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Abstract

Merging datafiles containing information on overlapping sets of entities is a challenging task in the ab-

sence of unique identifiers, and is further complicated when some entities are duplicated in the datafiles.

Most approaches to this problem have focused on linking two files assumed to be free of duplicates, or

on detecting which records in a single file are duplicates. However, it is common in practice to encounter

scenarios that fit somewhere in between or beyond these two settings. We propose a Bayesian approach

for the general setting of multifile record linkage and duplicate detection. We use a novel partition rep-

resentation to propose a structured prior for partitions that can incorporate prior information about the

data collection processes of the datafiles in a flexible manner, and extend previous models for comparison

data to accommodate the multifile setting. We also introduce a family of loss functions to derive Bayes

estimates of partitions that allow uncertain portions of the partitions to be left unresolved. The perfor-

mance of our proposed methodology is explored through extensive simulations. Code implementing the

methodology is available at https://github.com/aleshing/multilink.
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1 Introduction

When information on individuals is collected across multiple datafiles, it is natural to merge these to harness

all available information. This merging requires identifying coreferent records, i.e., records that refer to the

same entity, which is not trivial in the absence of unique identifiers. This problem arises in many fields,

including public health (Hof et al. 2017), official statistics (Jaro 1989), political science (Enamorado et al.

2019), and human rights (Sadinle 2014, 2017, Ball & Price 2019).

Most approaches in this area have thus far focused on one of two settings. Record linkage has traditionally

referred to the setting where the goal is to find coreferent records across two datafiles, where the files are

assumed to be free of duplicates. Duplicate detection has traditionally referred to the setting where the goal

is to find coreferent records within a single file. In practice, however, it is common to encounter problems

that fit somewhere in between or beyond these two settings. For example, we could have multiple datafiles

that are all assumed to be free of duplicates, or we might have duplicates in some files but not in others.

In these general settings, the data collection processes for the different datafiles possibly introduce different

patterns of duplication, measurement error, and missingness into the records. Further, dependencies among

these data collection processes determine which specific subsets of files contain records of the same entity.

We refer to this general setting as multifile record linkage and duplicate detection.

Traditional approaches to record linkage and duplicate detection have mainly followed the seminal work

of Fellegi & Sunter (1969), by modeling comparisons of fields between pairs of records in a mixture model

framework (Winkler 1994, Jaro 1989, Larsen & Rubin 2001). These approaches work under, and take

advantage of, the intuitive assumption that coreferent records will look similar, and non-coreferent records

will look dissimilar. However, these approaches output independent decisions for the coreference status of

each pair of records, necessitating the use of ad hoc post-processing steps to reconcile incompatible decisions

that ignore the logical constraints of the problem.

Our approach to multifile record linkage and duplicate detection builds on previous Bayesian approaches

where the parameter of interest is defined as a partition of the records. These Bayesian approaches have

been carried out in two frameworks. In the direct-modeling framework, one directly models the fields of

information contained in the records (Matsakis 2010, Tancredi & Liseo 2011, Liseo & Tancredi 2011, Steorts
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2015, Steorts et al. 2016, Tancredi et al. 2020, Marchant et al. 2021, Enamorado & Steorts 2020), which

requires a custom model for each type of field. While this framework can provide a plausible generative

model for the records, it can be difficult to develop custom models for complicated fields like strings, so most

approaches are limited to modeling categorical data, with some exceptions (Liseo & Tancredi 2011, Steorts

2015). In the comparison-based framework, following the traditional approaches, one models comparisons of

fields between pairs of records (Fortini et al. 2001, Larsen 2005, Sadinle 2014, 2017). By modeling comparisons

of fields, instead of the fields directly, a generic modeling approach can be taken for any field type, as long

as there is a meaningful measure of similarity for that field type.

Sadinle & Fienberg (2013) generalized Fellegi & Sunter (1969) by linking K > 2 files with no duplicates.

However, in addition to inheriting the issues of traditional approaches, their approach does not scale well

in the number of files or the file sizes encountered in practice. Steorts et al. (2016) presented a Bayesian

approach in the direct-modeling framework for the general setting of multifile record linkage and duplicate

detection, which has been extended by Steorts (2015) and Marchant et al. (2021). This approach uses a flat

prior on arbitrary labels of partitions, which incorporates unintended prior information.

In light of the shortcomings of existing approaches, we propose an extension of Bayesian comparison-based

models that explicitly handles the setting of multifile record linkage and duplicate detection. We first present

in Section 2 a parameterization of partitions specific to the context of multifile record linkage and duplicate

detection. Building on this parameterization, in Section 3 we construct a structured prior for partitions that

can incorporate prior information about the data collection processes of the files in a flexible manner. As a

by-product, a family of priors for K-partite matchings is constructed. In Section 4 we construct a likelihood

function for comparisons of fields between pairs of records that accommodates possible differences in the

datafile collection processes. In Section 5 we present a family of loss functions that we use to derive Bayes

estimates of partitions. These loss functions have an abstain option which allow portions of the partition

with large amounts of uncertainty to be left unresolved. Finally, we explore the performance of our proposed

methodology through simulation studies in Section 6. In the Appendix we present an application of our

proposed approach to link three Colombian homicide record systems.
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2 Multifile Partitioning

Consider K files X1, · · · ,XK , each containing information on possibly overlapping subsets of a population

of entities. The goal of multifile record linkage and duplicate detection is to identify the sets of records in

X1, · · · , XK that are coreferent, as illustrated in Figure 1. Identifying coreferent records across datafiles

represents the goal of record linkage, and identifying coreferent records within each file represents the goal

of duplicate detection.

Name DOB …

John A. Smith 06/09/89 …

John B. Smith 07/10/89 …

Jane Doe 08/28/72 …

… … …

Name DOB …

John Smith NA/NA/89 …

Janet Dole NA/NA/72 …

Robert Kim NA/NA/92 …

… … …

Name DOB …

Jack Smith 06/NA/89 …

Bob Kim 04/NA/92 …

Rob Kim 04/NA/92 …

… … …

?

?

?

?

?

?

?

X3X2X1

?

?

Figure 1: A toy example of the multifile record linkage and duplicate detection problem.

We denote the number of records contained in datafile Xk as rk, and the total number of records across

all files as r =
∑K

k=1 rk. We label the records in all datafiles in a consecutive order, that is, those in X1 as

R1 = (1, · · · , r1), those in X2 as R2 = (r1 + 1, · · · , r1 + r2), and so on, finally labeling the records in XK

as RK = (
∑K−1

k=1 rk + 1, · · · , r). We denote [r] = (1, · · · , r), where it is clear that [r] = (R1, · · · , RK), which

represents all the records coming from all datafiles.

Formally, multifile record linkage and duplicate detection is a partitioning problem. A partition of a set

is a collection of disjoint subsets, called clusters, whose union is the original set. In this context, the term

coreference partition refers to a partition C of all the records in X1, · · · , XK , or equivalently a partition C

of [r], such that each cluster c ∈ C is exclusively composed of all the records generated by a single entity

(Matsakis 2010, Sadinle 2014). This implies that there is a one-to-one correspondence between the clusters

in C and the entities represented in at least one of the datafiles. Estimating C is the goal of multifile record

linkage and duplicate detection.
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2.1 Multifile Coreference Partitions

In the setting of multifile record linkage and duplicate detection, the datafiles are the product of K data

collection processes, which possibly introduce different patterns of duplication, measurement error, and

missingness. This indicates that records coming from different datafiles should be treated differently. To

take this into account, we introduce the concept of a multifile coreference partition by endowing a coreference

partition C with additional structure to preserve the information on where records come from. Each cluster

c ∈ C can be decomposed as c = c1 ∪ · · · ∪ ck ∪ · · · ∪ cK , where ck is the subset of records in cluster c that

belong to datafile Xk, which leads us to the following definition.

Definition 1. The multifile coreference partition of datafiles X1, · · · ,XK is obtained from the coreference

partition C by expressing each cluster c ∈ C as a K-tuple (c1, · · · , cK), where ck represents the records of c

that come from datafile Xk.

