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ABSTRACT ARTICLE HISTORY

We study the Witt classes of the modular categories so(2r),, associated Received 2 August 2021
with quantum groups of type D, at (4r — 2)-th roots of unity. From these Revised 25 March 2022
classes we derive infinitely many Witt classes of order 2 that are linearly =~ Communicated by Julia Plavnik
independent modulo the subgroup generated by the pointed modular cat-
egories. In particular, we produce an example of a simple,' completely Higher central charge;
anisotropic mod_ular category that is not pom}ed wh.ose Witt class hgs quantum group modular
order 2, answering a question of Davydov, Miiger, Nikshych and Ostrik. category; signature;
Our results show that the trivial Witt class [Vec] has infinitely many square Witt group

roots modulo the pointed classes, in analogy with the recent construction

of infinitely many square roots of the Ising Witt classes modulo the 2020 MATHEMATICS
pointed classes constructed in a similar way from certain type B, modular ~ SUBJECT

categories. We compare the subgroups generated by the Ising square roots %a;g.":'&g.m"

and [Vec| square roots and provide evidence that they also generate lin- 17837: 18M15

early independent subgroups. '

KEYWORDS

1. Introduction

Modular categories play a central role in the study of 2-dimensional topological phases of matter
[19], invariants of 3-manifolds [31] and conformal field theory [16]. The problem of classifying
modular categories led to the definition [5] of the Witt group W for non-degenerate braided
fusion categories, generalizing the Witt group for abelian groups equipped with non-degenerate
quadratic forms (see [8]). Two non-degenerate braided fusion categories C and D are Witt
equivalent if they are equivalent “modulo Drinfeld centers,” ie., if CX Z(A) =~ DX Z(B) for
some fusion categories A, B.

Recently [20] it was shown that the 8 Witt classes of Ising categories have infinitely many
independent square roots modulo the subgroup generated by pointed categories. This was
achieved using the signature, a new Witt class invariant related to the higher central charge intro-
duced in [22]. From this a verification of a conjecture of [6] was derived, namely, that the torsion
subgroup sW, of the super-Witt group has infinite rank. The categories representing the square
roots of the Ising Witt classes are of the form so(N), with N odd, obtained from the (Lie type

B) quantum groups U,so(N) at g = ™/(4N=4)

. In this article we study the case N even, obtained
from (Lie type D) quantum groups of Uyso(N) with g = ¢™/?N=2)_ From these we obtain infin-
itely many Witt classes of order 2, which intersect trivially with the subgroup generated by the
pointed and Ising classes. Thus we have infinitely many square roots of the trivial Witt class
[Vec], modulo the subgroup generated by the pointed and Ising Witt classes. From this we derive

an affirmative answer to [5, Question 6.8]: there does exist a completely anisotropic simple
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modular category whose Witt class has order 2. We also compare the Lie type D Witt classes
studied here with the Lie type B Witt classes of [20]. Although we cannot show there are no rela-
tions among them, we do find an infinite sequence of type D classes that intersects trivially with
the infinite sequence of type B Witt classes used in [20] to verify the conjecture of [6].

Our results further illustrate the usefulness of the signature for distinguishing Witt classes. The
methods we use are number-theoretical and thus require carefully chosen parameters. It would be
interesting to understand the relations among all of these Witt classes. We believe that the exam-
ples we study provide infinitely many Witt-independent examples of non-pointed completely
anisotropic simple modular categories (so-called property S categories) with order 2 Witt classes,
but we only verify a single example.

Here is a more detailed outline of this article. After providing the notation and context of the
problem we derive square roots of [Vec] from quantum groups of Lie type D,, treating the r odd
and r even case separately. Next we compute their signatures, and use them to find a sub-
sequence of these Witt classes that are linearly independent, modulo the subgroup generated by
pointed and Ising categories. Next we compare the Witt subgroups we study with those of [20].
Finally we show that at least one square root of [Vec] is both simple and anisotropic, answering a
question of [5].

2. Preliminaries and notation

We assume some familiarity with the standard notions in the theory of fusion categories, refer-
ring the reader to [10] for a complete treatment. Mainly to fix notation we provide some details.

2.1. Fusion categories

A fusion category over C is a semisimple, C-linear abelian, rigid monoidal category with finite-
dimensional Hom-spaces and finitely many isomorphism classes of simple objects among which
is the tensor unit 1 [11]. For any fusion category C, we denote by Irr(C) a complete set of repre-
sentatives of the isomorphism classes of C. The tensor product endows Ky(C), the Grothendieck
group of C, with a ring structure. More precisely, we have X®Y =3/, N% ,Z for any

X,Y € Irr(C), where
N%y:=dimcC(X® Y, Z).

For any X € Irr(C), let N'x be the square matrix of size |Irr(C)| such that (N'x)y , = N , for
any Y,Z € Irr(C). The Frobenius-Perron dimension of X € Irr(C), denoted by FPdim(X), is the
largest positive eigenvalue for N'x (see [11]). The Frobenius-Perron dimension of C is defined
to be

FPdim(C) = ) FPdim(X)’.

Xelrr(C)

Let C be a fusion category. The rigidity of C means that for any object V € C, there is a left
dual (V*, evy,coevy), where V* € C is an object, evy : V* ® V — 1 and coevy : 1 — V ® V* are
morphisms satisfying the duality conditions in [10, Def. 2.10.1]. The notion of a right dual is
similarly defined [10, Def. 2.10.2]. It is well-known that dual objects are unique up to isomorph-
ism (see, for example, [1, Lem. 2.1.5]). A simple object X € Irr(C) is called invertible if evy and
coevy above are isomorphisms. A fusion category is pointed if all of its simple objects are invert-
ible. We denote the maximal pointed fusion subcategory of C by Cy. If Irr(Cp) = {1}, then C is
called unpointed.
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The global dimension dim(C) of a fusion category C was introduced in [17, Def. 2.5]. By [11,
Rmk. 2.5], dim(C) is a totally positive algebraic integer. We denote the positive square root of
dim(C) by /dim(C), which will play a central role in our results. Finally, a fusion category C is
called pseudounitary if dim(C) = FPdim(C).

