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ABSTRACT: We study the near-zone symmetries of a massless scalar field on four-dimensio-
nal black hole backgrounds. We provide a geometric understanding that unifies various
recently discovered symmetries as part of an SO(4,2) group. Of these, a subset are exact
symmetries of the static sector and give rise to the ladder symmetries responsible for the
vanishing of Love numbers. In the Kerr case, we compare different near-zone approxima-
tions in the literature, and focus on the implementation that retains the symmetries of the
static limit. We also describe the relation to spin-1 and 2 perturbations.
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1 Introduction

Black hole perturbation theory has a long history dating back to the work of Regge and
Wheeler [1] and Zerilli [2]. Interestingly, recent investigations suggest the subject has
depths yet to be plumbed. A case in point is a number of symmetries discovered in
the past year [3, 4], which shed light on the well-known vanishing of black hole Love
numbers (characterizing a black hole’s static, non-dissipative tidal response) [5-14]. In this
paper, we present a synthesis of these symmetries, and show how they fit within a larger
group containing further symmetries. Some of these are familiar symmetries of the exact
dynamics. The rest are approximate symmetries in the low frequency regime. Of these,
a subset are exact symmetries of the static sector, and give rise to the ladder symmetries
discussed in [4]. To keep the discussion simple, we focus largely on symmetries of a massless
scalar, first on a Schwarzschild, then Kerr, background. The connection to spin-1 and 2
perturbations, via a spin ladder, is discussed in the Supplemental Material.

2 Effective near-zone metric

We begin by considering the Schwarzschild case. Our starting point is a free massless scalar
field ¢ on a fixed 4D Schwarzschild background:

ds® = —f(r)dt2 + }1(7;2) + T2dQ§«2, firy=1- %Sa (2.1)



with dQ?gg = d6? + sin?dy? and where r, = 2GM is the Schwarzschild radius. The
scalar’s action can be written explicitly as

S = 1/dtdrdsz ﬁ(a 0)? — A(0,0)* + Vi (2.2)
- 2 A t T 0 ’ .

with A(r) = r(r — rs) and V§ = (1/sin0)d(sin 0 9g) + (1/sin* 0)d2. In frequency space
(¢ o« e ™) we wish to focus on long-wavelength perturbations satisfying r, < 1/w.
The behavior of ¢ in the near-zone region defined by rs < r <« 1/w is described by
approximating the coefficient in front of the kinetic term as follows: r*/A(r) ~ r%/A(r) [15,
16]. Doing so means in the ¢ equation of motion, the time derivative term (r4/A)02¢ is
replaced by (r?/A)d2¢. This has the virtue of preserving the correct singularity as 7 — 75,
while still accurately capturing the dynamics at larger r, as long as wr < 1.1

In this limit, the action (2.2) is the same as that of a massless scalar minimally coupled
to an effective near-zone metric:
A

In the static limit (w = 0) the scalar behaves identically on this metric as on the original

ds?

near-zone

A
= —Sdt* +
;

s

dr? + r2dQ%.. (2.3)

Schwarzschild background. Nevertheless, it is advantageous to work with the near-zone
geometry, both because it allows us to go beyond the strictly static sector, and because it
has a richer symmetry structure. In fact, the metric (2.3) is that of AdSy x S2. (The (¢,7)
coordinates are a somewhat nonstandard covering of a portion of AdSs, which we describe
in the Supplemental Material.) This immediately implies that the near-zone metric (2.3)
has 6 Killing vectors (KVs), in contrast to Schwarzschild, which has only 4.

Another advantage of the near-zone metric is that it describes a conformally flat space-
time, unlike Schwarzschild. This implies that the metric (2.3) has 9 additional conformal
Killing vectors (CKVs). The near-zone metric also has a vanishing Ricci scalar (though not
Ricci tensor) because the curvature radii of AdSy and S? are identical. This means that
the scalar ¢ is effectively conformally coupled, guaranteeing the CK'Vs generate symmetries
of the action in the near zone. We now turn to the study of these symmetries and their
physical consequences.