For simplicity we will continue using the notation C to denote a multifile coreference partition, although

technically this new structure is richer and therefore different from a coreference partition that does not

preserve the datafile membership of the records. The multifile representation of partitions is useful for

decoupling the features that are important for within-file duplicate detection or for across-files record linkage.

For duplicate detection, the goal is to identify coreferent records within each datafile. This can be phrased

as estimating the within-file coreference partition Ck of each datafile Xk. Clearly, these Ck can be obtained

from the multifile partition C by extracting the kth entry of each cluster c = (c1, . . . , cK) ∈ C. Two useful

summaries of a given within-file partition Ck are the number of within-file clusters nk = |Ck|, which is the

number of unique entities represented in datafile Xk, and the within-file cluster sizes dk = {|ck| : ck ∈ Ck},

which represent the number of records associated with each entity in datafile Xk.

On the other hand, in record linkage the goal is to identify coreferent records across datafiles. Given

the within-file partitions, C1, · · · , CK , the goal can be phrased as identifying which clusters across these

partitions represent the same entities. This across-datafiles structure can be formally represented by a K-

partite matching. Given K sets V1, · · · , VK , a K-partite matching M is a collection of subsets from ∪K
k=1Vk

such that each m ∈ M contains maximum one element from each Vk. If we think of each Vk as the set of

clusters Ck representing the entities in datafile Xk, then it is clear that the goal is to identify the K-partite
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matching M that puts together the clusters that refer to the same entities across datafiles. This structure

can be extracted from a multifile coreference partition C, given that each element c = (c1, . . . , cK) ∈ C

contains the coreferent clusters across all within-file partitions. Indeed, a multifile coreference partition can

be thought of as a K-partite matching of within-file coreference partitions.

A useful summary of the across-datafile structure is the amount of entity-overlap between datafiles,

represented by the number of clusters c = (c1, . . . , cK) ∈ C with records in specific subsets of the files.

We can concisely summarize the entity-overlap of the datafiles through a contingency table. In particular,

consider a 2K contingency table with cells indexed by h ∈ {0, 1}K and corresponding cell counts nh. Here, h

represents a pattern of inclusion of an entity in the datafiles, where a 1 indicates inclusion and a 0 exclusion.

For instance, if K = 3, n011 is the number of clusters c = (c1, c2, c3) ∈ C representing entities with records in

datafiles 2 and 3 but without records in datafile 1. We let H = {0, 1}K \ {0}K and denote the (incomplete)

contingency table of counts as n = {nh}h∈H, which we refer to as the overlap table. We ignore the cell {0}K

which would represent entities that are not recorded in any of the K files. This cell is not of interest in this

article, although it is the parameter of interest in population size estimation (see e.g. Bird & King 2018).

Example. To illustrate the concept of a multifile partition, consider two files with five and seven records

respectively, so that X1 contains records 1 − 5 and X2 contains records 6 − 12. Suppose the corefer-

ence partition is {{1, 9}, {2}, {3, 8, 10, 11}, {4, 5, 7}, {6}, {12}}. The corresponding multifile partition is C =

{({1}, {9}), ({2}, ∅), ({3}, {8, 10, 11}), ({4, 5}, {7}), (∅, {6}), (∅, {12})}. As illustrated in Figure 2, the within-

file partitions can be extracted as C1 = {{1}, {2}, {3}, {4, 5}} and C2 = {{6}, {7}, {9}, {8, 10, 11}, {12}}, and

the within-file cluster sizes are d1 = (1, 1, 1, 2) and d2 = (1, 1, 1, 3, 1). The overlap table in this case is

{n11, n10, n01}, indicating that n11 = 3 entities are represented in both datafiles, n10 = 1 entity is repre-

sented only in the first datafile, and n01 = 2 entities are represented only in the second datafile. In total,

there are n1 = |C1| = n11 + n10 = 4 unique entities represented in X1, n2 = |C2| = n11 + n01 = 5 unique

entities represented in X2, and n = |C| = n11 + n10 + n01 = 6 entities among both datafiles.
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# of Clusters:
n=6

Overlap Table:

# of Within File Clusters:
n1=4, n2=5

Within File Cluster Sizes:
d1=(1, 1, 1, 2),
d2=(1, 1, 1, 3, 1)

Files
Within File 

Partitions
Multifile Partition

Multifile Partition 

Summaries

In X1 Out X1

In X2 n11=3 n01=2

Out X2 n10=1 -

6

7

8

9

10

11

12

1

2

3

4

5

X1: X2:

1

C1: C2:

2

3

4, 5

6

9

8, 10, 11

7

1

C:

2

3

4, 5

6

9

7

8, 10, 11

12 12

Figure 2: An illustration of a multifile partition of [12], where X1 contains records 1− 5 and X2 contains

records 6− 12.

3 A Structured Prior for Multifile Partitions

Bayesian approaches to multifile record linkage and duplicate detection require prior distributions on multifile

coreference partitions. We present a generative process for multifile partitions, building on our representation

introduced in Section 2.1. The idea is to generate a multifile partition by first generating summaries that

characterize it, as follows:

1. Generate the number of unique entities n represented in the datafiles, which also corresponds to the

number of clusters of the multifile partition.

2. Given n, generate an overlap table n = {nh}h∈H so that n =
∑

h∈H nh, where H = {0, 1}K \ {0}K .

From n we can derive the number of entities in datafile Xk as nk =
∑

h∈H hknh, where hk is the kth

entry of h.

3. For each k = 1, · · · ,K, given nk, independently generate a set of counts dk = {dki }
nk

i=1, representing

the number of records associated with each entity in file Xk. From dk, we can derive the number of

records in file Xk as r′k =
∑nk

i=1 d
k
i . Index the r′k records as R′

k = (
∑k−1

l=1 r′l + 1, · · · ,
∑k

l=1 r
′
l).

4. For each k = 1, · · · ,K, given dk, induce a within-file partition Ck by randomly allocating R′
k into nk

clusters of sizes dk1 , · · · , d
k
nk
.

5. Given the overlap table n and within-file partitions {C1, · · · , CK}, generate a K-partite matching of
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the within-file partitions by selecting uniformly at random from the set of all K-partite matchings with

overlap table n. By definition, the result is a multifile coreference partition.

By parameterizing each step of this generative process, we can construct a prior distribution for multifile

partitions, as we now show.

3.1 Parameterizing the Generative Process

Prior for the Number of Entities or Clusters. In the absence of substantial prior information, we follow a

simple choice for the prior on the number of clusters, by taking a uniform distribution over the integers

less than some upper bound, U , i.e. P(n) = U−1I(n ∈ {1, · · · , U}). In practice, we set U to be the actual

number of records across all datafiles r, which is observed. More informative specifications are discussed in

Appendix A.

Prior for the Overlap Table. Conditional on n, we use a Dirichlet-multinomial distribution as our prior

on the overlap table n = {nh}h∈H. Given a collection of positive hyperparameters for each cell of the

overlap table, α = {αh}h∈H, and letting α0 =
∑

h∈H αh, the prior for the overlap table under this choice is

P(n | n) = [(n!)Γ(α0)/Γ(n+α0)]
∏

h∈H[Γ(nh +αh)/(nh!)Γ(αh)]. Due to conjugacy, α can be interpreted as

prior cell counts, which can be used to incorporate prior information about the overlap between datafiles. In

the absence of substantial prior information, when the number of files is not too large and the overlap table

is not expected to be sparse, we recommend setting α = (1, · · · , 1). In Appendix A we discuss alternative

specifications when the overlap table is expected to be sparse.

