 3, j = 1, …, M, P.

(6)  

We seek to minimize the overall oxygen consumption over the predic
tion horizon to reflect energy management during operations. The 
inequality constraints ensure that the conductivity profiles over the 
control horizon, and at the end of the prediction horizon, will be at or 
below the SP. The performance of each EMPC was assessed based on 
energy consumption and concentration disturbance rejection under the 
four influent shock scenarios. 

3. Results and Discussion 

3.1. Optimal solutions for Conductivity, pH, and temperature mixing 
models from parameter estimation 

The global optimal solutions for parameters of conductivity and pH 
models are listed in Table S2 in the SI. The time costs for solving these 
global optimization problems are reported in Table S3 in the SI. The vast 
disparity in solution times for solving pH problems is due to the “curse of 
dimensionality” of deterministic global optimization [57] as the high- 
zone injection problem has nearly double the optimization variables of 
the low- and middle-zone injection problems. 

The optimal conductivity profiles for different injection positions are 
presented in Fig. 4a-4c. Overall, the conductivity profiles fit the exper
imental data well, and are able to capture the transient peaks caused by 
shock injections. This detection of transient maximum conductivity is of 
great importance in applications such as preventing the damage to 
bacterial cells in WWTPs [58], since both nitrogen removal and phos
phorus removal processes in WWTPs exhibit significant changes in the 
conductivity of wastewater[59]. For the high-zone injection case 
(Fig. 4a), it is observed that the optimal profiles in the middle and low 
zones do not exhibit small peaks like the data, indicating that the lower 
zones of the physical system receive ionic solutes from the upper zones 
in small amounts, which is not accounted for in the proposed model. 
Since the relative mismatch is quite small, no change was deemed 
necessary for the model. The low-zone injection profile (Fig. 4c) exhibits 
two conductivity peaks in the low zone and middle zone, which may be 
attributed to the shock injection position (low zone) being very close to 
the mixing zone, thus transport to the middle zone occurs rapidly. In 
addition, the optimal parameter C*

v for the low-zone injection case is 
much smaller than the high-zone and middle-zone cases (Table S2 in the 
SI), indicating that the mixing force quickly dilutes the shock in the low 
zone due to the closest proximity to the mixing zone. 

The optimal pH profiles are shown in Fig. 4d-4f. The models fit well 
for high-zone and middle-zone injections, while a small deviation can be 
observed in the high-zone pH profile in the low-zone injection model. 
The pH profiles for the middle-zone injection are more uniform, due to 
the equal probability for apparent OH– transport towards the high and 
low sensor zones, supporting the hypothesis that the dominant driving 
force for apparent OH– transport is the electrochemical reaction instead 

of forced convection. As compared with the conductivity transport 
model, proton (charge) transfers much faster (~30 s to achieve 
equilibrium). 

The optimal parameter values for the temperature model are U* =

1.9183 and Tc
* = 26.40. It took 65.97 s to solve the parameter esti

mation problem to global optimality. Since the entire system was 
considered as a single stirred batch reactor (conforming to the well- 
mixed assumption), the optimal profile exhibits no spatial variations 
between each sensor zone and fits the data (Figure S1 in the SI) almost 
exactly. Furthermore, the convective heat transfer coefficient was also 
estimated, using fundamental heat transfer principles and the Nusselt 
number (Nu), which is the ratio of convective to conductive heat transfer 
across a boundary. The Nusselt number is defined as Nu = hlDc/λ [33], 
where hl is the convection heat transfer coefficient of the flow equivalent 
to the overall heat transfer coefficient U for this heat transfer model, λ is 
the thermal conductivity of water (W/(m⋅◦C)) listed in Table S8 in the SI, 
and Dc is the characteristic length that is equal to the surface area Ac 
divided by the perimeter Pc of the bottom inner surface (Dc = Ac/Pc =

0.01375). In general, the Nusselt number can be calculated as a function 
of the Reynolds number (Re) and the Prandtl number (Pr). In this 
experiment, a cubic stirring bar (d = 38 mm) was used at a rotation 
speed (ω) of 50 RPM (5/6 s−1). The Reynolds number is then calculated 
as Re = ρd2ω/μ = 1198.76, indicating that it is within the transitional 
region for flow in a cylindrical tank (1000 < Re < 10000), where µ is the 
viscosity of water (Pa⋅s) listed in Table S8 in the SI. The Nusselt number 
(Nu) for this system can then be calculated by Nu = 0.664Re0.5Pr1/3 =

44.405 [60], where Pr is the Prandtl number of water listed in Table S8 
in the SI. Finally, the heat transfer coefficient can be estimated as hl =

λNu/Dc = 1.9289 kW/(m2⋅◦C), which is very close (0.55% deviation) to 
the optimal solution U*. Additionally, the optimal surface temperature 
Tc

* was higher than the observed solution temperature, which is 
consistent with the observed heat transfer (raising solution temperature) 
over the entire time horizon. The observed temperature profile shows a 
significant reduction in heat transfer rate as the solution temperature 
approaches Tc

* as the rate of temperature increase (i.e., heat transfer) 
slows down over this period. 

