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ABSTRACT: Sensor reading drifting caused by sensor property
deterioration is a major problem of long-term continuous
monitoring in wastewater and hinders wide-range application of
online wastewater management. This study aims to tackle this
problem by developing denoising data processing algorithm
(DDPA) for a typical electrochemical sensor, solid-state ion-
selective membrane (S-ISM) sensor. Based on data mining and
electrochemical principles, DDPA was designed by combining
digital filter and outlier analysis to differentiate actual sensor
readings from background noise when the S-ISM sensitivity
declined over time. The sensor sensitivity was raised from 21 mV/
dec to 55 mV/dec after the reading processing, without
compromising the detection limit (7 × 10−6 mol/L). Furthermore,
long-term accuracy of S-ISM sensors in wastewater was enhanced by adding hydrophobic polytetrafluoroethylene (PTFE) into
polymer matrix. The sensitivity (57 mV/dec) of PTFE-loaded S-ISM sensors was the near-theoretical value on the first day and still
higher than 35 mV/dec after 24 days in wastewater, providing an excellent stable baseline for DDPA. Combination of sensor material
enhancement (adding PTFE) with sensor reading processing (using DDPA) assured the stable and high sensitivity (55 mV/dec after
24 days) and high detection limit (<5 × 10−5 mol/L) for wastewater monitoring. The study demonstrates a new route toward long-
term accurate wastewater monitoring and smart wastewater sensor networks by establishing a strong correlation between multiorder
derivatives of sensor readings and electrochemical responses with DDPA as an efficient data analysis approach.

KEYWORDS: denoising data processing algorithm, solid-state ion-selective membrane (S-ISM), wastewater, sensor reading drifting,
long-term stability, data mining

1. INTRODUCTION

Water sensor network is critical for water quality monitoring,
control, and management in water and wastewater treatment
plants.1,2 Electrochemical sensors have been widely used for
nutrient (nitrogen and phosphorus) monitoring in wastewater
on account of high selectivity, fast response, and low cost,3,4

among which solid-contact ion selective membrane (S-ISM)
sensors with open circuit potential (OCP) reading output have
the appealing features of simple configuration, easy inter-
pretation, excellent sensitivity, uncompromising rigidity, and
small size.5−12 However, S-ISM sensor property could
deteriorate during long-term (e.g., days, weeks) continuous
monitoring in wastewater and lead to two major problems:
sensor reading drifting (sensor reading deviation from the
steady status) and declined sensitivity (variation of Nernst
slope over time).13−17,17 Frequent labor-intensive and time-
consuming recalibration and maintenance (e.g., daily con-
tinuous test and monthly instantaneous test for wastewater

influent and effluent) are required to ensure the accuracy of
sensor readings. Diverse sensor materials such as gold
nanoparticle,18 polymers,19,20 and metal or carbon-based
material including Pt,20 metal oxide3,

21 graphene22 and carbon
nanotube23 have been developed to enhance the accuracy of
electrochemical sensors. However, the long-term stability of
these new sensor materials is still in question, especially for
wastewater containing high amounts of unknown organic/
inorganic contaminants that always participate in biochemical
redox reactions and cause biofouling and erosion.24 In
addition, biofouling and redox reaction products inevitably
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change the adjacent environment of the sensor surface. These
uncertainties makes mathematical compensation algorithm a
cost-effective approach to correct sensor readings, minimize
the errors generate from the sensor itself and the external
environment.25

Many mathematical algorithms (e.g., curve fitting26) have
been developed by extracting sensor features and exceptions,
or embedding electrochemical models (e.g., single-analyte/
two-analyte system model27) to enhance the accuracy and
interpretability. Specifically, digital filters percolate anomalies
from the raw data according to different signal character-
istics.17 However, the fast-declined sensitivity of electro-
chemical S-ISM sensors in wastewater poses difficulties for
digital filters to distinguish the genuine concentration variation
from sensor reading drifting. Previous studies have converted
OCP signals into more sensitive amperometric current (AC)
signals to alleviate the errors caused by the declined sensitivity
(e.g., coulometric signal transduction).17,28 But AC signal
acquisition requires low electrode resistance, which is
impossible for S-ISM sensors built upon polymer matrix.
Recently, machine learning (ML) has been applied to address
data drifting problem by identifying the abnormal values in
actual chemical sensing communities.29,30 But ML processes
data with quite poor interpretability in a “black box” mode, and
requires enormous data sets (e.g., 3 years data29) to train a ML
model.
S-ISM sensor, a typical electrochemical sensor capable of