Prior for the Within-File Cluster Sizes. Given the number of entities in datafile Xk, nk =
∑

h∈H hknh,

we generate the within-file cluster sizes dk = {dki }
nk

i=1 assuming that dk1 , · · · , d
k
nk

| nk
iid
∼ pk(·). Here pk(·)

represents the probability mass function of a distribution on the positive integers, so that P(dk | nk) =

∏nk

i=1 pk(d
k
i ). We do not expect a-priori many duplicates per entity, and therefore we expect the counts in

dk to be mostly ones or to be very small (Miller et al. 2015, Zanella et al. 2016). We therefore use a similar

approach to Klami & Jitta (2016), and use distributions truncated to the range {1, · · · , Uk}, where Uk is a

file-specific upper bound on cluster sizes. We further use distributions where prior mass is concentrated at

small values. A default specification is to use a Poisson distribution with mean 1 truncated to {1, · · · , Uk},
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i.e. pk(d
k
i ) ∝ (dki !)

−1I(dki ∈ {1, · · · , Uk}). More informative options could be used for pk(·) by using any

distribution on {1, · · · , Uk}, where this could vary from file to file if some files were known to have more or

less duplication.

Prior for the Within-File Partitions. Given the within-file cluster sizes dk, the number of ways of assigning

dk1 , · · · , d
k
nk

records to clusters 1, · · · , nk, respectively, is given by the multinomial coefficient r′k!/
∏nk

i=1 d
k
i !,

with r′k =
∑nk

i=1 d
k
i . However, the ordering of the clusters is irrelevant for constructing the within-file

partition Ck of R′
k. There are nk! ways of ordering the nk clusters of Ck, which leads to r′k!/(nk!

∏nk

i=1 d
k
i !)

partitions of R′
k into clusters of sizes dk1 , · · · , d

k
nk
. We then have P(Ck | dk) = (nk!/r

′
k!)
∏nk

i=1 d
k
i !.

Prior for the K-Partite Matching. Given the overlap table n and the within-file partitions {C1, · · · , CK},

our prior over K-partite matchings of the within-file partitions is uniform. Thus we just need to count the

number of K-partite matchings with overlap table n. This is taken care of by Proposition 1, proven in

Appendix A.

Proposition 1. The number of K-partite matchings that have the same overlap table, n = {nh}h∈H, is

∏K
k=1 nk!/

∏

h∈H nh!. Thus P(C | {Ck}
K
k=1,n) =

∏

h∈H nh!/
∏K

k=1 nk!.

The Structured Prior for Multifile Partitions. Letting quantities followed by (C) mean they are computable

from C, the density of our structured prior for multifile partitions is

P(C) = P(n)P(n | n)
K
∏

k=1

[

P(dk | nk)P(Ck | dk)
]

P(C | {Ck}
K
k=1,n)

= P(n(C))
n(C)! Γ(α0)

Γ(n(C) + α0)

∏

h∈H

[

Γ(nh(C) + αh)

Γ(αh)

] K
∏

k=1

[

1

r′k(C)!

∏

ck∈Ck

[|ck|! pk(|ck|)]

]

. (1)

3.2 Comments and Related Literature

The structured prior for multifile partitions allows us to incorporate prior information about the total number

of clusters, the overlap between files, and the amount of duplication in each file. If we restrict the prior for

the within-file cluster sizes to be pk(d
k
i ) = I(dki = 1) for a given datafile Xk, then we enforce the assumption

that there are no duplicates in that file. Imposing this restriction for all datafiles leads to the special case of a

prior for K-partite matchings, which is of independent interest, as we are not aware of any such constructions

outside of the bipartite case (Fortini et al. 2001, Larsen 2005, Sadinle 2017).
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Our prior construction, where priors are first placed on interpretable summaries of a partition and then

a uniform prior is placed on partitions which have those summaries, mimics the construction of the priors

on bipartite matchings of Fortini et al. (2001), Larsen (2005) and Sadinle (2017), and the Kolchin and

allelic partition priors of Zanella et al. (2016) and Betancourt, Sosa & Rodŕıguez (2020). While the Kolchin

and allelic partition priors could both be used as priors for multifile partitions, these do not incorporate

the datafile membership of records. Using these priors in the multifile setting would imply that the sizes

of clusters containing records from only one file have the same prior distribution as the sizes of clusters

containing records from two files, which should not be true in general.

Miller et al. (2015) and Zanella et al. (2016) proposed the microclustering property as a desirable re-

quirement for partition priors in the context of duplicate detection: denoting the size of the largest cluster

in a partition of [r] by Mr, a prior satisfies the microclustering property if Mr/r → 0 in probability as

r → ∞. A downside of priors with this property is that they can still allow the size of the largest cluster

to go to ∞ as r increases. For this reason Betancourt, Sosa & Rodŕıguez (2020) introduced the stronger

bounded microclustering property, which we believe is more practically important: for any r, Mr is finite

with probability 1. Our prior satisfies the bounded microclustering property as Mr ≤
∑K

k=1 U
k.

While our parameter of interest is a partition C of r records, the prior developed in this section is a prior

for a partition of a random number of records. In practice we condition on the file sizes, {rk}
K
k=1, and use the

prior P(C | {rk}
K
k=1) ∝ P(C)I(r′k(C) = rk(C) for all k), which alters the interpretation of the prior. A similar

problem occurs for the Kolchin partition priors of Zanella et al. (2016). This motivated the exchangeable

sequences of clusters priors of Betancourt, Zanella & Steorts (2020), which are similar to Kolchin partition

priors, but lead to a directly interpretable prior specification. It would be interesting in future work to see if

an analogous prior could be developed for our structured prior for multifile partitions. Despite this limitation,

we demonstrate in simulations in Section 6 that incorporating strong prior information into our structured

prior for multifile partitions can lead to improved frequentist performance over a default specification.
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4 A Model for Comparison Data

We now introduce a comparison-based modeling approach to multifile record linkage and duplicate detection,

building on the work of Fellegi & Sunter (1969), Jaro (1989), Winkler (1994), Larsen & Rubin (2001), Fortini

et al. (2001), Larsen (2005) and Sadinle (2014, 2017). Working under the intuitive assumption that coreferent

records will look similar, and non-coreferent records will look dissimilar, these approaches construct statistical

models for comparisons computed between each pair of records.

There are two implications of the multifile setting described in Section 2 that are important to consider

when constructing a model for the comparison data. First, models for the comparison data should account

for the fact that the distribution of the comparisons between record pairs might potentially change across

different pairs of files. For example, if files Xk and Xk′ are not accurate, whereas files Xq and Xq′ are, then

the distribution of comparisons between Xk and Xk′ will look very different compared with the distribution

of comparisons between Xq and Xq′ . Second, the fields available for comparison will vary across pairs of

files. For example, files Xk and Xk′ may have collected information on a field that file Xq did not. In this

scenario, we would like a model that is able to utilize this extra field when linking Xk and Xk′ , even though

it is not available in Xq. In this section we introduce a Bayesian comparison-based model that explicitly

handles the multifile setting by constructing a likelihood function that models comparisons of fields between

different pairs of files separately. The separate models are able to adapt to the level of noise of each file pair,

and the maximal number of fields are able to be compared for each file pair.

4.1 Comparison Data

We construct comparison vectors for pairs of records to provide evidence for whether they correspond to the

same entity. For k ≤ k′, let Pkk′ = {(i, j) : i < j, i ∈ Xk, j ∈ Xk′} denote the set of all record pairs between

files Xk and Xk′ , and let F be the total number of different fields available from the K files. For each file pair

(k, k′), k ≤ k′, and record pair (i, j) ∈ Pkk′ , we compare each field f = 1, . . . , F using a similarity measure

Sf (i, j), which will depend on the data type of field f . For unstructured categorical fields such as race, Sf

can be a binary comparison which checks for agreement. For more structured fields containing strings or

numbers, Sf should be able to capture partial agreements. For example, string fields can be compared using
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a string metric like the Levenshtein edit distance (see e.g. Bilenko et al. 2003), and numeric fields can be

compared using absolute differences. Comparison Sf (i, j) will be missing if field f is not recorded in record

i or record j, which includes the case where field f is not recorded in datafiles Xk or Xk′ .

While we could directly model the similarity measures Sf (i, j), this would require a custom model for

each type of comparison, which inherits similar problems to the direct modeling of the fields themselves.

