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H∞-Optimal Interval Observer Synthesis for
Uncertain Nonlinear Dynamical Systems via

Mixed-Monotone Decompositions
Mohammad Khajenejad , Member, IEEE , and Sze Zheng Yong , Member, IEEE

Abstract—This letter introduces a novel H∞-optimal
interval observer synthesis for bounded-error/uncertain
locally Lipschitz nonlinear continuous-time (CT) and
discrete-time (DT) systems with noisy nonlinear observa-
tions. Specifically, using mixed-monotone decompositions,
the proposed observer is correct by construction, i.e.,
the interval estimates readily frame the true states with-
out additional constraints or procedures. In addition, we
provide sufficient conditions for input-to-state (ISS) sta-
bility of the proposed observer and for minimizing the
H∞ gain of the framer error system in the form of semi-
definite programs (SDPs) with Linear Matrix Inequalities
(LMIs) constraints. Finally, we compare the performance
of the proposed H∞-optimal interval observers with some
benchmark CT and DT interval observers.

Index Terms—Estimation, observers for nonlinear
systems, uncertain systems, interval observers.

I. INTRODUCTION

ENGINEERING applications, e.g., monitoring, system
identification, control synthesis, and fault detection often

require knowledge of system states. However, due to the
presence of noise/uncertainties and/or inaccuracies in sensor
measurements, system states are usually not exactly known.
This has motivated the design of state observers to estimate
system states using uncertain/noisy observations and system
dynamics. In particular, for bounded-error settings, i.e., when
uncertainties are set-valued (and distribution-free), interval
observer designs have recently gained much attention due to
their simple principles and computational efficiency [1].

Recent years have produced an extensive body of seminal
literature on the design of interval/set-valued observers for
several classes of systems, e.g., linear, cooperative/monotone,
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Metzler and mixed-monotone dynamics [1]–[5]. It has been
noted that the design of interval observers that must simul-
taneously satisfy correctness (framer property) and stabil-
ity/convergence is not a trivial task, even for linear systems [2].
Thus, especially when the system dynamics is nonlinear,
either relatively restrictive assumptions on system properties
were required to guarantee the applicability of the proposed
approaches, or monotone systems properties [6] need to be
directly imposed to satisfy positivity/cooperative behavior of
the error dynamics.

This challenge has been addressed for specific system
classes by leveraging Müller’s theorem or interval arithmetic-
based approaches [7], transformation to a positive system
before designing an observer (only for linear systems) [8]
or applying time-invariant/varying state transformations [3].
On the other hand, the work in [9] leveraged bounding
functions to design interval observers for a class of continuous-
time nonlinear systems under some relatively restrictive
assumptions on the nonlinear dynamics, without providing
a systematic approach to compute the bounding functions
nor necessary/sufficient conditions for their existence. More
recently, bounding/mixed-monotone decomposition functions
were applied in [3] to design interval observers for nonlin-
ear discrete-time dynamics, where conservative additive terms
were added to the error dynamics to guarantee its positivity.
Moreover, to best of our understanding, the resulting Linear
Matrix Inequalities (LMIs) do not include the required condi-
tions to guarantee that the computed bounding functions are
decomposition functions.

Decomposition functions were also applied in the authors’
previous work [4], [5] to design interval observers for non-
linear discrete-time systems under the (restrictive) assumption
of global Lipschitz continuity as well as additional sufficient
structural system properties to guarantee stability. Further,
the applied decomposition functions were not necessarily the
tightest. In our preliminary work [10], we proposed an interval
observer design for noiseless nonlinear CT and DT systems
based on tight remainder-form decomposition functions [11].
Our goal is to extend the design in [10] to noisy uncertain
nonlinear dynamics in this letter.

In particular, to consider bounded noise as an extension
to our preliminary work [10], notions of mixed-monotonicity
and embedding systems for uncertain systems are required.
Moreover, in the presence of noise, a different notion of sta-
bility than was considered in [10], specifically, input-to-state
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stability, needs to be proven. Furthermore, in addition to sta-
bility, a noise attenuation/optimality criterion is considered
that requires additional constraints to make the correspond-
ing SDP solvable. Hence, this letter tackles these challenges
by proposing a unified framework to synthesize H∞-optimal
and input-to-state stable (ISS) interval observers for a very
broad range of locally Lipschitz bounded-error nonlinear
CT and DT systems with noisy nonlinear observation func-
tions. Using remainder-form mixed-monotone decomposition
functions [11], we show that the states of the designed
observer frame the true state trajectory of the system for
all possible realizations of interval-valued noise/disturbance
and initial states, i.e., the proposed observer is correct-
by-construction, without imposing additional constraints or
assumptions. Further, we formulate semi-definite programs
(SDPs) with LMI constraints for both CT and DT cases to
minimize the H∞-gain of the framer error (interval width)
system and to ensure input-to-state stability of the correct-
by-construction framers, which are solved offline to find the
stabilizing observer gains.