2.2. Braided and ribbon fusion categories

Let C be a fusion category. A braiding on C is a natural isomorphism By 1, : V@ W = W®V satis-
fying the Hexagon axioms (see [10, Chap. 8]). A fusion category equipped with a braiding is called a
braided fusion category. For any fusion subcategory D in C, the centralizer of D in C, denoted by
D', is the full fusion subcategory of C generated by objects V € C such that fy, y o By = idvew
for all W € D. The centralizer C' of C itself is called the Miiger center of C. A braided fusion category
C is called non-degenerate if Irr(C') = {1}, ie, C' is equivalent to Vec, the category of finite-dimen-
sional vector spaces over C. For any fusion category C, its Drinfeld center, denoted by Z(C), is the

category with objects of the form (V,c_ v), where V€Cand ¢,y : WQR V = V@ W is a natural
family of isomorphisms satisfying the half-braiding conditions in [13, Def. XIII.4.1]. It is well-known
that Z(C) is a non-degenerate braided fusion category (see, for example, [8, Cor. 3.9]). A braided
fusion category C is called symmetric if C' = C. The fusion category Rep(G) of finite-dimensional
complex representations of a finite group G, endowed with the standard braiding, is a symmetric
fusion category also denoted by Rep(G) for convenience. A symmetric fusion category equivalent to
Rep(G) for some finite group G is called Tannakian.

A ribbon structure on a braided fusion category C equipped with a braiding f is a natural iso-
morphism 0 : id¢ — id¢ of the identity functor satisfying 0y = 07, and

Ovew = (Ov @ Ow) o By v o By w 21)

for any V, W € C. In particular, for any X € Irr(C), 0Ox is equal to a non-zero scalar times idx.
By an abuse of notation, we denote both the scalar and the isomorphism itself by 0y for all sim-
ple X, and we call Oy the (topological) twist of X. It is shown by Vafa [32] that for all X € Irr(C),
Ox is a root of unity, so ord(T¢) := lem{ord(0x) | X € Irr(C)} is finite. A braided fusion category
C with a ribbon structure 0 is called a ribbon fusion category, or a premodular category. In a pre-
modular category, endomorphisms are equipped with a canonical trace valued in C. In particular,
this leads to well-defined quantum dimensions dy for objects V € C, and one has dim(C) =

> _xelr(C) d%. For details, see [1, 11]. A premodular category C is called modular if the underlying

braided fusion category is non-degenerate.

Numerical invariants of modular categories can be obtained from quantum dimensions and
twists. For example, for any modular category C and any integer n € Z, the n-th Gauss sum is
defined in [22] as 7,(C) = > xcic) dx0x- When 1, # 0, the n-th central charge is defined to be

L 7,(C)
én(c) A |Tn(C)| >

where the denominator on the right hand side represents the (complex) absolute value of 7,(C).
By [11, Prop. 2.10] and the finiteness of ord(T¢), the complex conjugate of 7,(C) equals to
7_n(C) for all n € Z. In particular, when n =1, by [10, Prop. 8.15.4] we can also write

’L'](C)
dim(C)

(2.2)

&i(C) = (2.3)

These invariants provide insights on modular categories and the Witt group, as is demonstrated
in [20, 22].
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Finally, we will need the following classification result on pointed braided fusion categories
(for details, see [10, Sec. 8.4]): such categories are parameterized by pairs (H, Q) and denoted by
C(H,Q), where H is a finite abelian group and Q: H — C* is a quadratic form on H. Simple
objects in C(H, Q) are in one-to-one correspondence to the elements of H. Moreover, C(H, Q) is
a ribbon fusion category whose ribbon structure is determined by the twists 6, = Q(a) for a €

H =TIrr(C(H,Q)), and it is modular if and only if the map (a,b) — Q%’;gfg) is a non-degenerate

bicharacter on H.

An important example of pointed modular categories is the semion modular category [24],
denoted by Sem. Using the notation above, we characterize Sem as C(Z/2Z, Q) with Q(a) = i*
for a € Z/27Z, which implies

i

¢,(Sem) = exp (Z) (2.4)

2.3. Witt group W

The concept of Witt equivalence of non-degenerate braided fusion categories is introduced in [5].
More precisely, two non-degenerate braided fusion categories C and D are Witt equivalent if
there exist fusion categories A and B such that CK Z(A) =~ DX Z(B). We denote the Witt
equivalence class of a category C by [C]. Under the Deligne product, Witt equivalence classes
form an abelian group denoted by W. The Witt group W of non-degenerate braided fusion cate-
gories can be viewed as a generalization of the classical Witt group of non-degenerate quadratic
forms on abelian groups (i.e., metric groups), which generate the pointed part of W denoted by
Wy (for details, see [5, 8]). In addition to mathematical interests, the study of the Witt group is
also closely related to phase transitions driven by anyon condensation and symmetry gauging in
topological phases of matter [2, 3].

Numerical invariants are powerful tools in the study of the structure of the Witt group. For
example, the first central charge &; (see (2.2)) is used in the study of conformal embeddings of
rational vertex operator algebras associated to affine Lie algebras [5]. Another important Witt
invariant, namely, the signature homomorphism, is introduced in [20]. Here, we briefly recall the
definition. For any fusion category C, it is well-known that FPdim(C) is totally positive algebraic
integer [11]. Therefore, its positive square root, denoted by /FPdim(C), is a totally real algebraic
integer, and the signature of C is then defined to be the sign of its Galois conjugates. More pre-
cisely, let Gal(Q/Q) be the absolute Galois group of @, then the signature of C is the function

i Gal(@/Q) — {1}, o sgn(o(y/FPAIM(C)) ). 2.5)

By Galois theory, it is easy to see that ¢ factors through any Galois extension of Q containing
+/FPdim(C). Therefore, in the sections below, we will use large enough fields (instead of @) to

simplify computations. Let U, := {il}Gal(@/ Y be the group of functions from Gal(Q/Q) to
{£1}. Then by [20, Thm. 3.4], the signature map induces a well-defined group homomorphism

I'W—U, [C~ e, (2.6)

which is the main technical tool in this paper.

It is natural to pursue constructions of new non-degenerate braided fusion categories that are
Witt equivalent to a given one, and taking local modules of connected étale algebras is one such
construction. Let C be a braided fusion category with braiding . The notion of a connected étale
algebra object A € C is defined in [5, Sec. 3.1]. It is shown in [5] that if A € C is a connected
étale algebra, then Cy4, the category of right A-modules, is a fusion category. Moreover, according
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to [14, 23], f descends to A-module maps for local modules. Here a (right) A-module M with
A-action a: M ®A — M is called local (or dyslectic) if it satisfies oo fi4 s 0 By 4 = . As an
immediate consequence, C}, the full subcategory of C4 of local modules of A, is a braided fusion
category. In [5, Sec. 3], it is pointed out that if C is a ribbon fusion category with ribbon structure
0, then a rigid algebra A € C in the sense of [14] is connected étale with non-zero quantum
dimension if and only if 04 = id. Group symmetry provides examples of the local module con-
struction. Namely, when C contains a Tannakian fusion subcategory Rep(G) for some finite group
G, then the regular algebra A = Fun(G) is a connected étale algebra in C. The corresponding local
module C% can also be characterized in the context of de-equivariantization [5, 8].

