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Improving the understanding of coupled natural human systems (CNHS) can better inform environmental pol-
icymaking. We investigated the co-evolution (i.e., bidirectional interactions) issues in CNHS via two-way
coupling RiverWare (RW; a river-reservoir routing model) with agent-based models (ABMs, human decision
models) in the Yakima River Basin in Washington, US. Results show that coupled models can better capture the
historical irrigation diversion (human) and streamflow (nature) dynamics. We further demonstrated the effect of

social norms (ie., the influence of neighbors) among farmers and tested a “water reallocation” scenario to
evaluate the influence of water policies on irrigation diversion behaviors. Detailed model structure and
parameter uncertainty analysis are suggested to further quantify the benefit of CNHS models in multi-level water

resources governance.

1. Introduction

Most of the major basins involve some degree of human activity in
this anthropogenic era, indicating the significance in investigating the
co-evolution (i.e., bidirectional interactions) between natural and
human systems, so-called the coupled natural human systems (CNHS;
An, 2012; Giuliani et al., 2016; Hyun et al., 2019; Liu et al., 2007; Yang
et al., 2020) or socio-environmental systems (SES; Elsawah et al., 2020).
While the social-hydrology communities (Sivapalan and Bloschl, 2015)
actively study the co-evolution mechanism emphasizing human in-
fluences on the water cycle, we focus more on the water resources
management problem from a CNHS point of view, where the hydro-
logical response is one of the indicators for making decisions (Brown
et al., 2015; Reuss, 2003).

An additional human complexity layer has been claimed can improve
environmental planning and policy (Zellner, 2008). To that, the
co-evolution mechanism is the foundation to generate more holistic
information for policymaking, especially for revealing the offsetting
behavior (Campbell et al., 2004; Fielding et al., 2012), where the
feedback of human behaviors toward the changing policy jeopardizes
the original intention or the effectiveness of that newly introduced
policy, and multi-level governance application (Cash et al., 2006; Di
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Gregorio et al., 2019), which tend to address co-management issues
across power-imbalanced governance levels (or human actors). This
study aims to tackle the abovementioned management issues by
improving the understanding of the co-evolution mechanism in CNHS
modeling. More specifically, we would like to explore the influence of
policy rules (e.g., water reallocation; Du et al., 2021; Hillman et al.,
2012; Yang et al., 2012) on human behaviors (e.g, irrigation diversions
and risk attitudes) and discuss how CNHS model can potentially benefit
multi-level water resources governance.

To model the co-evolution mechanism in CNHS, a human layer is
required in addition to the natural systems (e.g., hydrological model).
For constructing the human system, agent-based modeling (ABM) is
often used for its capability of describing emergent and heterogeneous
human behaviors. The flexibility of the ABM framework allows various
designs of decision-making processes, including factors such as people’s
past experiences, future expectations, risk attitudes, availability of re-
sources, and interaction with the environment and neighbors (Hu et al.,
2006; Niles and Mueller, 2016). However, the social norm effect,
defined as the informal rules that govern behavior in groups and soci-
eties (Bicchieri and Muldoon, 2011), are often missing in CNHS models
with only a few exceptions (Abebe et al., 2020; Nhim et al., 2019).
Groeneveld et al. (2017) pointed out social influences are one of the least
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considered factors among 134 agent-based land-use change models’
literature. Kremmydas et al. (2018) also indicated that over 70% of
concerned agents’ interactions in the review of ABM for agricultural
policy evaluation studies referred to a land market that the agents’ in-
teractions are a shared database for sending/getting bidding informa-
tion instead of agent-to-agent interactions. The theoretical foundation of
the social norm effect is still actively developing (Gelfand et al., 2017),
and many studies have shown the social norm effect is an essential factor
influencing human behavior (Ajzen, 1991; Bicchieri and Muldoon,
2011; Cedeno-Mieles et al., 2020; Chen et al., 2012; Epstein, 2012). For
example, studies of groundwater management (Castilla-Rho et al.,
2017), adoption of field practice innovation (Baba et al., 2021), and
weather forecast utilization (Hu et al., 2006) have shown farmers’ be-
haviors can be significantly affected by neighbors’ opinions. These
motivate us to explore how the social norm effect influences the CNHS
modeling results.

Consequently, this study aims to improve our understanding of the
co-evolution mechanism in CNHS through a case study. We adopt the
Yakima River Basin (YRB) in Washington, US, as our study area, where
the RiverWare model (a river system model), YAKRW, developed by the
U.S. Bureau of Reclamation (USBR), is available (Malek et al., 2018;
USBR, 2011) to us. For the human model, we develop two diversion
ABMs to represent farmers’ heterogeneous irrigation diversion behav-
iors with and without the social norm effect. The objectives of this paper
are (1) coupling YAKRW (natural model) and diversion ABMs (human
model), (2) comparing coupled models with the original YAKRW
(baseline) to explore streamflow and irrigation diversion dynamics in
CNHS, (3) investigating the social norm effect with a local sensitivity
analysis (LSA) on a directed social network (i.e., information flow among
human actors), and (4) demonstrating the impact of changing policy
rules (e.g., water reallocation) on human behaviors (e.g., diversion and
calibrated ABM parameters).

The paper is structured as follows. We introduce the technical
background of RiverWare, ABM, and coupling technique in Sect. 2.
Then, Sect. 3 describes the case study information for the YRB. After
that, we show the detailed coupled model design and experimental setup
in Sect. 4. The results are presented in Sect. 5. Next, we discuss the multi-
level governance application and model limitations in Sect. 6, which is
followed by the conclusions in Sect. 7.