Instead, we follow Winkler (1990) and Sadinle (2014, 2017) in dividing the range of Sf into Lf + 1 inter-

vals If0, If1, · · · , IfLf
that represent varying levels of agreement, with If0 representing the highest level of

agreement, and IfLf
representing the lowest level of agreement. We then let γf

ij = l if Sf (i, j) ∈ Ifl, where

larger values of γf
ij represent larger disagreements between records i and j in field f . Finally, we form the

comparison vector γij = (γ1
ij , · · · , γ

F
ij). Constructing the comparison data this way allows us to build a

generic modeling approach. In particular, extending Fortini et al. (2001), Larsen (2005) and Sadinle (2014,

2017), our model for the comparison data is

γij | C(i) = C(j), (i, j) ∈ Pkk′

iid
∼ Mkk′(mkk′),

γij | C(i) 6= C(j), (i, j) ∈ Pkk′

iid
∼ Ukk′(ukk′),

where C is a multifile partition, C(i) denotes record i’s cluster in C, C(i) = C(j) indicates that records i and

j are coreferent, Mkk′(mkk′) is a model for the comparison data among coreferent record pairs from the file

pair Xk and Xk′ , Ukk′(ukk′) is a model for the comparison data among non-coreferent record pairs from

datafile pair Xk and Xk′ , and mkk′ and ukk′ are vectors of parameters.

In the next section we make two further assumptions that simplify the model parameterization. Before

doing so, we note a few limitations of our comparison-based model. First, computing comparison vectors

scales quadratically in the number of records. Second, comparison vectors for different record pairs are

not actually independent conditional on the partition (see Section 2 of Tancredi & Liseo 2011). Third,

modeling discretized comparisons of record fields represents a loss of information. While the first limitation

is computational and unavoidable in the absence of blocking (see Appendix B), the other two limitations

are inferential. Despite these limitations, we find in Section 6 that the combination of our structured prior

for multifile partitions and our comparison-based model can produce linkage estimates with satisfactory

frequentist performance.
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4.2 Conditional Independence and Missing Data

Under the assumptions that the fields in the comparison vectors are conditionally independent given the

multifile partition of the records and that missing comparisons are ignorable (Sadinle 2014, 2017), the

likelihood of the observed comparison data, γobs, becomes

L(C,Φ | γobs) =
∏

k≤k′

F
∏

f=1

Lf
∏

l=0

(mfl
kk′)

a
fl

kk′
(C)(ufl

kk′)
b
fl

kk′
(C). (2)

Here mfl
kk′ = P(γf

ij = l | C(i) = C(j), (i, j) ∈ Pkk′), ufl
kk′ = P(γf

ij = l | C(i) 6= C(j), (i, j) ∈ Pkk′), aflkk′(C) =

∑

(i,j)∈Pkk′
Iobs(γ

f
ij)I(γ

f
ij = l)I(C(i) = C(j)), bflkk′(C) =

∑

(i,j)∈Pkk′
Iobs(γ

f
ij)I(γ

f
ij = l)I(C(i) 6= C(j)), Iobs(·)

is an indicator of whether its argument was observed, and Φ = (m,u) where m collects all of the m
f
kk′ =

(mf0
kk′ , · · · ,m

fLf

kk′ ) and u collects all of the u
f
kk′ = (uf0

kk′ , · · · , u
fLf

kk′ ). For a given multifile partition C, aflkk′(C)

represents the number of record pairs in Pkk′ that belong to the same cluster with observed agreement at

level l in field f , and bflkk′(C) represents the number of record pairs in Pkk′ that do not belong to the same

cluster with observed agreement at level l in field f .

5 Bayesian Estimation of Multifile Partitions

Bayesian estimation of the multifile coreference partition C is based on the posterior distribution p(C,Φ |

γobs) ∝ P(C)p(Φ)L(C,Φ | γobs), where P(C) is our structured prior for multifile partitions (1), L(C,Φ | γobs)

is the likelihood from our model for comparison data (2), and p(Φ) represents a prior distribution for the

Φ = (m,u) model parameters. We now specify this prior p(Φ), outline a Gibbs sampler to sample from

p(C,Φ | γobs), and present a strategy to obtain point estimates of the multifile partition C.

5.1 Priors for m and u

We will use independent, conditionally conjugate priors formf
kk′ and u

f
kk′ , namelym

f
kk′ ∼ Dirichlet(µf0

kk′ , · · · , µ
fLf

kk′ )

and u
f
kk′ ∼ Dirichlet(νf0kk′ , · · · , ν

fLf

kk′ ). In this article we will use a default specification of (µf0
kk′ , · · · , µ

fLf

kk′ ) =

(νf0kk′ , · · · , ν
fLf

kk′ ) = (1, · · · , 1). We believe this prior specification is sensible for the u parameters, following

the discussion in Section 3.2 of Sadinle (2014), as comparisons amongst non-coreferent records are likely to

be highly variable and it is more likely than not that eliciting meaningful priors for them is too difficult. For
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the m parameters, it might be desirable in certain applications to introduce more information into the prior.

For example, one could set µf0
kk′ > · · · > µ

fLf

kk′ to incorporate the prior belief that higher levels of agreement

should have larger prior probability than lower levels of agreement. Another route would be to use the

sequential parameterization of the m parameters, and the associated prior recommendations, described in

Sadinle (2014).

5.2 Posterior Sampling

In Appendix B we outline a Gibbs sampler that produces a sequence of samples {C[t],Φ[t]}Tt=1 from the

posterior distribution p(C,Φ | γobs), which we will use to obtain Monte Carlo approximations of posterior

expectations involved in the derivation of point estimates Ĉ, as presented in the next section. In Appendix

B, we discuss the computational complexity of the Gibbs sampler, how computational performance can be

improved through the usage of indexing techniques, and the initialization of the Gibbs sampler.

5.3 Point Estimation

In a Bayesian setting, one can obtain a point estimate Ĉ of the multifile partition using the posterior P(C |

γobs) =
∫

p(C,Φ | γobs)dΦ and a loss function L(C, Ĉ). The Bayes estimate is the multifile partition Ĉ that

minimizes the expected posterior loss E[L(C, Ĉ) | γobs] =
∑

C L(C, Ĉ)P(C | γobs), although in practice such

expectations are approximated using posterior samples. Previous examples of loss functions for partitions

included Binder’s loss (Binder 1978) and the variation of information (Meilă 2007), both recently surveyed

in Wade & Ghahramani (2018). The quadratic and absolute losses presented in Tancredi & Liseo (2011) are

special cases of Binder’s loss, and Steorts et al. (2016) drew connections between their proposed maximal

matching sets and the losses of Tancredi & Liseo (2011).

In many applications there may be much uncertainty on the linkage decision for some records in the

datafiles. For example, in Figure 1 it is unclear which of the records with last name “Smith” are coreferent.

It is thus desirable to leave decisions for some records unresolved, so that the records can be hand-checked

during a clerical review, which is common in practice (see e.g. Ball & Price 2019). In the classification

literature, leaving some decisions unresolved is done through a reject option (see e.g. Herbei & Wegkamp
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2006), which here we will refer to as an abstain option. We will refer to point estimates with and without

abstain option as partial estimates and full estimates, respectively. We now present a family of loss functions

for multifile partitions which incorporate an abstain option, building upon the family of loss functions for

bipartite matchings presented in Sadinle (2017).

5.3.1 A Family of Loss Functions with an Abstain Option

For the purpose of this section we will represent a multifile partition C as a vector Z = (Z1, · · · , Zr) of

labels, where Zi ∈ {1, . . . , r}, such that Zi = Zj if C(i) = C(j). We represent a Bayes estimate here as

a vector Ẑ = (Ẑ1, . . . , Ẑr), where Ẑi ∈ {1, . . . , r, A}, with A representing an abstain option intended for

records whose linkage decisions are not clear and need further review. We assign different losses to using the

abstain option and to different types of matching errors. We propose to compute the overall loss additively,

as L(Z, Ẑ) =
∑r

i=1 Li(Z, Ẑ). To introduce the expression for the ith-record-specific loss Li(Z, Ẑ), we use

the notation ∆ij = I(Zi = Zj), and likewise ∆̂ij = I(Ẑi = Ẑj).