The importance of the local module construction is well illustrated in the combination of
Corollary 3.32 and Proposition 5.4 of [5]: for any non-degenerate braided fusion category C and
any connected étale algebra A € C, we have

0 FPdim(C) 0
FPdim(C})) = FPdim(a)] and [C] = [C}]. 2.7)
Therefore, in order to study the Witt class of C, it suffices to study the smaller category C5.

By taking the local module category of a maximal connected étale algebra in a non-degenerate
braided fusion category C, one gets a “minimal” representative in its Witt class in the following
sense. A non-degenerate braided fusion category is called completely anisotropic if it does not
contain any connected étale algebra other than 1. It is shown in [5, Thm. 5.13] that any Witt
class contains a unique (up to braided equivalence) completely anisotropic representative. While
specific Witt classes can be difficult to compare in practice, having a completely anisotropic rep-
resentative is particularly useful. A fusion category C is called simple if C has no non-trivial fusion
subcategories. There are examples of completely anisotropic categories which are not simple and
vice versa. It is then interesting to consider the categories which are “minimal” in both senses,
which leads to the concept of property S [5, Sec. 5.4]. A non-degenerate braided fusion category C
has property S if it is completely anisotropic, simple and unpointed. The subgroup of W gener-
ated by the categories with property S is denoted by Ws.

3. Categorical data and local modules of so(2r),,

In this section, we set up notations and provide the categorical data. We will also discuss basic
properties of the local modules of the quantum group modular categories 50(2r),,.

3.1. Categorical data of so(2r),,

Quantum groups give prominent examples of modular categories whose origin traces back to the
dawn of the subject [9, 15]. For any simple Lie algebra g over C and a positive integer k called
the level, one gets a modular category g, by taking the semisimplification of the tilting module
category of the quantum group U,(g) specialized at a root of unity q determined by g and k. The
reader is referred to [1, 25] for details.

Let r > 3 be an integer and C, be the quantum group modular category so(2r),,. In this sec-
tion, we study the structure of the Witt subgroup generated by these categories using the signa-
ture homomorphism (see (2.5)). Necessary data and notation is given below. For more details,
see, for example, [1, 12, 25].

e Orthonormal basis for the inner product space (R", (:|)) : {e1,....e }.
e The set of positive roots: Ay = {e;*ex|l <j < k < r}. Root lattice: Q. Coroot lattice: Q.
e Half sum of positive roots: p = (r — 1)e; + (r — 2)ey - - + e,—1.
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. j . r—1 r
o Fundamental weights: w; =Y} e, 1 <j<r—2; 0,1 =137 ei—1em, 0, =131 e

e Dual Coxeter number: i = 2r — 2. The set of dominant weights: ®_. Weight lattice: ’B.
e The fundamental alcove 2, is in one-to-one correspondence with the set of simple objects of

Cr.
A ={1€®,: (Aer +e) <2r} =TIrr(C,). (3.8)
e Quantum parameter: ¢ = exp ((err—’hv)) = exp ($25). Twist of simple objects:
0, = q*2, Yie,. (3.9)
o First central charge:
mir?
&i(Cr) = exp <4). (3.10)

Remark 3.1. We discuss the case when r=2 here, and will not include this case in the rest of the
paper. The Lie algebra so0(4) = su(2) x su(2) is not simple, but one can define, for completeness,

s50(4), := su(2), Ksu(2),. According to [5, 6.4(4)], [s0(4),] = [su(2),]’ = [C(Z/3Z.Q)]* with
Q(a) = €@ /3_ In particular, [s0(4),]” = [Vec] in the Witt group, consistent with the r > 3 cases.

In Section 4, we will need the following auxiliary function. We adopt the standard notation
and write the floor and ceiling functions as x — | x|, x — [x] respectively.

Lemma 3.2. For any integers r > 3 and j > 1, define 9,(j) := |[{a € Ay : (0|p) = j}|. Then
r=[4]  fi<j<r-n,
%) =qr—[2] ifr<j<or—s3, (3.11)

0 otherwise.

Proof. Let o € A, be a positive root, there are two cases. If « = e, + ¢, for some 1 <a<b<r,
(alp) =2r—(a+Db), then 1< (alp) <2r—3; if a =e, —¢p for some 1 <a<b<r, (ap)=
b—a, then 1 <b—a <r— 1. Therefore, 0,(j) = 0 for all j > 2r — 3.

Define

)= {(@b) € Z:1<a<b<ratb=il,

r

CG@)={(ab)eZ:1<a<b<rb—a=i}.

For 1 <j <2r — 3, we have:
o,(j) = 7 (2r = j) + ().
It’s clear by induction that
-1 ;
o {5 s
(247 r+1<j<2r—1,
and

— r—j l=sjsr—1
-

0 r<j<2r-3.

Therefore, if 1 <j<r—1, then 9,(j)=r—j+ Pﬂ =r— L%J, if » <j<2r—3, then we have
o) = 5= = r= 5. -
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Lemma 3.3. For any integer r >3, let S, ={1<j<2r—3:0,(j)-j=1 (mod 2)}. Then [S,]|
is even.

Proof. From (3.11), for any r > 3, let k = (r — rmod4)/4, then

{4m+3,4n+1:0<m<k—-1,k<n<2k—1} ifr=0( )
{4m+1,4n+3:0<m<k—-1,k<n<2k—1} if r=1 (mod 4),
{d4m+3,4n+1:0<m<k—-1L,k+1<n<2k} ifr=2( )
{4m+1,4n+3 : 0 < m <k, k <n <2k} if r=3( )

In any of the cases above, |S,| is even, so we are done. O

For simplicity, we adopt the following conventions. For any positive integer n, we set {, :=
2mi

exp (%), and we use @, to denote the cyclotomic field Q(,). For any m € N and k coprime to

m, we use o to denote the element in Gal(Q,,/Q) sending {,, to (¥ . If m is a positive odd inte-
ger, and a € Z, then we denote the Jacobi symbol of a modulo m by (;);.

Lemma 3.4. Let r and u be positive integers such that such that 8(2r — 1)|u. Then for any k € Z
with ged(k,u) = 1, and any j € Z, we have

) _ ki
ok(sin (4:—;)) = (71>]sin <4r]ir2). (3.12)

Proof. The assumption that 8(2r — 1)|u implies both (,,_, and i are in Q,. Since k is odd,

, g e
k(i) = (71)i- Now the lemma follows from sin <L> = M2 Ce2 0

in the cyclotomic field Q,,.

4r—2 2i

Recall that for a ribbon fusion category C, ord(T¢) =lem{ord(fx) | X € Irr(C)} (see
Section 2.2).

Lemma 3.5. For any integer r > 3, let N, = ord(T¢,). Then we have N, = 2°(2r — 1) for some inte-

ger 0 < s <4, and \/dim(C,) € Qy,.