2. Background
2.1. RiverWare

RiverWare (RW) is a licensed water resource engineering model
developed in 1986 by the University of Colorado, Boulder. It is a process-
based model that simulates river and reservoir routing (e.g., reservoir
operational scheduling) and other natural processes (e.g., return flow) in
a basin with policy rules, such as water rights and the canal capacity to
fit the legal and physical constraints. The graphical interface enables
modelers to build the model using a node-link structure. Each node is
defined as an object (e.g., storage reservoir or water diversion district)
with a unique set of attributes. It contains various slots to store data (e.g,
series slots for storing time-series data). Each link connects different
objects to facilitate information flow. We refer to Zagona et al. (2001)
and their official website: http://www.riverware.org/for more technical
details of the RW model. RiverWare has been used internationally to
evaluate real-world water allocation issues and assist reservoir opera-
tion (Abudu et al., 2018; Basheer et al., 2020; Biddle, 2001; Everitt,
2020; USBR, 2011, USBR, 2012; U.S. DOE, 2019; Wheeler et al., 2020;
Witt et al., 2017). Its popularity in academia and public sectors is one
reason that RiverWare is adopted as our coupling target despite its being
a licensed standalone software. In addition, we would like to leverage
existing RW models’ credibility for our case study area (i.e., YAKRW).
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2.2. Agent-based modeling

Agent-based modeling (ABM) is a bottom-up modeling approach
known for its capability of describing the emergent and heterogeneous
agents’ behaviors, where an agent is a decision-making unit of actors.
Each agent is controlled by a set of rules and attributes, and they can
interact with other agents in a shared physical environment. Moreover,
the adaptive learning mechanism of agents, defined as the adaptive
capacity herein, enables agents’ decision rules to co-evolve with a
changing environment (Axelrod and Tesfatsion, 2006; Epstein, 2012;
Miller and Page, 2007). Many fields have successfully adopted the ABM
framework to explore CNHS, such as land-use change (Brown et al.,
2004; Groeneveld et al., 2017; Zellner and Reeves, 2010), groundwater
management (Al-Amin et al., 2018; Castilla-Rho et al., 2015; Reeves and
Zellner, 2010), and water resources allocation (Li et al., 2017; Tesfatsion
et al., 2017; Yang et al., 2009; Zhou et al., 2015).

2.3. Model coupling

Studies have adopted a two-way coupling technique, a technique to
create feedback loops among models, to organize information flow (e.g.,
real-time information exchange) and illustrate potential system re-
sponses between natural models and ABM (Giuliani et al., 2016; Hyun
et al., 2019; Jaxa-Rozen et al., 2019; Khan et al., 2017; Reeves and
Zellner, 2010). With a more extensive scope, modeling frameworks have
been developed to alleviate potential technical barriers (Robinson et al.,
2018). For example, some studies emulated nature models (e.g,
groundwater model or land-use decision model) into well-developed
ABM platforms (e.g, NetLogo) (Castilla-Rho et al., 2015; Sun and
Miiller, 2013), some established a new modularized ABM framework
integrating vegetation models (Murray-Rust et al., 2014; Schreine-
machers and Berger, 2011), and some developed a two-way coupling
Python package to fully utilized an external simulation model with
NetLogo (Jaxa-Rozen and Kwakkel, 2018). More broadly speaking,
several communities (e.g., CSDMS, CoMSES Net, AIMES, etc.) have
initiated generic coupling/integrating frameworks and model develop-
ment standards to advance the open science and system-of-systems
research. Some examples include OpenMI (Gregersen et al., 2007;
Moore and Tindall, 2005), Basic Model Interface (BMI; Hutton et al.,
2020; Peckham et al., 2013), Earth System Modeling Framework (ESMF;
Hill et al., 2004), and Object Modeling System (OMS; David et al., 2013).

We attempt to follow the same coupling philosophy. However, the
abovementioned frameworks might not be applicable in this study due
to the licensed (closed source) RiverWare software that has limited
modifiability. Therefore, we developed a Python package of RiverWare
and Agent-based Modeling Interface for Developers (Py-RAMID) to
achieve two-way coupling between RiverWare and ABMs for our nu-
merical experiments. The technical details for Py-RAMID coupling
framework are provided in the supplementary materials (Text S1). Py-
RAMID and its user manual are available at https://github.com/ph
ilip928lin/Py-RAMID.

3. Case study - the Yakima River Basin

The Yakima River Basin (YRB, Fig. 1) is located in central Wash-
ington, US, where agriculture significantly contributes to the economy
(USBR, 2010). According to the 2017 agriculture census from the USDA,
the main crops are orchards (127,934 acres, 29.6%), small grains (67,
434 acres, 15.6%), and corns (63,163 acres, 14.6%). The basin-wide
annual precipitation is approximately 680 mm, and most precipitation
accumulates in the mountain area as snow (Mastin and Vaccaro, 2002).
Therefore, the irrigation water supply for downstream croplands relies
heavily on five major reservoirs, Keechelus, Kachess, Cle Elum, Bump-
ing, and Rimrock (Fig. 1). These reservoirs capture melting snow in the
spring and redistribute water across the growing season (April to
October; USBR, 2002). The six major irrigation districts in the YRB are
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Fig. 1. Yakima River Basin. The map shows five major reservoirs, six major irrigation districts with corresponding canal flow gauges, and streamflow gauges used as

model calibration targets.

Kittitas, Yakima-Tieton (Tieton), Wapato, Sunnyside Valley (Sunny-
side), Roza, and Kennewick. They have different compositions of water
rights (e.g., junior and senior water rights). Allocated by the priority
order (first in time, first in right) (USBR, 2002), proratable (receive a
reduced or prorated portion of their entitlements during droughts
period) and nonproratable (receive full entitlements during droughts
period) water rights are given to junior and senior water right holders,
separated by the date of May 10, 1905 (USBR, 2002), respectively. The

Table 1

six districts’ water rights, average water diversion, district area, and
corresponding canal gauges are summarized in Table 1.

Building on previous local studies (Givens et al., 2018; Malek et al.,
2018; Qiu et al., 2019), we further explored the YRB from a CNHS’s
viewpoint by two-way coupling diversion ABMs with the existing
Yakima RiverWare model (YAKRW; Malek et al., 2018; USBR, 2011).

Canal gauges, water rights, average water diversion, and district area of six irrigation districts.

District Gauge Water rights (acre-feet)” Avg. Diversion in 2001-2010 (cfs)® District area (acre)
Non-proratable Proratable” Total

Wapato RSCW 305,613 350,000 655,613 705.22 190,862
Sunnyside SNCW 289,646 157,776 447,422 549.03 111,067

Roza ROZW 0 393,000 393,000 371.56 94,876

Kittitas KTCW 0 336,000 336,000 411.67 143,383

Tieton TIEW 75,865 30,425 106,290 103.46 42,150

Kennewick KNCW 18,000 84,674 102,674 128.00 54,386

2 (USBR, 2012).
b Hydromet.