The proposed individual loss for record i is

Li(Z, Ẑ) =































































λA, if Ẑi = A,

0, if ∆ij = ∆̂ij for all j where Ẑj 6= A,

λFNM, if Ẑi 6= A,
∑

j 6=i ∆̂ij = 0,
∑

j 6=i ∆ij > 0,

λFM1, if Ẑi 6= A,
∑

j 6=i ∆̂ij > 0,
∑

j 6=i ∆ij = 0,

λFM2, if Ẑi 6= A,
∑

j 6=i ∆̂ij > 0,
∑

j 6=i(1− ∆̂ij)∆ij > 0.

(3)

That is, λA represents the loss from abstaining from making a decision; λFNM is the loss from a false non-

match (FNM) decision, that is, deciding that record i does not match any other record (
∑

j 6=i ∆̂ij = 0)

when in fact it does (
∑

j 6=i ∆ij > 0); λFM1 is the loss from a type 1 false match (FM1) decision, that is,

deciding that record i matches other records (
∑

j 6=i ∆̂ij > 0) when it does not actually match any other

record (
∑

j 6=i ∆ij = 0); and λFM2 is the loss from a type 2 false match (FM2), that is, a false match decision

when record i is matched to other records (
∑

j 6=i ∆̂ij > 0) but it does not match all of the records it should

be matching (
∑

j 6=i(1− ∆̂ij)∆ij > 0).
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The posterior expected loss is R(Ẑ) =
∑r

i=1 E[Li(Z, Ẑ) | γobs], where

E[Li(Z, Ẑ) | γobs] =















































λA, if Ẑi = A,

λFNM P(
∑

j 6=i ∆ij > 0 | γobs), if Ẑi 6= A,
∑

j 6=i ∆̂ij = 0,

λFM1 P(
∑

j 6=i ∆ij = 0 | γobs) +

λFM2 P(
∑

j 6=i(1− ∆̂ij)∆ij > 0 | γobs), if Ẑi 6= A,
∑

j 6=i ∆̂ij > 0,

(4)

and quantities computed with respect to the posterior distribution, P(Z | γobs), can all be approximated

using posterior samples. While this presentation is for general positive losses λFNM, λFM1, λFM2 and λA, these

only have to be specified up to a proportionality constant (Sadinle 2017). If we do not want to allow the

abstain option, then we can set λA = ∞ and the derived full estimate Ẑ will have a linkage decision for all

records. Although we have been using partition labelings Z, the expressions in (3) and (4) are invariant to

different labelings of the same partition. In the two-file case, Sadinle (2017) provided guidance on how to

specify the individual losses λFNM, λFM1, λFM2 and λA in cases where there is a notion of false matches being

worse than false non-matches or vise versa. Sadinle (2017) also gave recommendations for default values of

these losses that lead to good frequentist performance in terms not over- or under-matching across repeated

samples. In Appendix C, we discuss how our proposed loss function differs from the loss function of Sadinle

(2017) and propose a strategy for approximating the Bayes estimate.

6 Simulation Studies

To explore the performance of our proposed approach for linking three duplicate-free files, as in the appli-

cation to the Colombian homicide record systems of Appendix E, we present two simulation studies under

varying scenarios of measurement error and datafile overlap. The two studies correspond to scenarios with

equal and unequal measurement error across files, respectively. Both studies present results based on full

estimates. In Appendix D we further explore the performance of our proposed approach for linking three

files with duplicates, with results based on full and partial estimates.
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6.1 General Setup

We start by describing the general characteristics of the simulations. For each of the simulation scenarios we

conduct 100 replications, for each of which we generate three files as follows. For each of n = 500 entities,

h ∈ H is drawn from a categorical distribution with probabilities {ph}h∈H, where h represents the subset of

files the entity appears in, and so we change the values of {ph}h∈H across simulation scenarios to represent

varying amounts of file overlap. Files are then created by generating the implied number of records for each

entity. In the additional simulations considered in Appendix D, the generated number of records for each

entity depends not only on h, but also on the duplication mechanism.

All records are generated using a synthetic data generator developed in Tran et al. (2013), which allows

for the incorporation of different forms of measurement error in individual fields, along with dependencies

between fields we would expect in applications. The data generator first generates clean records before

distorting them to create the observed records. In particular, each observed record will have a fixed number

of erroneous fields, where errors selected uniformly at random from a set of field dependent errors displayed

in Table 3 of Sadinle (2014) (reproduced in Appendix D), with a maximum of two errors per field. We

generate records with seven fields of information: sex, given name, family name, age, occupation, postal

code, and phone number.

For each simulation replicate, we construct comparison vectors as given in Table 4 of Sadinle (2014)

(reproduced in Appendix D). We use the model for comparison data proposed in Section 4 with flat priors

on m and u as discussed in Section 5.1, and the structured prior proposed in Section 3 with a uniform prior

on the number of clusters and α = (1, · · · , 1) as described in Section 3.1. Using the Gibbs sampler presented

in Appendix B we obtain 1, 000 samples from the posterior distribution of multifile partitions, and discard

the first 100 as burn-in. In Appendix D we discuss convergence of the Gibbs sampler, present running times

of the proposed approach, and present an extra simulation exploring the running time of the approach with

a larger number of records. We then approximate the Bayes estimate Ẑ for multifile partitions using the loss

function described in Section 5.3.1 as described in Appendix C. For full estimates, we use the default values

of λFNM = λFM1 = 1 and λFM2 = 2 recommended by Sadinle (2017). In Appendix D we explore alternative

specifications of the loss function.
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We will assess the performance of the Bayes estimate using precision and recall with respect to the

true coreference partition Z. Let P be the set of all record pairs. Using notation from Section 5.3.1, let

TM(Z, Ẑ) =
∑

(i,j)∈P ∆ij∆̂ij be the number of true matches (record pairs correctly declared coreferent),

FM(Z, Ẑ) =
∑

(i,j)∈P(1−∆ij)∆̂ij be the number of false matches (record pairs incorrectly declared coref-

erent), and FNM(Z, Ẑ) =
∑

(i,j)∈P ∆ij(1− ∆̂ij) the number of false non-matches (record pairs incorrectly

declared non-coreferent). Then precision is TM(Z, Ẑ)/[TM(Z, Ẑ) + FM(Z, Ẑ)], the proportion of record

pairs declared as coreferent that were truly coreferent, and recall is TM(Z, Ẑ)/[TM(Z, Ẑ)+FNM(Z, Ẑ)],

the proportion of record pairs that were truly coreferent that were correctly declared as coreferent. Perfect

performance corresponds to precision and recall both being 1. In the simulations, we computed the median,

2nd, and 98th percentiles of these measures over the 100 replicate data sets. Additionally, in Appendix D,

we assess the performance of the Bayes estimate when estimating the number of entities, n.

6.2 Duplicate-Free Files, Equal Errors Across Files

In this simulation study we explore the performance of our methodology by varying the number of erroneous

fields per record over {1, 2, 3, 5}, and also varying {ph}h∈H, which determines the amount of overlap, over

four scenarios:

• High Overlap: p001 = p010 = p100 = 0.4/3, p011 = p101 = p110 = 0.15, p111 = 0.15,

• Medium Overlap: p001 = p010 = p100 = 0.7/3, p011 = p101 = p110 = 0.05, p111 = 0.15,

• Low Overlap: p001 = p010 = p100 = 0.8/3, p011 = p101 = p110 = 0.05/3, p111 = 0.15,

• No-Three-File Overlap: p001 = p010 = p100 = 0.55/3, p011 = p101 = p110 = 0.15, p111 = 0.

These are intended to represent a range of scenarios that could occur in practice. In the high overlap scenario

60% of the entities are expected to be in more than one datafile, in the low overlap scenario 80% of the

entities are expected to be represented in a single datafile, and in the no-three-file overlap scenario no entities

are represented in all datafiles.