3.2. Comparison of Non-ideal mixing models with pure Data-Driven 
models and CFD models 

CFD models account for complex physical phenomena [61] and 
therefore are extremely computationally expensive. Typical CFD simu
lations of the batch reactor took 1.5 h on computers similar to the one 
reported previously and required excessive memory storage. Note that 
this computational cost does not account for the substantial time in
vestment needed for the model setup and testing. Furthermore, CFD 
models once developed can rarely be adapted to new situations with 
new parameter values. More details about the CFD model used in this 
study are recorded in Section S6 in SI. The simulation of a CFD model 
(dashed line) under the high-conductivity high-zone shock fits well with 
the MEA sensor profiles (blue points) (Fig. 5a), while there was a large 
discrepancy between the CFD simulated result and the MEA sensor data 
points under the middle and low shock (Fig. 5b and 5c). This might be 
attributed to the simplification in CFD simulation for ion transport 
processes as it only considers ideal conditions and neglects some side- 
effects such as the difference in surface smoothness and difference in 
mixing ability in each compartment (high, middle, and low) of the batch 
reactor. For instance, the middle zone was assumed to have the weakest 
mixing ability leading to the lowest mass transfer effectiveness while the 
mass transfer effectiveness should be highest when the shock came from 
the low position closest to the mixing bar. In contrast, using the non- 
ideal mixing model, the SSE was reduced by 92.23% and 80.45% 
(Fig. 5). It should be noted that a CFD model that compartmentalizes the 
reactor in a similar manner to our simple non-ideal mixing model, is 
expected to perform much better. However, the development and 
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computational costs for such a model are considered to be prohibitive 
for any practical, real-time implementation and use for precise control 
systems. 

The observed mixing trends could not be represented well by the CFD 
simulation under conductivity shocks (Fig. 5), let alone the fast-transient 
scenarios of pH with multifactorial reactions. As an example, an 
axisymmetric model of a pH-sensitive electrochemical field effect sensor 
comprising 13,650 elements was deployed to simulate a geometrical 
domain of 0.09 mm2, demonstrating that it is intractable to apply CFD 
models in the batch reactors used in this study (volume: 380 mL) as the 
grid would have to be refined by a factor of 150. 

The non-ideal mixing model was also compared with a pure data- 
driven model from the Eureqa modeling engine (DataRobot), that gen
erates differential equations trained on the same data set. All data points 
were equally weighted for training (detailed settings are shown in 

Figure S2 in the SI) and were integrated as black lines in Fig. 5d-5f. The 
mean SSE (full name) values between the original sensor data and ma
chine learning results were 144760, 110959, and 63,068 for each shock 
(high, middle, and low locations), respectively. In contrast, the SSE 
value between the original sensor data and the non-ideal mixing model’s 
simulation results were markedly lowered by 68–83%, respectively. The 
poor fit of the Eureqa regression models is attributed to lacking the 
conservation principles as a basis, so that the regression models deviate 
from the main trends of mass and heat transfer. 

3.3. Validation and calibration of sensors and Non-ideal mixing models 

The non-ideal mixing models can be easily modified to simulate 
conductivity or pH profiles of other solute species by calibrating the 
parameters. In terms of conductivity, the main transport mechanism of 
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ions without chemical reaction should be the same. However, the 
uniqueness of each ion is associated with distinct conductivity values, 
posing the requirement for calibrating the as-developed models to sus
tain accuracy under varying scenarios. To further validate the applica
bility of the developed non-ideal heterogeneous mixing models, 
additional experiments were conducted by injecting different soluble 
compounds (KCl, MgSO4 and NaOH). The conductivity and pH profiles 
were simulated versus the experimental sensor data using the corre
sponding models with the parameters calibrated based on the actual 
experimental conditions. 