¢ Proratable water right holders will receive a reduced or prorated entitlement during the droughts period, while nonproratable water right holders will receive full
entitlements all the time.
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4. Model and experimental setup
4.1. Models and simulation schema

To start the numerical experiments exploring CNHS in the YRB, we
first constructed the coupled model, Coupled-YAKRW, by coupling
YAKRW and a diversion ABM. Then, we applied Coupled-YAKRW to
simulate the dynamics of historical river discharge and irrigation di-
versions in the six major water use districts. Each irrigation district was
defined as a decision-making agent to make annual diversion requests.
The general simulation schema is shown in Fig. 2.

First, we used observed irrigation diversions as agent diversion re-
quests and sent them to the RW model in the initial year (y;,). Then, the
RW model outputs the simulated diversion and river discharge. Next, the
simulated river discharge was sent to the ABM model (grey boxes in
Fig. 2) to update agents’ decision rules. Then, ABM used the new ob-
servations (e.g., precipitation or reservoir storage) to evaluate the water
supply conditions of the coming year (y;) and calculate diversion-
request-adjustment ratios (R, y,) through the updated decision rules
(yellow boxes in Fig. 2; formulation details are shown in Sect. 4.1.2).
Finally, the diversion-request-adjustment ratios were applied to update
the annual mean diversion request values, which were calculated by the
annual diversion request records from y;, to y,_; for each agent and then
disaggregated into daily irrigation diversion requests for y, simulation.

4.1.1. The baseline model - YAKRW

We use the original YAKRW (Malek et al., 2018; USBR, 2011) as our
baseline model. All the input data, such as initial reservoir storages,
historical reservoir inflows, water rights information, etc., are
embedded inside YAKRW. YAKRW runs on a daily scale, and we can
output time-series data (e.g., daily streamflow and diversions) of any
given RW objects (i.e., water users or reservoirs). The diversion requests
of six irrigation districts are calculated using both water entitlement and
fixed values computed by historical diversion measurements. YAKRW
will first compute conventional diversion requests by combining
dry-year (the 50th percentile diversion from historical dry years in
1991-2010) and wet-year (the 50th percentile diversion from historical
wet years in 1991-2010) historical diversion sequences for a 365-day
period based on the flow conditions at Parker gauge on a daily basis.
Then, YAKRW picks the minimum of conventional diversion requests
and prorated entitlement calculated according to their water rights
(Table 1) to determine the final diversion requests.

We substitute conventional diversion requests with our diversion
ABM outputs for coupling purposes. Namely, the diversion decisions
made by the ABM are still constrained by water rights. Note that there is
an additional policy rule further updates the diversion requests for the
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Kennewick agent. To that, Kennewick’s diversion requests can be
dominated by this highly customized policy rule. We refer readers to
USBR (2011) for more details about the baseline model’s settings.

4.1.2. Diversion ABM

For the ABM model (yellow boxes in Fig. 2), we adopted the Theory
of Planned Behavior (TPB, Ajzen, 1991) as a guideline. TPB states that
the behavior of an actor (e.g, agent) is built upon its intention (e.g,
diversion requests), the social norm it experienced, and reality con-
straints (e.g., water rights, canal capacity). In this case study, every
district acquires the attributes of two state variables and eight param-
eters, which must be calibrated (Table 2). The decision-making process
includes six steps, shown as numbered circles in Fig. 2. In step 1, agents
will evaluate water supply conditions based on the Empirical Cumula-
tive Distribution Function (ECDF) value of the observation of the coming
year (y;) on the selected InfoSource (Table 2, Equation S3.1). The ECDF is
constructed from the historical records of selected InfoSource from y, to
Ye-1. In step 2, agents adjust their perceived beliefs of water supply
based on neighbor opinions, so-called the social norm effect (Fig. 3)
quantified by Equation (1),

Nagents

Py, = (1= Sweg) X Poy, + Swyg Z% Sgi % Piy, (€]
i=1, i#g

where pggfl is the adjusted perceived belief on the water supply condi-
tions considering the social norm effect, p,,, is the original perceived
belief of the agent at year y,, and Nggns denotes the total number of
agents. The social network matrix (S, Fig. 3a) that represents agents’
interaction networks, and the weight vector (Sw, Fig. 3b) that balances
neighbor opinions and the agent’s evaluation are used to describe the
impact of neighbor opinions on their decision, which we label the social
norm effect in this study. In the social network matrix, each row of the
matrix is a social network connection of an agent. “0” means the agent in
that row is not affected by the opinion of the agent in that column. “1”
indicates an influence from the opinion of the agent in that column. Also,
the social network is directed. For example, agent 2 is affected by agent
1, but agent 1 is not affected by agent 2, as shown in Fig. 3a. Lastly, Pis a
vector collecting all agents’ perceived beliefs on water supply conditions
(Fig. 3c). Note that all perceived beliefs mentioned in this paper are
represented as probabilities, where values closer to 1 indicate an agent is
more likely to have a positive belief in water supply conditions. The
subscript g is the index of an agent.

In step 3, agents will update their decision rules by updating a state
variable, Center (Cygy,), which will minimize the average difference be-
tween the simulated and observed river discharges (vg,,) at their
downstream area. We adopted a generalized form of the Bush-Mosteller

Make a rational " Adaptivel Adjust Linearly mapped to
o Address social P A .y .J . % y pp
> prediction from learn decision- perceived risk diversion-request- -
! i norm effect . - = 5 !
i |_an empirical CDF making rules bias adjustment ratio :

———————————————————————————— 2 (6
Calculate annual | |
diversion request |

inye,-

Mean annual

diversion request

Calculate annual
4| mean diversion
v

request from

Vi, O Y-

Mean annual
diversion request

RW (¥¢+1)

Simulated diversion | | River discharge | |Simu|ated diversion | | River discharge |

Fig. 2. Coupled-YAKRW simulation schema. Yellow boxes are agent decision-making processes (dotted thin arrows), which output the ratio (Rg, ,,) that is used to
adjust the mean annual diversion request (circle number 6) and to simulate the next year by RW. Annual mean diversion request is computed using all historical
annual diversion request records before the current year. Solid arrows connecting diversion requests (green boxes) and RW model (blues boxes) show information

flow in the coupling process.
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Table 2
Agent attributes that affect their decision-making processes.