3 Near-zone symmetries

The Killing vectors of AdSs x 52 in (t,7,0, ) coordinates are

T =2r,0, (3.1a)
Ly = %521, 8,V A9, T VAS,), (3.1b)
Ja23 = Oy, (3.1¢)
Ji2 = cos 0y — cot Osin ¢ 0, (3.1d)
J13 = sin @ 0y + cot 0 cos ¢ O,,. (3.1e)

!These criteria do not uniquely fix the near-zone approximation for finite w. Nevertheless, the near-zone
approximation of Schwarzschild we use is standard in the literature. The existence of the symmetries that
we will discuss below can be viewed as an a posteriori motivation for this particular implementation.



The Killing vectors Lo = T and Ly were first introduced in [17] and coincide with the zero-
spin limit of the symmetries discovered for Kerr in [3]. More recently they were encountered
in the context of rotating STU supergravity black holes [18].

The near-zone metric (2.3) also possesses 9 conformal Killing vectors:

Jo1 = —22 cos 60, — (3.2a)
Jog = —cos [% 8;? (‘gg;ﬁa — COo8 089)} (3.2b)
Jog = —sing [22sin09, — %2 (9220, + cos09y) | (3.2¢)
Ky = /7 Y8 cos 0 (50, F 0,00, F 2tan 60y, (3.2d)
My = eXt/2rs Cos ¢ [\/SZ sin 00; = \FBTASIHOE) + Z\F cos 00y F 2\( t::ﬁ‘gp@ } (3.2¢)
Ny = et/ ging [% sin 00; F fwsmea + Q‘F cos 00 + 2\[ (;?358 } (3.2f)

Expressing each of the Killing and conformal Killing generators as {#d,, the symmetries
act on the scalar as

0¢p =&"0up + ivugw. (3.3)

The time translation 7" and spatial rotations J;; (4,j = 1,2, 3) are the familiar symmetries
of the exact dynamics. In addition, the symmetry generators Jy; (i = 1,2,3) have a
somewhat privileged status: they generate symmetries of the exact system in the static
limit, w = 0 [4]; see also [19] for a related discussion. The other (C)KVs do not give rise to
exact symmetries in this limit. Each contains a factor of e*%/2"s_ and thus when applied to
a static scalar generates a solution with w = +i/2r, (which also means the resulting scalar
has an |w| outside the regime of validity of the near-zone approximation). A corollary is
that these other (C)KVs are not well-defined in the flat space (r; — 0) limit. Nonetheless,
these generators can still be used to infer properties of exact static solutions [3]. On the
other hand, the generators Jy; have an overall factor of 1/rs which can be removed without
trouble, and thus do have a well-defined flat space limit.

All together, the algebra of the Killing (3.1) and conformal Killing (3.2) symmetries
is so(4,2), as expected because the metric (2.3) is conformally flat. There are a number
of subalgebras of interest. Firstly, the generators Jo;, J;; (4,5 = 1,2,3) form an so(3,1)
subalgebra [4]. In addition, each pair of vectors labeled with the subscripts + in egs. (3.1)
and (3.2) forms a subgroup together with the generator T'. More precisely, denoting X =
{L,K, M, N}, we have

[T, X:] = +Xg, (X4, X_] = 20xT, (3.4)

with o, = —1 and o = o) = oy = +1, giving different sl(2, R) subalgebras. To the best
of our knowledge, the consequences of the symmetries K1, M1, and N1 for perturbations
around Schwarzschild have not been explored in the literature.



4 Effective Kerr near-zone metric

The Kerr line element in Boyer-Lindquist coordinates is:

p2 — TsrdtQ B 2a7’57‘ sin2 0

ds? = — e dtde + Adr
o 0 (r?+a?)? - azA sin?f ., 9 (4.1)
+ p=df* + e sin” 0dy*,
where we have defined the quantities
p? =r®+a*cos? 0, A=r(r—rs)+a. (4.2)

The Schwarzschild radius r, and the spin parameter a are related to the outer and inner
horizons ry, i.e., the radii where A =0, via ry =r,/2 + /(rs/2)? — a?.
The Klein-Gordon equation on the Kerr background is

0r (A, 0) + Vi — 7a2¢ - [(72 +a?)? — Ad?sin? 0] 070
2a

-3 (0% +a%) - Alaa.e =o.