To implement our methodology, in addition to the general set-up described in Section 6.1, we restrict

the prior for the within-file cluster sizes so that they have size one with probability one, incorporating the

18



assumption of no-duplication within files (see Section 3.2). Imposing this restriction for all datafiles leads to

a prior for tripartite matchings. To illustrate the impact of using our structured prior, we compare with the

results obtained using our model for comparison data with a flat prior on tripartite matchings.
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Figure 3: Performance comparison for simulation with equal measurement error across files. Black lines

refer to results under our structured prior, grey lines to results under the flat prior, solid lines show

medians, and dashed lines show 2nd and 98th percentiles.

The results of the simulation are seen in Figure 3. We see that our proposed approach performs con-

sistently well across different settings, with the exception of the no-three-file overlap setting under high

measurement error, where the precision decreases dramatically. The approach using a flat prior on tripartite

matchings has poor precision in comparison, and it is particularly low when the amount of overlap is low.

This suggests that our structured prior improves upon the flat prior by protecting against over-matching

(declaring noncoreferent record pairs as coreferent). In Appendix D we demonstrate how the performance in

the no-three-file overlap setting can be improved through the incorporation of an informative prior for the

overlap table through α.

6.3 Duplicate-Free Files, Unequal Errors Across Files

In this simulation study we have different patterns of measurement error across the three files. Rather than

each field in each record having a chance of being erroneous according to Table 3 of Sadinle (2014), we will
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use the following measurement error mechanism to generate the data. For each record in the first file, age is

missing, given name has up to seven errors, and all other fields are error free. For each record in the second

file, sex and occupation are missing, last name has up to seven errors, and all other fields are error free. For

each record in the third file, phone number and postal code have up to seven errors and all other fields are

error free. Under this measurement error mechanism, there is enough information in the error free fields to

inform pairwise linkage of the files. We further vary {ph}h∈H over the no-three-file and high overlap settings

from Section 6.2.

Our goal in this study is to demonstrate that having both the structured prior for partitions and the

separate models for comparison data from each file-pair can lead to better performance than not having these

components. We will compare our model as described in Section 6.2 to both our model for comparison data

with a flat prior on tripartite matchings (as in Section 6.2) and a simplification of our model for comparison

data using a single model for all file-pairs but with our structured prior for partitions.

The results of the simulation are given in Figure 4. We see that our proposed approach outperforms

both alternative approaches in both precision and recall in both overlap settings. This suggests that both

the structured prior for tripartite matchings and the separate models for comparison data from each file-pair

can help improve performance over alternative approaches. We note that in the no-three-file (high) overlap

setting the precision of the proposed approach is greater than or equal to the precision of the approach using

a single model for all file-pairs in 98 (100) of the 100 replications.

7 Discussion and Future Work

The methodology proposed in this article makes three contributions. First, the multifile partition parameter-

ization, specific to the context of multifile record linkage and duplicate detection, allows for the construction

of our structured prior for partitions, which provides a flexible mechanism for incorporating prior information

about the data collection processes of the files. This prior is applicable to any Bayesian approach which

requires a prior on partitions, including direct-modeling approaches such as Steorts et al. (2016). We are

not aware of any priors for K-partite matchings when K > 2, so we hope our construction will lead to more

development in this area. The second contribution is an extension of previous comparison-based models
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Figure 4: Performance comparison for simulation with unequal measurement error across files. “Proposed”

refers to our proposed approach, “Single Model” refers to the approach using a single model for all file-

pairs and our structured prior for partitions, and “Flat Prior” refers to the approach using our model for

comparison data with a flat prior on tripartite matchings. Dots show medians, and bars show 2nd and

98th percentiles.

that explicitly handles the multifile setting. Allowing separate models for comparison data from each file

pair leads to higher quality linkage. The third is a novel loss function for multifile partitions which can be

used to derive Bayes estimates with good frequentist properties. Importantly, the loss function allows for

linkage decisions to be left unresolved for records with large matching uncertainty. As with our structured

prior on partitions, the loss function is applicable to any Bayesian approach which requires point estimates

of partitions, including direct-modeling approaches.

There are a number of directions for future work. One direction is the modeling of dependencies between

the comparison fields (see e.g. Larsen & Rubin 2001), which should further improve the quality of the linkage.

Another direction is the development of approaches to jointly link records and perform a downstream analysis,

thereby propagating the uncertainty from the linkage. See Section 7.2 of Binette & Steorts (2020) for a recent

review of such joint models. In this direction, a natural task to consider next is population size estimation,

where the linkage of the datafiles plays a central role (Tancredi & Liseo 2011, Tancredi et al. 2020).
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Supplementary Appendices for Multifile Partitioning for Record

Linkage and Duplicate Detection

A Structured Prior Appendix

In this appendix, we prove Proposition 1 from the main text and provide additional guidance for the speci-

fication of the structured prior for multifile partitions.

A.1 Proof of Proposition 1

In this section, we restate and prove Proposition 1 from the main text.

Proposition 1. The number of K-partite matchings that have the same overlap table, n = {nh}h∈H,

is
∏K

k=1 nk!/
∏

h∈H nh! , where nk =
∑

h∈H hknh is the number of entities in datafile Xk. Thus P(C |

{Ck}
K
k=1,n) =

∏

h∈H nh!/
∏K

k=1 nk!.

Proof. Let us first count all of the ways that we can place the clusters in file Xk into the overlap ta-

ble cells that Xk is included in, Hk = {h ∈ H : hk = 1}. This is just a multinomial coefficient,

nk!/(
∏

h∈Hk
nh!). Thus the number of ways we can place all of the clusters from all of the files into

the cells in H is
∏K

k=1 nk!/(
∏

h∈Hk
nh!) = (

∏K
k=1 nk!)/[

∏

h∈H(nh!)
∑K

k=1
hk ]. Given that there are nh clusters

from each file with hk = 1 in cell h, now all we have to count is how many distinct complete matchings

are possible between them, which is just (nh!)
(
∑K

k=1
hk)−1. Thus the number of K-partite matchings is

[(
∏K

k=1 nk!)/(
∏

h∈H(nh!)
∑K

k=1
hk)][

∏

h∈H(nh!)
∑K

k=1
hk/nh!] =

∏K
k=1 nk!/

∏

h∈H nh!.

A.2 Prior Specification Guidance

In this section we provide additional guidance for the specification of the structured prior for multifile

partitions described in Section 3 of the main text. In particular, we further discuss the priors for the number

of clusters, the overlap tables, and the within-file cluster sizes.

Prior for the Number of Entities or Clusters. In the main text we recommended, in the absence of substantial

prior information, to use a uniform prior on {1, · · · , U} for the number of clusters, for some upper bound
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U . Our default recommendation was to set U = r, i.e. the total number of records. If one has substantive

prior information about the number of clusters, this could instead be incorporated using other distributions

on the positive integers. Miller et al. (2015) and Zanella et al. (2016) both suggest to use a negative-

binomial distribution with parameters a > 0 and q ∈ (0, 1) truncated to the positive integers, i.e. P(n) ∝

Γ(n+a)
(n!)Γ(a) (1 − q)aqnI(n ∈ N). Zanella et al. (2016) further suggest a weakly informative specification for this

Negative-binomial prior where a and q are selected such that E[n] =
√

Var(n) = r/2. We follow Miller et al.

(2015) and Zanella et al. (2016) and suggest a negative-binomial prior for the number of clusters n when

incorporating substantive prior information.

Prior for the Overlap Table. In the main text we recommended using a Dirichlet-multinomial prior for the

overlap table, specified by a collection of positive hyperparameters. In the absence of substantial prior in-

formation we recommended setting α = (1, · · · , 1). Due to conjugacy of the Dirichlet distribution with the

multinomial, α can be interpreted as prior cell counts, and thus our recommendation amounts to incorpo-

rating a prior count of 1 to each cell and an overall prior sample size of 2K − 1.