For validation of the conductivity model, the original optimal 
parameter values (as listed in Table S2 in the SI) were used to predict the 
KCl and MgSO4 conductivity profiles. The results showed that the 
simulated profiles using the original optimal parameter values qualita
tively follow the same trends as the new data (Fig. 6a and 6c). The 

reason for the significant quantitative mismatch is due to the differences 
in injection periods between the new and the original experiments. Since 
all shock injections are manual operations, the injection speeds cannot 
be regarded as a controllable experimental condition. The high-zone 
data reaches a peak much faster, indicating that the injection speeds 
for the KCl and MgSO4 experiments are faster than the NaCl experiment. 
Apart from the injection speeds, the absolute injection quantity of 
different ions is another attribute leading to a mismatch. For example, 
though the mass concentrations of KCl and MgSO4 (200 μL, 100 g/L) 
injected are the same compared with the original NaCl conductivity 
experiment, different ions lead to different conductivities in solution and 
different shock conductivity Cv. The electrical conductivities of the ionic 
solutions based on mass percent are listed in Table S4 in the SI. Since 
aqueous NaCl and KCl solutions exhibit nearly the same conductivities, 
the predicted KCl profile using the original NaCl injection model exhibits 
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Fig. 6. The predictive simulation results are plotted for KCl conductivity profiles versus experimental data using (a) original optimal parameters and (b) modified 
parameters. The predictive simulation results are plotted for MgSO4 conductivity profile versus experimental data using (c) original optimal parameters and (d) 
modified parameters. The predictive simulation results are plotted for NaOH pH profiles versus experimental data using (e) original optimal parameters and (f) 
modified parameters. 
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nearly the same steady-state conductivity versus the new experimental 
data (a). In contrast, the steady-state conductivity of the predicted 
MgSO4 is around three times higher than the new experimental data 
(Fig. 6c). This difference is expected since MgSO4 exhibits roughly one- 
third of the electrical conductivity of NaCl across the mass percentage 
range (Table S4 in the SI). To improve the simulation results (i.e., model 
prediction accuracy), a simple calibration procedure (Section S5 in the 
SI) was conducted without modifying the model structure, so that the 
underlying physical phenomena captured by the original model could be 
preserved. The revised conductivity profiles for KCl and MgSO4 (Fig. 6b 
and 6d) exhibit substantially improved fits. 

To validate the pH model for the NaOH experiment, the pH profile 
was simulated using the original parameters for the KOH injection case. 
The simulated pH profile exhibits the same qualitative behavior as the 
data (Fig. 6e). Again, the major mismatch is caused by the observed 
difference between the injection periods of the NaOH and KOH data. The 
time duration for the pH of the NaOH experiment to reach the peak is 
much shorter. Thus, the corresponding shock parameter Hv should be 
calibrated to mitigate this difference. The calibration process is sum
marized in Section S5 in the SI. The revised pH profile (Fig. 6f) exhibits a 
far better fit than the original simulation, where the peak pH from the 
model also matches the data. The profile of the high-zone pH in the short 
time horizon after the peak does not accurately fit the data. The probable 
reason is that the quasi dynamics of OH– transport after the shock is not 
accurately captured by the model or the experimental errors. 

3.4. Non-ideal mixing models for improved wastewater treatment with 
precise control 

3.4.1. Simulation results for the wastewater nitrification system with 
Closed-Loop controls 

The simulation results for each independent study are illustrated in 
Fig. 7. For the high-zone shock case, the PI controller begins to adjust the 
air valve to accelerate the airflow rate for excess ammonium removal 
once the disturbance occurring in the high-zone inlet flow is detected. 
The high-zone conductivity quickly drops below the SP, then the valve 
on the air stream is closed and the conductivity gradually rises towards 
the SP. As for middle-zone and low-zone shocks, the conductivities can 
still be controlled at the SP despite only using feedback readings from 
the high-zone sensor. The reason is that the conductivity becomes 
quickly mixed at around t = 2400 s resulting in the overall conductivity 
of the tank approaching the SP under control. 

For comparison, the MPC simulation results are also illustrated in 
Fig. 7. For the high-zone shock simulation, the conductivities can be 

directed to the steady state at SP much faster than PI control. As indi
cated by the control variable, the consumption of oxygen is reduced 
significantly by MPC, implying substantial energy savings. Furthermore, 
the middle-zone and low-zone shock simulations show that with MPC, 
much less ammonium is discharged to the environment than with PI 
control. This is because multi-input MPC can account for feedback sig
nals from all sensors, make accurate predictions of process transients 
using the non-ideal heterogeneous mixing models, and take appropriate 
action versus the PI controller that only considers feedback signals from 
the high-zone sensor. 

3.4.2. Evaluation of treatment performance and energy savings 
An open-loop controller was also simulated for each study to repre

sent conventional and conservative operations as a reference for com
parisons. Once the shock from the influent is observed (t = 2100 s), the 
operator will open the aeration valve by an amount estimated from the 
difference between the shock value and SP for full oxidation (u is set as 
561.44 mg/s). After the system’s fixed settling time (1000 s), the 
operator will adjust the valve again. In contrast, for the uncontrolled 
simulations, the control variable is always set at the initial value (u0 =

168 mg/s) which results in the steady-state effluent conductivity 
meeting the SP under steady influent conditions. 

