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ABSTRACT

Non-ideal heterogeneous mixing models are developed and incorporated within advanced closed-loop control
strategies utilizing high-resolution sensing to maximize the resiliency and minimize the energy consumption of
water treatment processes with intelligent model-based decision-making approaches. The proposed non-ideal
heterogeneous mixing models capture continuity (heat and mass conservation), yet are extremely simple with
few parameters, so they lend themselves to fast online prediction (with extrapolation capabilities) and regular
recalibration. Further, they are more accurate than computational fluid dynamics (CFD) (60% less error) and
symbolic regression data-driven models (73% less error). Real-time high-resolution sensor data are collected for
observing spatiotemporal responses of state variables (conductivity, pH, and temperature) to transient influent
shocks. Deterministic global dynamic optimization is used for training and recalibration of the non-ideal het-
erogeneous mixing models to guarantee the best-possible fits to the sensor data. The models are then deployed
within standard model-predictive control and two economic model-predictive control strategies to demonstrate
model-based decision-making for disturbance rejection and optimal operation of aeration in a continuous flow
nitrification system utilizing high-resolution sensor data from several spatial positions. The new technology
platform, consisting of high-resolution sensors, non-ideal heterogeneous mixing modeling, deterministic global
dynamic optimization, and model-predictive control, offers superior performance over current approaches in
water and wastewater treatment processes.

1. Introduction

building models is time-consuming and some necessary parameters (e.
g., cell growth rate, biomass yield) in these models are unmeasurable in

The urgent demand for enhanced water quality, high resilience, high
treatment efficiency, low costs, and environmentally-friendly operations
have promoted the development of model-based decision-making and
control strategies in water and wastewater treatment plants (WTPs and
WWTPs) [1-4]. The prerequisite to an effective control system is the
ability to measure important water quality information (e.g., conduc-
tivity, pH, temperature, etc.) by high-fidelity sensing technologies, that
can then be used to build reliable predictive models as well as for real-
time state measurement. Though classical, purely physics-based unit
operations models (e.g., activated sludge model (ASM) [5-8], a hy-
draulic model [9], and a sedimentation tank model [1,10]) have been
used extensively in the past, they have their limitations. For example,
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WTP/WWTPs in real-time. Such variables are normally determined by
offline analyses in the laboratory, causing serious time delays [1,11,12]
in operator response. As a consequence, transients and spatial hetero-
geneity in process units go undetected, hampering efficiency improve-
ment efforts due to an incomplete understanding of the transport
processes of water quality information [13-15].

In situ data-driven approaches could overcome the existing modeling
drawbacks by enabling the identification of the “black box™ systems (e.
g., aeration tanks) using data from the practical process under real
operating conditions [16,17]. However, traditional data-driven methods
in WTPs/WWTPs have two obstacles. First, some data-driven models are
developed based on markedly large data acquisition and processing over
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long periods. Unfortunately, in many situations only a small amount of
data points have a critical influence on the system. Thus, using excess
data will dilute important signals, and is unsuitable for identifying
transient situations (e.g., fast chemical transport processes) [13]. The
second limitation is that pure data-driven approaches are based on
regression without considering physical principles, even for less
complicated phenomena (e.g., dynamic neural network prediction of
flow rate [18]) in WTP/WWTPs, and are therefore limited to interpo-
lated prediction. These data-driven identification techniques may
perform well for complicated systems since empirical correlations and
first-principles may not accurately capture the behavior of the system
due to limited information [18,19]. As a result, these models are unable
to capture important fundamental mechanisms, and thus are generally
less functional for further model-based control applications where
extrapolative prediction is needed. Fortunately, well-understood phe-
nomena, like heat and mass transport, can be readily and accurately
modeled using first-principles.

This study explores an innovative approach to obtain high-resolution
spatiotemporal data from real-time in-situ water quality sensors, build
and validate accurate models for the measured water quality parame-
ters, and deploy those models for precise model-based control of WTP/
WWTPs. Simple non-ideal heterogeneous mixing models are developed
to simulate and predict heterogeneous mass transport in WTP/WWTPs.
In order to achieve visualization of the whole system, the transport
characteristics of three important attributes of water quality (conduc-
tivity [20], pH [21], and temperature [22]) are elucidated with only a
small volume of data collected within short periods (e.g., 2-10 min).
These models are then utilized within a technology platform for the
precise control of WTP/WWTPs using several different control strategies
and architectures, including conventional and economic model-
predictive control for improving energy and chemical-use efficiency in
WTP/WWTPs.

One novel contribution of this study is that deterministic global
(dynamic) optimization [23-27] is employed for better understanding
the heterogeneous mixing phenomena via rigorous parameter estima-
tion. Finding a global optimum is far more difficult than finding an
arbitrary local solution; yet, a mismatch between the model and the data
cannot be declared unless the best-possible fit is verified. Therefore, this
approach provides additional benefits for preventing erroneously inva-
lidating proposed mechanisms in cases where local algorithms return
poor, suboptimal fits. A comparison between local and global optimal
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Fig. 1. Comparison of the conductivity profiles using local optimization (black
dashed lines) and global optimization (blue solid lines) are presented in this
figure. The conductivity model is a dynamic system under a pulse response. The
three trajectories represent profiles in three different positions of the tank (high,
middle, and low zones).
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solutions within this context is shown in Fig. 1, illustrating the con-
ductivity profile in different positions of a tank. As shown, the subop-
timal solution obtained by a local optimization algorithm [28,29] differs
significantly from a global solution. The advantages of the developed
non-ideal heterogeneous mixing models are demonstrated through their
straightforward, interpretable mathematical expressions able to achieve
a better fit as compared to both pure data-driven symbolic regression
machine learning approaches using Eureqa® (Version 1.24.0 (build
9367), DataRobot) [66] and a pure computational fluid dynamics (CFD)
approach. Furthermore, the predictive capabilities are also validated by
additional experimental datasets of chemical species (e.g., KCl, MgSO4,
NaOH), verifying that provided models could work for model-predictive
control (MPC) in a broad spectrum of operating scenarios.