(4.3)

We define the near-zone region using the same approximation as in the Schwarzschild case.
We choose to implement this approximation in Boyer-Lindquist coordinates because they
are inertial at infinity. Wherever there are time derivatives, we keep terms that go as 1/A
to preserve the singularity as r approaches the horizon, and set » — r in the corresponding
numerators. This ensures any corrections are subdominant at the horizon and are small
away from it in the low frequency regime: wa < wry < wr < 1. Thus the near-zone scalar
equation is

Or (A0 ) + Vqu [(T+ +a )c{% + ad ] ¢=0. (4.4)

Note that, unlike some near-zone approximations of Kerr put forward in the literature,
this approximation remains well defined even in the extremal limit a — r,/2. Expanding
in frequency space and spherical harmonics? ¢ = e~“'Y},, (6, ¢)R(r) (where the ¢ and
m dependence of R is suppressed), and using T%_ + a® = ryry, the near-zone equation
reads [15, 16, 21, 22]3

2.2

9, (AO,R) + ’”’f (w-—mQ ) —Ll+1)|R=0, (4.5)

where for convenience we have introduced Q4 = a/(rgsry).

2For non-static perturbations one should in general use spheroidal harmonics. However, at the order
we are working with in the near-zone approximation, it is consistent to decompose the field in terms of
spherical harmonics [20].

®Note that there is a typo in eqs. (2.11) and (2.12) of [22], where the factor r} should be replaced
by T?T’i



It is straightforward to show that eq. (4.4) is the equation of motion for a massless
scalar propagating in the following effective near-zone metric:*
A —a?sin? 6

ds?e.one = _TdtQ — 2asin? fdtdyp + %d’r2 +rgrpdQ2s . (4.6)
S

This metric reduces to (2.3) in the limit a — 0, and moreover is conformally flat, and
therefore has the same number of CKVs. A coordinate transformation ¢’ = ¢ — (a/rsry)t
simplifies the metric to

TsT4

A
ds? = — de? +

near-zone rort A dT2 + T5T+inS'22- (47)
In the extremal limit where A = (r —r,)? = (r — 7_)?, one can see the (¢,7) subspace
is AdSs in Poincaré coordinates upon redefining r — r_ as the new radial coordinate.
Interestingly, the extremal near-zone metric coincides with the near-horizon limit of the
extremal Reissner-Nordstrom solution with 72 — rer,.

Away from the extremal limit, the simplest way to deduce the symmetries is to rec-
ognize that the effective near-zone metric for Kerr is in fact equivalent to the near-zone
metric for Schwarzschild. To see this, redefine t' = (r./\/rsr )t and v’ =\ /rery (r—r_)/rs,
with r, = ry —r_. The Kerr near-zone metric is then rewritten as:

A s
ds? =— dt” + TATJF dr'? + rer dQ? (4.8)

near-zone
TsT+

with A = /(1 — VTsT+) = (rer4/r2)A. This has the same form as the Schwarzschild
near-zone metric in (2.3) with rs — \/rsry.

The 15 (conformal) Killing vectors for a spinning black hole in the near-zone can thus
be obtained from their Schwarzschild counterparts (3.1)—(3.2) using the coordinate trans-
formations discussed above and replacing rs — ,/rs7+. For completeness, we report their
explicit expressions in the Supplemental Material. There are several sl(2,R) subalgebras,
just as in Schwarzschild, taking the same form as in eq. (3.4). Spatial rotations J;; and
boosts Jo; (i, = 1,2,3) form an so(3,1) subalgebra just as before. However, only Ja3
among the spatial rotations is an exact symmetry of the static sector, while Ji2 and Ji3 do
not preserve the static nature of field configurations.® Physically, this is because the Kerr
metric has a preferred direction. Similarly, of the three boosts, only Jy; is a symmetry of
the exact system in the static limit.%

4We stress that the near-zone metric (4.6) should not be confused with the near-horizon limit encountered
in the context of the extremal Kerr metric (see, e.g., [23]). This near-horizon limit is defined by a rescaling
of the radial and time coordinates which keeps the coordinate ¢’ fixed. As a byproduct, it is suited to study
modes with w ~ m£)4, rather than the static regime.