To evaluate the system’s performance, the excess ammonium 
discharge was quantified as the area under the conductivity profiles as 
they go above the SP over the simulation horizon (2000 s). In addition, 
the energy consumption was quantified as the overall amount of air used 
for ammonium oxidization over the simulation horizon. The compari
sons between uncontrolled, open-loop control, PI control, MPC, EMPC1, 
and EMPC2 cases are illustrated in Fig. 8 with the data values for these 
plots listed in Table S6 in the SI. The discharge quantification for each 
case is calculated as the percentage of the uncontrolled simulation, 
whereas the energy quantification is represented by the percentage of 
the open-loop control simulation. It is apparent from the discharge plot 
(Fig. 8a), that all the control strategies can greatly reduce the discharge 
compared with uncontrolled simulations. MPC and both EMPC strate
gies perform much better than PI control as less ammonium is dis
charged into the environment. This is especially clear for the middle- 
and low-zone shock studies, where MPC and EMPC account for multiple 
input measurements simultaneously, while PI control can only account 
for the high-zone measurement. Specifically, EMPC1 has the best per
formance for reducing discharge, coinciding with its underlying design 
objective. On the other hand, energy usage (Fig. 8b) under PI control, 
MPC, and both EMPC strategies, is reduced versus open-loop control. As 
for the high-zone shock injection study, MPC has the greatest advantage 

Fig. 7. The conductivity profiles are 
plotted for the uncontrolled, PI control, 
and MPC simulations for independent 
studies with NH4Cl conductivity shock 
(320 μS/cm) continuously injected from 
2100 s to 2250 s, respectively, in the (a) 
high, (b) middle, and (c) low zones of a 
continuous-flow nitrification system. 
The PI (blue) and MPC (orange) control 
actions for the (d) high-zone shock case, 
(e) middle-zone shock case, and (f) low- 
zone shock case, are presented below 
their corresponding conductivity 
profiles.   
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due to the least energy usage among other control strategies while its 
discharge is only slightly higher than EMPC1 and EMPC2. As for the 
middle- and low-zone shock studies, PI control saves the most energy, 
but also has the greatest discharge compared with the other strategies. 

It is observed that MPC has lower energy usage compared with 
EMPC1 and EMPC2. EMPC1 is formulated to minimize environmental 
discharge and it is apparent that more energy is consumed to achieve 
this objective. EMPC2 is formulated to minimize air consumption with 
constraints on discharge, but as indicated, it still consumes slightly more 
energy than MPC. The reason for this behavior is that EMPC2 seeks a 
control setting that has the lowest energy consumption with a prereq
uisite to strictly satisfy the discharge constraints while MPC only mini
mizes the errors without any specifications on discharge. 

For the multiple shocks study, barring open-loop control, PI control 
is apparently the worst control strategy using the most energy and 
resulting in the most ammonium discharge. The energy usage and 
discharge for MPC, EMPC1, and EMPC2 are relatively similar, and any 
lower discharge observed must be paid for with greater energy con
sumption. It is suggested that for real-world operation, control strategies 
should be determined based on the specific conditions of the WTP/ 
WWTP. This is aligned with the notion of “smart plant operations,” 
where process control, plant-wide management, and corporate office 
systems communicate in real-time through networks to satisfy targeted 
economic, environmental, and safety performance objectives [62]. As a 
result, the developed conductivity model, modified for continuous flow 
is valid for MPC and EMPC, and promising for real-time decision-making 
over the network for better management, energy savings, and handling 
of market/demand changes in WTPs/WWTPs. 

4. Conclusions 

WTP/WWTPs have been well-known for their large amounts of data 
generated with low efficiency of data utilization, operational uncer
tainty, and fluctuations in water quality/quantity [18,19]. These fluc
tuations require frequent parameter adjustment and model recalibration 
during operation for effective MPC, but traditional physics-based 
mechanistic models are incapable of adapting to these changes in a 
timely manner [63]. The non-ideal heterogeneous mixing models pro
posed in this study are simple with few fitting parameters and take much 
less time for simulation than traditional CFD models. The collected high- 
resolution sensor data can be instantly transmitted to the model cali
bration process, ensuring the calibration of non-ideal heterogeneous 
mixing models in a real-time in situ mode during on-going operation. 

This unique feature mitigates the severe time-delay problems of tradi
tional pure physics-based models and enables a prompt modification for 
higher accuracy system identification based on authentic representa
tions of the system. Exploiting this technology within closed-loop con
trol, such as MPC, enables a novel precise control system for WTP/ 
WWTPs. 

Moreover, the heterogeneity profiling models can be applied for 
pattern recognition so as to better understand the internal mechanisms 
of complex processes (e.g., transport mechanisms of different ions), with 
or without involving algorithms and redundant equation deduction. 
Such generalized methodology can serve as a platform for simulating 
state variables for other chemical species with similar physical 
principles. 
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