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The Witt classes of soð2rÞ2r
Eric C. Rowella , Yuze Ruanb , and Yilong Wangb

aDepartment of Mathematics, Texas A&M University, College Station, TX, USA; bYanqi Lake Beijing Institute of
Mathematical Science and Applications (BIMSA) Huairou, Beijing, China

ABSTRACT
We study the Witt classes of the modular categories soð2rÞ2r associated
with quantum groups of type Dr at ð4r # 2Þ-th roots of unity. From these
classes we derive infinitely many Witt classes of order 2 that are linearly
independent modulo the subgroup generated by the pointed modular cat-
egories. In particular, we produce an example of a simple, completely
anisotropic modular category that is not pointed whose Witt class has
order 2, answering a question of Davydov, M€uger, Nikshych and Ostrik.
Our results show that the trivial Witt class ½Vec% has infinitely many square
roots modulo the pointed classes, in analogy with the recent construction
of infinitely many square roots of the Ising Witt classes modulo the
pointed classes constructed in a similar way from certain type Br modular
categories. We compare the subgroups generated by the Ising square roots
and ½Vec% square roots and provide evidence that they also generate lin-
early independent subgroups.
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1. Introduction

Modular categories play a central role in the study of 2-dimensional topological phases of matter
[19], invariants of 3-manifolds [31] and conformal field theory [16]. The problem of classifying
modular categories led to the definition [5] of the Witt group W for non-degenerate braided
fusion categories, generalizing the Witt group for abelian groups equipped with non-degenerate
quadratic forms (see [8]). Two non-degenerate braided fusion categories C and D are Witt
equivalent if they are equivalent “modulo Drinfeld centers,” i.e., if C£ZðAÞ ffi D£ZðBÞ for
some fusion categories A, B:

Recently [20] it was shown that the 8 Witt classes of Ising categories have infinitely many
independent square roots modulo the subgroup generated by pointed categories. This was
achieved using the signature, a new Witt class invariant related to the higher central charge intro-
duced in [22]. From this a verification of a conjecture of [6] was derived, namely, that the torsion
subgroup sW2 of the super-Witt group has infinite rank. The categories representing the square
roots of the Ising Witt classes are of the form soðNÞN with N odd, obtained from the (Lie type
B) quantum groups UqsoðNÞ at q ¼ epi=ð4N#4Þ: In this article we study the case N even, obtained
from (Lie type D) quantum groups of UqsoðNÞ with q ¼ epi=ð2N#2Þ: From these we obtain infin-
itely many Witt classes of order 2, which intersect trivially with the subgroup generated by the
pointed and Ising classes. Thus we have infinitely many square roots of the trivial Witt class
½Vec%, modulo the subgroup generated by the pointed and Ising Witt classes. From this we derive
an affirmative answer to [5, Question 6.8]: there does exist a completely anisotropic simple
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modular category whose Witt class has order 2. We also compare the Lie type D Witt classes
studied here with the Lie type B Witt classes of [20]. Although we cannot show there are no rela-
tions among them, we do find an infinite sequence of type D classes that intersects trivially with
the infinite sequence of type B Witt classes used in [20] to verify the conjecture of [6].

Our results further illustrate the usefulness of the signature for distinguishing Witt classes. The
methods we use are number-theoretical and thus require carefully chosen parameters. It would be
interesting to understand the relations among all of these Witt classes. We believe that the exam-
ples we study provide infinitely many Witt-independent examples of non-pointed completely
anisotropic simple modular categories (so-called property S categories) with order 2 Witt classes,
but we only verify a single example.

Here is a more detailed outline of this article. After providing the notation and context of the
problem we derive square roots of ½Vec% from quantum groups of Lie type Dr, treating the r odd
and r even case separately. Next we compute their signatures, and use them to find a sub-
sequence of these Witt classes that are linearly independent, modulo the subgroup generated by
pointed and Ising categories. Next we compare the Witt subgroups we study with those of [20].
Finally we show that at least one square root of ½Vec% is both simple and anisotropic, answering a
question of [5].

2. Preliminaries and notation

We assume some familiarity with the standard notions in the theory of fusion categories, refer-
ring the reader to [10] for a complete treatment. Mainly to fix notation we provide some details.

2.1. Fusion categories

A fusion category over C is a semisimple, C-linear abelian, rigid monoidal category with finite-
dimensional Hom-spaces and finitely many isomorphism classes of simple objects among which
is the tensor unit 1 [11]. For any fusion category C, we denote by IrrðCÞ a complete set of repre-
sentatives of the isomorphism classes of C: The tensor product endows K0ðCÞ, the Grothendieck
group of C, with a ring structure. More precisely, we have X ( Y ¼

P
Z2IrrðCÞ N

Z
X,YZ for any

X,Y 2 IrrðCÞ, where

NZ
X,Y :¼ dimC CðX ( Y ,ZÞ:

For any X 2 IrrðCÞ, let N X be the square matrix of size jIrrðCÞj such that ðN XÞY ,Z ¼ NZ
X,Y for

any Y ,Z 2 IrrðCÞ: The Frobenius-Perron dimension of X 2 IrrðCÞ, denoted by FPdimðXÞ, is the
largest positive eigenvalue for N X (see [11]). The Frobenius-Perron dimension of C is defined
to be

FPdimðCÞ ¼
X

X2IrrðCÞ
FPdimðXÞ2:

Let C be a fusion category. The rigidity of C means that for any object V 2 C, there is a left
dual ðV), evV , coevVÞ, where V) 2 C is an object, evV : V) ( V ! 1 and coevV : 1 ! V ( V) are
morphisms satisfying the duality conditions in [10, Def. 2.10.1]. The notion of a right dual is
similarly defined [10, Def. 2.10.2]. It is well-known that dual objects are unique up to isomorph-
ism (see, for example, [1, Lem. 2.1.5]). A simple object X 2 IrrðCÞ is called invertible if evX and
coevX above are isomorphisms. A fusion category is pointed if all of its simple objects are invert-
ible. We denote the maximal pointed fusion subcategory of C by Cpt: If IrrðCptÞ ¼ f1g, then C is
called unpointed.
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The global dimension dimðCÞ of a fusion category C was introduced in [17, Def. 2.5]. By [11,
Rmk. 2.5], dimðCÞ is a totally positive algebraic integer. We denote the positive square root of
dimðCÞ by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðCÞ

p
, which will play a central role in our results. Finally, a fusion category C is

called pseudounitary if dimðCÞ ¼ FPdimðCÞ:

2.2. Braided and ribbon fusion categories

Let C be a fusion category. A braiding on C is a natural isomorphism bV ,W : V (W !ffi W ( V satis-
fying the Hexagon axioms (see [10, Chap. 8]). A fusion category equipped with a braiding is called a
braided fusion category. For any fusion subcategory D in C, the centralizer of D in C, denoted by
D0, is the full fusion subcategory of C generated by objects V 2 C such that bW,V * bV ,W ¼ idV(W

for all W 2 D: The centralizer C0 of C itself is called the M€uger center of C: A braided fusion category
C is called non-degenerate if IrrðC0Þ ¼ f1g, i.e., C0 is equivalent to Vec, the category of finite-dimen-
sional vector spaces over C: For any fusion category C, its Drinfeld center, denoted by ZðCÞ, is the

category with objects of the form ðV, c#,VÞ, where V 2 C and cW,V : W ( V !ffi V (W is a natural
family of isomorphisms satisfying the half-braiding conditions in [13, Def. XIII.4.1]. It is well-known
that ZðCÞ is a non-degenerate braided fusion category (see, for example, [8, Cor. 3.9]). A braided
fusion category C is called symmetric if C0 ¼ C: The fusion category RepðGÞ of finite-dimensional
complex representations of a finite group G, endowed with the standard braiding, is a symmetric
fusion category also denoted by RepðGÞ for convenience. A symmetric fusion category equivalent to
RepðGÞ for some finite group G is called Tannakian.