Proof. Since 2e;, w, € AU, (see (3.8)), by (3.9) we have

0281 — q(2€1‘2€1+2p) — q4r - _ exp ( i ))

0(», = q(w,\w,+2p) = q(zr;”' = ©Xp <%> .

Moreover, since for any 4 € %, (Z|4+2p) € 1Z, 0, = q*#2) is 16(2r — 1)-th root of unity.
Therefore, if r is even, then 2r — 1| N, | 16(2r — 1). When r is odd, we have 16(2r — 1)
| N, | 16(2r — 1), and so N, = 16(2r — 1). This proves the first part of the lemma.

By [21, Thm. 5.5], d; € Qy, for any 4 € 2,, which implies 7,(C,) € Qy,. Moreover, by (3.10),
when 7 is even, & (C,) = =1 € Z C Qy, and when r is odd, we have &, (C,) = exp (%) € Qy;.

Therefore, in light of (2.3), /dim(C,) = 1,(C;)/&,(C;) € Qy, - O

Remark 3.6. In the rest of the paper, the N,’s are used to bound the conductors of the cyclotomic
fields in which we perform explicit computations. The key information to extract from the above
lemma is that (2r — 1) is the largest odd factor of N,, while the exact value of N, is not needed
for our purpose.
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3.2. Local modules of C,

In order to study the Witt subgroup generated by C,, it is natural to find connected étale algebras
in it, and to study the Witt class of the corresponding local module category (or condensation),
as is explained in Section 2.3. It turns out that C, contains a Tannakian symmetric fusion subcat-
egory, and the corresponding local module admits further decomposition when r is odd.

Details on the above discussions are provided in the following lemma. Recall that a fusion cat-
egory is unpointed if it has only 1 invertible object, and the semion modular category is defined
in Section 2.2.

For any fusion category C and object U € C, we denote by (U) the full fusion subcategory of
C generated by all the subobjects of U. If w is a collection of Witt classes or Witt subgroups, then
(w) is the subgroup of W generated by w.

Lemma 3.7. For any r > 3, we have

(Cr)pe O Rep(Z/2Z), if ris odd;
(Cr)p[ > Rep(Z/27 x 7./27.), if ris even.

Let A, = Fun(Z/2Z) for odd r and A, = Fun(Z /27 x 7/2Z) for even r be the corresponding con-
nected étale algebras, then we have the following decomposition for the local modules

Sem X D,, if ris odd,
e = {

D, if ris even,
where D, is an unpointed modular category.

Proof. Let 4y = 2rw,_y, /4y = 2rw;, and A3 = 2rw,. One can check easily that 4; € 2, for 1 <j <
3, and by [26, 27], these are all the nontrivial invertible objects in C,. Moreover, when r is odd,
i?] = }vj for j=1, 2, 3, and when r is even, /If =1 and 4, ® 4, = 13 (see, for example, [26,
Lem. 2]).

Therefore, (Cr)pt ~ C(Z/4Z,Q,) for odd r, (C,)pt >~ C(Z/2Z x /27, Q,) for even r, where Q,
and Q, are quadratic forms determined by the following twist values:

2
r
0/11 _ q(4rw,,172rw,\4mz,,172701,+2p) _ quz(rfl)qu2 = exp <_ 7.”')’

2
0,, = qRrenlrot2e) — 2r4r=2) — exp (2rmi) = 1, (3.13)
2
013 _ q(er,\er,Jer) _ qr2(2r71) = exp (% 7Ti>.

When r is odd, the fusion subcategory of C, generated by the object 1, is equivalent to the
symmetric fusion category Rep(Z/2Z), which contains the connected étale algebra A, =
1@/, = Fun(Z/27Z). Since 2; ® 4, = A3, by (2.1), we have

O0j -idjyes, = 05, -id;, = 05,02, = ﬂ;.z,;.l © ﬁal,zz © (011 -id;, ® 0, 'idiz)’

where for j=1, 2, 3, 0;,]. refers to the twist values above, and 0,,5;, denotes the twist isomorph-
ism. Therefore, we have f, ; of,; ;, =id; s, so A is in the centralizer of Rep(Z/2Z).
Similarly, we have 3 € Rep(Z/27Z)'.

Let F:C, — (Cr)A,, X +— X ® A, be the free module functor, which is a monoidal functor (see
[5, Sec. 3.3]). Let V := F(4;), then V® V = F(4; ® 41) = F(1) (note that F(1) is the tensor unit
of (C,)gy), ie, V is of order 2. By the above discussions, we have V € (Cr)?a, = (CY)OZ/zz-

Moreover, by [14, Thm. 1.8], we have
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dy =d; =1,

and by [14, Thm. 1.17], 0y = 0,, = i. Therefore, V generates a modular subcategory in (C,)gr which
is equivalent to Sem. Thus, by the double centralizer theorem [18, Thm. 4.2], we have (C,)gr o
Sem X D,, where D, is the centralizer of Sem in (C,)g,. In particular, D, N Sem = (F(1)).

When r is even, 0, = 1 for j=1, 2, 3, so (2.1) implies that (C,), is equivalent to the symmet-
ric fusion category Rep(Z/2Z x Z/2Z), which contains the connected étale algebra A, =
104 &4 &3 =Fun(Z/2Z x Z/2Z). In this case, we can simply set D, := (C,)gy.

It remains to show that D, is unpointed for any r. Consider the forgetful functor G : (C,), —
C;, which is the adjoint of F (see [14]). On the one hand, by [14, Thm. 1.18], any X € Irr((D,),,,)
must satisfy dgx) = da, € Z. On the other hand, by [29], all the objects in C, with integral
dimension are contained in (C;),.. Moreover, it is easy to see that any X € (C;),, is a subobject
of F(G(X)). Therefore, for any X € Irr((D),,), we have X € F((Cr),,)-

By the above discussions, when r is odd, F((C;),) = (F(41)) = Sem; when r is even, F((C:),,)
(F(1)) (recall that F(1) is the tensor unit of (C,)OA’). Therefore, {F(1)} C Irr((D;),) C
Ire(F((C,),)) 1 D,) = {F(L)}.

In particular, by [8], Lemma 3.7 implies that FPdim(C,) = 8FPdim(D,) if r is odd, and
FPdim(C,) = 16FPdim(D,) if r is even. Moreover, we immediately see that

O

{ [SemXD,] if r is odd,
c] = (3.14)

[D,] if r is even,
Now the conformal embedding so(m), x so(n),, C so(mn), (see, for example, [5]) implies that
c ]2 _ [Sem]2 if r is odd,
' [Vec] if r is even,
and so for any r > 3, we have

D] = [Ved]. (3.15)

4. The Witt subgroup generated by D,

In this section, we study the Witt subgroup generated by [D,] using the signature homomorphism
(2.5). By [28, Lem. 2.4], D, is pseudounitary, i.e., dim(D,) = FPdim(D,), which is a quotient of
dim(C,) by 8 or 16 (see above). For simplicity, we set

D, := +/dim(D,) (positive square root). (4.16)

To compute the signature, we will combine the lemmas in Section 3.1 with the well-known formulae

of y/dim(C,) in terms of trigonometric functions [1, Thm. 3.3.20]. (Note that in [4, Thm. 3], a for-
mula for the global dimension is provided, but to compute the signature, one needs to take the
square root). As a reminder, the definition of the function 9,(j) can be found in Lemma 3.2.