By a static configuration, we mean 0;¢ = 0 keeping ¢ (as well as r and 6) fixed, as opposed to keeping
¢’ fixed. This choice is dictated by the fact that ¢ is an inertial coordinate at infinity.

SThis is reflected by the fact that only Jo; among them has no time dependence when expressed in
Boyer-Lindquist coordinates.



5 Comparison of different near zones

The effective metric (4.6) captures the near-zone dynamics (4.4) of massless scalar per-
turbations around a Kerr black hole. For different reasons, various deformations of the
near-zone approximation (4.4) have been proposed in the literature. There are in fact
many ways of deforming (4.4) at subleading order in (r — r4)/r4 [20, 24]. It is instructive
to briefly review some of these possibilities and highlight the main differences with (4.4).

One notable example is given in [25]. Supported by the observation that the Cardy
formula for a CFT4 gives exactly the Bekenstein-Hawking entropy of the Kerr solution, [25]
conjectured (see also [23, 26, 27]) that a non-extremal Kerr black hole is dual to a two-
dimensional CFT and proposed a near-zone approximation with an sl(2,R); x sl(2,R)p
symmetry. This can be obtained by adding to (4.5) the term (wrs(wr? —2ma)/(r —7_))R.
The effect of this term — which is small in the low frequency regime and subleading near
the horizon compared to the 1/A term in (4.5)—is to break some of the symmetries while
introducing a new sl(2,R); xsl(2,R) , symmetry (which is not a subalgebra of our so(4, 2)).
These sl(2,R); xsl(2,R), generators are singular in the Schwarzschild limit (the near zone
of [25] is not smoothly connected to the Schwarzschild near zone above in the limit a — 0)
and they are not globally defined, as they do not respect the ¢ — ¢ + 27 periodicity.

A different near-zone approximation that overcomes these issues has recently been
proposed in [3]. The near zone of [3] differs from the one in eq. (4.4) by the term
(AwQym(r—ry)/(r+—r_))R. This too breaks some of the symmetries, but keeps an sl(2, R)
group with generators that are both globally well defined and have a smooth Schwarzschild
limit.

All three of these approximations are contained in the one-parameter family of [24],
which possesses an sl(2,R); x s1(2,R), symmetry except at two special points, one corre-
sponding to (4.4) (where they identified the generators T (A.4a) and Ly (A.4h)) and the
other to [3]. See also [28] for a recent discussion of near-zone approximations and their
relations to Killing tensor symmetries.

Each of these approximation schemes has benefits and drawbacks. For our purposes,
the main appeal of the approximation (4.4), besides having a smooth Schwarzschild limit
and globally well-defined generators, is that its effective metric (4.6) contains in particular
the symmetry generator Jp; in (A.4b). This is a symmetry of the eract dynamics for
static field configurations (and is in fact a CKV of an effective 3D metric [4]). Keeping
Jo1 as a symmetry is thus useful for a near-zone approximation intended for low frequency
phenomena. The effective metric (4.6) has other special properties: since it is conformally
flat, it possesses the maximal number of CKVs (15 in d = 4), and since its Ricci scalar
vanishes, a massless scalar is automatically conformally coupled, so that each of the (C)KVs
&M generates a symmetry acting on the scalar as in (3.3). Each gives rise to a conserved
current in the standard way: j# = TH¢,, where T"" is the (traceless) energy momentum
tensor of the scalar.



6 Ladder symmetries and tidal response

Up to an irrelevant constant factor, the CKV associated with Jy; in (A.4b) can be written
as 5301 = (0,Acos¥, %A’ sinf,0), with A’ = 9,A. As mentioned above, this CKV is time
independent and survives in the zero-frequency limit, recovering the CKV that we showed
in [4] to be associated with a ladder structure for static perturbations around Kerr black
holes, leading to vanishing static response.” Let us now recall how this works and extend
the results of [4] to non-zero frequencies.