Attribute Name Type Description

N Record’s length State The length of the agent’s
memory record, where we set it
to be the length from the initial
year (y,,) to y,—1 in the study.
C is a state variable
distinguishing the positive and

C Center State

negative perceived beliefs on
the water supply conditions
that result in increasing or
decreasing irrigation diversion
requests, respectively. It is
updated annually using the RL
algorithm (Equation (2)).
Information that a particular
agent uses to evaluate the
coming year’s water supply
conditions. Sources include the
deviation of (1) winter
(Oct-Mar) precipitation in each
of five reservoir catchments, (2)
storage in each of five
reservoirs in March, (3) total
winter precipitation (Oct-Mar),
and (4) total reservoir storage
in March. The deviation is the
difference between the current
value of the selected InfoSource
and its historical average.

y is the learning rate for
reinforcement learning (RL)
algorithm (Equation 2) to
update the state variable, C,
based on the average difference
between the simulated and
observed river discharges.

Sc is a scale factor to scale the
average difference between the
simulated and observed river
discharges. It is used to adjust
the agent’s sensitivity to this
difference. (Equation (3)).

o is a prospect function
parameter to adjust for positive
beliefs about water supply
conditions.

p is a prospect function
parameter to adjust for negative
beliefs about water supply
conditions.

InfoSource® Information source Parameter

2 Learning rate Parameter

Sc? Scale Parameter

o Alpha Parameter

iR Beta

Parameter

Ryax is the maximum diversion-
request-adjustment ratio.

maximum Parameter
diversion-request-
adjustment ratio
s* social network Parameter S is the social network matrix (
Fig. 3a), which defines the
directed social network among
agents. Each row of the matrix
is the social network of the
agent in that row.
Sw is a weight vector for the
social norm effect (Fig. 3b),
showing the proportion of each
agent’s belief to the neighbors’
opinions.

matrix

Sw' weight vector Parameter

2 Denotes parameters involved in the calibration.

model (Brenner, 2006), a type of reinforcement learning model, to

achieve the agent’s adaptive learning behavior shown in the following

equations:

c.. — Coyy T gy X7, X (1 - Cg.ylfl) if hgy, >0
o if hgy, <0

()]
Covr hgy X7 X Coypy

where the strength (hg,,) defining the updating magnitude of C is
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(a) (b)

[0.1
Sw =10.5
©
Agent 1 Agent2 Agent3 (C )
Agentl| 0 1 0.92
Agent 2 i = o B, =1083
Agent 3 1 1 10.75

Fig. 3. (a) S is a social network matrix. Each row of the matrix is the social
network of the agent in that row, which is affected by the agent in the column
with cell’s value 1. (b) Sw is a weight vector to balance between neighbor
opinions and the agent’s own beliefs. (c) Py, is a collection of agent’s evalua-
tions of water supply conditions in y,.

calculated by Equation (3). In Equation (3), vg,, is equal to the observed
river discharges minus the simulated discharges. v,,, is scaled by a scale
factor (Scg) and then transformed into a value between 0 and 1 through a
sigmoid function (Equation (4)). A “0.5” downshift defines the strength
as positive or negative. The range of the strength becomes —0.5 to 0.5.

Ve ,
6(%) —0.5 ifv,, >0

hg-,yu = 3
Ve .
176<7Sgc' ) —0.5if vy, <0

4

1

“Tre @

o(x)

The logic of Equation (2) and Equation (3) is that if we have a pos-
itive strength (positive v,,,), which implies the observed river discharge
is greater than the simulated discharge; then the agent will divert less
water achieved by increasing Cg,,. The state variable C,,, is used in step
4 and step 5 to distinguish the positive and negative perceived beliefs
about water supply conditions, resulting in increasing or decreasing
irrigation diversion requests, respectively. Therefore, higher C,,, in-
dicates a greater chance the agent will divert less water. This enhance-
ment in Cg,, will result in attenuating the positive v,,, mentioned above.
In step 4, we address the agent’s personal bias according to their risk
attitude through a prospect function (Kahneman and Tversky, 2013)
with a small modification. The modified prospect function includes two
nonlinear convex or concave curves split by Cg,,. These curves represent
the agent’s risk attitude toward positive belief (more available water)
and negative belief (less available water). For a positive belief (larger
than Cg,,), the convex function indicates the agent is risk-seeking, while
the concave function indicates a risk-averse attitude. On the contrary,
the convex function indicates risk-seeking and the concave function
means risk-averse for the agent’s attitude toward negative beliefs. The
agent’s perceived belief (Pgs,“f) is then updated by Equation (5),

_ C \ (Ig . H
(ﬁ) X (1 - er) +Coyn ifpe P;i!‘z’ P = Cey
bias __ e
Pﬂ-)‘: - p— C Py (5)
(ci“) X Coy + Coy, P EPY, p<Coy
&

where ag and f, are the curvatures of nonlinear curves for the positive

and negative beliefs, respectively, and nggt is a vector of values of a
discretized beta probability distribution computed from pgfiyjt and N
(Table 2, Equation S3.6). In step 5, the diversion-request-adjustment
ratios are generated by mapping perceived beliefs (nga,f into
diversion-request-adjustment ratios (R y,) through a linear mapping
function (Equation (6)).
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RK~)’1 = ((ECDF;”,I"T (”gow) X2- 1) - (Cg-,v: - 0‘5) X 2) X Rg- max (6)

where ug is a random number from a Uniform(0, 1) distribution.

In this study, the R, ,, is represented by the expected value (Rg"p ) for
enhancing the calibration converging speed.
REY = E, [Rg‘y,] )

8Vt

In addition, to prevent the numerical error, the RF? is forced to be
greater than —0.9. If it is below —0.9, the algorithm will replace it with
—0.9. Finally, we complete the decision-making process by using the
ratios to update mean annual diversion requests and disaggregate them
into daily diversion requests (step 6, Equation S3.10). The ODD + D
description (Miiller et al., 2013) for the ABM model (Text S2) and a
complete mathematical description of the decision-making algorithm
(Text S3) are provided in the supplementary materials.