Lemma 4.1. Let r > 3 be odd. Then D, € Qqy, and

2r—3 —o0)

D, =Yv2r— 1 [] sin m : (4.17)
=1

dr — 2

—2r243r41

where Y =27 2 ~(2r—1)%6@.
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Proof. Recall that when r is odd, 8dim(D,) = dim(C,). Therefore, D, € Qg follows from Lemma

3.5 and the fact that /2 € Q. According to [1, Thm. 3.3.20] and the information on positive
roots in Section 3.1, we have

D, \/m/ 2ar+ )2 I (2 ( (z(alplzv >>1

a€AL
-1
2lp)
= YV2r—
2r H ( (4 — 2n )
acA;
and we are done by definition. O

Lemma 4.2. Let r > 4 be even. Then D, € Qy_and
2r—3 —o()

=Z H sm , (4.18)

(3— 2r)r

where Z = 2' (2r—1)yeqQ.

Proof. Note that when r is even, 16 dim(D,) = dim(C,). Then the statement of the lemma follows
from the similar argument as in Lemma 4.1 and Lemma 3.5. O

The above lemmas imply the following periodicity result on the signature, which is important
to the theorems below.

Proposition 4.3. Let r > 3 be any integer. If k =k (mod 4r — 2) and gcd(k,4r — 2) = 1, then
ok(Dy) = ow(D;). In particular, ep,(ox) = ¢p,(ox).

Proof. From Lemma 3.5, we have k, k' are both coprime to 8N,, so the signatures are well
defined. Assume r is odd. When k =k’ (mod 8r —4), from (3.12) and the fact that |A;|=
r(r — 1) is even, we have

50 (D) = ((;l)](‘kl)) " ) = D).

Note that er 9,(j) = |A+|. Therefore, it suffices to consider the case when k' = 4r — 2 + k.
Without loss of generality, assume k =1 (mod 4), K =3 (mod 4). By assumption, r is odd, so

2r—1=1 (mod 4), and we have ak(\/Zr — 1) = akr(\/Zr — 1) since v2r —1 € Q,,_, [33]. By

(4.17), Lemmas 3.3 and 3.4, we have

ox(Dy) = (k>A+Y¢2r—_2’H3< w)%)

4r — 2

2r—3 k]TC *070)
=YV2r— H < / sin —)

4r — 2
= (-1)" f‘akwr)
= Gk(Dr).

When r is even, the proof is similar.
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In the following, we determine the structure of the Witt subgroup generated by families of
[D,]’s. The key point is to show that there are no nontrivial relations in the groups under study.
To achieve this goal, we use special Galois elements to distinguish the signature homomorphisms
of the [D,]’s, and the parity of r determines the way to find such Galois elements. Naturally, from
now on, we separate cases according to the parity of r.

4.1. The case when r is odd
In this subsection, let r > 3 be an odd integer.
Proposition 4.4. For any positive integer r =5 (mod 8), we have ¢p, (0,) = —1.

Proof. From Lemma 3.5, ged(r, 8N,) = ged(r,2r — 1) = 1. Let r = 4k + 1 for some odd integer k.
By (3.11), it is clear that ,(j) is odd when je€ {4m+1,4(m+1),4n+2,4n+3|0<m <
k—1, k<n<2k—1}. By Lemma 4.1, [20, Lem. 6.2, 6.3] and the quadratic reciprocity, we have:
k-1
: (el 2 (s
ep,(0r) = (=)=
J

2r—1

k=1 2k—1

_ (m+m+1)+> (n+n)
— (_1> (—1)m 2 = (1) =-1.
J

Now we are ready to determine the subgroup of W generated by [D,] for a collection of odd
r’s. Let {aj}j21 be a sequence of prime numbers such that a; =9 (mod 16) and a; < aj;,. Such a
sequence exists due to the Dirichlet prime number theorem. Let r; = %1 then r; =5 (mod 8)

2
and a; = 2r; — 1.

., is isomorphic to Z./27°N.

Theorem 4.5. The Witt subgroup generated by {[Dy]} ..

Proof. Since [D,] has order 2 in the Witt group (see (3.15)), it suffices to show that no finite
product of distinct [D,] yields [Vec]. To that end, let D := X[ D, for some subsequence 1 <

j1 < -+ <jn and we compute one of its signature values as follows.
From Lemma 3.5 and Lemma 4.1, we have /dim(D) € Qy, where N = lcm;<;<,{8N, }. Let
K = lemy<i<,{2a;}, then ged(a;, K) = 1 by construction. Hence, by Bezout’s identity, there exist
X,y € Z such that
xa;, + yK = 1.
Let k = —(r;, — 1)xa;, + rj,. Since 2|(r;, — 1), we have
k=1 (mod K), k= T (mod Zajl). (4.19)

In particular, by Lemma 3.5 ged(k, N) = 1.
Since 2a;, = 4r, — 2, by Proposition 4.3 and Proposition 4.4, there exists ¢ € Gal(Q/Q), such
that o|g = ok, and

e, (o) = —landsDrj (6) =1(i #1).
This implies that ¢p(o) = —1, Therefore, by [20, Thm. 3.5], [D] # [Vec]. O

Consider 7 := (sly),. It is an Ising modular category, i.e., Z is not pointed and FPdim(Z) = 4.

It is extensively studied in [8, Appendix B]. Since [Z]* € W, and both W, and ([Z]) are con-
tained in the 2-torsion part of W (see [5]), it is natural to compare these Witt subgroups with
the one we just studied. Let H denote the group generated by {[D,]}.,.
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Theorem 4.6. We have H N (W, [Z]) = {[Vec]}.

Proof. 1t suffices to show product of any finite set in {[D,]} intersect trivially with (Wi, [Z]). To
that end, let D := XL, D, for some 1 <j; <--- <j,. If [D] € HN W)y is nontrivial, there exists
a finite abelian group L and a non-degenerate quadratic form Q: L — C* such that the corre-
sponding pointed modular category £ = C(L, Q) satisfies [£] = [D] in W. We compare their sig-
natures as follows.