real-time in situ monitoring ionic contaminants (e.g.,
ammonium (NH4

+)) in wastewater was used in this study as
the sensor data source for algorithm development. The
rationale for selecting ammonium as the wastewater con-
taminant is that it is a key factor contributing to eutrophication
and dissolved oxygen (DO) depletion in water resources.31 S-
ISM contains neutral or charged carrier (ionophore) to convey
the ion-to-electron transduction, and produces logarithmic
OCP readings with respect to the variation of target ion
concentration.32 Since OCP only represents the resting
potential between working and reference electrodes regardless

of equilibrium of reactions, it is a pure electrolytic measure-
ment to indicate the thermodynamic stability of a system,33,34

making it an efficient option for data processing. In this study,
S-ISM sensor selectivity for ammonium (NH4

+) was examined
using DDPA, since NH4

+ is monovalent charged and has a
theoretical Nernst slope of 59 mV/dec In our previous studies,
S-ISM sensor demonstrated high sensitivity (53 mV/dec.), low
detection limit for NH4

+(<5 mg/L), quick response (<1 s) and
high selectivity (logKNa+,NH4

+
pot = −2.8 to −2.3, logKCa2+, NH4

+)
pot =

−4.8 to −3.4, logKMg2+,NH4
+

pot = −3.2 to −4.9),35,36 but suffered
from reading drifting and short life span (less than a week in
wastewater) due to the sensor material deterioration.16,37,38 In
order to prolong the sensor lifespan in wastewater, an
innovative approach was explored in this study by adding
superhydrophobic Polytetrafluoroethylene (PTFE)39,40 to the
S-ISM polymer matrix41 so as to improve the hydrophobicity
of S-ISM sensors and prevent water invasion into the sensor
matrix.
Accurate wastewater monitoring and swift system control

under various operational conditions are vital to ensure
compliance with stringent water regulations and water quality
management.42,43 Despite significant progress of sensor
prototypes, there has been no effective solution for real-time
long-term and continuous wastewater monitoring yet due to
the unreliable and drifted sensor readings caused by surface
fouling,44 short lifetime and frequent calibrations, and other
environmental factors.45 The drifting problem deteriorates
sensor performance as well as spawns enormous abnormalities
for various end-users (e.g., academia,46 industries,47 and
governments48), which poses a massive obstacle for real-
world deployment of smart sensor networks.49−51 Although
latest computing technologies and specialized algorithms have
been adopted and applied in gas sensors (e.g., electronic nose)
to solve the drifting problem,52 there has been little effort to
conquer the limitations of general methods (e.g., regression,
calibration, and ML) for S-ISM water sensors, especially for
long-term continuous application in wastewater.53 Therefore, a

Figure 1. (a) diagram of drop-casting S-ISM polymer matrix onto the working electrode; (b) Illustration of water invasion into S-ISM sensor; (c)
Illustration of water repelling from PTFE-loaded S-ISM sensor. (60−65% size).
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reliable wastewater sensor network with customized algorithm
is in urgent need to solve the sensor drifting and accomplish
accurate, continuous and real-time in situ monitoring.
The objective of this study was to fundamentally solve the

reading drifting of S-ISM NH4
+ sensors in wastewater using

DDPA for long-term continuous monitoring. There were four
tasks in this study. First, the association between data
distribution and electrochemical response was established
through the steady state test and shock test in wastewater.
Different signal components from wastewater were identified
and cleaned using the data distribution analysis. Second,
multidimensional analysis was conducted in DDPA to display
wastewater noise and improve the signal recognition through
Taylor series transformation. Third, the capability of DDPA to
differentiate NH4

+ shock from background noise was examined
in wastewater by adding a series of NH4

+ shocks. Fourth,
PTFE was added in the S-ISM polymer matrix to palliate the
sensor deterioration. Long-term reading stability of the PTFE-
loaded S-ISM NH4

+ sensor was examined in wastewater for 25
days and compared with the original S-ISM NH4

+ sensor
without PTFE. Especially, combination of sensor material
enhancement (adding PTFE) with sensor reading processing
(using DDPA) was explored to achieve the stable and highly
sensitive NH4

+ detection and ultimately improve the resilience
of wastewater treatment facilities.