A ribbon structure on a braided fusion category C equipped with a braiding b is a natural iso-
morphism h : idC ! idC of the identity functor satisfying hV) ¼ h)V and

hV(W ¼ ðhV ( hWÞ * bW,V * bV ,W (2.1)

for any V ,W 2 C: In particular, for any X 2 IrrðCÞ, hX is equal to a non-zero scalar times idX:
By an abuse of notation, we denote both the scalar and the isomorphism itself by hX for all sim-
ple X, and we call hX the (topological) twist of X. It is shown by Vafa [32] that for all X 2 IrrðCÞ,
hX is a root of unity, so ordðTCÞ :¼ lcmfordðhXÞ j X 2 IrrðCÞg is finite. A braided fusion category
C with a ribbon structure h is called a ribbon fusion category, or a premodular category. In a pre-
modular category, endomorphisms are equipped with a canonical trace valued in C: In particular,
this leads to well-defined quantum dimensions dV for objects V 2 C, and one has dimðCÞ ¼
P

X2IrrðCÞ d
2
X: For details, see [1, 11]. A premodular category C is called modular if the underlying

braided fusion category is non-degenerate.
Numerical invariants of modular categories can be obtained from quantum dimensions and

twists. For example, for any modular category C and any integer n 2 Z, the n-th Gauss sum is
defined in [22] as snðCÞ ¼

P
X2IrrðCÞ d

2
Xh

n
X: When sn 6¼ 0, the n-th central charge is defined to be

nnðCÞ :¼
snðCÞ
jsnðCÞj

, (2.2)

where the denominator on the right hand side represents the (complex) absolute value of snðCÞ:
By [11, Prop. 2.10] and the finiteness of ordðTCÞ, the complex conjugate of snðCÞ equals to
s#nðCÞ for all n 2 Z: In particular, when n¼ 1, by [10, Prop. 8.15.4] we can also write

n1ðCÞ ¼
s1ðCÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðCÞ

p : (2.3)

These invariants provide insights on modular categories and the Witt group, as is demonstrated
in [20, 22].
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Finally, we will need the following classification result on pointed braided fusion categories
(for details, see [10, Sec. 8.4]): such categories are parameterized by pairs (H, Q) and denoted by
CðH,QÞ, where H is a finite abelian group and Q : H ! C+ is a quadratic form on H. Simple
objects in CðH,QÞ are in one-to-one correspondence to the elements of H. Moreover, CðH,QÞ is
a ribbon fusion category whose ribbon structure is determined by the twists ha ¼ QðaÞ for a 2
H ¼ IrrðCðH,QÞÞ, and it is modular if and only if the map ða, bÞ 7! QðaþbÞ

QðaÞQðbÞ is a non-degenerate

bicharacter on H.
An important example of pointed modular categories is the semion modular category [24],

denoted by Sem. Using the notation above, we characterize Sem as CðZ=2Z,QÞ with QðaÞ ¼ ia
2

for a 2 Z=2Z, which implies

n1ðSemÞ ¼ exp
pi
4

" #
: (2.4)

2.3. Witt group W

The concept of Witt equivalence of non-degenerate braided fusion categories is introduced in [5].
More precisely, two non-degenerate braided fusion categories C and D are Witt equivalent if
there exist fusion categories A and B such that C£ZðAÞ ffi D£ZðBÞ: We denote the Witt
equivalence class of a category C by ½C%: Under the Deligne product, Witt equivalence classes
form an abelian group denoted by W: The Witt group W of non-degenerate braided fusion cate-
gories can be viewed as a generalization of the classical Witt group of non-degenerate quadratic
forms on abelian groups (i.e., metric groups), which generate the pointed part of W denoted by
Wpt (for details, see [5, 8]). In addition to mathematical interests, the study of the Witt group is
also closely related to phase transitions driven by anyon condensation and symmetry gauging in
topological phases of matter [2, 3].

Numerical invariants are powerful tools in the study of the structure of the Witt group. For
example, the first central charge n1 (see (2.2)) is used in the study of conformal embeddings of
rational vertex operator algebras associated to affine Lie algebras [5]. Another important Witt
invariant, namely, the signature homomorphism, is introduced in [20]. Here, we briefly recall the
definition. For any fusion category C, it is well-known that FPdimðCÞ is totally positive algebraic
integer [11]. Therefore, its positive square root, denoted by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FPdimðCÞ

p
, is a totally real algebraic

integer, and the signature of C is then defined to be the sign of its Galois conjugates. More pre-
cisely, let Galð "Q=QÞ be the absolute Galois group of Q, then the signature of C is the function

eC : Galð "Q=QÞ ! f61g, r 7! sgn rð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FPdimðCÞ

p
Þ

$ %
: (2.5)

By Galois theory, it is easy to see that eC factors through any Galois extension of Q containingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FPdimðCÞ

p
: Therefore, in the sections below, we will use large enough fields (instead of "Q) to

simplify computations. Let U2 :¼ f61gGalð "Q=QÞ be the group of functions from Galð "Q=QÞ to
f61g: Then by [20, Thm. 3.4], the signature map induces a well-defined group homomorphism

I : W ! U2, C½ % 7! eC, (2.6)

which is the main technical tool in this paper.
It is natural to pursue constructions of new non-degenerate braided fusion categories that are

Witt equivalent to a given one, and taking local modules of connected #etale algebras is one such
construction. Let C be a braided fusion category with braiding b. The notion of a connected #etale
algebra object A 2 C is defined in [5, Sec. 3.1]. It is shown in [5] that if A 2 C is a connected
#etale algebra, then CA, the category of right A-modules, is a fusion category. Moreover, according
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to [14, 23], b descends to A-module maps for local modules. Here a (right) A-module M with
A-action a : M ( A ! M is called local (or dyslectic) if it satisfies a * bA,M * bM,A ¼ a: As an
immediate consequence, C0A, the full subcategory of CA of local modules of A, is a braided fusion
category. In [5, Sec. 3], it is pointed out that if C is a ribbon fusion category with ribbon structure
h, then a rigid algebra A 2 C in the sense of [14] is connected #etale with non-zero quantum
dimension if and only if hA ¼ id: Group symmetry provides examples of the local module con-
struction. Namely, when C contains a Tannakian fusion subcategory RepðGÞ for some finite group
G, then the regular algebra A ¼ FunðGÞ is a connected #etale algebra in C: The corresponding local
module C0A can also be characterized in the context of de-equivariantization [5, 8].

The importance of the local module construction is well illustrated in the combination of
Corollary 3.32 and Proposition 5.4 of [5]: for any non-degenerate braided fusion category C and
any connected #etale algebra A 2 C, we have

FPdimðC0AÞ ¼
FPdimðCÞ
FPdimðAÞ2

and C½ % ¼ C0A
& '

: (2.7)

Therefore, in order to study the Witt class of C, it suffices to study the smaller category C0A:
By taking the local module category of a maximal connected #etale algebra in a non-degenerate

braided fusion category C, one gets a “minimal” representative in its Witt class in the following
sense. A non-degenerate braided fusion category is called completely anisotropic if it does not
contain any connected #etale algebra other than 1: It is shown in [5, Thm. 5.13] that any Witt
class contains a unique (up to braided equivalence) completely anisotropic representative. While
specific Witt classes can be difficult to compare in practice, having a completely anisotropic rep-
resentative is particularly useful. A fusion category C is called simple if C has no non-trivial fusion
subcategories. There are examples of completely anisotropic categories which are not simple and
vice versa. It is then interesting to consider the categories which are “minimal” in both senses,
which leads to the concept of property S [5, Sec. 5.4]. A non-degenerate braided fusion category C
has property S if it is completely anisotropic, simple and unpointed. The subgroup of W gener-
ated by the categories with property S is denoted by WS:

3. Categorical data and local modules of soð2rÞ2r
In this section, we set up notations and provide the categorical data. We will also discuss basic
properties of the local modules of the quantum group modular categories soð2rÞ2r:

3.1. Categorical data of soð2rÞ2r
Quantum groups give prominent examples of modular categories whose origin traces back to the
dawn of the subject [9, 15]. For any simple Lie algebra g over C and a positive integer k called
the level, one gets a modular category gk by taking the semisimplification of the tilting module
category of the quantum group UqðgÞ specialized at a root of unity q determined by g and k. The
reader is referred to [1, 25] for details.

Let r - 3 be an integer and Cr be the quantum group modular category soð2rÞ2r: In this sec-
tion, we study the structure of the Witt subgroup generated by these categories using the signa-
ture homomorphism (see (2.5)). Necessary data and notation is given below. For more details,
see, for example, [1, 12, 25].