4.2. Models’ calibration and validation

To calibrate the model, we separated a single simulation into three
periods: (1) warm-up period (1960-1965), (2) calibration period
(1966-1995), and (3) validation period (1996-2005). The objective
function for the calibration is to maximize the mean annual Nash-
Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970) of six diversions (i.
e., Kittitas, Tieton, Wapato, Sunnyside, Roza, and Kennewick) and two
river discharges (i.e., Parker and Kiona) as the RW is updated by the
diversion ABM with an annual frequency (Sect. 4.1).

Coupled-YAKRW contains 72 parameters that require calibration,
including six parameters (Table 2) for each district, a social network
matrix, a weight vector. To reduce the searching space, we first calibrate
Coupled-YAKRW without a social network matrix (Coupled-YAKRW w/
o S.); namely, 36 parameters from the social network matrix and the
weight vector are removed. Then, we calibrate Coupled-YAKRW with a
fixed InfoSource parameter from the calibrated Coupled-YAKRW w/o S.
model for each agent.

4.3. Experimental setup

We design the following numerical experiments to compare coupled
models with the YAKRW (baseline), investigate the social norm effect,
and assess the impact of changing policy rules on human irrigation
behaviors.

4.3.1. Model comparison for testing different ABM structures

We first calibrate and validate two coupled models (Coupled-YAKRW
and Coupled-YAKRW w/o0 S.). Then, we compare them with the baseline
model (YAKRW) to exam whether coupled models can better capture
both the hydrological responses (system viewpoint) and irrigation
diversion dynamics (the local viewpoint).

4.3.2. LSA on a directed social network

The social norm effect is argued to be a significant factor affecting
farmer decisions in the western U.S. (Hu et al., 2006). Therefore, in
addition to the model comparison in Sect. 4.3.1, we further explored the
sensitivity of social network structure to local or system-wide model
performance (i.e., NSE) using local sensitivity analysis (LSA) on the
directed social network. In the experiment, we slightly perturbed con-
nections inside the network of the calibrated network of
Coupled-YAKRW. This means we randomly selected one or two agent
pairs and reversed their calibrated network connections. For example, if
the pair of agents had no connection (e.g, cells in the social network
matrix (Fig. 3a) with value 0), then we added a connection (changed 0 to
1) or vice versa. For a single perturbation, we had 30 combinations in
social networks. For two perturbations, we had 435 combinations.
Consequently, we ran a total of 465 simulations in the LSA.
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4.3.3. Water-reallocation-induced behavior changes

The third experiment is performed as a proof-of-concept to demon-
strate how the two-way coupled model can be applied to inform po-
tential human behavior changes through a “what-if” water reallocation
scenario. We would like to show how agents’ risk attitudes will change if
their water rights are all proratable, meaning they share the water
deficiency during the drought years. To clarify, we are not proposing the
implementation of such top-down water rights changes. Instead, we
want to use the scenario to test the hypothesis that agents originally with
nonproratable water rights will be more sensitive to the environmental
changes (i.e., toward risk-averse) as there is no guarantee water supply
during drought years. In reality, water rights change is an extremely
complicated issue involving political debate, government negotiation,
and multiple level stakeholder engagements, which is out of the scope of
our paper focus and beyond the limit of our current ABM structure.
Therefore, we can only show the results of “what will happen” if water
can be reallocated in the YRB, but we will not explore “how it might
happen” in this paper. To test the abovementioned changing behavior
hypothesis, we recalibrated the coupled model with the all-proratable
water rights setup and compared the recalibrated agents’ parameters
with the original one.

5. Results
5.1. Model comparison and adaptive capacity

We show how coupled models can better capture both long-term
(overall trends) and short-term (year to year variations) hydrological
and irrigation diversion dynamics in this section. We also discuss the
impacts of the social norm effect, namely, the impact of the ABM model
structure as well. In this case study, the NSEs resulting from the annual
diversion of six major irrigation districts are considered as local level
model performances. In contrast, the NSEs from the annual discharge of
the Parker and Kiona flow gauges near the basin outlet represent system-
wide performances.

Table 3 shows both Coupled-YAKRW and Coupled-YAKRW w/o S.
can better capture local and system-wide dynamics of the observed data
compared to the baseline model (YAKRW) in terms of NSE values. For
system mean NSEs, the two coupled models and the baseline model are
similar. However, the coupled models show significantly better local
NSEs (Table 3). Kennewick’s performances are dominated by RW’s
policy rule (Sect. 4.1.1), as we can also see in Fig. 4. Fig. 4 reveals the
annual diversion time series data for six agents. The grey lines are the
observed data. The validation results (after the vertical dashed lines in
Fig. 4) indicate the calibrated models are not overfitted. Similar results
are provided for Parker and Kiona flow gauges in Figs. S4-2. These re-
sults suggest that coupled models better catch diversion dynamics
induced by human activities through adaptive decision-making.