2. MATERIALS AND METHODS
2.1. Fabrication of Solid-State Ion Selective Mem-

brane (S-ISM) NH4
+ Sensor and PTFE-loaded S-ISM NH4

+

Sensor. The S-ISM NH4
+ sensors were fabricated by drop-

casting a liquid S-ISM cocktail onto the surface of a graphite
working electrode (radius: 2.5 mm) on Zensor TE100 SPEs
sensor (eDAQ, model ET077−40) as previously reported
(Figure 1a).35 100 mg S-ISM cocktail containing ammonium
ionophore, poly(vinyl chloride) (PVC) was dissolved into 500
μL tetrahydrofuran (THF, ≥ 99.5%, Sigma-Aldrich, solvent for
cocktail)35 and mixed ultrasonically for 5 min before drop
casting on the working electrode. The sensors were then
conditioned in 1 ppm of NH4Cl solution to stabilize the S-ISM
before usage.54

For the S-ISM polymer matrix without extra protection,
water can penetrate through form water layer between
electrode and S-ISM (Figure 1b), and deteriorate the sensor
accuracy overtime. To mitigate water invasion, S-ISM NH4

+

sensors were modified by adding 5% (w/w) superhydrophobic
polymer, polytetrafluoroethylene (PTFE) into the aforemen-
tioned S-ISM polymer matrix. The modified sensor surface was
dried under room temperature (20 °C) for 48 h. The
hydrophobic PTFE-loaded sensor was expected to repel water
from the electrode surface (Figure 1c) and prolong the long-
term durability of sensors in wastewater.
2.2. Sensor Tests in Clean Water and Wastewater.

The S-ISM NH4
+ sensors were first tested in the solution

prepared from 100 mL deionized water and 25 μL 100 g/L
NH4

+ standard solution. Ten pieces of S-ISM NH4
+ sensors

made in the same batch were examined using calibration
curves, through which five best performed sensors with similar
and relatively constant Nernst slopes within 3 runs of
calibration were selected for further tests (Supporting
Information (SI) Table S1). In the steady tests, the S-ISM
sensor was tested in a water solution at a constant NH4

+

concentration of 25 mg/L for 6 days (short-term). For the
shock test, the S-ISM sensor was immersed in a water solution

(50 mL) at the initial NH4
+ concentration of 16 mg/L and

tested for 12 days, during which NH4
+ concentration was

deliberately changed by adding low (1−2 μL)/medium (5−8
μL)/high (15 μL) amounts of 100 g/L NH4Cl on a random
time base and adding 10 mL water on the seventh day.
Successive low, medium, and high shocks were also added in
the middle and at the end of test to determine the algorithm’s
constant performance (SI Protocol S1).
Along with clean water test, S-ISM NH4

+ sensors were also
tested in wastewater collected from the influent section of the
UConn Wastewater Treatment Plant (WWTP) at noon time
and refrigerated immediately. Average characteristics of
wastewater influent are chemical oxygen demand (COD) of
300 mg/L, biological oxygen demand (BOD) of 60 mg/L,
total suspended solid (TSS) of 150 mg/L and NH4

+ of 15 mg/
L. S-ISM sensors were examined in wastewater for two
durations: 6 days (short-term) and 25 days (long-term). In a
parallel test, the PTFE-loaded S-ISM NH4

+ sensor was
examined in the same wastewater for 25 days (long-term).
The NH4

+ concentration of wastewater in the long term test
beaker was verified by a commercial sensor (Professional Plus
Multiparameter Instrument equipped with ammonium probe,
YSI Co.) and the Nitrogen−Ammonium Salicylate TNTplus
Method (HACH TNTplus 832), respectively. Specifically, the
salicylate TNTplus Method was used to test the fresh
wastewater collected from the UConn WWTP and couple
times during the long-term test as benchmarks (SI Protocol
S2), whereas the commercial sensor was used to test
wastewater frequently (once per 2−3 days) throughout the
long-term test (SI Protocol S3). All the tests were conducted
under room temperature. The open circuit potential (OCP)
readings of the original S-ISM NH4