. Orthonormal basis for the inner product space ðRr, ð/j/ÞÞ : fe1, :::, erg:

. The set of positive roots: Dþ ¼ fej6ekj1 0 j < k 0 rg: Root lattice: Q: Coroot lattice: Q!:

. Half sum of positive roots: q ¼ ðr # 1Þe1 þ ðr # 2Þe2 / / / þ er#1:
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. Fundamental weights: xj ¼
Pj

i¼1 ei, 1 0 j 0 r # 2; xr#1 ¼ 1
2

Pr#1
i¼1 ei # 1

2 er, xr ¼ 1
2

Pr
i¼1 ei:

. Dual Coxeter number: h! ¼ 2r # 2: The set of dominant weights: Uþ: Weight lattice: P:

. The fundamental alcove Ar is in one-to-one correspondence with the set of simple objects of
Cr:

Ar ¼ fk 2 Uþ : kje1 þ e2ð Þ 0 2rg ¼ Irr Crð Þ: (3.8)

. Quantum parameter: q ¼ exp pi
2rþh!ð Þ

$ %
¼ exp pi

4r#2

( )
: Twist of simple objects:

hk ¼ q kjkþ2qð Þ, 8k 2 Ar: (3.9)

. First central charge:

n1 Crð Þ ¼ exp
pir2

4

" #
: (3.10)

Remark 3.1. We discuss the case when r¼ 2 here, and will not include this case in the rest of the
paper. The Lie algebra soð4Þ ffi suð2Þ + suð2Þ is not simple, but one can define, for completeness,
soð4Þ4 :¼ suð2Þ4 £ suð2Þ4: According to [5, 6.4(4)], ½soð4Þ4% ¼ ½suð2Þ2%

2 ¼ ½CðZ=3Z,QÞ%2 with
QðaÞ ¼ e2pia

2=3: In particular, ½soð4Þ4%
2 ¼ ½Vec% in the Witt group, consistent with the r - 3 cases.

In Section 4, we will need the following auxiliary function. We adopt the standard notation
and write the floor and ceiling functions as x 7! bxc, x 7! dxe respectively.

Lemma 3.2. For any integers r - 3 and j - 1, define drðjÞ :¼ jfa 2 Dþ : ðajqÞ ¼ jgj. Then

drðjÞ ¼
r #

* j
2

+
if 1 0 j 0 r # 1,

r #
, jþ1

2

-
if r 0 j 0 2r # 3,

0 otherwise:

8
>><

>>:
(3.11)

Proof. Let a 2 Dþ be a positive root, there are two cases. If a ¼ ea þ eb for some 1 0 a < b 0 r,
ðajqÞ ¼ 2r # ðaþ bÞ, then 1 0 ðajqÞ 0 2r # 3; if a ¼ ea # eb for some 1 0 a < b 0 r, ðajqÞ ¼
b# a, then 1 0 b# a 0 r # 1: Therefore, drðjÞ ¼ 0 for all j > 2r # 3:

Define

lþr ðiÞ ¼ jfða, bÞ 2 Z2 : 1 0 a < b 0 r, aþ b ¼ igj,
l#r ðiÞ ¼ jfða, bÞ 2 Z2 : 1 0 a < b 0 r, b# a ¼ igj:

For 1 0 j 0 2r # 3, we have:

drðjÞ ¼ lþr ð2r # jÞ þ l#r ðjÞ:

It’s clear by induction that

lþr ðjÞ ¼
* j#1

2

+
3 0 j 0 r,

, 2r#j
2

-
r þ 1 0 j 0 2r # 1,

(

and

l#r ðjÞ ¼
r # j 1 0 j 0 r # 1,

0 r 0 j 0 2r # 3:

(

Therefore, if 1 0 j 0 r # 1, then drðjÞ ¼ r # jþ d j2e ¼ r # b j2c; if r 0 j 0 2r # 3, then we have

drðjÞ ¼ b2r#j#1
2 c ¼ r # djþ1

2 e: w
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Lemma 3.3. For any integer r - 3, let Sr ¼ f1 0 j 0 2r # 3 : drðjÞ / j 1 1 ðmod 2Þg. Then jSrj
is even.

Proof. From (3.11), for any r - 3, let k ¼ ðr # rmod4Þ=4, then

Sr ¼

f4mþ 3, 4nþ 1 : 0 0 m 0 k# 1, k 0 n 0 2k# 1g if r 1 0 mod 4ð Þ,
f4mþ 1, 4nþ 3 : 0 0 m 0 k# 1, k 0 n 0 2k# 1g if r 1 1 mod 4ð Þ,
f4mþ 3, 4nþ 1 : 0 0 m 0 k# 1, kþ 1 0 n 0 2kg if r 1 2 mod 4ð Þ,
f4mþ 1, 4nþ 3 : 0 0 m 0 k, k 0 n 0 2kg if r 1 3 mod 4ð Þ:

8
>>>><

>>>>:

In any of the cases above, jSrj is even, so we are done. w

For simplicity, we adopt the following conventions. For any positive integer n, we set fn :¼
exp 2pi

n

( )
, and we use Qn to denote the cyclotomic field QðfnÞ: For any m 2 N and k coprime to

m, we use rk to denote the element in GalðQm=QÞ sending fm to fkm: If m is a positive odd inte-
ger, and a 2 Z, then we denote the Jacobi symbol of a modulo m by ðamÞJ:

Lemma 3.4. Let r and u be positive integers such that such that 8ð2r # 1Þju. Then for any k 2 Z
with gcdðk, uÞ ¼ 1, and any j 2 Z, we have

rk sin
jp

4r # 2

" #" #
¼ #1

k

" #

J
sin

kjp
4r # 2

" #
: (3.12)

in the cyclotomic field Qu:

Proof. The assumption that 8ð2r # 1Þju implies both f4r#2 and i are in Qu: Since k is odd,

rkðiÞ ¼ ð#1
k ÞJi: Now the lemma follows from sin jp

4r#2

$ %
¼ fj4r#2#f#j

4r#2
2i : w

Recall that for a ribbon fusion category C, ordðTCÞ ¼ lcmfordðhXÞ j X 2 IrrðCÞg (see
Section 2.2).

Lemma 3.5. For any integer r - 3, let Nr ¼ ordðTCrÞ. Then we have Nr ¼ 2sð2r # 1Þ for some inte-
ger 0 0 s 0 4, and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðCrÞ

p
2 QNr

:

Proof. Since 2e1,xr 2 Ar (see (3.8)), by (3.9) we have

h2e1 ¼ qð2e1j2e1þ2qÞ ¼ q4r ¼ # exp
pi

2r # 1

" #
,

hxr ¼ qðxr jxrþ2qÞ ¼ q
ð2r#1Þr

4 ¼ exp
rpi
8

" #
:

Moreover, since for any k 2 Ar, ðkjkþ 2qÞ 2 1
4Z, hk ¼ qðkjkþ2qÞ is 16ð2r # 1Þ-th root of unity.

Therefore, if r is even, then 2r # 1 j Nr j 16ð2r # 1Þ: When r is odd, we have 16ð2r # 1Þ
j Nr j 16ð2r # 1Þ, and so Nr ¼ 16ð2r # 1Þ: This proves the first part of the lemma.

By [21, Thm. 5.5], dk 2 QNr
for any k 2 Ar, which implies s1ðCrÞ 2 QNr

: Moreover, by (3.10),
when r is even, n1ðCrÞ ¼ 61 2 Z 2 QNr

, and when r is odd, we have n1ðCrÞ ¼ exp pi
4

( )
2 QNr

:

Therefore, in light of (2.3),
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðCrÞ

p
¼ s1ðCrÞ=n1ðCrÞ 2 QNr

: w

Remark 3.6. In the rest of the paper, the Nr’s are used to bound the conductors of the cyclotomic
fields in which we perform explicit computations. The key information to extract from the above
lemma is that ð2r # 1Þ is the largest odd factor of Nr, while the exact value of Nr is not needed
for our purpose.
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3.2. Local modules of Cr

In order to study the Witt subgroup generated by Cr, it is natural to find connected #etale algebras
in it, and to study the Witt class of the corresponding local module category (or condensation),
as is explained in Section 2.3. It turns out that Cr contains a Tannakian symmetric fusion subcat-
egory, and the corresponding local module admits further decomposition when r is odd.

Details on the above discussions are provided in the following lemma. Recall that a fusion cat-
egory is unpointed if it has only 1 invertible object, and the semion modular category is defined
in Section 2.2.