Let h=|L|, N = h-lecm<;<,{8N; }, then both Vh and /dim(D) are in the field Qy. We
write h = hihy, where ged(hy,a;,) =1, hy = aJS-l for some s > 1. Let K = hy - lemy<i<,{2a;,}, we
have gcd(a;,, K) = 1. Hence, from Bezout’s identity, there exist x,y € Z, such that:

xa;, +yK =1
Let k = —(r;, — 1)xa;, + rj,, since 2|(r;, — 1), we have:
k=1 (mod K), k=r; (mod 2a).

Again by Lemma 3.5, gcd(k, N) = 1. By Proposition 4.3 and Proposition 4.4, there exists ¢ €
Gal(Q/Q), such that 0lg, = ok and

ép,, (6) = —1, and e, (6)=1(i#1),

which implies e¢p(0) = —1.
Since k =1 (mod 4), k=1 (mod h;) and rj, =1 (mod 4), so by [20, Lem. 6.2], we have

o)~ () 2) - (2)
(a5 )

Therefore, ep # &, which contradicts to [20, Thm. 3.5]. So H N W, is trivial.

Since [Z]* € Wy, if [D] = [Z]"[H] for some [H'] € W, then by the above discussions, we
must have m is odd. Let k = & (Z), then x is a primitive 16-th root of unity. Moreover, it is
well-known that the first central charge of a pointed modular category is an 8-th root of unity
(see [7]). Consequently, there exists some ¢ € Z such that & (H') = x!. Moreover, by (3.14) and
the multiplicativity of the central charge [8], we have &,(D,) = 1. Therefore,

1=&(D) = &(D)"E(H) = k™ -1 = k™2

However, as m is odd, the right hand side can never be 1, so we get a contradiction. Thus, we
must have H N Wy, [Z]) = {[Vec]}. O

ec(o)

In view of (3.14), (3.15), and combining all the results above, we have the following corollary.

Corollary 4.7. The image of [Vec| has infinitely many square roots in W/(Wyy, [I]), hence the
same is true of [Sem]’, O

4.2. The case when r is even
In this subsection, let > 4 be an even integer.
Proposition 4.8. Let r =4 (mod 8), s =6 (mod 8) we have

&p,(02r41) = &p,(05-1) = —1.
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Proof. From Lemma 3.5, gcd(2r + 1,N,) = ged(2r + 1,2r — 1) = 1 and ged(s — 1, N;) = ged(s — 1,
2s — 1) = 1. Similar to the proof of Proposition 4.4, let r = 4k, s = 4]+ 2 for some odd integers k,
L. By (3.11), it is clear that 0,(j) is odd when j € {4m +2,4m+3,4n,4n+1 | 0 < m<k—1, k<
n <2k —1} and 04(j) is odd when j € {dm +2,4m+3,4n,4n+1 | 0<m<I—-1, I+1<n<
21}. Since 2r +1=1 (mod 4), I—1=1 (mod 4), by (4.18), [20, Lem. 6.1], we have:

& (O’ ) ( ):]0 ( LAW‘ 4? @”rl J + L4m+:) 2r+1)J )+Z ( I_An 2r+1)J |_(4n+41r)£zzr+1)J )
D, \02r+1 =

k—1 2k—1
@mA142m41)+ Y " (2n+1+2n)

and

(Lo [ 30 (L) L))

e, (001) = (~1)7
1-1 21
(m+m)+ > (n—1+n)
— _1)m:0 n=I+1
= (-1 =1

Let {b;}>1> {¢j}j>1 be two increasing sequences of prime numbers such that b; =7 (mod 16)

and ¢; =11 (mod 16). Such sequences exist due to the Dirichlet prime number theorem. Let
1= @, s = i, then r; = 4 (mod 8) and 5; = 6 (mod 8).

Theorem 4.9. {[D,]};.; and {[Dyl};., each generate a group isomorphic to Z)27°N in the Witt
group, and the intersection of these groups is trivial.

Proof. Similar to the argument as in Theorem 4.5, it suffices to show that no finite product
of distinct [D,] or [Dy] yields [Vec|. To that end, let D := X, D, , and D= X, D, for arbi-
trary finite subsets of {r;} and {s;}, respectively. Suppose [D] = [D] = [Vec|, we compare
their signatures.

First, note that \/dim(D) € Qy, 1/dim(D) € Qg, where N =lemi<i<;{Ny } and N =

lcmlgign{Ns,i}. Let K = lemy<i<,{2b;,}, M =lemy<ic,{2¢;}, then ged(b;,K) =1, ged(c,, M) =
1 by construction. Hence, by Bezout’s identity, there exist x, y,z, w € Z such that

xbj, +yK =1 zc, +wM = 1.
Let k = —(2rj,)xb;, + 21, + 1, t = —(s;, — 2)zc;, + s, — 1. Since 2|2r;, and 2[s;, — 2, we have
k=1 (mod K), k=r; (mod 2b;),
t=1 (mod M), t=s, —1 (mod 2¢,).

Since 2bj, =4r;, —2, 2¢, = 4s, —2, we have gcd(k,N)=gcd(tN)=1 (Lemma 3.5). By
Proposition 4.3 and Proposition 4.4, there exist g, 1 € Gal(Q/Q) such that alg, = Tk ’7‘@& =,

ep, (0) =ep, (n) = —1 and &p, (o) =ep, (1) =1 (i #1).

This implies that
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which contradicts [20, Thm. 3.5]. Moreover, by considering the products of the categories in two dif-
ferent families, and the fact that bj,¢; are distinct primes, the trivial intersection follows from the
same argument as above (consider the least common multiple for all 2b;’s and 2¢;’s except 2b;,). O

Let H' denote the group generated by {[D,]},., and {[Dg]};.,. Similar to Theorem 4.6,

we have

Theorem 4.10. We have H' N (W, [Z]) = {[Vec]}.

Proof. From the proof of Theorem 4.6, 4.9 and Proposition 4.8, it suffices to check for any j,
_ _ 2ri+1 si—1 2ri+1
2rj+1=1 (mod 4), sj—1=1 (mod 4) and (2471)] = (22)_71)] =1. Indeed, (2%71)] =

(20271)] =1 (since when p = *1 (mod 8), (¢ )I = 1), and others are also easy to check. O

5. Relation with Witt subgroup generated by so(2r + 1),, ,

Let By = 50(2b+ 1),,,,, where b>1 is an odd integer. In [20], the Witt subgroup generated by
an infinite sequence of B;’s, denoted by G,, was studied. Here, p is a sequence of odd primes
satisfying certain congruence conditions in [20, Section 6.2]. It is shown in [20, Theorem 6.7]
that G, contains an elementary 2-group of infinite rank, so it is natural to compare it with the
Witt subgroups in this paper.