In our simulations and application, we found across a variety of overlap settings that this default prior

performed satisfactorily. However, in the no-three-file-overlap setting, our approach struggled when there

was a large amount of measurement error. We find in Appendix D.2 that we can improve performance in

this setting by using informative prior cell counts, rather than using our default specification. What sets this

no-three-file-overlap simulation setting apart from the other settings is that it is sparse, i.e. in this setting

the count for the three-file-overlap cell of the overlap table is truly 0.

When linking a large number of files K, the size of the overlap table, 2K − 1, becomes large very

quickly, which makes it likely that the true overlap table is sparse. Our default prior specification may

not be appropriate in these settings as using a prior cell count of 1 for each cell may be incorporating

prior information that is too strong, as illustrated in Example 1.4 of Berger et al. (2015). One possible

alternative as a default specification when the overlap table is potentially sparse, would be to set α =

(1/(2K − 1), · · · , 1/(2K − 1)) (see Section 3.2 of Berger et al. (2015) for justification). If one has prior

information concerning which cells of the overlap table are likely to be sparse, based on the results in

Appendix D.2, we recommend attempting to incorporate this information into the prior. For example, if
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it is believed that some combination of files are likely not to have collected information on the same set of

entities, one can incorporate this information by making the corresponding prior cell counts close to 0.

Another route one could take would be to replace the Dirichlet-multinomial prior on n with a multinomial

prior on n, with a non-Dirichlet prior on the multinomial cell probabilities. For example, one could use the

tensor-factorization priors of Dunson & Xing (2009) and Zhou et al. (2015), which have been shown to have

lead to estimates of cell probabilities with good performance in large sparse contingency tables.

Prior for the Within-File Cluster Sizes. Given that in a joint record linkage and duplicate detection scenario

we do not expect there to be many duplicates per entity in any given file, in the main text we recommended

specifying i.i.d. priors for the sizes of the within-file clusters, i.e. dk1 , · · · , d
k
nk

| nk
iid
∼ pk(·) for a given file

Xk. Here pk(·) represents the probability mass function of a distribution on {1, · · · , Uk}, where Uk is a

file-specific upper bound on cluster sizes.

When a given file Xk is assumed to have no duplicates, in the main text we recommended enforcing this

restriction that there are no duplicates in that file by setting Uk = 1 and pk(d
k
i ) = I(dki = 1). When a

given file Xk is assumed to have duplicates, in the main text we recommended a Poisson distribution with

parameter λ = 1, i.e. pk(d
k
i ) ∝ (dki !)

−1I(dki ∈ {1, · · · , Uk}). This prior places most of the prior mass close

to 1, where various properties such as prior mean and standard deviation can be computed numerically (e.g.

when Uk = 10 the prior mean is 1.58). If one has information on the average amount of duplication in file

k, given a specified upper bound Uk, one could specify the parameter λ of the Poisson prior such that the

prior mean is equal to the average amount of duplication. Alternatively, one could place a hyperprior on λ.

This is similar approach to Zanella et al. (2016), who used a negative-binomial distribution with parameters

r > 0 and p ∈ (0, 1) truncated to the positive integers, with a gamma hyperprior for r and a beta hyperprior

for p. Indeed, the negative-binomial prior of Zanella et al. (2016) can be seen as a generalization of our

Poisson prior, based on well-known connections between the Poisson and negative-binomial, and could be

used instead of our Poisson recommendation if desired.

In the simulations presented in Appendix D.3 we explore using a Poisson prior with parameter λ varying

over {0.1, 1, 2}, when the within-file cluster sizes are generated from a Poisson with parameter λ varying over

{0.1, 1, 2}. We find in these simulations that when there is medium or high duplication (i.e. the within-file
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cluster sizes are generated from a Poisson with mean in {1, 2}), the results are not sensitive to λ, whereas

when there is low duplication (i.e. the within-file cluster sizes are generated from a Poisson with mean 0.1),

the results are sensitive to λ. This suggests that model performance is more sensitive to the specification of

the prior distribution for within-file cluster sizes when there is a low amount of duplication, and that care

should be taken when specifying the prior for the within-file cluster sizes for files which are expected to have

very little duplication.

B Posterior Inference Appendix

In this appendix, we first derive full conditional distributions of our structured prior for partitions, and

then use the full conditional distributions to derive a Gibbs sampler for posterior inference in our model.

We then discuss the computational complexity of our approach to posterior inference, how computational

performance can be improved through the usage of indexing techniques, and the initialization of the Gibbs

sampler.

B.1 Conditional Assignment Probabilities

In this section we use the form of the prior distribution in Equation (1) of the main text to derive the

conditional probability for assigning a record j from file Xk to a given cluster of an existing multifile

partition C−j of the other records. Specifically, we derive P(j → c | C−j), where j → c denotes adding record

j to a cluster c ∈ C−j or to an empty cluster. Let a quantity followed by (C−j) denote that it is derived from

C−j analogously to in Section 3.1 of the main text. Let 1k denote the inclusion pattern indicating inclusion

only in file Xk, that is, 1k is a vector of zeroes except for its kth entry which equals 1. Further, let 1c denote

the inclusion pattern of the cluster c ∈ C−j , that is, the lth entry of 1c is I(cl 6= ∅). Finally, let 1c∪j denote

the inclusion pattern of the cluster c ∈ C−j after adding record j to it. Then the conditional assignment

probability is
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P(j → c | C−j) ∝


































[

P(n(C−j) + 1)

P(n(C−j))

] [

(n(C−j) + 1)(n1k
(C−j) + α1k

)

n(C−j) + α0

]

pk(1) , if c = (∅, · · · , ∅)
[

n1c∪j
(C−j) + α1c∪j

n1c
(C−j) + α1c

− 1

]

pk(1) , if c 6= (∅, · · · , ∅), |ck| = 0

(|ck|+ 1)

[

pk(|c
k|+ 1)

pk(|ck|)

]

, if |ck| > 0.

B.2 Gibbs Sampler

We will now derive a Gibbs sampler to explore the posterior of Φ and C. Suppose we are at iteration t+ 1

of the sampler, with current samples Φ[t] = (m[t],u[t]) and C[t]. Then we obtain the samples for iteration

t+ 1 through the following steps:

1. For k ≤ k′ and f ∈ {1, . . . , F}, sample

m
f [t+1]
kk′ | C[t],γobs ∼ Dirichlet(af0kk′(C

[t]) + µf0
kk′ , · · · , a

fLf

kk′ (C
[t]) + µ

fLf

kk′ )

and

u
f [t+1]
kk′ | C[t],γobs ∼ Dirichlet(bf0kk′(C

[t]) + νf0kk′ , · · · , b
fLf

kk′ (C
[t]) + ν

fLf

kk′ ).

Call these samples Φ[t+1].

2. We now sample the cluster assignment for each record j ∈ [r] sequentially. Suppose we have sampled

the first j − 1 records, and are sampling the cluster assignment for record j from file Xk. Let C
[t]
−j

denote the current partition of [r], without record j, after sampling the first j − 1 records. Then we

sample the cluster assignment for record j according to the following probabilities:

P(j → c | C
[t]
−j ,Φ

[t+1],γobs) ∝










































[

P(n(C
[t]
−j) + 1)

P(n(C
[t]
−j))

][

(n(C
[t]
−j) + 1)(n1k

(C
[t]
−j) + α1k

)

n(C
[t]
−j) + α0

]

pk(1) , if c = (∅, · · · , ∅)

[

∏K
k′=1

∏

i∈ck
′ L

[t+1]
ij

]

[

n1c∪j
(C

[t]
−j) + α1c∪j

n1c
(C

[t]
−j) + α1c

− 1

]

pk(1) , if |ck| = 0, c 6= (∅, · · · , ∅)

[

∏K
k′=1

∏

i∈ck
′ L

[t+1]
ij

]

(|ck|+ 1)

[

pk(|c
k|+ 1)

pk(|ck|)

]

, if |ck| > 0,
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where, letting k′ denote the file that record i is in,

L
[t+1]
ij =

F
∏

f=1





Lf
∏

l=0

(

m
fl[t+1]
kk′

u
fl[t+1]
kk′

)I(γf
ij
=l)




Iobs(γ
f
ij
)

= exp





F
∑

f=1

Iobs(γ
f
ij)

Lf
∑

l=0

log

(

m
fl[t+1]
kk′

u
fl[t+1]
kk′

)

I(γf
ij = l)



 .