+ sensor and PTFE-loaded
S-ISM NH4

+ sensor were recorded using a multichannel
CHI660 electrochemical potentiostat every 5 s. To determine
the variation of sensor sensitivity (mV/dec.) over the test
period, calibration was conducted using a series of standard
NH4

+ solutions (concentration: 1−64 mg/L) for both S-ISM
sensor and PTFE-loaded sensor on the 1st, 5th, 10th, 15th,
20th, and 25th day.

2.3. Algorithm Structure. Outlier analysis theory was
adopted in this study to develop denoising data processing
algorithm (DDPA) combining with Taylor series expansion.
There are three components in DDPA: Extreme value analysis
and signal filtering, Density-based method on data distribution,
and electrochemical evaluation (SI Figure S1). In brief, Taylor
series expansion decomposes the signal corresponding function
as a sum of derivative terms and reconstructs the function with
limited samples and signal filters55 so as to determine
background noise and slight data drifting and subsequently
eliminate it by median filter56 (SI Figure S1a), Density-based
methods reveals the distribution of sensor responses (e.g., S-
ISM sensors) and Taylor series items (derivatives) from
different mechanisms with histogram and kernel density
estimation (KDE) to recognize sensor reading drifting caused
by sensitivity declination (SI Figure S1b). The processed
sensor readings (e.g., OCP data) are converted to concen-
tration (mg/L) and evaluated using calibration curve (SI
Figure S1c). Innovatively, external noise and electrochemical
responses are first separated into different terms of Taylor
series to prevent interference during analysis, and the abnormal
drifted data generated from declined sensitivity is subsequently
recognized from the changing probability density and
ultimately eliminated. Here we assume that the partition
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coefficient and mobility of the target ion at the interface
between S-ISM sensor and water is always constant.57,58

2.4. Data Collection and Analysis Using DDPA. The
detailed processing steps, tools and data set of OCP reading
are summarized in SI Figure S2, and the pseudo code and
implementation location for the core algorithm is listed in SI
Algorithm S1. Specifically, extreme analysis and signal filtering
were conducted based on Taylor series expansion. Compared
with Fourier Transform, Taylor series expansion avoids

resolution problem in the time domain. Although an ideal
electrochemical response follows the Nernst equation, more
complicated OCP patterns could occur due to complex
wastewater environment. These patterns could be predicted
by estimating the electrochemical response function f(t) based
on limited discrete sample points. In this study, the Lagrange
interpolating polynomial was deployed for the approximation
of OCP-related sensor response59 (eq 1):

∑ ∏ξ ξ= +
+ !

− ∈ ··· ···
=

+

=

t
n

t x x x x x xf(t) f(t)L ( )
f ( )
( 1)

( t ), (min( , , , ), max( , , , ))
i

n

i

n

i

n

n n
0

( 1)

0
i 0 1 0 1

(1)

Figure 2. Illustration of the original OCP readings of S-ISM NH4
+ sensors (a)(c)(e), scaling plot from 1st to10th of its derivatives (b)(d)(f).

(Note: (a) and(b) are fresh S-ISM NH4
+ sensor in clean water on day 0; (d) and (e) are for deteriorated S-ISM NH4

+ sensors in clean water on day
6; and (g) and (h) are for fresh S-ISM NH4

+ sensor in wastewater on day 0.
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in which n represent order of differentiation with upper limit of
10 in this study, and t is time. Li(t) is Lagrange polynomial
representing a Kronecker delta (eq 2):

∏ δ=
−
−

= =
=

≠≠

l
m
oo
n
oot

x x
x

i j

i j
L ( )

x

0 if

1 ifi m j
i m

m
ij

j (2)

The last term in eq 1: ∏ −ξ
+ ! =

+

t t( )
n

nf ( )
( 1) i 0 i

(n 1)

represents the

interpolation error. The first derivative calculated from eq 1
was expressed in eq 3 and the rest derivatives can be further
approximated.