This paper is organized as follows. In Section 2, the Materials and
Methods used in this study are presented. Summarily, the experimental
methods are discussed as well as the model development, rigorous
parameter estimation, and the control architectures for precise control
of WWTPs. Section 3 contains the Results and Discussion, whereby the
performance of the non-ideal heterogeneous mixing models is demon-
strated, as are the control architectures for precise control of WWTPs.
Conclusions follow in Section 4.

2. Materials and methods

Fig. 2 illustrates at a high level, the methods used in this study. In
Fig. 2a, we illustrate the experimental methods for data acquisition as
discussed in Section 2.1. Fig. 2b illustrates the overall schematics of
calibration (detailed in Section 2.3) and advanced control strategies of
WTP/WWTPs developed in this work (detailed in Section 2.4). Fig. 2c
illustrates a continuous flow nitrification reactor representative of a
commercial WWTP operation (detailed in Section 2.4).

2.1. Non-ideal mixing profiling using Milli-Electrode array (MEA) sensors

All three types of MEA sensors (each size: 2 cm x 0.5 cm) targeting
three water quality parameters (conductivity, pH, and temperature)
were precisely printed on Kapton polyimide film (FPC, thickness: 127
um, American Durafilm) by a Dimatix Materials Printer (ModelDMP-
2800, FUJIFILM Dimatix, Inc.) as previously reported [30,31]. Three
assemblies of MEA sensors of each were deployed at three locations
(high position: 40 mm below the water surface; middle position: 85 mm
below the water surface; low position: 130 mm below the water surface)
of a batch stirred reactor (diameter: 62 mm, height: 180 mm) (Fig. 2a) to
accurately profile the whole reactor.

The sensor readings were recorded by a multi-channel potentiostat
(1040C 8-channel potentiostat, CH Instruments, Inc.) every 2 s. It took
10 min to reach steady-state operation with continuous stirring with a
rotation rate of 50 RPM. Then, different species (chemicals purchased
from Fisher Science, Co.) were individually injected into the reactor to
simulate transient shocks. Specifically, for conductivity shocks, 200 uL
(100 g/L) sodium chloride was injected into the reactor on the three
locations (high, middle, and low) respectively. For pH shock, 200 uL (1
M) potassium hydroxide solution mixed in 2 mg/L sodium chloride so-
lution (pH = 14) was injected into the reactor (initial pH: 7.22) on the
three locations (high, middle, and low) in turn. For temperature shock,
the water solution in the reactor (initial temperature: 18.5 + 0.12 °C,
room temperature) was placed on a heating plate that was heated to 200
°C within 30 s and then shut off. All shock tests were conducted with
three repeated experiments and the average values were calculated to
compensate for the uncertainty in experimental procedure. Validation
tests were carried out under the same conditions, except the shock
substance was changed to 200 uL KCl solution (100 g/L) and 200 uL
MgSO4 solution (100 g/L) for conductivity model validation, and to 200
uL NaOH solution (1 M) for pH shock validation. These shock substances
were only injected into the high zone of the reactor.
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Fig. 2. (a) The experimental setup is illustrated for profiling tests along the batch reactor depth under the conductivity shock, pH shock, and temperature shock
measured by the MEA sensors. (b) A schematic of the application of non-ideal heterogeneous mixing models in an online model-predictive controller (MPC) system is
illustrated. (c) The simulated continuous stirred tank nitrification reactor is illustrated with inflows and outflows located at high, middle, and low zones, and a PI

controller or MPC for controlling aeration.
2.2. Non-ideal mixing model development

Non-ideal heterogeneous mixing models were developed to simulate
conductivity, pH, and heat transport processes inside the reactor. Spe-
cifically, to capture the spatiotemporal heterogeneity of the conductivity
and pH profiles, the tank reactor was modeled using multiple regions
with interchange [32]. The models were established based on heat and

mass conservation that characterize the observed physical phenomena.
These models were then used within a continuous flow nitrification
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reactor model for precise control.

2.2.1. Conductivity mixing model

In this section, non-ideal mixing models are developed to capture the
conductivity heterogeneity with respect to sensor measurements at
different positions. The tank was partitioned into different nominal
zones based on the positions of three MEA conductivity sensors (Fig. 3a-
3c). The high, middle, and low zones represent the regions corre-
sponding with the sensor assigned within that location. The mixing zone
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Fig. 3. Schematics of the NaCl electrolyte conductivity transport model are illustrated for shocks injected at (a) high zone, (b) middle zone, and (c) low zone, and the
hydroxide ion transport model with shocks injected at (d) high zone, (e) middle zone, and (f) low zone.
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represents the region where the stirrer resides on the bottom of the
reactor. The dominant mechanism for mixing is forced convection,
which is significantly greater than the diffusive mixing between each
zone [33]. Thus, it was assumed that the stirring power dominates the
mass transfer in the reactor under fast stirring, while the diffusion be-
tween adjacent zones could be neglected. The Reynolds number for the
conductivity experiments is Re = 1198.76 (calculation process is intro-
duced in Section 3.1), which coincides with the laminar/turbulent
transition region in an agitated cylindrical tank. The ion transport be-
tween the mixing zone and each sensor zone is defined as:

o G C—C), =123,
ac, 1

= k(€ G G =3

(€8]

Here, C; represents the electrolytic conductivity (uS/cm) of the solutions
in each zone (i =1,2,3,4), V is the volume of the reactor (0.38 L), and k;
is a volumetric mass transfer coefficient (L/s) that represents the rate of
forced convective mass transfer between the mixing zone and zone i. Cy
represents the inlet conductivity in the corresponding zone, which is
equal to C, (shock conductivity, uS/cm) in the zone with the injected
shock during the injection period (i.e., the time duration for which the
conductivity in the injection zone rises to a peak) or zero for other cases
(note: nomenclature of all mathematical symbols, subscripts, and su-
perscripts appearing in equations are listed in Table S1 of the supple-
mentary information (SI)). Three series of experiments were performed,
where a high-concentration shock solution was injected into each high,
middle, and low zones. The corresponding model was then developed
based on the injection position.