We quantify how adaptive capacity benefits by capturing long-term
trends in irrigation diversions with the state variable C in Fig. 5. State
variable C contributes to steps 3, 4, and 5 of the agent’s decision-making
process as a parameter in decision rules (Fig. 2). As mentioned in Sect.
4.1.2, C distinguishes the positive and negative perceived beliefs about
water supply conditions, leading to increasing (above C) or decreasing
(below C) irrigation diversion requests, respectively. Therefore,
although a bit counterintuitive, if we observe C value is continuously
higher than 0.5, then we can anticipate a long-term decreasing diversion
trend and vice versa. For the Roza, Wapato, and Tieton districts in Fig. 5,
the C value fluctuates at approximately 0.5 before 1980 and remains
greater than 0.5 after 1980. This corresponds to an observed decreasing
diversion trend after 1980 (Fig. 4). Following the YRB’s history, there
was only one major drought between 1960 and 1980, which provided
fewer incentives to alter diversion behaviors. However, the YRB expe-
rienced about one drought every five years after 1980 (Malek et al.,
2018; Pellicciotto et al., 2012), which may have influenced the
competition dynamics of water. This affected the overall cooperative or
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Table 3
NSE values of YAKRW, Coupled-YAKRW, and Coupled-YAKRW w/o S. models.
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Models Local NSEs System NSEs
Roza Sunnyside Tieton Kennewick Kittitas Wapato Kiona Parker
YAKRW —0.08 -5.87 —1.66 —0.69 —2.78 —0.12 0.97 0.91
Coupled YAKRW 0.60 0.34 —0.42 —0.68 0.55 —0.16 0.95 0.98
Coupled-YAKRW w/o0 S. 0.56 —0.60 0.54 -0.73 0.81 0.13 0.96 0.99
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Fig. 4. Model comparison of annual diversions. Grey lines are the observed annual irrigation diversions. Green dashed lines are outputs of the original YAKRW
model. Blue and red dotted lines are simulated results from coupled-YAKRW and coupled-YAKRW w/o S., respectively.
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Fig. 5. Timeseries plot of the state variable, Center (C), for six agents in the
Coupled-YAKRW model. Colored regions have negative perceived beliefs of
water supply conditions. Note: higher C values indicate agents will divert
less water.

defective structure in the basin, which motivates some districts to
initiate water conservation measures (e.g., changing crop types and
improving irrigation efficiency). These long-term changes in diversion
behavior can be combined and implicitly captured by state variable C.
For Sunnyside and Kittitas, C values remained approximately 0.5 during
the entire simulation period, suggesting no noticeable long-term trend in
diversions. These results also corresponded to the observations in Fig. 4.
For the Kennewick agent, due to dominant policy rules inside the

YAKRW model (Sect. 4.1.1), our ABM model showed a minor influence
on Kennewick’s behavior. Therefore, neither the simulated diversion
value nor the C value captured the observed dynamic.

5.2. LSA of social network structure

The social norm effect is suggested as a significant factor in farmer
decision-making processes in the western U.S. (Hu et al., 2006). How-
ever, in this case study, both Coupled-YAKRW and Coupled-YAKRW w/0
S. models provided a similar level of mean NSE, where Coupled-YAKRW
w/o0 S. generated a slightly higher mean NSE (Table 3). One explanation
is model equifinality, where the over-parameterized model obtains a set
of parameters (Figs. S4-4) or structures that result in similar model
performance. In Table 4, we show how calibrated agent-unique pa-
rameters (i.e., agent attributes) were changed from Coupled-YAKRW to
Coupled-YAKRW w/o S to compensate the absence of the social norm
effect (S and Sw). Although judging the correctness of different model
settings is not the target of this paper, a further investigation can

Table 4

Percentage of difference between Coupled-YAKRW and Coupled-YAKRW w/o S.
with regard to calibrated range of each parameter. Raw parameter values of
Coupled-YAKRW and Coupled-YAKRW w/o S. are given in Tables S4-1 and
Tables S4-2, respectively.

Parameter Roza Sunnyside Tieton Kennewick Kittitas Wapato
b4 —17% —96% 21% —7% —63% 18%

Sc 31% 30% 20% —12% 34% 4%

o —29% —24% —64% 29% —80% 45%

[} —15% —54% 23% 21% —81% 14%
Ruax —48% —74% 28% —7% —17% —31%
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advance our understanding of the role of the social norm effect and help
us evaluate model equifinality issues in the coupled models for future
CNHS studies.

To further examine the impact of the social network structure on
model performance, local sensitivity analysis (LSA) was performed by
perturbing the calibrated social network matrix (Tables S4-3) as
described in Sect. 4.1.2. The LSA results (Fig. 6) show that the mean
diversion NSE over six agents was similar to the calibrated Coupled-
YAKRW model (red cross). However, perturbation of the social
network could affect the local performance of individual agents (e.g.,
Tieton, Kittitas, and Sunnyside). Our original hypothesis is that agents
with larger weights for the social norm effect will be more sensitive to
social network perturbations. However, the Tieton district, with a lower
weight value (0.09), showed a more significant variation in NSE values
compared to other agents with higher weights (e.g., Roza and Wapato).
This was due to predefined policy rules inside the YAKRW model,
described in the next paragraph. For the Kittitas district, the perturba-
tion results had higher NSE values in the irrigation diversion outputs.
This phenomenon was caused by the system-wide calibration objective
function, in which local parameters might not be optimized for each
agent. For the Sunnyside district, the variance among LSA simulations
was small (i.e., insensitive), but there was a noticeable decrease in NSE
values. One possible reason is that Sunnyside has the highest calibrated
learning rate (y; Tables S4-1) and maximum diversion-request-
adjustment ratio (Rpnqx; Tables S4-1), meaning its decisions may be
greatly influenced by the environment feedback (e.g., streamflow, v).
Therefore, other agents’ behaviors may implicitly affect Sunnyside’s
diversion decisions through changing the streamflow (e.g., upstream
diversions) during the social network perturbation.

Agents such as Roza, Sunnyside, Kennewick, and Wapato were not
sensitive to the social network structure. However, those insensitive
results do not imply that the social norm effect is not essential, where the
predefined policy rules in the YAKRW might cause such results. Policy
rules, including water rights or maximum/minimum diversion con-
straints (Sect. 4.1.1), could limit the utility of ABM outputs. Therefore,
the social norm effect might seem limited using RW outputs. To illustrate
this complexity, we plotted the standard deviation of 465 simulations
with respect to calibrated Couple-YAKRW results in Fig. 7, where blue
circles represent actual diversion (RW output) and orange triangles
indicate the diversion requests sent from ABM to RW (RW input). In
general, larger Sw values have greater standard deviations since the
agent relies more on the neighbor’s opinions. However, those trends are
limited by RW policy rules (Sect. 4.1.1), where the standard deviations

Roza Sunnyside Tieton Kennewick Kittitas Wapato
1 Mean (0.51) (0.13) (0.09) (0.42) (0.86) (0.53)
. T
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X
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Fig. 6. NSE of irrigation diversions in LSA. The weight of the social norm effect
of each agent is shown by bracket. The red cross indicates calibrated Coupled-
YAKRW model results, and orange lines are median values. Black circles are
NSE values outside the range of 25% and 75% quantiles shown as boxes.
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Fig. 7. Standard deviations of 465 LSA simulation results with respect to
calibrated Coupled-YAKRW outputs. The x-axis is the weight inside the social
norm effect. Blue circles represent actual diversion (RW output), and orange
triangles indicate diversion requests sent from ABM to RW (RW input).

of RW outputs are less than RW inputs. This phenomenon becomes clear
at larger Sw. Such a limitation is acceptable because individual human
behaviors are indeed restricted by policy rules (e.g., water rights) in the
real world.