∑ ∏ξ
′ = ′ +

+ !
−

=

+

=

f t f t
f
n

t t( ) ( )L (t)
( )

( 1)
( )

n n

i

n

i
i 0

i

( 1)

0 (3)

The original data set and approximated derivatives properties
were analyzed through the density-based method.60 The
distribution of these data is expressed as a distance-based
probability density entropy61 (eq 4):

∑= − [ + − − ]E p p p plog( ) (1 )log(1 )
i

i i i i

m

(4)

in which m is number of subset of features, p is probability
density. A qualitative identifier enables differentiating different
clusters. In this study, three subsets of features were
distinguished based on the sensor behaviors in wastewater:
concentration variation, data drifting, and background noise.
Specifically, with the probability density increasing, data start
clustering together and the value of entropy declines, and vice
versa. The calculation of probability density was simplified as
the distance of data points. The validation of outlier analysis
between electrochemical response and declined sensitivity was
quantified by Silhouette coefficient S (eq 5):

=
−

− < <S
D D

D Dmax( , )
, ( 1 S 1)i

min average

min average
i

(5)

in which Dmin is minimum distance between two data points,
Daverage is the average distance. A high Silhouette coefficient (S
> 0) indicates that the data is mainly generated from
electrochemical response to the concentration in water, while
a low Silhouette coefficient (S < 0) indicates the data is an
outlier due to declined sensitivity.

3. RESULTS AND DISCUSSION
3.1. Differentiation of Sensor Reading Data Drifting

and Background Noise in Clean Water and Wastewater
Using Denoising Data Processing Algorithm (DDPA). S-
ISM NH4

+ sensor was first examined in clean water with
consecutive ammonium (NH4

+) concentrations (1−64 mg/L)
on day 0. The genuine sensor readings clearly distinguished
from the drifted data, presented by the short and transient
“ladder” pattern due to the potential amplitude leap (Figure
2a). OCP signal is a set of sample points Ek (k is index of data)
obeying Nernst equation ( = +E E QlogRT

F
0

z
). The recovery

of the stable electrochemical response without data drifting
and background noise is a reconstruction process of the
continuous function of OCP signal. Reconstruction process
requires computation of weighted average of samples,62 which
is described in eq 6,

∑= · −i
k
jjj

y
{
zzzE t E w

t
T

k( ) k (6)

Where −( )w kt
T

denotes the weight function. The

reconstructed function in the form of Taylor series was
expressed as a sum of centered differencing formula,63

described in eq 7.

∑= ·
=

E t t E t( ) a ( ) ( )w

n

N

n
n

0 (7)

where an
w (t) is a simplified coefficient of time interval, and

En(t) is the nth order derivative. This simplified function (eq
7) expressed the electrochemical response as a sum of
multiorder derivatives. As a major contributor, concentration
variation could be also clearly recognized from multiorder
derivatives in clean water (Figure 2b). All derivative values in
Taylor series were normalized through Min−Max Feature
Scaling for easy comparison. Additionally, derivatives of stable
signal presented a markedly regular and clear pattern with
outstanding electrochemical response without drifting or noise
(SI Figure S3a), implying that DDPA is not needed to process
signals from good fresh sensors in clean water.
After immersed in water solution for 6 days, the reading

drifting became noticeably displayed in calibration (Figure 2c)
and multiorder derivative (Figure 2d). Due to the logarithmic
property of Nernst equation, the electrochemical response
value exhibited clearly in the first order derivative and
diminished exponentially in the higher order derivatives
(
Q

1
ln 10n , Q: activity partition coefficient and related to target

ion concentration; n: order), so that the 10th order derivative
plot distorted much more severely than the first order
derivative (SI Figure S3b). The concentration variation with
high signal amplitude coincided with low amplitude data
drifting in the first order derivative of the signal, while the
background noise stood out in 10th order derivatives and
exacerbated the electrochemical readings.
On the day 0 in wastewater doped with different

concentrations of ammonium (NH4
+), high-intensity interfer-

ence from background noise in wastewater distorted the S-ISM
sensor readings and made the concentration variation
unrecognized (Figure 2e). Compared with clean water (Figure
2b), the multiorder derivatives of Taylor series in wastewater
undoubtedly showed no obvious electrochemical response
(Figure 2f). Nonetheless, the first order derivative still
differentiated the sensor response from noise, even though it
was not as obvious as that in clean water (SI Figure S3c). The
10th order derivative of the OCP signal in wastewater severely
altered, and thus exhibited a completely random pattern due to
the overlap with background noise. Subsequently, the noise
present in higher derivatives was discarded and replenished to