2.2.2. pH mixing model

In this section, non-ideal mixing models are established to capture
pH heterogeneity within the high, middle, and low zones of the reactor.
As the solute, hydroxide ions exhibit anomalously high apparent mo-
bilities in aqueous solutions [34,35]. Previous studies found that this
anomalous transport behavior at the molecular level [36] was attributed
to continuous interconversion between a hydration complex of hy-
droxide ions and water molecules. Thereby, apart from forced convec-
tion and diffusive transport, the hydroxide ions undergo electrochemical
interactions with water molecules, grabbing protons from adjacent
water molecules to generate hydroxide ion clusters at adjacent new sites.
The superficial transfer coefficients are introduced to represent these
multifactorial interactions between each zone (Fig. 3d-3f). Three inde-
pendent experiments were conducted with shocks injected at high,
middle, and low injection positions. Different models are developed
based on the corresponding transfer mechanism, as illustrated in Fig. 3d-
3f. For the KOH shock high-zone injection case, the model is established
as:

dH, 1

7:W(H()—',-K]Ht—K1Hl)7
1
dH, 1
7[2 = W(K]I-Il + o Hy — (K] +K2)H2)7
2
dH 1
7[3 = ﬁ((m Jer)Hz + x3Hy — (Kl + K+ K3)H3 )7
3
dH4 _ 1

@ m((lﬂ + K2 + k3)Hs — (ki + k2 +K3)H,)

In this model, H; represents the pH corresponding to each zone (i =
1,2,3,4) in the reactor, v; is the volume fraction of zone i, and «; is the
superficial transport coefficient, indicating the “flow rate” of OH ~ be-
tween adjacent zones that accounts for both reaction and convection
transport (L/s). Hp represents the input in the high zone which is equal
to H, (shock pH) during the injection period (0-8 s) and is equal to zero
for the remaining process. The details and the development of pH
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models for middle and low zone injection cases are summarized in
Section S1 of the SI.

2.2.3. Temperature profiling model

Heat transport was assumed to be significantly slower than fluid
transport [33], indicating that the transport process of heat in each
sensor zone should be the same (as shown in Fig S1 of the SI). Thus, only
a single equation is required to accurately model the bulk fluid tem-
perature based on the energy balance for the batch system [37]:

dT  UA.
a  VpG,

(T7n>)~

Here, T is the temperature of the water solution (°C) and A, is the cross-
sectional area of the cylindrical container (mz) across which heat
transfer is occurring. p and C, are respectively the density (kg/m>) and
heat capacity (kJ/(kg-°C)) of the water (p =998.19,C, =4.18). T is the
temperature of the inner face of the bottom of the reactor and U is the
overall heat transfer coefficient of the system (kW/(mZ-OC)). The full
details for the development of the temperature model are presented in
Section S2 in the SIL

2.3. Parameter estimation and model validation using global dynamic
optimization

Rigorous deterministic global optimization was used to determine
the uncertain parameters for validation of optimal mixing models to
capture the mixing dynamics for the three targeted properties (e.g.,
conductivity, pH, and temperature). The general form of the global
dynamic optimization problem is defined as:

min (/)(X(p tl)v X(pv tN;)vp )

pellcR"”
st. %(p,r) = f(x(p,1),p, 1), Viel= i, 1] @
x(p, o) = Xo(p)-

In this formulation, ¢ is the objective function formulated as the sum of
squared error (SSE) between the model and the experimental data at
specific discrete time points t;, -+, ty, corresponding with the experi-
mental data, for each zone in the tank. x is the generic state variable
vector which represents C = (C1, Cz, C3, Cy4) for the conductivity model,
H = (H1,H, Hs, Hy) for the pH model (H;, H2, Hs, and H, represent the
pH value in the corresponding zones), and T for the heat transfer model.
p is the uncertain parameter vector requiring estimation by optimiza-
tion, which belongs to the parameter set IICR™. x, is the initial condi-
tion vector for x at t = t;. The optimization problem is nonconvex and
constrained by a system of ordinary differential equation (ODE) initial
value problems (IVPs). The specific optimization formulations for con-
ductivity and pH mixing models are summarized in Section S3 of the SL.

There has been active development of novel deterministic methods
for solving eq(2) to guaranteed global optimality [25,38-41]. In this
study, for conductivity and pH models, the nonlinearity comes from the
bilinear terms of the system of ODEs. To solve the parameter estimation
problems for these models, the models were reformulated into a system
of nonlinear algebraic equations using an explicit Euler discretization
and accounted for as equality constraints. As a result, the bilinear terms
become recursively multiplied, resulting in the feasible set being non-
convex. The ANTIGONE v1.0 solver [42] in GAMS v24.7.4 [43] was
used to solve these parameter estimation problems to guarantee global
optimality (absolute stopping tolerance is set to 0; relative stopping
tolerance is set to 0.1; absolute feasibility tolerance is set to 1E-6). All
global optimization results were obtained within 1.5 h, which is
important for applications in real-time MPC of WTPs/WWTPs with a
much longer residence time. The analytical expression for the temper-
ature model was derived and applied within the global optimization
formulation (Section S4 in the SI). The global optimization problem for
the temperature model was solved using the EAGO v0.2.1 solver (EAGO.
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jD [65] in the Julia programming language [44] via the JuMP v0.18
modeling language (JuMP.jl) [45]. The global results for the tempera-
ture model could be obtained within 2 min, which is appropriate for
prompt temperature control in WTPs/WWTPs. The wall clock times
were reported for GAMS and JuMP implementations run on a personal
workstation with an Intel Xeon E3-1270v5 4-core/8-thread processor at
3.60 GHz/4.00 GHz (base/turbo) frequency running Windows 10 with
32 GB of ECC memory.