For any fusion category C and object U 2 C, we denote by hUi the full fusion subcategory of
C generated by all the subobjects of U. If w is a collection of Witt classes or Witt subgroups, then
hwi is the subgroup of W generated by w.

Lemma 3.7. For any r - 3, we have

ðCrÞpt 3 RepðZ=2ZÞ, if r is odd;

ðCrÞpt ffi RepðZ=2Z+ Z=2ZÞ, if r is even:

(

Let Ar ¼ FunðZ=2ZÞ for odd r and Ar ¼ FunðZ=2Z+ Z=2ZÞ for even r be the corresponding con-
nected #etale algebras, then we have the following decomposition for the local modules

ðCrÞ0Ar
ffi

Sem£Dr, if r is odd;

Dr, if r is even,

(

where Dr is an unpointed modular category.

Proof. Let k1 ¼ 2rxr#1, k2 ¼ 2rx1, and k3 ¼ 2rxr: One can check easily that kj 2 Ar for 1 0 j 0
3, and by [26, 27], these are all the nontrivial invertible objects in Cr: Moreover, when r is odd,
k(j
1 ¼ kj for j¼ 1, 2, 3, and when r is even, k2i ¼ 1 and k1 ( k2 ¼ k3 (see, for example, [26,
Lem. 2]).

Therefore, ðCrÞpt ffi CðZ=4Z,Q1Þ for odd r, ðCrÞpt ffi CðZ=2Z+ Z=2Z,Q2Þ for even r, where Q1

and Q2 are quadratic forms determined by the following twist values:

hk1 ¼ qð4rxr#1#2rxr j4rxr#1#2rxrþ2qÞ ¼ q2r
2ðr#1Þþr2 ¼ exp

r2

2
pi

" #
,

hk2 ¼ qð2rx1j2rx1þ2qÞ ¼ q2rð4r#2Þ ¼ exp 2rpið Þ ¼ 1,

hk3 ¼ qð2rxr j2rxrþ2qÞ ¼ qr
2ð2r#1Þ ¼ exp

r2

2
pi

" #
:

(3.13)

When r is odd, the fusion subcategory of Cr generated by the object k2 is equivalent to the
symmetric fusion category RepðZ=2ZÞ, which contains the connected #etale algebra Ar ¼
14 k2 ¼ FunðZ=2ZÞ: Since k1 ( k2 ¼ k3, by (2.1), we have

hk3 / idk1(k2 ¼ hk3 / idk3 ¼ hk1(k2 ¼ bk2, k1 * bk1, k2 * ðhk1 / idk1 ( hk2 / idk2Þ,

where for j¼ 1, 2, 3, hkj refers to the twist values above, and hk1(k2 denotes the twist isomorph-
ism. Therefore, we have bk2, k1 * bk1, k2 ¼ idk1(k2 , so k1 is in the centralizer of RepðZ=2ZÞ:
Similarly, we have k3 2 RepðZ=2ZÞ0:

Let F : Cr ! ðCrÞAr
, X 7! X ( Ar be the free module functor, which is a monoidal functor (see

[5, Sec. 3.3]). Let V :¼ Fðk1Þ, then V ( V ¼ Fðk1 ( k1Þ ¼ Fð1Þ (note that Fð1Þ is the tensor unit
of ðCrÞ0Ar

), i.e., V is of order 2. By the above discussions, we have V 2 ðCrÞ0Ar
¼ ðCrÞ0Z=2Z:

Moreover, by [14, Thm. 1.8], we have
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dV ¼ dk1 ¼ 1,

and by [14, Thm. 1.17], hV ¼ hk1 ¼ i: Therefore, V generates a modular subcategory in ðCrÞ0Ar
which

is equivalent to Sem. Thus, by the double centralizer theorem [18, Thm. 4.2], we have ðCrÞ0Ar
ffi

Sem£Dr, where Dr is the centralizer of Sem in ðCrÞ0Ar
: In particular, Dr \ Sem ¼ hFð1Þi:

When r is even, hkj ¼ 1 for j¼ 1, 2, 3, so (2.1) implies that ðCrÞpt is equivalent to the symmet-
ric fusion category RepðZ=2Z+ Z=2ZÞ, which contains the connected #etale algebra Ar ¼
14 k1 4 k2 4 k3 ¼ FunðZ=2Z+ Z=2ZÞ: In this case, we can simply set Dr :¼ ðCrÞ0Ar

:

It remains to show that Dr is unpointed for any r. Consider the forgetful functor G : ðCrÞAr
!

Cr, which is the adjoint of F (see [14]). On the one hand, by [14, Thm. 1.18], any X 2 IrrððDrÞptÞ
must satisfy dGðXÞ ¼ dAr 2 Z: On the other hand, by [29], all the objects in Cr with integral
dimension are contained in ðCrÞpt: Moreover, it is easy to see that any X 2 ðCrÞAr

is a subobject
of FðGðXÞÞ: Therefore, for any X 2 IrrððDrÞptÞ, we have X 2 FððCrÞptÞ:

By the above discussions, when r is odd, FððCrÞptÞ ¼ hFðk1Þi ffi Sem; when r is even, FððCrÞptÞ ¼
hFð1Þi (recall that Fð1Þ is the tensor unit of ðCrÞ0Ar

). Therefore, fFð1Þg 2 IrrððDrÞptÞ 2
IrrðFððCrÞptÞ \ DrÞ ¼ fFð1Þg: w

In particular, by [8], Lemma 3.7 implies that FPdimðCrÞ ¼ 8FPdimðDrÞ if r is odd, and
FPdimðCrÞ ¼ 16FPdimðDrÞ if r is even. Moreover, we immediately see that

Cr½ % ¼
Sem£Dr½ % if r is odd,

Dr½ % if r is even,

(

(3.14)

Now the conformal embedding soðmÞn + soðnÞm 2 soðmnÞ1 (see, for example, [5]) implies that

Cr½ %2 ¼ Sem½ %2 if r is odd,

Vec½ % if r is even,

(

and so for any r - 3, we have

Dr½ %2 ¼ Vec½ %: (3.15)

4. The Witt subgroup generated by Dr

In this section, we study the Witt subgroup generated by ½Dr% using the signature homomorphism
(2.5). By [28, Lem. 2.4], Dr is pseudounitary, i.e., dimðDrÞ ¼ FPdimðDrÞ, which is a quotient of
dimðCrÞ by 8 or 16 (see above). For simplicity, we set

Dr :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðDrÞ

p
ðpositive square rootÞ: (4.16)

To compute the signature, we will combine the lemmas in Section 3.1 with the well-known formulae
of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðCrÞ

p
in terms of trigonometric functions [1, Thm. 3.3.20]. (Note that in [4, Thm. 3], a for-

mula for the global dimension is provided, but to compute the signature, one needs to take the
square root). As a reminder, the definition of the function drðjÞ can be found in Lemma 3.2.

Lemma 4.1. Let r - 3 be odd. Then Dr 2 Q8Nr
and

Dr ¼ Y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2r # 1

p Y2r#3

j¼1

sin
jp

4r # 2

0

@

1

A
#drðjÞ

, (4.17)

where Y ¼ 2
#2r2þ3rþ1

2 / ð2r # 1Þ
r#1
2 2 Q:

5254 E. C. ROWELL ET AL.



Proof. Recall that when r is odd, 8dimðDrÞ ¼ dimðCrÞ: Therefore, Dr 2 Q8Nr
follows from Lemma

3.5 and the fact that
ffiffiffi
2

p
2 Q8: According to [1, Thm. 3.3.20] and the information on positive

roots in Section 3.1, we have

Dr ¼
1

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jP=ðð2r þ h!ÞQ!Þj

q Y

a2Dþ

2 sin
ðajqÞ
2r þ h!

p

" #" ##1

¼ Y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2r # 1

p Y

a2Dþ

sin
ðajqÞ
4r # 2

p

" #" ##1

,

and we are done by definition. w

Lemma 4.2. Let r - 4 be even. Then Dr 2 QNr
and

Dr ¼ Z
Y2r#3

j¼1

sin
jp

4r # 2

0

@

1

A
#drðjÞ

, (4.18)

where Z ¼ 2
ð3#2rÞr

2 / ð2r # 1Þ
r
2 2 Q:

Proof. Note that when r is even, 16 dimðDrÞ ¼ dimðCrÞ: Then the statement of the lemma follows
from the similar argument as in Lemma 4.1 and Lemma 3.5. w

The above lemmas imply the following periodicity result on the signature, which is important
to the theorems below.