Notation: Rn,Rn×p,Dn,N,Nn,R≥0 and R>0 denote the n-
dimensional Euclidean space and the sets of n by p matrices,
n by n diagonal matrices, natural numbers, natural numbers
up to n, nonnegative and positive real numbers, respectively,
while Mn denotes the set of all n by n Metzler matrices, i.e.,
square matrices whose off-diagonal elements are nonnegative.
For M ∈ Rn×p, Mij denotes M’s entry in the i’th row and
the j’th column, M⊕ ! max(M, 0n,p), M' ! M⊕ − M and
|M| ! M⊕ + M', where 0n,p is the zero matrix in Rn×p,
while sgn(M) ∈ Rn×p is the element-wise sign of M with
sgn(Mij) = 1 if Mij ≥ 0 and sgn(Mij) = −1, otherwise.
Further, if p = n, Md denotes a diagonal matrix whose diag-
onal coincides with the diagonal of M, Mnd ! M − Md and
Mm ! Md + |Mnd|, while M ) 0 and M ≺ 0 (or M + 0 and
M , 0) denote that M is positive and negative (semi-) defi-
nite, respectively. Further, a function f : S ⊆ Rn → R, where
0 ∈ S, is positive definite if f (x) > 0 for all x ∈ S \{0}, and
f (0) = 0. Finally, an interval I ! [z, z] ⊂ Rn is the set of all
real vectors z ∈ Rnz that satisfies z ≤ z ≤ z (component-wise),
where ‖z − z‖∞ ! maxi∈{1,...,nz} |zi| is interval width of I.

II. PROBLEM FORMULATION

System Assumptions: Consider the following uncertain non-
linear continuous-time (CT) or discrete-time (DT) system:

G :
{

x+
t = f̂ (xt, wt, ut) ! ft(xt, wt),

yt = ĥ(xt, vt, ut) ! ht(xt, vt),
xt ∈ X , t ∈ T, (1)

where x+
t = ẋt,T = R≥0 if G is a CT system, and x+

t =
xt+1,T = {0}∪N, if G is a DT system. Moreover, xt ∈ X ⊆ Rn

(X can be unbounded), wt ∈ W ! [w, w] ⊂ Rnw , vt ∈ V !
[v, v] ⊂ Rnv , ut ∈ Rs and yt ∈ Rl are continuous state, process
noise, measurement disturbance, known (control) input and
output (measurement) signals. Further, f̂ : Rn×Rnw × Rs →
Rn and ĥ : Rn×Rnv × Rs → Rl are nonlinear state vector
field and observation/constraint mapping, respectively, from
which, the time-varying mappings ft : Rn×Rnw → Rn and
ht : Rn×Rnv → Rl are well-defined since the input signal ut
is known. We are interested to estimate the trajectories of (1),
initialized in an interval X0 ! [x0, x0] ⊂ X . Moreover, we
assume the following:

Assumption 1: The initial state x0 satisfies x0 ∈ X0 =
[x0, x0], where x0 and x0 are known initial state bounds.

Assumption 2: ft(·) and ht(·) are known, differentiable and
locally Lipschitz mappings in their domain, with a priori
known upper and lower uniform1 bounds for their Jacobian
matrices, Jf

, Jf ∈ Rn×(n+nw), Jh
, Jh ∈ Rl×(n+nv).

Both assumptions of locally Lipschitz continuity and differ-
entiability are made for ease of exposition and can be relaxed
to weaker assumptions (cf. [11]). Further, by Assumption 2,
each of the mappings ft and ht can be decomposed into two
functions via the following proposition. (Note that throughout
the rest of this letter, to simplify the notations, we drop the
explicit time-dependency of ft, ht and their Jacobian matrices
when they are clear from context.)