2.4. Precise control of a wastewater nitrification system

The non-ideal heterogeneous mixing models for conductivity were
expanded from a batch system to an unsteady pilot-scale continuous
flow nitrification CSTR (1000L) to demonstrate their applicability to
real WWTPs, with a controller being implemented to showcase distur-
bance rejection and energy saving operations (Fig. 2c). Three inlet
streams continuously flow into the tank corresponding to the high,
middle, and low zones. Similarly, three outlet streams continuously flow
out of the tank at the corresponding zones. In addition, there is an air
diffuser at the tank bottom continuously aerating for nitrification to
oxidize NH4Cl [46]. A conductivity sensor is deployed in each zone to
measure the corresponding conductivity at 10 s intervals. An impeller is
in the mixing zone to continuously stir the liquid inside the tank. For
traditional proportional-integral (PI) control, feedback is provided from
the high-zone MEA conductivity sensor and a control signal is sent to the
valve on the air stream at the bottom of the vessel. For MPC and its
variants, sensors in each zone are utilized for feedback.

A modified conductivity mixing model that accounts for continuous
operations in this tank is established to simulate the nitrification step:

dc; 1 X . ,
a = v (ki(c4 -C) + My i Cin i — mum,ici) +RNH4‘ , 1=1,2,3,
dcC. 1
714 = %(C1+ G+ €5 = 3C3) + Ry 3
dco
W :r0+kla(c()760)7

where mj,; and myy; are continuous inlet and outlet flow rate at zone i
(L/s), respectively, Ci,; represents the conductivity of the inlet stream at
zone i (uS/cm), and Ry is the reaction rate law for NH4" consumption
measured as conductivity (pS/cm/s), co is the oxygen concentration
(mg/L), and rp is the oxygen consumption rate described by a reaction
rate law (mg/L/s). The aeration process is modeled by the rate of mass
transfer of oxygen into the reactor liquid from air bubbles kla(c*O —¢o),
where kj, is the volumetric mass transfer coefficient (s~ [47], and cz') is
the saturated dissolved oxygen concentration (9.1 mg/L at 20 °C) [48].
The standard oxygen transfer rate (SOTR, mg/s) is defined as SOTR =
kiacoV, and represents the amount of oxygen transferred per second at
20 °C. The standard oxygen transfer efficiency (SOTE, %) refers to the
ratio of oxygen in the inlet air stream dissolved in the liquid at 20 °C,
given by SOTE = SOTR/W,, with W, the mass flow of oxygen in the air
stream (mg/s). Wo can be calculated by an empirical formula: Wy =
0.2967Q, where Q is the airflow rate adjusted by the controller. The
mass transfer coefficients were adjusted to construct a modified model
that can account for all situations with single or multiple shocks at high,

Table 1
Input and output variables for the nitrification wastewater system with different
control strategies are listed in this table.

Control system PI control MPC, EMPC1, EMPC2

Input variables Q Airflow rate Q Airflow rate

Output C;  High zone C;  High zone conductivity
variables conductivity Cy Middle zone

conductivity
C;  Low zone conductivity
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middle, and low zones. The model development process, the detailed
kinetics for the nitrification reaction, and the mechanism for airflow and
transfer into the liquid are introduced in Section S4 in the SI.

A case study of removing excess NH4Cl in a nitrification CSTR of a
WWTP is simulated as shown in Fig. 2¢. The input and output variables
for the control system are given in Table 1. According to the standard of
moderate municipal wastewater, the concentration of ammonium ions
in the effluent should not exceed 30 mg N-NH4'/L [49]. Thus, the
operating setpoint (SP) is set at 280 uS/cm corresponding to the stan-
dard concentration. Independent numerical experiments were con-
ducted to assess the behavior of the system under four different influent
shock conditions (i-iv) and six different operating scenarios to compare
the system performance with various control approaches. From t =
2100 s to t = 2250 s, influent shocks (as step disturbances) in NH4Cl
concentration were introduced in each case as: (i) Cin1 = 320uS/cm, (ii)
Cin2 = 320uS/cm, (iii) Cin3 = 320pS/cm, (iv) Cip1 = 300uS/cm, Cino =
350uS/cm and Cip3 = 270uS/cm.

2.4.1. Proportional-Integral (PI) control

A traditional closed-loop PI-controller was modeled and tuned for
rejecting influent conductivity shocks. The PI controller only makes
decisions based on feedback signals from measurements in the high zone
and adjusts the mass flow rate of air entering the system. The Internal
Model Control (IMC) correlations are used to tune the PI parameters at
first. Then, the parameters are further adjusted manually through sim-
ulations until the closed-loop system performs as desired. The details of
the PI tuning process are introduced in S3 of the SI. An experiment is
performed on the system with a unit step disturbance to evaluate the
control performance, the integral time-weighted absolute error (ITAE),
integral time-weighed squared error (ITSE), integral absolute error (IAE)
and integral squared error (ISE) are quantified with a settling time set as
1000 s, as listed in Table 2. The economic performance of the PI
controller was assessed based on energy consumption and concentration
disturbance rejection under the four influent shock scenarios.