The CKV ‘5501 corresponds to a symmetry of the scalar action, which acts on the
scalar field ¢ (in real space) as in (3.3). After decomposing ¢ in spherical harmonics as
¢ = e Yy (0, p)Re(r), and extracting a convenient phase factor from Ry,

ryTs (w—my) log ( Tt

Ri=e ™+ - T*T—>w, (6.1)

the scalar equation (4.5) takes the form

[0 (A0, — 27,7y (w=mOy) ) = U+ 1)] g =0, (6.2)
where derivatives act on everything to their right, and the field transformation takes the
form

6y = QD 1ot — Qo1 Dy it - (6.3)
We have defined Qy = /(¢2 — m?2)/(4¢2 — 1) and introduced the operators
1
D}f = —A9, — %A’ +irsry(w —mfy), (6.4a)
l
D, = A0, — §A, —irsr(w —my). (6.4b)

The th are ladder operators in the sense that 0111 = wa are solutions to the near-zone
equation (6.2) at level £ £ 1 if ¢y solves (6.2) at level £. These operators are useful because
they allow us to recursively define an on-shell conserved charge at each ¢ [4]:

Py = oy[AD, — 2irgry (w—mQy) | Dy -+ D, g, (6.5)

where oy = —2271(¢1)2/[(26)!(2¢ + 1)!]. These conserved charges allow us to connect the
behavior of solutions near the horizon to the behavior at infinity without solving eq. (6.2)
explicitly, making it possible to infer the vanishing of static responses from symmetry [4].
Corresponding to each of these charges is an off-shell symmetry of the action, which can be
inferred as described in [4] (see also [29] for a similar construction on de Sitter backgrounds).

Evaluating P, on ¢y = Dj_l o -Dar 19, where g = constant — which is the solution
with the correct infalling behavior at r = r; — yields

Py = —i o 2[-{-1& ‘ k? 42 6.6
4 ZQ(T+ r*) (2€)'(2£+1)' k:1( +4q )7 ( : )

"Note that the s1(2,R) involving L+ in the near zone (4.4) includes (A.4a) as a generator instead of 9y,
which precludes applying the arguments of [3] directly.



with ¢ = rgry (mQ4—w)/(ry—r_). The conserved charges Py in (6.6) reproduce the induced
multipole moments of a scalar field on a fixed Kerr geometry [30] (see also [15, 16, 31]). In
particular, when w = 0, one recovers the scalar’s static dissipative response [4, 10-12, 14].
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A Supplemental material

A.1 Near-zone AdS; geometry

Here we elaborate on the geometry of the (¢,r) subspace of the near-zone metric (2.3).
This metric describes AdSs in de Sitter-slice coordinates. In order to see this, we make the
coordinate transformation

t 2r
= =cosh™ (= -1 Al
T o & = cos (7“3 > ) (A.1)
so that the two-dimensional metric ds? = —T%dt2 + %dr2 becomes
ds? =12 (dg? - sinb?¢ dr?), (A.2)

with 7 € (—o00,4+00), £ € [0,+00). Notice in particular that £ = 0 corresponds to r = rs.
This is an AdSs metric. To see this explicitly, we note that these coordinates correspond
to the embedding

Xo =rscoshé, X1 = rgsinh sinh 7, X9 = rgsinh £ cosh 7, (A.3)

which satisfy —X& — X2+ X2 = —r2, and cover the region of this hyperboloid that satisfies
Xo > rs, Xo > 0. This portion of AdSs is depicted in figure 1.



_ /\*\/\f X1

Figure 1. Portion of AdSs covered by the de Sitter slice coordinates (7,€), along with lines of
constant 7 and &.