Proposition 4.3. Let r - 3 be any integer. If k 1 k0 ðmod 4r # 2Þ and gcdðk, 4r # 2Þ ¼ 1, then
rkðDrÞ ¼ rk0ðDrÞ. In particular, eDrðrkÞ ¼ eDrðrk0Þ:

Proof. From Lemma 3.5, we have k, k0 are both coprime to 8Nr, so the signatures are well
defined. Assume r is odd. When k 1 k0 ðmod 8r # 4Þ, from (3.12) and the fact that jDþj ¼
rðr # 1Þ is even, we have

rk0ðDrÞ ¼
#1
k0

" #

J

#1
k

" #

J

 !jDþj

rkðDrÞ ¼ rkðDrÞ:

Note that
P2r#3

j¼1 drðjÞ ¼ jDþj: Therefore, it suffices to consider the case when k0 ¼ 4r # 2þ k:
Without loss of generality, assume k 1 1 ðmod 4Þ, k0 1 3 ðmod 4Þ: By assumption, r is odd, so
2r # 1 1 1 ðmod 4Þ, and we have rk

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2r # 1

p( )
¼ rk0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2r # 1

p( )
since

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2r # 1

p
2 Q2r#1 [33]. By

(4.17), Lemmas 3.3 and 3.4, we have

rk0ðDrÞ ¼
#1
k0

" #

J

jDþjY
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2r # 1

p Y2r#3

j¼1

sin
ðkþ 4r # 2Þjp

4r # 2

" ##drðjÞ

¼ Y
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2r # 1

p Y2r#3

j¼1

ð#1Þj sin kjp
4r # 2

" ##drðjÞ

¼ ð#1ÞjSr jrkðDrÞ

¼ rkðDrÞ:

When r is even, the proof is similar.
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In the following, we determine the structure of the Witt subgroup generated by families of
½Dr%’s. The key point is to show that there are no nontrivial relations in the groups under study.
To achieve this goal, we use special Galois elements to distinguish the signature homomorphisms
of the ½Dr%’s, and the parity of r determines the way to find such Galois elements. Naturally, from
now on, we separate cases according to the parity of r.

4.1. The case when r is odd

In this subsection, let r - 3 be an odd integer.

Proposition 4.4. For any positive integer r 1 5 ðmod 8Þ, we have eDrðrrÞ ¼ #1:

Proof. From Lemma 3.5, gcdðr, 8NrÞ ¼ gcdðr, 2r # 1Þ ¼ 1: Let r ¼ 4kþ 1 for some odd integer k.
By (3.11), it is clear that drðjÞ is odd when j 2 f4mþ 1, 4ðmþ 1Þ, 4nþ 2, 4nþ 3 j 0 0 m 0
k# 1, k 0 n 0 2k# 1g: By Lemma 4.1, [20, Lem. 6.2, 6.3] and the quadratic reciprocity, we have:

eDrðrrÞ ¼
r

2r # 1

" #

J
ð#1Þ

Pk#1

m¼0

(*
ð4mþ1Þr
4r#2

+
þ
*
4ðmþ1Þr
4r#2

+)
þ
P2k#1

n¼k

(*
4nþ2
4r#2

+
þ
*
ð4nþ3Þr
4r#2

+)

¼ #1
r

" #

J
ð#1Þ

Pk#1

m¼0

ðmþmþ1Þþ
P2k#1

n¼k

ðnþnÞ
¼ ð#1Þk ¼ #1:

Now we are ready to determine the subgroup of W generated by ½Dr% for a collection of odd
r’s. Let fajgj-1 be a sequence of prime numbers such that aj 1 9 ðmod 16Þ and aj < ajþ1: Such a

sequence exists due to the Dirichlet prime number theorem. Let rj ¼
ajþ1
2 , then rj 1 5 ðmod 8Þ

and aj ¼ 2rj # 1:

Theorem 4.5. The Witt subgroup generated by f½Drj %gj-1 is isomorphic to Z=2Z4N:

Proof. Since ½Dr% has order 2 in the Witt group (see (3.15)), it suffices to show that no finite
product of distinct ½Drj % yields ½Vec%: To that end, let D :¼ £n

i¼1Drji for some subsequence 1 0
j1 < / / / < jn, and we compute one of its signature values as follows.

From Lemma 3.5 and Lemma 4.1, we have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðDÞ

p
2 QN , where N ¼ lcm10i0nf8Nrji g: Let

K ¼ lcm20i0nf2ajig, then gcdðaj1 ,KÞ ¼ 1 by construction. Hence, by Bezout’s identity, there exist
x, y 2 Z such that

xaj1 þ yK ¼ 1:

Let k ¼ #ðrj1 # 1Þxaj1 þ rj1 : Since 2jðrj1 # 1Þ, we have

k 1 1 mod Kð Þ, k 1 rj1 mod 2aj1
( )

: (4.19)

In particular, by Lemma 3.5 gcdðk,NÞ ¼ 1:
Since 2aji ¼ 4rji # 2, by Proposition 4.3 and Proposition 4.4, there exists r 2 Galð "Q=QÞ, such

that rjQN
¼ rk, and

eDrj1
ðrÞ ¼ #1 and eDrji

ðrÞ ¼ 1 ði 6¼ 1Þ:

This implies that eDðrÞ ¼ #1, Therefore, by [20, Thm. 3.5], ½D% 6¼ ½Vec%: w

Consider I :¼ ðsl2Þ2: It is an Ising modular category, i.e., I is not pointed and FPdimðIÞ ¼ 4:
It is extensively studied in [8, Appendix B]. Since ½I %2 2 Wpt and both Wpt and h½I %i are con-
tained in the 2-torsion part of W (see [5]), it is natural to compare these Witt subgroups with
the one we just studied. Let H denote the group generated by f½Drj %gj-1:
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Theorem 4.6. We have H \ hWpt, ½I %i ¼ f½Vec%g:

Proof. It suffices to show product of any finite set in f½Drj %g intersect trivially with hWpt, ½I %i: To
that end, let D :¼ £n

i¼1Drji for some 1 0 j1 < / / / < jn: If ½D% 2 H \Wpt is nontrivial, there exists
a finite abelian group L and a non-degenerate quadratic form Q : L ! C+ such that the corre-
sponding pointed modular category L ¼ CðL,QÞ satisfies ½L% ¼ ½D% in W: We compare their sig-
natures as follows.

Let h ¼ jLj, N ¼ h / lcm10i0nf8Nrjig, then both
ffiffiffi
h

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðDÞ

p
are in the field QN : We

write h ¼ h1h2, where gcdðh1, aj1Þ ¼ 1, h2 ¼ asj1 for some s - 1: Let K ¼ h1 / lcm20i0nf2ajig, we
have gcdðaj1 ,KÞ ¼ 1: Hence, from Bezout’s identity, there exist x, y 2 Z, such that:

xaj1 þ yK ¼ 1

Let k ¼ #ðrj1 # 1Þxaj1 þ rj1 , since 2jðrj1 # 1Þ, we have:

k 1 1 mod Kð Þ, k 1 rj1 mod 2aj1
( )

:

Again by Lemma 3.5, gcdðk,NÞ ¼ 1: By Proposition 4.3 and Proposition 4.4, there exists r 2
Galð "Q=QÞ, such that rjQN

¼ rk and

eDrj1
ðrÞ ¼ #1, and eDrji

ðrÞ ¼ 1 ði 6¼ 1Þ,

which implies eDðrÞ ¼ #1:
Since k 1 1 ðmod 4Þ, k 1 1 ðmod h1Þ and rj1 1 1 ðmod 4Þ, so by [20, Lem. 6.2], we have

eLðrÞ ¼ sgn rk
ffiffiffiffiffiffiffiffiffi
h1h2

p$ %$ %
¼ k

h1

" #

J

k
h2

" #

J
¼ k

aj1

 !