5.3. Impact of policy rules on the human behavior

Studies have shown evidence in offsetting behaviors (Campbell et al.,
2004; Fielding et al., 2012), where the feedback of human behaviors
toward the changing policy jeopardizes the original intention or the
effectiveness of that newly introduced policy. For example, Fielding
et al. (2012) indicated that the policy of giving people water-saving
hardware might result in higher water consumption, which was oppo-
site to the goal of their water conservation programs. This offsetting
behavior motivates us to explore the impact of changing policy rules (e.
g., water reallocation) on human behavior (e.g., diversions and risk
attitudes).

In the comparison of Coupled-YAKRW w/o S. between original and
all-proratable water rights, we found that Wapato, Sunnyside, and Tie-
ton divert much less water during the drought years since their original
non-proratable water rights are set to all-proratable water rights. Then,
when those senior water rights holders divert less water, more water
becomes available to junior holders. This is more obvious in normal and
wet years. Therefore, we observed larger diversion fluctuations in those
agents (Figs. S4-3). We ignore Kennewick in the latter analysis due to
dominant policy rules in the YAKRW (Sect. 4.1.1), leading to minor
influence from the diversion ABM.

To further investigate the potential changes in human behaviors, we
recalibrated the Coupled-YAKRW w/o S. (with fixed InfoSource) under
the all-proratable water rights setup. The results indicate that agents
become more sensitive to the changing environment (i.e., toward risk-
averse), as shown in Fig. 8. Fig. 8 presents the prospect functions
(Equation (5)) of agents’ perceived beliefs on the water supply condi-
tions. The curvatures (a and g in Equation (5)) are agents’ risk attitudes.
For example, concave shapes in the upright corner in each subplot of
Fig. 8 means that agents are risk-seeking and insensitive to the belief of
the positive water supply conditions (e.g., more available water), while
convex shapes represent risk-averse attitudes and sensitive characteris-
tics to the belief of the positive water supply conditions. On the contrary,
the concave and convex shapes have opposite meanings for the lower-
left corner in the subplots (Fig. 8), which indicates the agents’ risk at-
titudes to the belief of the negative water supply conditions (e.g,
droughts). The prospect functions of the recalibrated Coupled-YAKRW
w/0 S. are shown in dotted lines, where the solid lines are from the
original model. Comparing solid and dotted lines, we can see that most



C.-Y. Lin et al.

—— With original water rights
—=== With all-prorated water rights

Roza Sunnyside

Environmental Modelling and Software 155 (2022) 105451

Risk-averse (sensitive)
Risk-seeking (insensitive)
Tieton

Wapato

-
\

-
Y -

/ ,

4

~-~

o

Kittitas

d
i /

T

c 10 C

o

10

Risk-attitude-adjusted
perceived belief
o)

C 10 C 10 c 1

Original perceived belief on the water supply conditions

Fig. 8. Prospect functions (e.g., mapping agents’ risk attitudes; Equation (5)) under original (solid lines) and all-proratable (dotted lines) water right scenarios. Upper
right corners are the risk attitudes toward the beliefs of positive water supply conditions, while lower left corners are to negative conditions (e.g., droughts).

of the lines curve toward risk-averse regions (blue area) in Fig. 8 except
parts of Tieton and Wapato. Namely, agents become more willing to
adjust their diversion behaviors according to the changing environment.
This flexibility could potentially benefit the instream flow control (e.g.,
adjusting their diversions to meet target flow) and enhance the effi-
ciency in water uses, where efficiency is defined as maximizing pro-
ductivity without wasting. It has been shown that the value associated
with instream flow (e.g., recreational and esthetic uses) are greater than
the value made from irrigation of low-value crops (Watts et al., 2001).
However, the unstable irrigation supply could also impact the invest-
ment in high-value perennial crops such as orchards and grapes (Fei-
nerman and Tsur, 2014), which requires several preparing years before
making profits.

6. Discussion
6.1. Cross-scale CNHS modeling for multi-level governance application

This study investigates the co-evolution mechanism in the CNHS
modeling via a case study in the YRB. The results show that the coupled
models can better capture both system (e.g., streamflow) and local (e.g,
irrigation diversions) dynamics. Also, we demonstrate the influences of
the social norm effects and the impact of the changing water allocation
policy. We would like to further discuss how to link the coupled models
proposed in this study to potential multi-level water resources gover-
nance applications.

Multi-level water resources governance naturally occurs in many
managements problem in solving water conflicts. For example, the
Yakima River Basin Integrated Water Management Plan (Office of
Columbia River, 2020) began in the 1980s, involving federal (e.g.,
USBR), Washington state, Yakama Nation, counties, cities, and farmers
to collaboratively offer a long-term vision and a management plan for
water allocation under the changing climate and environment. To that,
the coupled model provides a quantification method to model the
cross-scale responses supported individually customized actors’ behav-
iors and interactions (e.g., federal policy to the reservoir operations,
water allocation policy to the farmers’ behaviors, and ecological con-
ditions to the drought responses) under a decentralized modeling
framework (e.g., ABM). Such properties of coupled models create a
unique niche for informing multi-level water resources governance via
modeling results. Furthermore, according to an entire Columbia River
Basin (CRB)-wide survey results (Zhang et al., 2021), reservoir opera-
tions in the CRB gradually shifted to improve the aquatic environment
(USBR, 2020) and people were most supportive of sustainability policies
impacting the food and water sectors instead of energy sectors. The YRB
situations and our modeling results align with the survey findings. This
implies that the model structure of Coupled-YAKRW (e.g., reservoir
operation rules in the RW and the diversion ABM) has the potential to be

scaled up and applied to the entire CRB.