2.4.2. Model predictive control (MPC)

MPC is an advanced control technique widely used in the process
industries. MPC has been proposed for applications in WTPs/WWTPs to
deal with the complexities from disturbances in the influent and physical
and chemical phenomena [50-52]. MPC allows for tunable closed-loop
response with its primary advantage being its intuition of process dy-
namics and capability to naturally handle multi-input/multi-output
systems. In addition, compared with conventional proportional-
integral-derivative (PID) control and interval model control (IMC),
MPC can handle more complicated systems (e.g., time delay, nonline-
arity, open-loop instability), and provide a better response with less
settling time. Therefore, a multi-input MPC was designed to improve
disturbance (step function) rejection in WTP/WWTPs. The core concept
of MPC is to solve an optimization problem at predetermined time points
k to determine a control action that best drives the system towards the
SP. In this study, the control action step size § is set as 10 s (i.e., same as
for PI control). An objective function is formulated as the sum of squares
of the predicted errors (differences between the SP and the model-
predicted outputs) over a prediction horizon of P control action steps
[53]:

min i i (sp - 6,»_“_,)2. &)

Table 2
The control performance indices quantified by a response to a step disturbance
change are presented in this table. The settling time is set as 1000 s.

Performance index ITAE ITSE IAE ISE
2.817E4 1.606E3 5.414E1 3.185
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Here, u,, (m = k,---,k + M —1) is the control variable which is equal to

the airflow rate Q in this study (kg/s), SP is the setpoint (pS/cm), E‘i is
the model predicted output (uS/cm) in zone i, and the subscripts indicate
the sample time (k is the current sample time). P is the number of control
actions in the prediction horizon (P = 20), and M is the number of
control actions in the control horizon (M = 3). M control variables u, ---
, U -1 are optimized at control action step k, but only the first control
action uy is implemented. Then, similarly, a new optimization problem is
solved with respect to M control variables over a prediction horizon of P
at step k + 1. The dynamic matrix control (DMC) method was used to
evaluate model predicted process outputs C; [53]. The performance of
the MPC was assessed based on energy consumption and concentration
disturbance rejection under the four influent shock scenarios.

2.4.3. Economic model predictive control (EMPC)
Economic MPC (EMPC) is a method for accounting for real-time
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process operations with respect to economic performance [54]. As
such, EMPC can directly account for process economics in the determi-
nation of appropriate control response, and therefore is ideal for the
development of next-generation WTP/WWTPs, such as real-time energy
management and market-driven production [55,56]. In this study, we
formulate and implement EMPC with two different objectives: one is
targeted at reducing environmental discharge (EMPC1); and the other is
targeted at saving energy (EMPC2). The optimization problem for
EMPCI is defined as

. 3 P M-1
min Z[:le:lDikﬂ' + W(Zizo Ui+ (P =M+ Dy )’ ®

Uesr s Uy M—1

where D; is the discharge from zone i (uS/cm), that can be expressed as
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Fig. 4. Optimal conductivity profiles from the global optimization results are plotted against a subset of data for (a) the high-zone injection model, (b) middle-zone
injection model, and (c) low-zone injection model. Optimal pH profiles from the global optimization results are plotted against a subset of data for (d) the high-zone
injection model, (e) middle-zone injection model, and (d) low-zone injection model.
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Cisj — SP if (E‘,»_kﬂ- - r) >0

Dy = N
0 i <c,,k+j 7 r) <0.

The objective is to minimize the overall discharge above the SP over the
prediction horizon of P. W(Z?Slukﬂ- +(P—M+ 1)1 > ineq(5)isa
penalty function with respect to the control variables that guarantees the
lowest oxygen consumption when the discharge is already below the SP
(the penalty coefficient w is set as 0.03) and penalizes oxygen con-
sumption when making control decisions.

EMPC2 is formulated as the constrained optimization problem:

. M—1
min 5(2[:0 Uss + (P — M+ Dtgop )

Uk Uk+M—1

st. Cixej —SP <0, Vi=1,2,3, j=1,....M,P.

(6)

We seek to minimize the overall oxygen consumption over the predic-
tion horizon to reflect energy management during operations. The
inequality constraints ensure that the conductivity profiles over the
control horizon, and at the end of the prediction horizon, will be at or
below the SP. The performance of each EMPC was assessed based on
energy consumption and concentration disturbance rejection under the
four influent shock scenarios.

3. Results and Discussion

3.1. Optimal solutions for Conductivity, pH, and temperature mixing
models from parameter estimation

The global optimal solutions for parameters of conductivity and pH
models are listed in Table S2 in the SI. The time costs for solving these
global optimization problems are reported in Table S3 in the SI. The vast
disparity in solution times for solving pH problems is due to the “curse of
dimensionality” of deterministic global optimization [57] as the high-
zone injection problem has nearly double the optimization variables of
the low- and middle-zone injection problems.

The optimal conductivity profiles for different injection positions are
presented in Fig. 4a-4c. Overall, the conductivity profiles fit the exper-
imental data well, and are able to capture the transient peaks caused by
shock injections. This detection of transient maximum conductivity is of
great importance in applications such as preventing the damage to
bacterial cells in WWTPs [58], since both nitrogen removal and phos-
phorus removal processes in WWTPs exhibit significant changes in the
conductivity of wastewater[59]. For the high-zone injection case
(Fig. 4a), it is observed that the optimal profiles in the middle and low
zones do not exhibit small peaks like the data, indicating that the lower
zones of the physical system receive ionic solutes from the upper zones
in small amounts, which is not accounted for in the proposed model.
Since the relative mismatch is quite small, no change was deemed
necessary for the model. The low-zone injection profile (Fig. 4c) exhibits
two conductivity peaks in the low zone and middle zone, which may be
attributed to the shock injection position (low zone) being very close to
the mixing zone, thus transport to the middle zone occurs rapidly. In
addition, the optimal parameter C, for the low-zone injection case is
much smaller than the high-zone and middle-zone cases (Table S2 in the
SI), indicating that the mixing force quickly dilutes the shock in the low
zone due to the closest proximity to the mixing zone.