Proposition 1 (JSS Decomposition, [10, Proposition 2]):
Let f : Z ⊂ Rnz → Rn satisfies Assumption 2, uniformly
in Z . Then, f (z) can be decomposed into a (remainder) affine
mapping Hz and a mapping µ(z), in an additive form:

∀z ∈ Z, f (z) = µ(z) + Hz, (2)

where H is a matrix in Rn×nz , that satisfies the following

∀(i, j) ∈ Nn × Nnz , Hij = Jf
ij or Hij = Jf

ij. (3)

Further, µ is a Jacobian sign-stable (JSS) [12] mapping in Z ,
by construction, i.e., its Jacobian matrix entries do not change
signs and have constant signs over Z . In other words, for each
(i, j) ∈ Nn × Nnz , either of the following hold:

∀z ∈ Z, Jµ
ij (z) ≥ 0 (positive JSS),

∀z ∈ Z, Jµ
ij (z) ≤ 0 (negative JSS),

where Jµ(z) denotes the Jacobian matrix of µ at z ∈ Z .
Assumption 3: X0,W,V and the values of the input ut and

output/measurement yt signals are known/given at all times.
Further, we formally define the notions of framers, correct-

ness and stability that are used throughout this letter.
Definition 1 (Correct Interval Framers): Suppose

Assumptions 2 and 3 hold. Given the nonlinear plant (1), the
mappings/signals x, x:T → Rn are called upper and lower
framers for the states of System (1), if

∀t ∈ T,∀wt ∈ W,∀vt ∈ V, xt ≤ xt ≤ xt. (4)

In other words, starting from the initial interval x0 ≤ x0 ≤
x0, the true state of the system in (1), xt, is guaranteed to
evolve within the interval flow-pipe [xt, xt], for all (t, wt, vt) ∈
T × W × V . Finally, any dynamical system whose states are
correct framers for the states of the plant G, i.e., any (tractable)
algorithm that returns upper and lower framers for the states
of plant G is called a correct interval framer for system (1).

Definition 2 (Framer Error): Given state framers xt ≤ xt,
ε : T → Rn, denoting the interval width of [xt, xt], is called
the framer error. It can be easily verified that correctness (cf.
Definition 1) implies that εt ≥ 0,∀t ∈ T.

Definition 3 (Input-to-State Stability & Interval Observer):
An interval framer is input-to-state stable (ISS), if the framer
error (cf. Definition 2) is bounded as follows:

∀t ∈ T, ‖εt‖2 ≤ β(‖ε0‖2, t) + ρ(‖$‖%∞), (5)

1The assumption of uniform Jacobian bounds for all values of ut may
sometimes be conservative, unless the input domain is small or if the system
is autonomous (with no inputs). Note, however, that this assumption can be
relaxed for systems with additive inputs ut .
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where $ ! [$w4 $v4]4 ! [(w − w)4 (v − v)4]4, β and
ρ are functions of classes2 KL and K∞, respectively, and
‖$‖%∞ ! supt∈[0,∞] ‖$t‖2 = ‖$‖2 is the %∞ signal norm.
An ISS interval framer is called an interval observer.

Definition 4 (H∞-Optimal Interval Observer Synthesis):
An interval framer design Ĝ is H∞-optimal if the H∞ gain
of the framer error system G̃, i.e., ‖G̃‖H∞ ! sup$5=0

‖ε‖%2
‖$‖%2

, is

minimized, where ‖s‖%2 !
√∫ ∞

0 ‖st‖2
2dt is the %2 signal norm

for s ∈ {ε,$}.
The observer design problem can be stated as follows:
Problem 1: Given the nonlinear system in (1), as well as

Assumptions 2 and 3, synthesize an ISS and H∞-optimal
interval observer (cf. Definitions 1–4).

III. PROPOSED INTERVAL OBSERVER

A. Decomposition Functions and Embedding Systems
Our observer design approach hinges upon constructing

framers for system (1) through designing embedding systems
based on the literature on mixed-monotonicity, e.g., [10], [11],
[13], [14]. Note that embedding systems can be constructed
based on any decomposition/inclusion function, including
interval arithmetic-based decomposition/inclusion functions,
and are well-known bounding tools in the literature to frame
state trajectories of dynamical systems [12]–[16]. In this let-
ter, we choose to leverage remainder-from mixed-monotone
decomposition functions [11], due to their tractability and
consistency with decomposability of our dynamics based on
Assumption 2. For the sake of completeness and before
proposing our observer structure, we first formally define the
notions of mixed-monotonicity and embedding systems, as
follows.

Definition 5 (Mixed-Monotone Decomposition Functions
[13, Definition 1], [12, Definition 4]): Consider the nonlinear
system (1) and let Z ! X × W, nz ! n + nw.