More importantly, we would like to discuss the motivation of how
water agencies might consider adopting coupled models, which could
help them resolve possible water conflicts under different policy sce-
narios (with explicit human decisions quantified). Here are some his-
torical events for water conflicts associated with water resources multi-
level governance in the CRB region. In 2006, a water rights fight be-
tween a power company and the Idaho State government occurred at the
Snake River, US, where ongoing water rights dispute with the Nez Perce
Indians has been last for decades (Miller, 2006). In 2016, the armed
fights over the water rights and land resources in the Malheur National
Wildlife Refuge, Oregon, US, between the federal government and the
local people led to several casualties (Wiles, 2016). We vision that
coupled models can analyze and broaden policies and management
strategies, which provide a higher chance of finding a smoother path to
ease those water conflicts. However, such a hypothesis cannot be solely
proved by our current modeling experiments. It requires vigorous
involvement of social science to establish the theoretical foundation for
model setup and continuous communication among stakeholders.

6.2. Limitations

To explore water management challenges in CNHS, we tested
different ABM models for different human behavior assumptions and
built the coupled model on top of existing process-based models (e.g.,
YAKRW in our case study), which were developed by USBR. These
existing models are used by authorities to assist in real-world operations.
Therefore, policy constraints are included in the modeling structure to
reflect reality as much as possible. These inclusions are most likely
present due to legal issues around water rights and minimum stream
flows constraints, as examples. Therefore, our case study might not fully
demonstrate the utility of the ABM. As shown in the Result section, we
encountered limited flexibility in the YAKRW model. Nonetheless, these
results do not mean that we should not couple with these existing
models; we would like to leverage their credibility and use the coupled
model to demonstrate some potential policy changes via modeling
results.

Also, the current ABM model design limits our capability to further
explore the water reallocation experiment. As a result, we only
demonstrate “what will happen” but not “how will it happen.” A possible
way to facilitate the discussion of water reallocation, in reality, is
through water banking or water market mechanisms (Du et al., 2021;
Yang et al., 2012). For example, with economic incentives, Du et al.
(2021) and Yang et al. (2012) showed the possible transition of a non-
proratable water right holder might become a proratable water right
holder in a water market. Note that the water market setting will drive
farmers’ behaviors in a different way as we presented in this paper and
require a different ABM model design (i.e., a decentralized optimization
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algorithm to drive agent’s behavior is needed in the water market
setup). Nevertheless, this topic will be a perfect future study applying
the two-way coupled model.

Another limitation is the model equifinality issues (e.g., multiple
models result in similar calibrated outcomes) along with the potentially
over-parameterized coupled models. Namely, due to the unknown of
true process, modelers will encounter the trade-offs between narrative
complexity (e.g, how detail is the human behavior modeling design?)
and model complexity (Grimm and Railsback, 2012a), which leads to
greater equifinality (Figs. S4-4). We further refer readers to Beven
(2006), Khatami et al. (2019), and Lin and Yang (2022) for a more
comprehensive introduction to equifinality issues. To address this lim-
itation, we plan to conduct uncertainty and sensitivity analysis (Yen
et al., 2014) and add these features in the next version of Py-RAMID to
help modelers identify dominant policy rules in the RW and model
equifinal parameter sets of coupled models. Also, instead of a single
mean NSE value, we can calibrate the coupled models with
pattern-oriented modeling (Grimm and Railsback, 2012b; Wiegand
et al., 2003), which focuses more on the adaptive capacity of the system.
For example, the adaptation of an agent’s behaviors (e.g., crop types and
crop area) as responses to the changing environment or extreme events
(e.g., droughts).

Finally, even though we put the effort of developing python-based
Py-RAMID package for embracing the Open Science by Design concept
(NASEM, 2018; U.S. DOE, 2019) through improving coupled models’
reproducibility (Goodman et al., 2016) and extensibility (Lacroix and
Critchlow, 2003), we understand Py-RAMID has its limitation to fully
meet the idea due to the licensed RiverWare. Moreover, similar coupling
concepts like co-simulation, multi-modeling, multi-formalism modeling,
and multi-model ecologies have also been explored in energy and system
control domains (Bollinger et al., 2018; Gomes et al., 2018; Plessis et al.,
2014; Vangheluwe, 2000; Vaubourg et al., 2015), as well as the inte-
gration frameworks like High-Level Architecture (HLA; Dahmann et al.,
1997) in the technology context. Therefore, we do not claim that
Py-RAMID is a novel contribution to the Open Science by Design
concept. Instead, we hope this study can help our readers to be aware of
this concept and further contribute to it in the future.

7. Conclusions

This study aims to improve our understanding of CNHS, which has
been shown to ameliorate environmental planning and policy (Zellner,
2008), through the YRB case study. We designed three numerical ex-
periments investigating different facets of CNHS. First, we compare
coupled models (e.g., Coupled-YAKRW and Coupled-YAKRW w/o S.)
with the baseline model (e.g., YAKRW) and demonstrate that coupled
models can better capture both irrigation diversion (human behaviors)
and streamflow dynamic. Second, we analyzed the role of the social
norm effect through a local sensitivity analysis. The similar simulation
results between coupled models with or without social norm effect are
caused by the dominant RW policy rules and the potential model equi-
finality issue. Separate research on quantifying the model complexity
and equifinality are required before further demonstrating the effect of
the social norm in CNHS modeling. Third, we show human behaviors (e.
g, diversions and risk attitudes) could be affected by policy rules, where
agents become more sensitive (i.e., risk-averse) to the changing envi-
ronment under the all-proratable-water-rights scenario in the YRB. In
sum, this study explores the co-evolution in CNHS from different facets
such as model structures (e.g., social norm effect) and the reciprocate
influence between policy rules (e.g, water allocation) and human be-
haviors (e.g, diversions and risk attitudes). However, a more detailed
model uncertainty analysis is needed to further quantify the benefit of
CNHS in informing policymaking for future multi-level water resources
governance applications.
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Software availability

The Py-RAMID package is designed to run under Python 3.7 in the
Windows system. The package and its user manual are freely accessible
at https://github.com/philip928lin/Py-RAMID.
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