J

s

¼
rj1

2rj1 # 1

" #

J

s ¼
2rj1 # 1

rj1

" #

J

s ¼ #1
rj1

" #

J

s ¼ 1:

Therefore, eD 6¼ eL, which contradicts to [20, Thm. 3.5]. So H \Wpt is trivial.
Since ½I %2 2 Wpt, if ½D% ¼ ½I %m½H0% for some ½H0% 2 Wpt, then by the above discussions, we

must have m is odd. Let j ¼ n1ðIÞ, then j is a primitive 16-th root of unity. Moreover, it is
well-known that the first central charge of a pointed modular category is an 8-th root of unity
(see [7]). Consequently, there exists some ‘ 2 Z such that n1ðH0Þ ¼ j‘: Moreover, by (3.14) and
the multiplicativity of the central charge [8], we have n1ðDrÞ ¼ 1: Therefore,

1 ¼ n1ðDÞ ¼ n1ðIÞmn1ðH0Þ ¼ jm / j2‘ ¼ jmþ2‘:

However, as m is odd, the right hand side can never be 1, so we get a contradiction. Thus, we
must have H \ hWpt, ½I %i ¼ f½Vec%g: w

In view of (3.14), (3.15), and combining all the results above, we have the following corollary.

Corollary 4.7. The image of ½Vec% has infinitely many square roots in W=hWpt, ½I %i, hence the
same is true of ½Sem%2: w

4.2. The case when r is even

In this subsection, let r - 4 be an even integer.

Proposition 4.8. Let r 1 4 ðmod 8Þ, s 1 6 ðmod 8Þ we have
eDrðr2rþ1Þ ¼ eDsðrs#1Þ ¼ #1:
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Proof. From Lemma 3.5, gcdð2r þ 1,NrÞ ¼ gcdð2r þ 1, 2r # 1Þ ¼ 1 and gcdðs# 1,NsÞ ¼ gcdðs# 1,
2s# 1Þ ¼ 1: Similar to the proof of Proposition 4.4, let r ¼ 4k, s ¼ 4l þ 2 for some odd integers k,
l. By (3.11), it is clear that drðjÞ is odd when j 2 f4mþ 2, 4mþ 3, 4n, 4nþ 1 j 0 0 m 0 k# 1, k 0
n 0 2k# 1g and dsðjÞ is odd when j 2 f4mþ 2, 4mþ 3, 4n, 4nþ 1 j 0 0 m 0 l # 1, l þ 1 0 n 0
2lg: Since 2r þ 1 1 1 ðmod 4Þ, l # 1 1 1 ðmod 4Þ, by (4.18), [20, Lem. 6.1], we have:

eDrðr2rþ1Þ ¼ ð#1Þ
Pk#1

m¼0

(*
ð4mþ2Þð2rþ1Þ

4r#2

+
þ
*
4mþ3Þð2rþ1Þ

4r#2

+)
þ
P2k#1

n¼k

(*
4nð2rþ1Þ
4r#2

+
þ
*
ð4nþ1Þð2rþ1Þ

4r#2

+)

¼ ð#1Þ
Pk#1

m¼0

ð2mþ1þ2mþ1Þþ
P2k#1

n¼k

ð2nþ1þ2nÞ

¼ ð#1Þk ¼ #1

and

eDsðrs#1Þ ¼ ð#1Þ
Pl#1

m¼0

(*
ð4mþ2Þðs#1Þ

4r#2

+
þ
*
4mþ3Þðs#1Þ

4r#2

+)
þ
P2l
n¼lþ1

(*
4nðs#1Þ
4r#2

+
þ
*
ð4nþ1Þðs#1Þ

4r#2

+)

¼ ð#1Þ
Pl#1

m¼0

ðmþmÞþ
P2l
n¼lþ1

ðn#1þnÞ

¼ ð#1Þl ¼ #1:

Let fbjgj-1, fcjgj-1 be two increasing sequences of prime numbers such that bj 1 7 ðmod 16Þ
and cj 1 11 ðmod 16Þ: Such sequences exist due to the Dirichlet prime number theorem. Let

rj ¼
bjþ1
2 , sj ¼

cjþ1
2 , then rj 1 4 ðmod 8Þ and sj 1 6 ðmod 8Þ:

Theorem 4.9. f½Drj %gj-1 and f½Dsj %gj-1 each generate a group isomorphic to Z=2Z4N in the Witt
group, and the intersection of these groups is trivial.

Proof. Similar to the argument as in Theorem 4.5, it suffices to show that no finite product
of distinct ½Drj % or ½Dsj % yields ½Vec%: To that end, let D :¼ £n

i¼1Drji , and ~D :¼ £n
i¼1Dsli

for arbi-

trary finite subsets of frjg and fsjg, respectively. Suppose ½D% ¼ ½ ~D% ¼ ½Vec%, we compare
their signatures.

First, note that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðDÞ

p
2 QN ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimð ~DÞ

q
2 Q~N , where N ¼ lcm10i0nfNrji g and ~N ¼

lcm10i0nf~Nsli
g: Let K ¼ lcm20i0nf2bjig, M ¼ lcm20i0nf2clig, then gcdðbj1 ,KÞ ¼ 1, gcdðcl1 ,MÞ ¼

1 by construction. Hence, by Bezout’s identity, there exist x, y, z,w 2 Z such that

xbj1 þ yK ¼ 1 zcl1 þ wM ¼ 1:

Let k ¼ #ð2rj1Þxbj1 þ 2rj1 þ 1, t ¼ #ðsl1 # 2Þzcl1 þ sl1 # 1: Since 2j2rj1 and 2jsl1 # 2, we have

k 1 1 mod Kð Þ, k 1 rj1 mod 2bj1
( )

,

t 1 1 mod Mð Þ, t 1 sl1 # 1 mod 2cl1ð Þ:

Since 2bji ¼ 4rji # 2, 2cli ¼ 4sli # 2, we have gcdðk,NÞ ¼ gcdðt, ~NÞ ¼ 1 (Lemma 3.5). By
Proposition 4.3 and Proposition 4.4, there exist r, g 2 Galð "Q=QÞ such that rjQN

¼ rk, gjQ~N
¼ gt

eDrj1
ðrÞ ¼ eDsl1

ðgÞ ¼ #1 and eDrji
ðrÞ ¼ eDsli

ðgÞ ¼ 1 ði 6¼ 1Þ:

This implies that

eDðrÞ ¼ e ~DðgÞ ¼ #1,
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which contradicts [20, Thm. 3.5]. Moreover, by considering the products of the categories in two dif-
ferent families, and the fact that bj, cj are distinct primes, the trivial intersection follows from the
same argument as above (consider the least common multiple for all 2bji ’s and 2cli ’s except 2bj1 ). w

Let H0 denote the group generated by f½Drj %gj-1 and f½Dsj %gj-1: Similar to Theorem 4.6,
we have

Theorem 4.10. We have H0 \ hWpt, ½I %i ¼ f½Vec%g:

Proof. From the proof of Theorem 4.6, 4.9 and Proposition 4.8, it suffices to check for any j,

2rj þ 1 1 1 ðmod 4Þ, sj # 1 1 1 ðmod 4Þ and 2rjþ1
2rj#1

$ %

J
¼ sj#1

2sj#1

$ %

J
¼ 1: Indeed, 2rjþ1

2rj#1

$ %

J
¼

2
2rj#1

$ %

J
¼ 1 (since when p 1 61 ðmod 8Þ, ð2pÞJ ¼ 1), and others are also easy to check. w

5. Relation with Witt subgroup generated by soð2r þ 1Þ2rþ1

Let Bb ¼ soð2bþ 1Þ2bþ1, where b> 1 is an odd integer. In [20], the Witt subgroup generated by
an infinite sequence of Bb’s, denoted by Gp, was studied. Here, p is a sequence of odd primes
satisfying certain congruence conditions in [20, Section 6.2]. It is shown in [20, Theorem 6.7]
that Gp contains an elementary 2-group of infinite rank, so it is natural to compare it with the
Witt subgroups in this paper.