Suppose (1) is a DT system. Then, a mapping fd : Z × Z →
Rn is a DT mixed-monotone decomposition function with
respect to f , if i) fd(z, z) = f (z), ii) fd is monotone increas-
ing in its first argument, i.e., ẑ ≥ z ⇒ fd(ẑ, z′) ≥ fd(z, z′),
and iii) fd is monotone decreasing in its second argument, i.e.,
ẑ ≥ z ⇒ fd(z′, ẑ) ≤ fd(z′, z).

On the other hand, if (1) is a CT system, a mapping
fd : Z × Z → Rn is a CT mixed-monotone decomposi-
tion function with respect to f , if i) fd(z, z) = f (z), ii) fd
is monotone increasing in its first argument with respect to
“off-diagonal” arguments, i.e., for each fi, i ∈ Nn, we have
ẑ ≥ z ∧ ẑi = zi ⇒ fd,i(ẑ, z′) ≥ fd,i(z, z′), and iii) fd is monotone
decreasing in its second argument, i.e., ẑ ≥ z ⇒ fd(z′, ẑ) ≤
fd(z′, z).

Note that locally Lipschitz vector fields (cf. Assumption 2)
have been proven to be mixed-monotone, i.e., they admit
mixed-monotone decomposition functions [13]. Moreover, as
shown in [11, Corollary 2], if f : [z, z] ⊂ Rnz → Rn

is a JSS mapping, then fd,i for each fi, i ∈ Nn is tight,
i.e., fd,i(z, z) = minz∈[z,z] fi(z), fd,i(z, z) = maxz∈[z,z] fi(z).
Moreover, in this case, fd,i(·, ·) can be tractably computed

2A function α : R≥0 → R≥0 is of class K if it is continuous, positive
definite, and strictly increasing and is of class K∞ if it is also unbounded.
Moreover, λ : R≥0 → R≥0 is of class KL if for each fixed t ≥ 0, λ(·, t) is
of class K and for each fixed s ≥ 0, λ(s, t) decreases to zero as t → ∞.

through [10, Proposition 4] for each fi, i ∈ Nn, as follows:

fd,i(z1, z2) = fi(Diz1 + (Inz − Di)z2), (6)

for any ordered z1, z2 ∈ Z , where Di ∈ Dnz is a binary diago-
nal matrix determined by which vertex of the interval [z2, z1]
that maximizes or [z1, z2] that minimizes the JSS function fi(·)
and can be computed as follows:

Di = diag(max(sgn(Jf
i ), 01,nz)). (7)

Definition 6 (Bounded-Error Embedding Systems
[11], [13]): For an n-dimensional system (1) with any
mixed-monotone decomposition function fd(·), its embedding
system is a 2n-dimensional system with initial state [x4

0 x4
0 ]4:

[
x+

t
x+

t

]
=

[
fd(

[
(xt)

4 w4]4
,
[
(xt)

4 w4]4
)

fd(
[
(xt)

4 w4]4
,
[
(xt)

4 w4]4
)

]

. (8)

The following proposition characterizes the relationship
between embedding systems and state framers that will be
used in the next subsections.

Proposition 2 (State Framer Property [11, Proposition 3]):
Let system (1) be mixed-monotone with respect to fd with an
embedding system (8). Then, for all t ∈ T, Rf (t,X0,W) ⊂
Xt ! [xt, xt], where Rf (t,X0,W) ! {(f (t, x0, w) | x0 ∈
X0,∀t ∈ T,∀w ∈ W} is the reachable set at time t of (1) when
initialized within X0, (f (t, x0, w) is the true state trajectory
function of system (1) and (xt, xt) is the solution to the embed-
ding system (8), with T ∈ R≥0 for CT systems and T ∈ {0}∪N
for DT systems. Consequently, the system state trajectory
xt = (f (t, x0, w) satisfies xt ≤ xt ≤ xt,∀t ≥ 0,∀w ∈ W , i.e.,
it is framed by Xt ! [xt, xt].