increase the signal-to-noise ratio (SNR, calculated by μ
σ

2

2) from

1.96 to 2.11. Taylor expansion provides a new mathematical
perspective to differentiate clean water and wastewater, from
which the first order component pattern dominated from low
to high derivatives in clean water (SI Figure S3a), while the
pattern in the first order derivative was completely deformed
by interference even the sensor was immersed in wastewater
on day 0 (SI Figure S3c).

3.2. Correction of the Declined Sensitivity of S-ISM
Sensors Using Density-Based Method in 6-Day Waste-
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water Test. Sensitivity declination mainly influences the
sensor response to the target ion and often occurs in the long
term monitoring due to sensor aging, and ultimately leads to
the decrement of the Nernst slope. Taylor series expansion
differentiated the concentration variation and data drifting in
the first order derivative using different amplitudes with
relatively stable sensitivity in clean water (SI Figure S3a).
However, the amplitude between the concentration variation
and data drifting became obscured in wastewater with unstable
sensitivity (SI Figure S3c). The concentration variation is
governed by the Nernst slope (RT

zF
), but its coefficient (

Q
1
ln 10n )

was canceled out in the higher order derivative. Therefore, the
declined Nernst slope only reduced the amplitude of
concentration variation rather than data drifting, hence
exhibiting an indistinguishable mixing state overall (Figure
2d). Density-based methods was used to tackle this problem.
Specifically, the histogram represents distribution of data set,
while KDE infers probability density using kernel function64 as
statistics reference (eq 8):65,66
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zzznh
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x x
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1

i

i

1

n

(8)

in which n is amount of data, K is Gaussian probability density
function, x is data point, and h is scaling parameter.
Through the 6-day test in clean water with different NH4

+

concentrations, S-ISM sensor readings exhibited a stable
pattern, and each concentration formed one single bell-shaped

peak in KDE of the OCP data histogram (Figure 3a). Without
concentration variation, the signal forms a Gaussian distribu-
tion peak centered at 0 as stable OCP (μ = 0) and variance σ2

as data drifting (Figure 3b). Concentration variation is
transient and high amplitude, yet only consists of small part
and appears separately from the huge peak on both sides in the
KDE (Figure 3b).
In contrast, the KDE analysis yielded different results for the

6-day test in wastewater. Sensitivity declination caused severe
sensor reading drifting and enormously fluctuated the baseline
of the OCP values. Particularly, sensor reading drifting
increased the variance σ2 and led to a fat-tail distribution
with a large kurtosis, meaning a dispersed data distribution and
a larger deviation of data set67 (Figure 3c). The overlapped
“fat-tail” covered the peaks of concentration variation,
contributing to its unobvious boundary with data drifting.
For its first order derivative (Figure 3d), besides a huge peak in
the middle and two small peaks on both sides, several more
peaks appeared in between, indicating the baselines changed
due to a declined sensitivity. Centers of these peaks (μ′) are
not 0 and thus caused distortion of stable signals. The “fat-tail”
original data were processed with median filter excelling at
signal processing for the large tail of probability density and
declined sensitivity.68

As a supplement of Taylor series expansion, density-based
method expresses the unobvious difference between concen-
tration variation and hiding data drifting in the form of
probability density estimation. Similar method, such as Kalman

Figure 3. Histogram and kernel density estimation on sensor readings obtained in the 6-day test in clean water ((a) Original data distribution of S-
ISM sensor; (b) First order derivative distribution of original data) and the 6-day test in wastewater ((c) Original data distribution of S-ISM sensor;
(d) First order derivative distribution of original data).
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filter had been found effective for detection and compensation
of data drifting in sensor response.69−71 However, it works
recursively and only provides merely the last “best estimation”
without considering the whole process so that it can easily be
affected by the varying sensitivity.27

Elimination of sensor reading drifting is essentially related to
a compensation of electrochemical response of S-ISM sensors,
and thus resulting in an increase of signal-to-noise ratio