In this section, we prove there is an infinite subgroup of the group generated by ½Dr% with r 1
4 ðmod 8Þ that intersects trivially with the group Gp: The tool we use is still the signature homo-
morphism. Thus, we start with the square root of the global dimension of Bb (cf. [20, Prop. 5.3])

Bb :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðBbÞ

p
¼ W

ffiffiffi
b

p Yb

l¼1

sin
ð2l# 1Þp

8b

" #Y2b#2

j¼1

sin
jp
4b

" #cbðjÞ
0

@

1

A
#1

, (5.20)

where W ¼ b
b#1
2

2b2#b#1 2 Q and cbðjÞ ¼ b# d j2e for 1 0 j 0 2b# 2:

Lemma 5.1. We have

(i) Bb 2 Q16b:
(ii) Let k be any integer such that k 1 1 ðmod 4Þ and gcdðk, bÞ ¼ 1. For any x 2 Z, if we

denote k0 ¼ 8xbþ k, then eBbðrk0Þ ¼ ð#1ÞxeBbðrkÞ:

Proof. Since
ffiffiffi
b

p
2 Q4b, sin

jp
4b

$ %
2 Q8b and sin ðð2l#1Þp

8b Þ 2 Q16b, so Bb 2 Q16b:

By assumption, k 1 1 ðmod 4Þ and k, k0 are both coprime to 16 b, so the signatures are well
defined. Moreover, by the similar argument as Proposition 4.3, together with [20, Lemma 6.1],
we immediately have (note that b is odd)

eBbðrk0Þ ¼ ð#1ÞbxeBbðrkÞ ¼ ð#1ÞxeBbðrkÞ:

Proposition 5.2. Let r 1 12 ðmod 80Þ, b ¼ 2r # 1 1 23 ðmod 160Þ and x 2 Z. We have

eDrðrr#3Þ ¼ 1, eBbðr8xbþr#3Þ ¼ ð#1Þx:

Proof. Suppose r ¼ 80kþ 12 for some integers k - 0 and b ¼ 160kþ 23: Since r # 3 1
1 ðmod 8Þ, r – 3 is coprime to both 8Nr and 16b. We have seen in Proposition 4.8 that drðjÞ is
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odd when j 2 f4mþ 2, 4mþ 3, 4n, 4nþ 1 j 0 0 m 0 20kþ 2, 20kþ 3 0 n 0 40kþ 5g, and it is
straight forward to check cbðjÞ is odd when j 2 f4mþ 3, 4ðmþ 1Þj0 0 m 0 80kþ 10g: By (4.18),
(5.20), [20, Lem. 6.2, 6.3] (as r # 3 1 1 ðmod 8Þ) and the quadratic reciprocity, we have

eDrðrr#3Þ ¼ ð#1Þ
P20kþ2

m¼0

(*
ð4mþ2Þðr#3Þ

4r#2

+
þ
*
4mþ3Þðr#3Þ

4r#2

+)
þ
P40kþ5

n¼20kþ4

(*
4nðr#3Þ
4r#2

+
þ
*
ð4nþ1Þðr#3Þ

4r#2

+)

and

eBbðrr#3Þ ¼
r # 3
b

" #

J
ð#1Þ

Pb
l¼1

(*
ð2l#1Þðr#3Þ

8b

+
þ
P80kþ10

m¼0

(*
ð4mþ3Þðr#3Þ

4b

+
þ
*
ð4ðmþ1Þðr#3Þ

4b

+)

:

Now we compute the exponents in the above equations term by term.
.
ð4mþ 2Þðr # 3Þ

4r # 2

/
¼ mþ

.
2r # 10m# 6

4r # 2

/
¼

0
m if 0 0 m 0 b 2r#6

10 c ¼ 16kþ 1,

m# 1 if 16kþ 2 0 m 0 20kþ 2,
.
ð4mþ 3Þðr # 3Þ

4r # 2

/
¼ mþ

.
3r # 10m# 9

4r # 2

/
¼ m,

.
ð4nÞðr # 3Þ

4r # 2

/
¼ n# 1þ

.
10n# 4r þ 2

4r # 2

/
¼

0
n# 2 if 20kþ 3 0 m 0 32kþ 4,

n# 1 if 32kþ 5 0 m 0 40kþ 5,
.
ð4nþ 1Þðr # 3Þ

4r # 2

/
¼ n# 1þ

.
10n# 5r þ 5

4r # 2

/
¼ n# 2:

Therefore, we have

eDrðrr#3Þ ¼ ð#1Þ
P20kþ2

m¼16kþ2

ðm#1þmÞþ
P40kþ5

n¼32kþ5

ðn#1þn#2Þ
¼ ð#1Þð4kþ1Þþð2kþ1Þ ¼ 1:

To facilitate the various cases, write m ¼ 2m0 þ s for s 2 f0, 1g, and write l ¼ 8l0 þ t for t 2
f1, 2, 3, 4, 5, 6, 7, 8g, then we have (i) 0 0 m0 0 40kþ 5 when s¼ 0; (ii) 0 0 m0 0 40kþ 4 when
s¼ 1; (iii) 0 0 l0 0 20kþ 2 when t 2 f1, 2, 3, 4, 5, 6, 7g and (iv) 0 0 l0 0 20kþ 1 when t¼ 8.
Therefore,

.
ð4mþ 3Þðr # 3Þ

4b

/
¼ m0 þ

.
ð240þ 320sÞk# 20mþ 27þ 36s

640kþ 92

/

¼
m0 s 2 f0, 1g and 0 0 m0 0 ð12þ 16sÞkþ 2sþ 1,

m0 # 1 s 2 f0, 1g and ð12þ 16sÞkþ 2ðsþ 1Þ 0 m0 0 40kþ 5# s:

(

.
4ðmþ 1Þðr # 3Þ

4b

/
¼ m0 þ

.
ð320þ 320sÞk# 20mþ 36þ 36s

640kþ 92

/

¼
m0 s 2 f0, 1g and 0 0 m0 0 16ð1þ sÞkþ 2sþ 1,

m0 # 1 s 2 f0, 1g and 16ð1þ sÞkþ 2ð1þ sÞ 0 m0 0 40kþ 5# s:

(

.
ð2l# 1Þðr # 3Þ

8b

/
¼ l0 þ

.
ð160t # 80Þkþ 18t # 9# 40l0

1280kþ 184

/

¼

l0 1 0 t 0 5 and 0 0 l0 0 ð4t # 2Þkþ b t#1
2 c,

l0 # 1 1 0 t 0 5 and ð2þ 4tÞkþ b tþ1
2 c 0 l0 0 20kþ 2,

l0 t 2 f6, 7g and 0 0 l0 0 20kþ 2,

l0 t ¼ 8 and 0 0 l0 0 20kþ 1:

8
>>>><

>>>>:

Therefore, we have
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eBbðrr#3Þ ¼
80kþ 9
160kþ 23

" #

J
ð#1Þ

P28kþ3

m0¼12kþ2

ðm0#1þm0Þþ40kþ5#1þ
P32kþ3

m0¼16kþ2

ðm0#1þm0Þþ40kþ5#1

+ ð#1Þ

P2kþ1

m0¼6k

ðl0#1þl0Þþ
P14kþ1

m0¼10kþ2

ðl0#1þl0Þþ
P20kþ2

m0¼18kþ3

ðl0#1þl0Þþ20kþ2

¼ 5
80kþ 9

" #

J
ð#1Þð16kþ2Þþ40kþ4þð16kþ2Þþ40kþ4þð4kÞþð4kÞþð2kÞþ20kþ2

¼ 9
5

" #

J
¼ 1:

From Lemma 5.1 (r # 3 1 1 ðmod 8Þ), we have

eBbðr8xþðr#3ÞÞ ¼ ð#1ÞxeBbðrr#3Þ ¼ ð#1Þx:
w

Let fbigi-1 be a sequence of prime numbers such that bi 1 23 ðmod 160Þ, which exists due to

the Dirichlet prime number theorem. Let ri ¼ biþ1
2 1 12 ðmod 80Þ, and we use Hr to denote the

group generated by f½Dri %gi-1: Let Gp be the Witt subgroup at the beginning of this section. Note
that the set fbig may intersect with p.