B. Interval Observer Design
Given the nonlinear plant G, in order to address Problem 1,

we propose an interval observer (cf. Definition 1) for G
through the following dynamical system Ĝ:

x+
t = (A − LC)↑xt − (A − LC)↓xt + φd(xt, w, xt, w)

− L⊕ψd(xt, v, xt, v) + L'ψd(xt, v, xt, v) + Lyt

+ B⊕w − B'w + (LD)'v − (LD)⊕v,

x+
t = (A − LC)↑xt − (A − LC)↓xt + φd(xt, w, xt, w)

− L⊕ψd(xt, v, xt, v) + L'ψd(xt, v, xt, v) + Lyt

+ B⊕w − B'w + (LD)'v − (LD)⊕v, (9)

where if G is a CT system, then

x+
t ! ẋt, (A − LC)↑ ! (A − LC)d + (A − LC)nd⊕,

x+
t ! ẋt, (A − LC)↓ ! (A − LC)nd', (10)

and if G is a DT system, then

x+
t ! xt+1, (A − LC)↑ ! (A − LC)⊕,

x+
t ! xt+1, (A − LC)↓ ! (A − LC)'. (11)

Moreover, A ∈ Rn×n, B ∈ Rn×nw , C ∈ Rl×n and D ∈ Rl×nv

are chosen such that the following decompositions hold (cf.
Proposition 1): ∀x, w, v ∈ X × W × V,

{
f (x, w) = Ax + Bw + φ(x, w),
h(x, v) = Cx + Dv + ψ(x, v), s.t. φ,ψ are JSS. (12)
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Furthermore, φd : R2nz → Rn and ψd : R2nζ → Rl are
tight mixed-monotone decomposition functions of φ and ψ ,
respectively (cf. Definition 5 and Proposition 2). Finally, L ∈
Rn×l is the observer gain matrix, designed via Theorem 2, such
that the proposed observer Ĝ possesses the desired properties
discussed in the following subsections.

C. Observer Correctness (Framer Property)
Our strategy is to design a correct-by-construction interval

observer for plant G. To accomplish this goal, first, note that
from (9) and (12) we have yt − Cxt−Dvt −ψ(xt, vt) = 0, and
so L(yt −Cxt−Dvt −ψ(xt, vt)) = 0, for any L ∈ Rn×l. Adding
this “zero” term to the right hand side of (1) and applying (12)
yield the following equivalent system to G:

x+
t = (A − LC)xt + Bwt − LDvt + φ(xt, wt) − Lψ(xt, vt) + Lyt.

(13)

From now on, we are interested in computing embedding
systems, in the sense of Definition 6, for the system in (13), so
that by Proposition 2, the state trajectories of (13) are “framed”
by the state trajectories of the computed embedding system. To
do so, we split the right hand side of (13) (except for Lyt that
is a known signal) into two constituent systems: the affine con-
stituent (A−LC)xt+Bwt − LDvt, and the nonlinear constituent,
φ(xt, wt) − Lψ(xt, vt). Then, we compute embedding systems
for each constituent, separately. Finally, we add the com-
puted embedding systems to construct an embedding system
for (13). The following theorem addresses the correctness of
the proposed observer.

Theorem 1 (Correct Interval Framer): Consider the non-
linear plant G in (1) and suppose Assumptions 1–3 hold.
Then, the dynamical system Ĝ in (9) constructs a cor-
rect interval framer for the nonlinear plant G, i.e., ∀t ∈
T,∀wt ∈ W,∀vt ∈ V, xt ≤ xt ≤ xt, where xt and [x4

t x4
t ]4

are the state vectors in G and Ĝ at time t ∈ T, respectively.
Proof: First, note that the affine constituent system f%(ξt) =

(A − LC)xt+Bwt − LDvt (with ξ ! [x4 w4 v4]4) admits the
following tight decomposition function:

f%d(ξ1, ξ2) = (A − LC)↑x1 − (A − LC)↓x2

+ B⊕w1 − B'w2 + (LD)'v1 − (LD)⊕v2, (14)

where (A−LC)↑ and (A−LC)↓ are given in (10) and (11) for
CT and DT systems, respectively. This follows from a similar
reasoning to the proof of [10, Lemma 1], with the slight modi-
fication of considering the extra noise terms B⊕w1−B'w2 that
is non-decreasing in w1 and non-increasing in w2 due to the
nonnegativity of B⊕ and B', as well as (LD)'v1 − (LD)⊕v2
that is non-decreasing in v1 and non-increasing in v2 due to the
nonnegativity of (LD)⊕ and (LD)'. Next, consider the nonlin-
ear constituent system fν(xt, wt, vt) = φ(xt, wt) − Lψ(xt, vt).
We show that fν admits the following decomposition function:

fνd(x1, w1, v1, x2, w2, v2) = φd(x1, w1, x2, w2)

− L⊕ψd(x2, v2, x1, v1) + L'ψd(x1, v1, x2, v2), (15)

where φd,ψd are decomposition functions for the map-
pings φ,ψ . fνd is increasing in ξ1 since it is a sum-
mation of three increasing mappings in ξ1, including
φd(x1, w1, x2, w2) (a decomposition function that by con-
struction is increasing in (x1, w1) and hence, in ζ1 =