The optimal pH profiles are shown in Fig. 4d-4f. The models fit well
for high-zone and middle-zone injections, while a small deviation can be
observed in the high-zone pH profile in the low-zone injection model.
The pH profiles for the middle-zone injection are more uniform, due to
the equal probability for apparent OH™ transport towards the high and
low sensor zones, supporting the hypothesis that the dominant driving
force for apparent OH™ transport is the electrochemical reaction instead
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of forced convection. As compared with the conductivity transport
model, proton (charge) transfers much faster (~30 s to achieve
equilibrium).

The optimal parameter values for the temperature model are U" =
1.9183 and T." = 26.40. It took 65.97 s to solve the parameter esti-
mation problem to global optimality. Since the entire system was
considered as a single stirred batch reactor (conforming to the well-
mixed assumption), the optimal profile exhibits no spatial variations
between each sensor zone and fits the data (Figure S1 in the SI) almost
exactly. Furthermore, the convective heat transfer coefficient was also
estimated, using fundamental heat transfer principles and the Nusselt
number (Nu), which is the ratio of convective to conductive heat transfer
across a boundary. The Nusselt number is defined as Nu = h;D./4 [33],
where h; is the convection heat transfer coefficient of the flow equivalent
to the overall heat transfer coefficient U for this heat transfer model, 1 is
the thermal conductivity of water (W/(m-°C)) listed in Table S8 in the SI,
and D, is the characteristic length that is equal to the surface area A,
divided by the perimeter P, of the bottom inner surface (D, = A./P. =
0.01375). In general, the Nusselt number can be calculated as a function
of the Reynolds number (Re) and the Prandtl number (Pr). In this
experiment, a cubic stirring bar (d = 38 mm) was used at a rotation
speed (@) of 50 RPM (5/6 s ). The Reynolds number is then calculated
as Re = pd?w/u = 1198.76, indicating that it is within the transitional
region for flow in a cylindrical tank (1000 < Re < 10000), where y is the
viscosity of water (Pa-s) listed in Table S8 in the SI. The Nusselt number
(Nu) for this system can then be calculated by Nu = 0.664Re®5Prl/3 =
44.405 [60], where Pr is the Prandtl number of water listed in Table S8
in the SI. Finally, the heat transfer coefficient can be estimated as h; =
ANu/D, = 1.9289 kW/(m2~°C), which is very close (0.55% deviation) to
the optimal solution U*. Additionally, the optimal surface temperature
T." was higher than the observed solution temperature, which is
consistent with the observed heat transfer (raising solution temperature)
over the entire time horizon. The observed temperature profile shows a
significant reduction in heat transfer rate as the solution temperature
approaches T," as the rate of temperature increase (i.e., heat transfer)
slows down over this period.

3.2. Comparison of Non-ideal mixing models with pure Data-Driven
models and CFD models

CFD models account for complex physical phenomena [61] and
therefore are extremely computationally expensive. Typical CFD simu-
lations of the batch reactor took 1.5 h on computers similar to the one
reported previously and required excessive memory storage. Note that
this computational cost does not account for the substantial time in-
vestment needed for the model setup and testing. Furthermore, CFD
models once developed can rarely be adapted to new situations with
new parameter values. More details about the CFD model used in this
study are recorded in Section S6 in SI. The simulation of a CFD model
(dashed line) under the high-conductivity high-zone shock fits well with
the MEA sensor profiles (blue points) (Fig. 5a), while there was a large
discrepancy between the CFD simulated result and the MEA sensor data
points under the middle and low shock (Fig. 5b and 5c¢). This might be
attributed to the simplification in CFD simulation for ion transport
processes as it only considers ideal conditions and neglects some side-
effects such as the difference in surface smoothness and difference in
mixing ability in each compartment (high, middle, and low) of the batch
reactor. For instance, the middle zone was assumed to have the weakest
mixing ability leading to the lowest mass transfer effectiveness while the
mass transfer effectiveness should be highest when the shock came from
the low position closest to the mixing bar. In contrast, using the non-
ideal mixing model, the SSE was reduced by 92.23% and 80.45%
(Fig. 5). It should be noted that a CFD model that compartmentalizes the
reactor in a similar manner to our simple non-ideal mixing model, is
expected to perform much better. However, the development and
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Fig. 5. Comparisons of the simulation results of the non-ideal heterogeneous mixing model (dashed line) with the fitting results of (a-c) the CFD model (solid line)
and with the fitting results of (d-f) the machine learning model (solid line), are plotted for each zone corresponding with the conductivity shock injection locations. (a
and d: plots of the high zone under shock injected in the high zone; b and e: plots of the middle zone under shock injected in the middle zone; c and f: plots of the low
zone under shock injected in the low zone). (Note: NHM = Non-ideal heterogeneous mixing; The sensor data profile (dots) and CFD model simulation are extracted

from the previous study [64]).

computational costs for such a model are considered to be prohibitive
for any practical, real-time implementation and use for precise control
systems.

The observed mixing trends could not be represented well by the CFD
simulation under conductivity shocks (Fig. 5), let alone the fast-transient
scenarios of pH with multifactorial reactions. As an example, an
axisymmetric model of a pH-sensitive electrochemical field effect sensor
comprising 13,650 elements was deployed to simulate a geometrical
domain of 0.09 mm?, demonstrating that it is intractable to apply CFD
models in the batch reactors used in this study (volume: 380 mL) as the
grid would have to be refined by a factor of 150.