Theorem 5.3. With the above notations, we have Gp \ Hr ¼ f½Vec%g:

Proof. It suffices to show that no finite product of distinct ½Drj %’s and elements in Gp yields ½Vec%
(elements in Gp may have multiplicities in this product). To this end, we take an arbitrary finite
subsequence of frig denoted by frjw j1 0 w 0 mg: We also pick an arbitrary finite subsequence
fplj1 0 l 0 ng of p such that 2rj1 # 1 6¼ pl for any 1 0 l 0 n: In other words, pl 6¼ bj1 for
any 1 0 l 0 n:

Now for any s, cl 2 Z, we consider the finite product

F :¼ £m
w¼1Drjw

( )£ £n
l¼1B

£ cl
pl

$ %
£ B£ s

bj1

$ %
:

By the previous results, we have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dimðDÞ

p
2 QN , where N ¼ lcm10w0m, 10l0nf32Nrjw , 32plg:

Let K ¼ lcm20w0m, 10l0nf32bjw , 32plg, then gcdðbj1 ,KÞ ¼ 1 by construction. Hence, by Bezout’s
identity, there exist x, y 2 Z such that

xbj1 þ yK ¼ 1: (5.21)

Define

t ¼
#ðrj1 # 4Þxbj1 þ rj1 # 3 if s is odd,

#ð2rj1Þxbj1 þ 2rj1 þ 1 if s is even:

(

Since rj1 # 4 ¼ 8ð10kþ 1Þ and 4j2rj1 , we have

t 1 1 mod Kð Þ and t 1
rj1 # 3 mod 2bj1

( )
if s is odd,

2rj1 þ 1 mod 2bj1
( )

if s is even:

(

Again by Lemma 3.5, we have gcdðt,NÞ ¼ 1: Moreover, we use Propositions 4.3, 4.8 and 5.2 and
get the following two cases (note that x is odd by construction). To avoid too many subscripts in
the expression of the signatures, we temporarily write eDw :¼ eDrjw

for 1 0 w 0 m, eBl :¼ eBpl
for

1 0 l 0 n, and we write eBj1 :¼ eBj1
in this proof. Note that eB£ s

bj1

¼ ðeBj1Þ
s:
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Firstly, when s is odd, there exists r 2 Galð "Q=QÞ, such that rjQN
¼ rt , and

eDw ðrÞ ¼ eBl ðrÞ ¼ 1 for 1 0 w 0 m, 1 0 l 0 n,

eBj1ðr8ð10kþ1Þxbj1þrj1#3Þs ¼ ð#1Þð10kþ1Þxs ¼ #1:

Secondly, when s is even, there exists g 2 Galð "Q=QÞ, such that gjQN
¼ gt , and

eDw ðgÞ ¼ eBl ðgÞ ¼ eBj1ðgÞ
s ¼ 1 for 2 0 w 0 m, 1 0 l 0 n, and eD1 ðgÞ ¼ #1:

Therefore, in either case, eF ¼
Qm

w¼1 e
D
w /
Qn

l¼1 ðeBl Þ
cl / ðeBj1Þ

s is not the constant function 1, then by
[20, Thm. 3.5], ½E% 6¼ ½Vec%: w

6. An order two Witt class with property S

Recall that a non-degenerate braided fusion category C has property S if it is completely aniso-
tropic, simple and unpointed. The subgroup of W generated by the categories with property S is
denoted by WS: In this section, we prove that ½D4% 2 WS: Since D4 has order 2 in W (see
(3.15)), it gives a positive answer to the open question [5, Question 6.8]. From Theorem 4.10,
½D4% 62 Wpt, hence it suffices to prove D4 is simple and completely anisotropic.

Lemma 6.1. For any positive integer r - 3, the category Dr is simple.

Proof. From Lemma 3.7 and [29, Lemma 1], we have ðDrÞpt ffi Vec, and there is no nontrivial
objects in Dr of integer dimension. Hence if R 2 Dr is a fusion subcategory, then by Deligne’s
Theorem [10, Section 9.9] and above discussion, we have R0 2 ðDrÞpt ffi Vec, which implies R is
non-degenerate. Now the Lemma follows from [29, Theorem 2]. w

Now let r¼ 4. Recall from Lemma 3.7 that in this case, ðC4Þpt ffi RepðZ=2Z+ Z=2ZÞ, which con-

tains the connected #etale algebra A4 ¼ FunðZ=2Z+ Z=2ZÞ: By definition, D4 ¼ ðC4Þ0A4
: We will show

that D4 is completely anisotropic, i.e., it does not have any nontrivial connected #etale algebra.
By [28, Lem. 2.24], all connected #etale algebras in a pseudounitary braided fusion category

have trivial twists. Therefore, it suffices to consider only objects with trivial twists in D4: By [14,
Thm. 1.17], such objects are images under the free module functor F : C4 ! D4 (see Lemma 3.7)
of objects with trivial twists in C4, which we describe as follows.

One can compute, by formulas (3.9), that in addition to the 4 invertible objects in C4, there
are 8 more objects with trivial twists, and they are grouped into the sets X :¼ f2x2, 2x2 þ
4x1, 2x2 þ 4x3, 2x2 þ 4x4g and Y :¼ f2x1 þ x2 þ 2x3, 2x1 þ x2 þ 2x4,x2 þ 2x3 þ 2x4, 2x1 þ
x2 þ 2x3 þ 2x4g: By [26, Lemma 2], the action of the algebra A4 2 C4 on the objects in X and Y
(by tensoring) is fixed-point free and transitive. In particular, this implies that all of the objects
in X [ Y centralize A4. Therefore, there are only 2 nontrivial objects with trivial twists in D4,
which we denote by Z1 ¼ FðkÞ and Z2 ¼ FðlÞ for an arbitrary choice of objects k 2 X and l 2 Y
(note that Z1 and Z2 do not depend on the choice of k and l).

Moreover, we have

d1 :¼ dZ1 ¼ 28 f7 þ f67
( )

þ 14 f27 þ f57
( )

þ 33 5 61:685

and

d2 :¼ dZ2 ¼ 126 f7 þ f67
( )

þ 56 f27 þ f57
( )

þ 157 5 289:197:

Therefore, any nontrivial connected #etale algebra in D4 has to be of the form L ¼ 1þ a1Z1 þ
a2Z2 for some a1, a2 2 Z-0: Moreover, by the local module construction, any connected #etale
algebra L 2 D4 will give rise to a modular category ðD4Þ0L with the property (see [14, Thm. 4.5])
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dimðD4Þ0L ¼
dimðD4Þ

d2L
,

where dimðD4Þ ¼ #196 269ðf7 þ f67Þ þ 873ðf27 þ f57Þ þ 1357ðf37 þ f47Þ
& '

5 489669:5:
Since the global dimensions of modular categories are - 1 [11, Thm. 2.3], upper bounds for

a1, a2 can be given by

dimðD4Þ
ð1þ a1d1Þ2

- 1 ) a1 0 11;
dimðD4Þ

ð1þ a2d2Þ2
- 1 ) a2 0 2:

Therefore, the set of connected algebras in D4 is a subset of the following set of objects

E :¼ f1þ a1Z1 þ a2Z2j0 0 a1 0 11, 0 0 a2 0 2g,

with the tensor unit 1 corresponding to a1 ¼ a2 ¼ 0: From now on, we will focus on nontrivial
objects, so we assume that a1 and a2 are not both 0.

According to [22, Lem. 5.3 (c)], the dimension of any connected #etale algebra L 2 E is totally
positive, i.e., all the Galois conjugates of dL are positive real numbers. This gives more restrictions
on a1 and a2. Indeed, using SageMath [30], one can see that for any L 2 E, the Galois conju-
gates of dL ¼ 1þ a1d1 þ a2d2 are of the form 1þ a1d01 þ a2d02 and 1þ a1d001 þ a2d002: Here, d01,
d001 are Galois conjugates of d1 with d01 5 #4:688 and d001 5 0:003; and d02, d002 are Galois conju-
gates of d2 with d02 5 0:016 and d002 5 #0:213: Therefore, by direct computation, the only nontri-
vial L 2 E with totally positive dimensions are L ¼ 1þ Z2 and L ¼ 1þ 2Z2: In other words,
these are the only two candidates for nontrivial connected #etale algebras in D4:

Next observe that since dimðD4Þ0L is an algebraic integer [11, Rmk. 2.5]), the algebraic norm of
dimðD4Þ

d2L
has to be a (rational) integer. Again using SageMath, we can easily see that only for L ¼

1þ 2Z2, dimðD4Þ=d2L has integral norm.
Finally, since the local module construction preserves pseudounitarity [28, Lem. 2.24], ðD4Þ0L is

pseudounitary for any connected #etale algebra L. As the FP-dimension of objects are - 1 [10,

Prop. 3.3.4], we have either dimðD4Þ
d2L

¼ 1 or dimðD4Þ
d2L

- 2: By direct computation, we have

dimðD4Þ
d2L

5 1:459:

Therefore, L ¼ 1þ 2Z2 cannot be a connected #etale algebra.
Combining the above discussions, we have

Theorem 6.2. The modular category D4 is completely anisotropic, hence ½D4% 2 WS: w
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