In this section, we prove there is an infinite subgroup of the group generated by [D,] with r =
4 (mod 8) that intersects trivially with the group Gp. The tool we use is still the signature homo-
morphism. Thus, we start with the square root of the global dimension of B} (cf. [20, Prop. 5.3])

b @1 —1)n\ ¥ jn wi)

p = +/dim(B,) = WVb H (sin T) H (sin 4_b> , (5.20)
I=1 =

where W=%€Qand () =b— %1 for1 <j<2b-—2.

Lemma 5.1. We have

@) By € Qi
(ii) Let k be any integer such that k=1 (mod 4) and gcd(k,b) = 1. For any x € Z, if we
denote k' = 8xb + k, then ¢p,(ox) = (—1)"¢p, (o).

Proof. Since Vb € Qyp, sin <4b) € Qg and Sm(Zl Un ™) € Quep 50 By € Oy

By assumption, k =1 (mod 4) and k, k" are both coprime to 16b, so the signatures are well
defined. Moreover, by the similar argument as Proposition 4.3, together with [20, Lemma 6.1],
we immediately have (note that b is odd)

&g, (k) = (—1)"ep, (0x) = (—1)"es, (o).

Proposition 5.2. Let r =12 (mod 80), b =2r —1 =23 (mod 160) and x € Z. We have

ep,(0r23) =1,  &B,(Osxpir3) = (—1)".

Proof. Suppose r =80k + 12 for some integers k>0 and b= 160k+23. Since r—3 =
1 (mod 8), r - 3 is coprime to both 8N, and 16b. We have seen in Proposition 4.8 that 0,(j) is
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odd when j € {4m+2,4m+3,4n,4n+1 | 0 < m <20k +2, 20k + 3 < n < 40k + 5}, and it is
straight forward to check ¢,(j) is odd when j € {4m + 3,4(m + 1)|0 < m < 80k + 10}. By (4.18),
(5.20), [20, Lem. 6.2, 6.3] (as r —3 =1 (mod 8)) and the quadratic reciprocity, we have

2%2 ( L(Am:ﬂ(;%)J + |_4m+4i)7(£—3)J )+ 40kZ+5 ( L%J 4 L(Antli(;f3)J )
&p, (0'773) = (— 1) m=0 n=20k+4
and

80k+11

r — 3) ( )Zb (Lzl 1)(r— 3J +10 ( L(4m+§i(773)J n me:lb)(riw)
=1 |
J

88[,(0-1'*3) = ( b m=0

Now we compute the exponents in the above equations term by term.

(4m+2)(r—3)J +L2r—10m—6J {m if 0<m< |28 =16k+1,
CMTOT =2 _ o, (22 FPm T
-1

4r —2 4r —2 if 16k+2 <m <20k-+2,
4 - — 10m —
(4m +3)(r — 3) R 3r—10m—9 -

4r — 2 4r — 2

(4n)(r — 3) Ly [1on—ar+2 n—2 if 20k+3 <m < 32k+4,
_—_— = n — _— =
4r —2 4r —2 n—1 if 32k+5<m <40k+ 5,

4 1)(r—3 10n —5 5
(7’174- )(7’ ) =n—1+ 711 rt =n-—2.
4r — 2 4r — 2

Therefore, we have

20k+-2 40k+-5
(m—1+m)+ (n—1+n-2)
SD,(Gr73) — (71)m:16k+2 " " n:%l;rs ! " — (71)(4k+1>+(2k+1> = 1.

To facilitate the various cases, write m = 2m’ +s for s € {0,1}, and write [ =8/'+ ¢ for ¢ €
{1,2,3,4,5,6,7,8}, then we have (i) 0 < m’ < 40k+5 when s=0; (ii) 0 < m’ < 40k + 4 when
s=1; (i) 0 <V <20k+2 when t€{1,2,3,4,5,6,7} and (iv) 0 <! <20k+1 when t=38.
Therefore,

{(4141 +3)(r— 3)J ot {(240 + 320s)k — 20m + 27 + 36SJ

4b 640k + 92
m' s€{0,1} and 0<m' < (124 16s)k+2s+1,
{m’—l s€{0,1} and (12 + 16s)k+2(s+ 1) < m’ < 40k +5 — .
{4(m+ 1)(r—3)J ot {(320+3205)k—20m+36+365J
4b 640k + 92
m' s€{0,1} and 0 <m' < 16(1+s)k+2s+1,
_{m’—l s€{0,1} and 16(1 +s)k+2(1 +s) < m' <40k +5 —s.
{(21— 1)(r—3)J s {(160t—80)k+18t—9—4OZ’J
8b 1280k + 184
4 1<t<5and 0<I < (4t —2)k+ |F],
_J =1 1<t<5and 2+4)k+ B <V <20k+2,
7 t€{6,7} and 0 < ' <20k + 2,
r t=8and 0 </ <20k + 1.

Therefore, we have
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28k+3 32k+3

80k + 9 S (m'—14m)+40k+5-1+ Y (m'—1+4m')+40k+5-1
SB}, (O-T73) — <7> (_l)m’:12k+2 m/ =16k+2
160k + 23/,
2k+1 14k+1 20k+2
ST+ D (-14)+ Y (I-1+)+20k+2
X <_1)m’:6k ! =10k+2 ' =18k+3

5 (_ 1 ) (16k+2)+40k+4+4(16k-+2)+40k+4-+(4k)+(4k)+(2k)+20k+2
80k +9/

-6

From Lemma 5.1 (r —3 =1 (mod 8)), we have

&8, (0sxr(r-3)) = (—1)"e5,(0,-3) = (=1)".
O

Let {b;};>, be a sequence of prime numbers such that b; = 23 (mod 160), which exists due to

the Dirichlet prime number theorem. Let r; = h"T“ =12 (mod 80), and we use H, to denote the
group generated by {[D,]},-,. Let G, be the Witt subgroup at the beginning of this section. Note
that the set {b;} may intersect with p.

Theorem 5.3. With the above notations, we have G, N H, = {[Vec]}.

Proof. Tt suffices to show that no finite product of distinct [D,]’s and elements in G, yields [Vec]
(elements in G, may have multiplicities in this product). To this end, we take an arbitrary finite
subsequence of {r;} denoted by {r; |1 < w < m}. We also pick an arbitrary finite subsequence
{pl1 <1< n} of p such that 2r;, —1#p; for any 1 <I<n. In other words, p; # b; for
any 1 << n.

Now for any s,y; € Z, we consider the finite product

F = (RI_,D, )X (x;;lsf‘/f) X (BE)

By the previous results, we have \/dim(D) € Qy, where N = lcm;<y<m, 1<1<n{32N;, ,32p;}.
Let K = lemy<y<m, 1<1<n{32b;,,32p1}, then gcd(b;,,K) =1 by construction. Hence, by Bezout’s

w

identity, there exist x,y € Z such that
xbj, + yK = 1. (5.21)
Define
o { —(rj, —4)xb;, +1r;, =3 if s is odd,
—(2rj,)xbj, + 2rj, + 1 if s is even.
Since rj, — 4 = 8(10k + 1) and 4|2r;,, we have

rj, —3 (mod 2b;,) if s is odd,

t=1 d K d t=
(mod K) an {201 +1 (mod 2b;,) if s is even.