( = μ
σ

SNR
2

2 , square ratio of average and standard deviation for

the normalized data set). When background noise and reading
drifting are recognized and eliminated through DDPA, the
SNR value rises and the sensor readings demonstrate higher
sensitivity, reflected by the improvement of the Nernst slope.
Based on standard thermodynamics, the theoretical value of
Nernst slope should be 59 mV for NH4

+. When S-ISM sensors
are immersed in wastewater over time, water invasion into the
S-ISM polymer matrix and fouling on the S-ISM surface reduce
the sensor response (SI Figure S4), and ultimately lead to the
declined Nernst slope (red arrows in Figure 4). The Nernst
slope of the S-ISM sensor dropped mildly within 25 days in
clean water (46−32 mV/dec., Figure 4a), while it dropped
drastically within 25 days in wastewater (47−21 mV/dec.,
Figure 4b), and ultimately led to the sensor reading
undetectable. With data drifting and background noise being
removed from the sensor reading, the proportion of the actual
OCP signals increased, leading to an enhanced signal quality

(green arrows in Figure 4) and corrected Nernst slope (55
mV/dec., black line in Figure 4b) closer to the ideal value (59
mV/dec.).
Compared with other methods, DDPA was specifically

developed to fit S-ISM sensors by overcoming the limitations
of general-purpose-based algorithms, such as oversimplification
of wastewater (Generic algorithm, GA72), noise interference
(fast fixed-point algorithm, fastICA73), huge training data set,
and false data deterioration (artificial neural network, ANN,74

cross-response processing, CRP75). Furthermore, DDPA is the
only method capable of applying to the real wastewater
continuously and improve sensor sensitivity for up to 4 weeks
(SI Table S2).

3.3. Quantify the Transient NH4
+ Shocks Using the

Denoising Data Processing. The capability of DDPA to
accurately restore sensor signals under transient shocks was
examined using a series of NH4

+ shocks (low/medium/high
amount) introduced in a water solution over 12-day period.
Here, an S-ISM sensor with severe sensor reading drifting even
under the steady state without shock was used to verify the
denoising capacity of DDPA. The results showed that even
under this worst-case scenario, the huge drifting (∼200 mV)
was completely erased and all the NH4

+ shocks were
successfully captured by the algorithm over time (Figure 5a).
The key point is that rather than original data, the DDPA
applies a median filter onto the derivatives, which represents

Figure 4. Calibration curve for the S-ISM sensor on the 1st, 5th, 10th, 15th, 20th, and 25th day in clean water (a) and wastewater (b). (Arrows
indicate the data processing steps. Black line is the selectivity (mV/dec.) after data processing).

Figure 5. (a) S-ISM sensor raw readings and the processed readings (green) in the 12-day shock test in clean water; and (b) linearity correlation
between the actual shock concentration and calculated shock concentration using of denoising algorithm.
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the changing rate and relies upon the Nernst Equation, utterly
different from background noise or drifting, so that these
shocks can be differentiated in DDPA after filtration, without
sacrificing the capability of determining shocks. More
importantly, there is an excellent linear relationship (R2 =
0.9992) of the shock concentration (X axis) and the calculated
shock concentration using DDPA (Y axis) (Figure 5b), clearly
demonstrating that the DDPA can accurately calculate the
shock concentration variation after adjusting the data drifting
without sacrificing the detection limit.
3.4. Enhanced Sensitivity of PTFE-Loaded S-ISM

Sensor in 25-Day Wastewater Tests Using DDPA. S-
ISM sensor readings acquired from the long-term test (25
days) in wastewater were processed using DDPA, and suffered
severe data drifting (Figure 6a). The statistical analysis
revealed that the original data distribution exhibits two peaks

in the KDE plot (Figure 6b), while there are no corresponding
baselines to these two peaks in the processed data (Figure 6a),
meaning that the sensor essentially lost accuracy and only
produced unpredictable data. Therefore, signal filter cannot
work and the KDE of signal derivative’s probability density
cannot reflect drifting accurately (Figure 6c).
In contrast, the PTFE-loaded S-ISM sensor exhibited a high

sensitivity (Nernst slope) in the long term wastewater test (SI
Table S3). For the original S-ISM sensor without PTFE, the
declined sensor sensitivity is mainly caused by S-ISM sensor
surface erosion and water penetration in between S-ISM
polymer matrix and electrode (Figure 1a).35 The hydrophobic
PTFE protected S-ISM surface from erosion by repelling water
and extended the durability of the sensor (Figure 1b), and thus
solving the unpredictable reading problem of S-ISM sensors
and providing a relatively stable sensitivity and baseline of the