(x1, w1, v1)), −L⊕ψd(x2, v2, x1, v1) (a multiplication of the
nonpositive matrix −L⊕ and the decomposition function
ψd(x2, v2, x1, v1) that is decreasing in (x1, v1) and hence,
in ξ1 by construction) and L'ψd(x1, v1, x2, v2) (a multipli-
cation of the nonnegative matrix L' and the decomposi-
tion function ψd(x1, v1, x2, v2) that is itself increasing in
(x1, v1) and hence, in ξ1 by construction). A similar reason-
ing shows that fνd is decreasing in ξ2. Moreover, fνd(ξ, ξ) =
φd(x, w, x, w)−L⊕ψd(x, v, x, x)+L'ψd(x, v, x, v) = φ(x, w)−
Lψ(x, v) = fν(x, w, v) = fν(ξ). Finally, it is straightforward
to show that the summation of decomposition functions of
constituent systems is also a decomposition function of the
summation of the constituent systems. Hence, fd(ξ1, ξ2) !
f%d(ξ1, ξ2) + fνd(ξ1, ξ2) + Ly is a decomposition function
for (13) and equivalently for (1), where f%d, fνd are given
in (14), (15), respectively. So, the 2n-dimensional system
[(x+

t )4 (x+
t )4]4 = [f 4

d (ξ
t
, ξ t) f 4

d (ξ t, ξ t
)]4, initialized at

[x4
0 x4

0 ]4, is an embedding system for (1), and xt ≤ xt ≤ xt, by
Proposition 2.

D. ISS and H∞-Optimal Observer Design
In addition to the correctness property, it is important to

guarantee the stability of the proposed framer, i.e., we aim
to design the observer gain L to ensure input-to-state stabil-
ity (ISS) of the observer error, εt ! xt − xt (cf. Definitions 2
and 3). Before introducing our observer design, we first find
some upper bounds for the interval widths of the JSS functions
in terms of the interval widths of their domains via the follow-
ing lemma, whose proof is a slight modification of the proof
of [10, Lemma 3], with the difference that here, the domain
is the augmentation of the state and the noise.

Lemma 1 (JSS Function Interval Width Bounding): Let
f : Z ! X × W ⊂ Rnz → Rn be a mapping that satisfies the
assumptions in Proposition 1 and hence, can be decomposed
in the form of (2). Let µd ! [µd,1 . . . µd,n]4 : Z × Z → Rn

be the tight decomposition function for the JSS mapping
µ(·), given in (6). Then, for any interval domain z ≤ z !
[x4 w4]4 ≤ z in Z , the following inequality holds:

$
µ
d ! µd(z, z) − µd(z, z) ≤ Fµ

ε, (16)

where Fµ ! [Fµ
x Fµ

w] ! (Jµ
)⊕ + (Jµ)', with ε ! z − z,

Jµ = Jf − H, Jµ = Jf − H, Fµ
x ∈ Rn×n and Fµ

w ∈ Rn×nw .
Now, equipped with the tools in Lemma 1, we derive suf-

ficient LMIs to synthesize the stabilizing observer gain L for
both DT and CT systems through the following theorem.

Theorem 2 (ISS and H∞-Optimal Observer Design):
Consider the nonlinear plant G in (1) and suppose
Assumptions 2 and 3 hold. Then, the proposed correct
interval framer Ĝ in (9) is ISS, and hence, is an interval
observer in the sense of Definition 3, and also is H∞-
optimal (cf. Definition 4), if there exist matrices Rn×n ; P )
0n,n, G ∈ Rn×l

≥0 and γ ∈ R>0 that solve the following problem:

(γ ∗, P∗, G∗) ∈ arg min
{γ ,P,G}

γ s.t. / ≺ 0, (17)

where
(i) if G is a CT system, then

/ !




0 1 I
14 − γ I 0

I 0 − γ I



, −GC ∈ Mn, P ∈ Dn, GD ≥ 0, (18)
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with 0 ! ((Am) + Fφx )4P + P(Am + Fφx ) + (−C +
Fψx )4G4 + G(−C + Fψx ), and

(ii) if G is a DT system, then

/ ! −





P 0 1 0
04 P 0 I
14 0 γ I 0
0 I 0 γ I



, GC ≥ 0,−P ∈ Mn, GD ≥ 0, (19)

with 0 ! P(|A| + Fφx ) + G(C + Fψx ).
Furthermore, in both cases, 1 ! P[Fφw +|B| 0]+G[0 Fψv +D]
and Fφx , Fψx , Fφw, Fψv are computed by applying Lemma 1 on
the JSS functions φ and ψ , respectively. Finally, the corre-
sponding optimal stabilizing observer gain L∗ can be obtained
as L∗ = (P∗)−1G∗.