The non-ideal mixing model was also compared with a pure data-
driven model from the Eureqa modeling engine (DataRobot), that gen-
erates differential equations trained on the same data set. All data points
were equally weighted for training (detailed settings are shown in

Figure S2 in the SI) and were integrated as black lines in Fig. 5d-5f. The
mean SSE (full name) values between the original sensor data and ma-
chine learning results were 144760, 110959, and 63,068 for each shock
(high, middle, and low locations), respectively. In contrast, the SSE
value between the original sensor data and the non-ideal mixing model’s
simulation results were markedly lowered by 68-83%, respectively. The
poor fit of the Eureqa regression models is attributed to lacking the
conservation principles as a basis, so that the regression models deviate
from the main trends of mass and heat transfer.

3.3. Validation and calibration of sensors and Non-ideal mixing models

The non-ideal mixing models can be easily modified to simulate
conductivity or pH profiles of other solute species by calibrating the
parameters. In terms of conductivity, the main transport mechanism of



T. Wang et al.

ions without chemical reaction should be the same. However, the
uniqueness of each ion is associated with distinct conductivity values,
posing the requirement for calibrating the as-developed models to sus-
tain accuracy under varying scenarios. To further validate the applica-
bility of the developed non-ideal heterogeneous mixing models,
additional experiments were conducted by injecting different soluble
compounds (KCl, MgSO4 and NaOH). The conductivity and pH profiles
were simulated versus the experimental sensor data using the corre-
sponding models with the parameters calibrated based on the actual
experimental conditions.

For validation of the conductivity model, the original optimal
parameter values (as listed in Table S2 in the SI) were used to predict the
KCl and MgSO4 conductivity profiles. The results showed that the
simulated profiles using the original optimal parameter values qualita-
tively follow the same trends as the new data (Fig. 6a and 6c). The
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reason for the significant quantitative mismatch is due to the differences
in injection periods between the new and the original experiments. Since
all shock injections are manual operations, the injection speeds cannot
be regarded as a controllable experimental condition. The high-zone
data reaches a peak much faster, indicating that the injection speeds
for the KCIl and MgSO,4 experiments are faster than the NaCl experiment.
Apart from the injection speeds, the absolute injection quantity of
different ions is another attribute leading to a mismatch. For example,
though the mass concentrations of KCl and MgSO4 (200 pL, 100 g/L)
injected are the same compared with the original NaCl conductivity
experiment, different ions lead to different conductivities in solution and
different shock conductivity C,. The electrical conductivities of the ionic
solutions based on mass percent are listed in Table S4 in the SI. Since
aqueous NaCl and KCI solutions exhibit nearly the same conductivities,
the predicted KCl profile using the original NaCl injection model exhibits
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Fig. 6. The predictive simulation results are plotted for KCl conductivity profiles versus experimental data using (a) original optimal parameters and (b) modified
parameters. The predictive simulation results are plotted for MgSO4 conductivity profile versus experimental data using (c) original optimal parameters and (d)
modified parameters. The predictive simulation results are plotted for NaOH pH profiles versus experimental data using (e) original optimal parameters and (f)

modified parameters.
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nearly the same steady-state conductivity versus the new experimental
data (a). In contrast, the steady-state conductivity of the predicted
MgSOy is around three times higher than the new experimental data
(Fig. 6¢). This difference is expected since MgSO4 exhibits roughly one-
third of the electrical conductivity of NaCl across the mass percentage
range (Table S4 in the SI). To improve the simulation results (i.e., model
prediction accuracy), a simple calibration procedure (Section S5 in the
SI) was conducted without modifying the model structure, so that the
underlying physical phenomena captured by the original model could be
preserved. The revised conductivity profiles for KCl and MgSO4 (Fig. 6b
and 6d) exhibit substantially improved fits.

To validate the pH model for the NaOH experiment, the pH profile
was simulated using the original parameters for the KOH injection case.
The simulated pH profile exhibits the same qualitative behavior as the
data (Fig. 6e). Again, the major mismatch is caused by the observed
difference between the injection periods of the NaOH and KOH data. The
time duration for the pH of the NaOH experiment to reach the peak is
much shorter. Thus, the corresponding shock parameter H, should be
calibrated to mitigate this difference. The calibration process is sum-
marized in Section S5 in the SI. The revised pH profile (Fig. 6f) exhibits a
far better fit than the original simulation, where the peak pH from the
model also matches the data. The profile of the high-zone pH in the short
time horizon after the peak does not accurately fit the data. The probable
reason is that the quasi dynamics of OH™ transport after the shock is not
accurately captured by the model or the experimental errors.

3.4. Non-ideal mixing models for improved wastewater treatment with
precise control

3.4.1. Simulation results for the wastewater nitrification system with
Closed-Loop controls

The simulation results for each independent study are illustrated in
Fig. 7. For the high-zone shock case, the PI controller begins to adjust the
air valve to accelerate the airflow rate for excess ammonium removal
once the disturbance occurring in the high-zone inlet flow is detected.
The high-zone conductivity quickly drops below the SP, then the valve
on the air stream is closed and the conductivity gradually rises towards
the SP. As for middle-zone and low-zone shocks, the conductivities can
still be controlled at the SP despite only using feedback readings from
the high-zone sensor. The reason is that the conductivity becomes
quickly mixed at around t = 2400 s resulting in the overall conductivity
of the tank approaching the SP under control.