Figure 6. S-ISM sensor test in wastewater for 25 days. (a) Original and processed data of S-ISM sensor; (b) Original data distribution of S-ISM
sensor; (c) First order derivative data distribution of S-ISM sensor; (d) Original and processed data of PTFE-loaded S-ISM sensor; (e) Original
data distribution of PTFE-loaded S-ISM sensor; (f) First order derivative data distribution of PTFE-loaded S-ISM sensor.
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sensor readings. However, the nitrogen concentration (mg/L)
could not be accurately calculated from the conversion of the
original OCP readings (mV) of PTFE-loaded sensor due to the
declined sensitivity (mV/dec.) and the undetermined reading
drifting (Figure 6d, gray line in SI Figure S5). This problem
can be solved by DDPA. The KDE plot of the PTFE-loaded
sensor possesses four peaks, corresponding to the baselines
(red lines in Figure 6d) with all the data vibrating with a
certain range, indicating a regular and predictable pattern. The
processed reading (blue line in SI Figure S5) has a much
smaller range of concentration fluctuation (<2 mg/L), which is
acceptable compared with raw concentration data before
processing (>10 mg/L). The median filter distinguished and
eliminated data drifting and background noise from the actual
OCP response by removing the deviation values in the Taylor
series and then generated the stabilized OCP signal with each
baseline. The KDE and histogram of first order derivatives
show only one peak (Figure 6f), meaning that there was no
concentration variation and the baseline variation was caused
from data drifting. All the data were calibrated and finally
yielded a stable reading for the PTFE-loaded S-ISM sensor in
the long term wastewater test (green line in Figure 6d).
Furthermore, DDPA compensated the declined sensor
sensitivity (mV/dec., Nernst slope), enabling an accurate
conversion from OCP readings (mV) to nitrogen concen-
tration values (mg/L) over time (green line in SI Figure S5),
which was appropriately validated by both commercial
ammonium sensor (red points in SI Figure S5) and salicylate
TNTplus test (pink points in SI Figure S5).
3.5. Advantages and Future Challenges. Current

solutions for monitoring contaminants,76,77 improving water
sensor sensitivity and accuracy,78 and extending sensor
lifespan79 are inadequate for long-term continuous wastewater
monitoring. Commonly used ammonium sensors have limited
capability of drifting adjustment (<45 mV), require frequent
manual calibration, and cannot last in wastewater even for a
couple hours. In contrast, the solution presented in this study
can achieve continuous wastewater monitoring for 25 days and
only needs the initial calibration. To compensate for the
fragility of sensor materials in wastewater, a novel algorithm,
DDPA was developed specifically for complex sensor reading
processing, enabling dissecting the S-ISM sensors readings,
removing background noise, and minimizing the bias.
Furthermore, the newly developed PTFE-loaded sensor
physically alleviated the unpredictable sensor readings for
DDPA analysis. The combination of sensor material enhance-
ment (adding PTFE) and data processing (using DDPA)
established a “foundation-superstructure” platform defeating
commercial sensor solutions to fundamentally solve sensor
reading drifting and can be applied to a broad spectrum of
sensors for long-term accurate and continuous monitoring in a
complex water environment. Currently, DDPA mainly
embedded an electrochemical Nernst equation without deep
consideration of S-ISM surface fouling because the formation
mechanism and kinetics are not clear yet.80 We’ve noticed the
fouling on the sensor surface changes mass (ions) and electron
transfer between bulk water and S-ISM polymer matrix, and
ultimately interferes with the sensor electrochemical response.
In future studies, an electrochemical fouling/biofouling and S-
ISM interaction model will be modulated and incorporated
with DDPA to boost its correction capability, advance sensor
accuracy, and diminish reading drifting in long-term waste-
water monitoring.
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