Proof: Starting from (9), we first derive the framer error
(εt ! xt − xt) dynamics G̃. Then, we show that the provided
conditions in (18) and (19) are sufficient for stability of the
error system in the CT and DT cases, respectively. To do so,
define $µ

d ! µd(x, s, x, s)−µd(x, s, x, s) and $s ! s−s,∀µ ∈
{φ,ψ}, s ∈ {w, v}.

Now, considering the CT case, from (9) and (10), we obtain
the observer error dynamics:

ε̇t = ((A−LC)d+|(A−LC)nd|)εt+$φd +|L||$ψd |+|B|$w+|LD|$v

≤ (Am+(−LC)m+Fφx +|L|Fψx )εt+δw,v(L), (20)

where δw,v(L) ! (Fφw + |B|)$w + (|L|Fψv + |LD|)$v and
Fµ

s , ∀µ ∈ {φ,ψ}, s ∈ {w, v} is given in (16). The inequality
holds by Lemma 1, [9, Lemma 1], and the facts that for any
M, N ∈ Rn×n, (M +N)d = Md +Nd, (M +N)nd = Mnd +Nnd,
|M + N| ≤ |M| + |N| by triangle inequality and the fact that
εt ≥ 0 by the correctness property (Lemma 1). Now, note that
by the Comparison Lemma [17, Lemma 3.4] and positivity of
the system in (20), stability of the system in (20) implies stabil-
ity for the actual error system. To show the former, we require
the following: G and P are nonnegative and diagonal matri-
ces, respectively. This forces P and its inverse to be diagonal
matrices with strictly positive diagonal elements, and since G
is forced to be non-negative, L = P−1G must be nonnegative,
and hence |L| = L. Moreover, −GC is Metzler, which results
in −LC = −P−1GC being Metzler, since it is a product of a
diagonal and positive matrix P−1 and a Metzler matrix −GC.
Thus, (−LC)m = −LC. Further, since GD is nonnegative, then
LD = P−1GD is a product of two nonnegative matrices P−1

and GD and so, |LD| = LD, and the system in (20) becomes
the linear comparison system

ε̇t ≤ (Am−LC+Fφ+LFψ )εt+L(Fψv +D)$v+(Fφw+|B|)$w, (21)

where by [18, Sec. 9.2.2], solving the SDP in (17)–(18) results
in the optimal observer gain L∗ = (P∗)−1G∗, in the H∞ sense,
i.e., with an H∞ gain of γ ∗ (cf. Definition 4). This implies that
the above linear comparison system (21) satisfies the following
asymptotic gain (AG) property [19]:

lim sup
t→∞

‖εt‖2 ≤ ρ(‖$̃‖%∞), ∀ε0,∀$̃ ∈ [$w4 $v4]4, (22)

where $̃ is any realization of the augmented noise interval
width and ρ is any class K∞ function that is lower bounded
by γ ∗$̃. On the other hand, by setting $ = 0, the LMIs

in (18) reduce to their noiseless counterparts in [10, eq. (19)].
Hence, by [10, Th. 2], the comparison system (21) is 0-stable
(0-GAS), which in addition to the AG property (22) is equiv-
alent to the ISS property for (21) by [19, Th. 1-e]. Hence, the
designed CT observer is also ISS.

For the DT case, from (9) and (11) and by a similar
reasoning to the CT case, we obtain

εt+1 = |A − LC|εt +$
φ
d + |L||$ψd | + |B|$w + |LD|$v

≤ (|A| + |LC| + Fφx + |L|Fψx )εt + δw,v(L). (23)

In addition, we enforce −P to be Metzler, as well as G
and GC to be nonnegative. Consequently, since P is positive
definite, P becomes a nonsingular M-matrix, i.e., a square
matrix whose negation is Metzler and whose eigenvalues
have nonnegative real parts, and hence is inverse-positive [20,
Th. 1], i.e., P−1 ≥ 0. Therefore, L = P−1G ≥ 0 and
LC = P−1(GC) ≥ 0, because they are matrix products of non-
negative matrices, P−1, G and P−1, GC, respectively. Finally,
by a similar argument as in the CT case, LD is nonnegative.
Hence, |L| = L, |LC| = LC, |LD| = LD, and so, the system
in (23) becomes

εt+1 ≤ (|A| + LC + Fφx + LFψx )εt+L(Fψv + D)$v + (Fφw + |B|)$w,

for which the solution to the the SDP in (17) and (19) pro-
vides the H∞-optimal observer gain L∗ = (P∗)−1G∗, by
[18, Sec. 9.2.3]. Furthermore, a similar argument as in the CT
case implies that the DT observer is also ISS.