Again by Lemma 3.5, we have ged(t, N) = 1. Moreover, we use Propositions 4.3, 4.8 and 5.2 and
get the following two cases (note that x is odd by construction). To avoid too many subscripts in
the expression of the signatures, we temporarily write 85 = ép, for 1 <w<m, 8? =g, for

. B . . . _ B K
1 <1< n, and we write g = ¢p, in this proof. Note that SB?: = (sjl) .
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Firstly, when s is odd, there exists ¢ € Gal(Q/Q), such that 0lg, = 0r and

(o)=eP(o)=1 for 1<w<m, 1<I<n,

w

k
85(08(10k+1)xbj1+rj1—3)5 = (*1)00 ERaEES

Secondly, when s is even, there exists 17 € Gal(Q/Q), such that nlg, =M and

L) =eP(n) = 8ﬁ(n)5 =1for2<w<m, 1<I1<mn, and e’() = —1.

w

Therefore, in either case, ex = [[_, &2 - [, (¢F)" - (gff)s is not the constant function 1, then by

[20, Thm. 3.5], [£] # [Vec]. O

6. An order two Witt class with property S

Recall that a non-degenerate braided fusion category C has property S if it is completely aniso-
tropic, simple and unpointed. The subgroup of VWV generated by the categories with property S is
denoted by Ws. In this section, we prove that [D,] € Ws. Since D, has order 2 in W (see
(3.15)), it gives a positive answer to the open question [5, Question 6.8]. From Theorem 4.10,
[Ds] & Wy, hence it suffices to prove Dy is simple and completely anisotropic.

Lemma 6.1. For any positive integer r > 3, the category D, is simple.

Proof. From Lemma 3.7 and [29, Lemma 1], we have (D,)pt = Vec, and there is no nontrivial
objects in D, of integer dimension. Hence if R C D, is a fusion subcategory, then by Deligne’s
Theorem [10, Section 9.9] and above discussion, we have R’ C (D,)pt =~ Vec, which implies R is

non-degenerate. Now the Lemma follows from [29, Theorem 2]. O

Now let r=4. Recall from Lemma 3.7 that in this case, (Cs),, = Rep(Z/2Z x Z/2Z), which con-

tains the connected étale algebra Ay = Fun(Z/27Z x 7Z/27). By definition, D, = (C4)g4. We will show
that Dy is completely anisotropic, i.e., it does not have any nontrivial connected étale algebra.

By [28, Lem. 2.24], all connected étale algebras in a pseudounitary braided fusion category
have trivial twists. Therefore, it suffices to consider only objects with trivial twists in D,. By [14,
Thm. 1.17], such objects are images under the free module functor F : C; — D4 (see Lemma 3.7)
of objects with trivial twists in C4, which we describe as follows.

One can compute, by formulas (3.9), that in addition to the 4 invertible objects in C4, there
are 8 more objects with trivial twists, and they are grouped into the sets X := {2w,,2mw; +
41,20, + 43, 20, + 4wy} and Y := {201 + @y + 203,201 + 05 + 204, 05 + 203 + 204, 201 +
®y + 2m3 4+ 2w4}. By [26, Lemma 2], the action of the algebra A4 € C,4 on the objects in X and Y
(by tensoring) is fixed-point free and transitive. In particular, this implies that all of the objects
in XUY centralize A,. Therefore, there are only 2 nontrivial objects with trivial twists in Dy,
which we denote by Z; = F(1) and Z, = F(p) for an arbitrary choice of objects A€ X and u €Y
(note that Z, and Z, do not depend on the choice of A and p).

Moreover, we have

dy 1= dz, = 28(0; +85) + 14(5 + ) + 33 ~ 61.685
and
dy i=dz, = 126(C; + 5) +56(5 + () + 157 ~ 289.197.

Therefore, any nontrivial connected étale algebra in D, has to be of the form L =1 +a,Z; +
a,Z, for some a,, a, € Z>y. Moreover, by the local module construction, any connected étale

algebra L € D, will give rise to a modular category (Dy)) with the property (see [14, Thm. 4.5])
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_ dim(D,)

dim(D;;)? ==z >
L

where dim(D,) = —196[269((; + (5) + 873((2 + &) + 1357(8 + (1)] ~ 489669.5.
Since the global dimensions of modular categories are > 1 [11, Thm. 2.3], upper bounds for
aj, a, can be given by

dim@Ds) o L, <

> >1 = <2
(1 + aldl)

(1 =+ a2d2)2 o
Therefore, the set of connected algebras in D, is a subset of the following set of objects
E={1+a1Z + a,2,]0 < a; <11,0 < a, <2},

with the tensor unit 1 corresponding to a; = a, = 0. From now on, we will focus on nontrivial
objects, so we assume that a; and a, are not both 0.

According to [22, Lem. 5.3 (c)], the dimension of any connected étale algebra L € E is totally
positive, i.e., all the Galois conjugates of d; are positive real numbers. This gives more restrictions
on a; and a,. Indeed, using SageMath [30], one can see that for any L € E, the Galois conju-
gates of d = 1+ aid, + apd, are of the form 1+ ayd; + a,d, and 1+ a,d’| + axd",. Here, d,
d' are Galois conjugates of d; with d] =~ —4.688 and d"| ~ 0.003; and d}, d') are Galois conju-
gates of d, with d} ~ 0.016 and d'), & —0.213. Therefore, by direct computation, the only nontri-
vial L € E with totally positive dimensions are L=1+Z, and L = 1 4 2Z,. In other words,
these are the only two candidates for nontrivial connected étale algebras in Dj.

Next observe that since dim(D,)] is an algebraic integer [11, Rmk. 2.5]), the algebraic norm of
%ip“) has to be a (rational) integer. Again using SageMath, we can easily see that only for L =
1 +2Z,, dim(Dy4)/d? has integral norm.

Finally, since the local module construction preserves pseudounitarity [28, Lem. 2.24], (D4)(£ is
pseudounitary for any connected étale algebra L. As the FP-dimension of objects are > 1 [10,

Prop. 3.3.4], we have either dimT(zD“) =1or dimT(zD“) > 2. By direct computation, we have
L L
dim(D
# ~ 1.459.
dr

Therefore, L = 1 + 2Z, cannot be a connected étale algebra.
Combining the above discussions, we have

Theorem 6.2. The modular category D, is completely anisotropic, hence [Ds] € W. O
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