A.2 (Conformal) Killing vectors of near-zone Kerr geometry

The (conformal) Killing vectors of the near-zone Kerr metric in eq. (4.6) (or, equivalently,
eq. (4.7)) are:

T =Ro, + 220, (A.da)
Jor = =22 cos 0 0, — %2 sin 0 9, (A.4b)
Jog = —cos ¢’ [% sinf 0, + % (%%/ﬁw — Cos 089)] , (A.4c)
Jog = —sing' [ sin 00, — %A (S0, + cos00y ) |, (A.4d)
Jiz = cos @'y — cot O sin ¢’ D, (A.4e)
Jiz = sin '8y + cot @ cos ¢’ O, (A.4f)
Joz = Oy, (A.4g)
Ly = /R [R(O,VA)0, 7 VA, + 2(0,V/A)0, | (A.4h)
Ko = eF/RYA cos (075, F 0,A, F 2tan 6 + %=0,,) , (A.4i)
My = TR cos ¢! [r\,}% sin 00, F \/M;fswar + 2:,/? cos 00y + (“\S/%e F 2}/*3 t;?j) Qo] ,
(A4)

Ny = e/ Rgin ¢/ [% sin 09, F ‘/KBQ*A sinf g, + 27‘"/} cos 00y + (a\s/i%e + Q)CZ C;;“g) &p} :
(A.4k)
where we have defined R = 21;?%, o =p— —otand ro =74 —r_. Note that these reduce

to (3.1) and (3.2) in the limit a — 0. The generators (A.4) satisfy the so(4,2) algebra. We



can make this explicit by defining Js4 = T" along with

Ly —-L_ Ly+L_
Joa = %, Jos = %, (A.5a)
K, —-K_ Ki+K_
Jia = %7 Jis = %, (A.5b)
My — M_ M, + M_
Joy = %, Jos = %, (A.5c¢)
Ny —N_ Ny + N_
Jag = ———, Jos = ———, (A.5d)
2 2
which then have the so(4,2) commutation relations
[Jap; Jep] = napJec +necJap — nacJep — nepJac, (A.6)

where nap = diag(—1,1,1,1,1,—1). A few comments are in order. First, note that only
Jo1 and Ja3 are time-independent (when expressing all quantities in Boyer-Lindquist co-
ordinates) and are exact symmetries of the static sector [4]. The other generators depend
explicitly on time and are not (C)KVs of the effective 3D Kerr metric of [4]. Second, the
generators Ly differ from the ones introduced in [3] for non-zero values of the spin parame-
ter a. Interestingly, though, they coincide (up to a rescaling of the time coordinate) in the
region close to the horizon defined by (r —ry)/r; < 1. This is a manifestation of the fact
that all the near-zone approximations of Kerr put forward in the literature actually coin-
cide in this limit. Note also that some of the generators in (A.4) are manifestly well defined
in the extremal limit (a — 75/2, r. — 0), while others look singular in this limit. This is
not a problem because one can consistently recover all the (C)KVs of the metric (4.6) at
extremality by multiplying with suitable powers of r, and taking linear combinations of the
generators (A.4). For instance, in addition to J;; and T' (after extracting a 1/r, factor),
the other two KVs of (4.6) in the extremal limit are obtained by expanding Jy4 and the
combination (T — Jps) /74 at leading order in r,.

A.3 Ladder in spin and finite frequency

A convenient near-zone approximation that describes the dynamics of particles of generic
spin, s, in the limit r; <r < 1/w is [16, 21]

¢ +isq(2z + 1)

2 (¢ — =
x(z+1)0;R+(s+1)(22+1)0, R+ |—(L — s)({ + s + 1) + 2@t 1) R=0, (A7)
where g = rgri (mQ4 —w)/(ry —r—) and
_r=r+
x = r— (A.8)

It is straightforward to show that eq. (A.7) admits the following set of spin raising and
lowering operators:

E;_ _ (ar _ err—l-(w — mQ+)> R, Es_ — A5t <ar + zrs'r+(w — mQ-‘r)) AR,
A A
(A.9)

~10 -



which generate solutions with spin s + 1 and s — 1 respectively, i.e., RGFD — ES*R(S) and
RG=D = E;-R®) where R® solves (A.7) with spin s. The operators (A.9) generalize
the Teukolsky-Starobinsky identities [16, 32, 33] in the near-zone regime by connecting
solutions with consecutive spin s and s & 1. These spin raising and lowering operators
provide a simple way of extending the results discussed above for spin-0 fields to spin-1
and spin-2 particles described by the Teukolsky equation [4].
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