Finally, note that if the LMIs in (18) or (19) are infeasible, a
coordinate transformation can be applied in a straightforward
manner, similar to [3, Sec. V] (omitted due to space limita-
tions; interested readers are referred to [21] and references
therein for a more detailed discussion on how to choose the
right transformation matrix), which is also helpful for making
the LMIs in Theorem 2 feasible, as observed in Section IV-A.

IV. ILLUSTRATIVE EXAMPLES

The effectiveness of our observer design is illustrated for
CT and DT systems (using SeDuMi [22] to solve the LMIs).

A. CT System Example
Consider the CT system in [23, Sec. IV, eq. (30)]:

ẋ1 = x2 + w1, ẋ2 = b1x3 − a1 sin(x1) − a2x2 + w2,

ẋ3 = −a3(a2x1 + x2) + a1

b1
(a4 sin(x1) + cos(x1)x2) − a4x3 + w3,

with output y = x1, a1 = 35.63, b1 = 15, a2 = 0.25,
a3 = 36, a4 = 200,X0 = [19.5, 9] × [9, 11] ×
[0.5, 1.5],W = [−0.1, 0.1]3. Without a coordinate transfor-
mation, the LMIs in (18) as well as the approach in [23]
were infeasible. However, with a coordinate transformation

z = Tx with T =




20 0.1 0.1
0 0.01 0.06
0 − 10 − 0.4



 (similar to [3, Sec. V])

and adding and subtracting 5y to the dynamics of ẋ1, the state
framers returned by our approach, x, x are initially tighter than
the ones obtained by the interval observer in [23], xDMN, xDMN ,
and they are comparable after the transients, as shown in
Figure 1 (similar trends are observed for x1, x2; omitted for
brevity). Furthermore, the framer error is initially smaller with
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Fig. 1. State, x3, as well as its upper and lower framers and error
returned by our proposed observer, x3, x3, ε3, and by the observer in
[23], xDMN

3 , xDMN
3 , εDMN

3 for the CT System example.

Fig. 2. State, x2, and its upper and lower framers, returned by our
proposed observer, x2, x2, and by the observer in [3], xTA

2 , xTA
2 (left)

and norm of framer error (right) for the DT System example.

our approach when compared to the one in [23] but con-
verges/decays slower to a steady-state value than the framer
error with the approach in [23].

B. DT System Example
Consider a noisy variant of the Hénon chaos system [24]:

xt+1 = Axt + r[1 − x2
t,1] + Bwt, yt = xt,1 + vt,

where A =
[

0 1
0.3 0

]
, B = I, r =

[
0.05

0

]
, X0 = [−2, 2] ×

[−1, 1], W = [−0.01, 0.01]2 and V = [−0.1, 0.1]. Using the
solutions to the corresponding LMIs in (19), it can be observed
from Figure 2 that the interval estimates for x2 are tighter than
the ones returned by the approach in [3] (similarly for x1, omit-
ted for brevity). Moreover, the depicted error plots demonstrate
the convergence of the error sequence to steady state (i.e.,
ISS) and show smaller errors for the proposed approach when
compared to the one in [3].

V. CONCLUSION AND FUTURE WORK

A novel unified approach to synthesize interval-valued
observers for bounded-error locally Lipschitz nonlinear
continuous-time (CT) and discrete-time (DT) systems with
nonlinear noisy observations was presented. The proposed
observer was shown to be correct by construction using mixed-
monotone decompositions, i.e., the true state trajectory of
the system is guaranteed to be framed by the states of the
observer without the need for additional constraints or assump-
tions. Moreover, we provide semi-definite programs for both
CT and DT cases to find input-to-state stabilizing observer
gains that are proven to be optimal in the sense of H∞.
Finally, simulation results demonstrated the better performance
of the proposed interval observers when compared to some

benchmark CT and DT interval observers. Designing hybrid
interval observers and considering unbounded unknown inputs
will be considered in our future work.
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