For comparison, the MPC simulation results are also illustrated in
Fig. 7. For the high-zone shock simulation, the conductivities can be
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directed to the steady state at SP much faster than PI control. As indi-
cated by the control variable, the consumption of oxygen is reduced
significantly by MPC, implying substantial energy savings. Furthermore,
the middle-zone and low-zone shock simulations show that with MPC,
much less ammonium is discharged to the environment than with PI
control. This is because multi-input MPC can account for feedback sig-
nals from all sensors, make accurate predictions of process transients
using the non-ideal heterogeneous mixing models, and take appropriate
action versus the PI controller that only considers feedback signals from
the high-zone sensor.

3.4.2. Evaluation of treatment performance and energy savings

An open-loop controller was also simulated for each study to repre-
sent conventional and conservative operations as a reference for com-
parisons. Once the shock from the influent is observed (t = 2100 s), the
operator will open the aeration valve by an amount estimated from the
difference between the shock value and SP for full oxidation (u is set as
561.44 mg/s). After the system’s fixed settling time (1000 s), the
operator will adjust the valve again. In contrast, for the uncontrolled
simulations, the control variable is always set at the initial value (uy =
168 mg/s) which results in the steady-state effluent conductivity
meeting the SP under steady influent conditions.

To evaluate the system’s performance, the excess ammonium
discharge was quantified as the area under the conductivity profiles as
they go above the SP over the simulation horizon (2000 s). In addition,
the energy consumption was quantified as the overall amount of air used
for ammonium oxidization over the simulation horizon. The compari-
sons between uncontrolled, open-loop control, PI control, MPC, EMPC1,
and EMPC2 cases are illustrated in Fig. 8 with the data values for these
plots listed in Table S6 in the SI. The discharge quantification for each
case is calculated as the percentage of the uncontrolled simulation,
whereas the energy quantification is represented by the percentage of
the open-loop control simulation. It is apparent from the discharge plot
(Fig. 8a), that all the control strategies can greatly reduce the discharge
compared with uncontrolled simulations. MPC and both EMPC strate-
gies perform much better than PI control as less ammonium is dis-
charged into the environment. This is especially clear for the middle-
and low-zone shock studies, where MPC and EMPC account for multiple
input measurements simultaneously, while PI control can only account
for the high-zone measurement. Specifically, EMPC1 has the best per-
formance for reducing discharge, coinciding with its underlying design
objective. On the other hand, energy usage (Fig. 8b) under PI control,
MPC, and both EMPC strategies, is reduced versus open-loop control. As
for the high-zone shock injection study, MPC has the greatest advantage

Fig. 7. The conductivity profiles are
plotted for the uncontrolled, PI control,
and MPC simulations for independent
studies with NH4CI conductivity shock
(320 pS/cm) continuously injected from
2100 s to 2250 s, respectively, in the (a)
high, (b) middle, and (c) low zones of a
continuous-flow nitrification system.
The PI (blue) and MPC (orange) control
actions for the (d) high-zone shock case,
(e) middle-zone shock case, and (f) low-
zone shock case, are presented below
their corresponding conductivity
profiles.
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due to the least energy usage among other control strategies while its
discharge is only slightly higher than EMPC1 and EMPC2. As for the
middle- and low-zone shock studies, PI control saves the most energy,
but also has the greatest discharge compared with the other strategies.

It is observed that MPC has lower energy usage compared with
EMPC1 and EMPC2. EMPC1 is formulated to minimize environmental
discharge and it is apparent that more energy is consumed to achieve
this objective. EMPC2 is formulated to minimize air consumption with
constraints on discharge, but as indicated, it still consumes slightly more
energy than MPC. The reason for this behavior is that EMPC2 seeks a
control setting that has the lowest energy consumption with a prereq-
uisite to strictly satisfy the discharge constraints while MPC only mini-
mizes the errors without any specifications on discharge.

For the multiple shocks study, barring open-loop control, PI control
is apparently the worst control strategy using the most energy and
resulting in the most ammonium discharge. The energy usage and
discharge for MPC, EMPC1, and EMPC2 are relatively similar, and any
lower discharge observed must be paid for with greater energy con-
sumption. It is suggested that for real-world operation, control strategies
should be determined based on the specific conditions of the WTP/
WWTP. This is aligned with the notion of “smart plant operations,”
where process control, plant-wide management, and corporate office
systems communicate in real-time through networks to satisfy targeted
economic, environmental, and safety performance objectives [62]. As a
result, the developed conductivity model, modified for continuous flow
is valid for MPC and EMPC, and promising for real-time decision-making
over the network for better management, energy savings, and handling
of market/demand changes in WTPs/WWTPs.

4. Conclusions

WTP/WWTPs have been well-known for their large amounts of data
generated with low efficiency of data utilization, operational uncer-
tainty, and fluctuations in water quality/quantity [18,19]. These fluc-
tuations require frequent parameter adjustment and model recalibration
during operation for effective MPC, but traditional physics-based
mechanistic models are incapable of adapting to these changes in a
timely manner [63]. The non-ideal heterogeneous mixing models pro-
posed in this study are simple with few fitting parameters and take much
less time for simulation than traditional CFD models. The collected high-
resolution sensor data can be instantly transmitted to the model cali-
bration process, ensuring the calibration of non-ideal heterogeneous
mixing models in a real-time in situ mode during on-going operation.

11

This unique feature mitigates the severe time-delay problems of tradi-
tional pure physics-based models and enables a prompt modification for
higher accuracy system identification based on authentic representa-
tions of the system. Exploiting this technology within closed-loop con-
trol, such as MPC, enables a novel precise control system for WTP/
WWTPs.

Moreover, the heterogeneity profiling models can be applied for
pattern recognition so as to better understand the internal mechanisms
of complex processes (e.g., transport mechanisms of different ions), with
or without involving algorithms and redundant equation deduction.
Such generalized methodology can serve as a platform for simulating
state variables for other chemical species with similar physical
principles.
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