B.3 Computational Complexity

The computational complexity of posterior inference in our proposed approach can be broken up into the

complexity of pre-computing comparison vectors, and the complexity of individual steps of the Gibbs sampler

presented in Appendix B.2.

• The computational complexity of pre-computing comparison vectors is O(rp ∗ F ), where rp is the

number of valid record pairs. To be more specific, when we assume there are duplicates in every file,

rp = r(r − 1)/2, and when we assume there are no duplicates in each file, rp =
∑

k<k′ rkrk′ . For

in between situations where we assume there are no duplicates in some files and duplicates in the

remaining files, it can be shown that
∑

k<k′ rkrk′ < rp < r(r − 1)/2. Thus in the most general case,

pre-computing comparison vectors scales quadratically in the number of records. We discuss in the

following section how the cost of this step can be reduced through the usage of blocking.

• The computational complexity of step 1 of the Gibbs sampler presented in Appendix B.2, i.e. sampling

the m and u parameters, is O(rp ∗ fl + fp ∗ fl), where fp is the number of valid file pairs, and

fl =
∑F

f=1(Lf+1) is the total number of agreement levels across all fields. We have that fp =
(

K
2

)

+Kd,

where Kd is the number of files that are assumed to have duplicates. This follows as the a and b

summaries of the partition can be calculated from a matrix multiplication of a fl × rp matrix and a

rp×1 matrix, and given these a and b summaries the complexity of sampling the m and u parameters

from their full conditionals is O(fp ∗ fl).

• The computational complexity of step 2 of the Gibbs sampler presented in Appendix B.2, i.e. sampling

the partition C, is difficult to analyze in general. In the most general case, where we assume there

are duplicates in each file, in the worst case scenario, each record could be placed in its own cluster.
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The complexity of sampling the cluster assignment for a single record would then be O(r), and the

complexity of sampling the cluster assignment for all records would then be O(r2). However, the

number of clusters potentially changes whenever a new cluster assignment is sampled, which complicates

this analysis. Further, once introduces constraints on the partition space, either through assuming there

are no duplicates in some files, or using indexing as described in the next section, the number of clusters

available for a specific record’s cluster assignment step will depend on these constraints. In general the

best we can say is that this step will be faster when each record has on average (with respect to the

posterior) a small number of clusters to which it can be assigned, and slower when each record has on

average a large number of clusters to which it can be assigned.

In our current implementation of the proposed approach, we have found that even though both steps

of the Gibbs sampler scale quadratically in the number of records in the worst case, the cost of sampling

the partition generally dominates the cost of sampling the m and u parameters, and is the main bottleneck

of our approach. We note that the sampling of the partition will essentially have the same computational

complexity regardless of whether one uses a comparison-based model for records, as we have proposed in the

main text, or one uses a direct-modeling approach, as in Steorts et al. (2016).

B.4 Blocking, Indexing, and Scalability

As described in the previous section, there are two main bottlenecks to scalability in our proposed approach:

pre-computing the comparison vectors and sampling the partition from its full conditional in the Gibbs

sampler presented in Appendix B.2. Both of these bottlenecks can be sped up through the use of indexing

techniques, which declare certain pairs of records non-coreferent a priori based on comparisons of a small

number of fields (Christen 2012, Steorts et al. 2014, Murray 2015). This both reduces the number of record

pairs under consideration, and reduces on average the number of clusters to which each record can be assigned

in the Gibbs sampler presented in Appendix B.2.

In particular, if P = ∪k≤k′Pkk′ is the set of all possible record pairs, indexing techniques generate a set

P∗ ⊂ P, such that |P∗| � |P|, where record pairs in P∗ are candidate coreferent pairs, and record pairs in

P \ P∗ are fixed as non-coreferent. Thus when performing posterior inference, this truncates our prior on
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multifile partitions to the set {C : C(i) 6= C(j), ∀(i, j) ∈ P \ P∗}.

We briefly review two common indexing techniques from Murray (2015), blocking and indexing by dis-

junction. Blocking declares pairs of records to be non-coreferent when they disagree on a set of error-free

fields. The use of error-free fields guarantees that the candidate coreferent pairs output from blocking are

transitive, so that P∗ forms a partition of the records. Indexing by disjunction declares pairs of records to

be non-coreferent when they disagree at a certain threshold for each field in a given set of reliable fields.

Candidate coreferent pairs output from indexing by disjunction are not guaranteed to be transitive.

When a set of error-free fields are available, we recommend blocking. Blocking schemes can be imple-

mented without constructing comparison vectors for each record pair, thus reducing the cost of pre-computing

comparison vectors for all record pairs to just the cost of pre-computing comparison vectors for record pairs

within each block. Our proposed approach can then be run independently in each block, drastically reducing

on average the number of clusters to which each record can be assigned in the Gibbs sampler presented in

Appendix B.2.

Within blocks, there is no further way to reduce cost of the pre-computing the comparison vectors.

However, it is still possible to reduce the cost of sampling the partition from its full conditional in the Gibbs

sampler presented in Appendix B.2 through the use of indexing by disjunction. By fixing certain pairs of

records to be non-coreferent, one reduces on average the number of clusters to which each record can be

assigned in the Gibbs sampler presented in Appendix B.2. Note that the comparisons for record pairs fixed

as non-coreferent in P \P∗ still contribute to the model through the bflkk′ term in the likelihood in Equation

(2) of the main text, avoiding many of the issues presented in Murray (2015).

However, the non-transitivity of P∗ output from indexing by disjunction can be problematic, as it suggests

that the thresholds used in indexing by disjunction are too stringent, and that they may be excluding true

coreferent pairs. Non-transitivity can also cause problems for Markov chain Monte Carlo samplers (like

our Gibbs sampler in Appendix B.2), as it can make traversing the constrained space of multifile partitions

difficult. To avoid the issue of non-transitivity, we propose to use the transitive closure of the candidate

coreferent pairs, P∗, generated by indexing by disjunction, which we refer to as transitive indexing. Transitive

indexing has been used before in the post-hoc blocking methodology of McVeigh et al. (2019) for two-file
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record linkage.

B.5 Initialization

Due to the nature of the Gibbs sampler in Appendix B.2, we can initialize the multifile partition C without

needing to initialize Φ. A simple initialization for C is to let each record belong to its own cluster, which

works well when indexing is used. However, we observed during some preliminary simulations that when

sampling K-partite matchings without using indexing, the sampler can take a large number of iterations

to mix if we initialize C in this way, where the number of iterations depends on the partition the data was

simulated from. This problem can not be avoided as in Appendix B.4, as the constraints on the space

of K-partite matchings cannot be relaxed. In this case, we constructed a simple alternative initialization.

The idea is to use an indexing scheme for initialization, even if indexing is not being used to reduce the

number of candidate coreferent pairs. In particular, we first generate a set of record pairs P∗ ⊂ P through

transitive indexing as described in Appendix B.4. For each block of records in P∗, we sample a random

K-way matching of records in that block. We then initialize C such that each record belongs to its own

cluster, except for the sampled K-way matchings.

C Point Estimation Appendix

In this appendix we discuss how our proposed loss function differs from the loss function of Sadinle (2017),

and propose a strategy for approximating the Bayes estimate under our proposed loss function.

C.1 Comparison to Sadinle (2017)

Unlike our loss function construction, in the two-file set-up Sadinle (2017) constructed the loss function

from individual losses for the records in the smaller datafile only. Such construction however leads to an

asymmetry in the loss function that is arbitrary. Consider an example of two datafiles, where the first file

has records a and b, and the second file has records c and d. In that case the role of the datafiles can be

arbitrarily interchanged. If the true matching has a link between a and c but the matching estimate has a

link between b and c, the loss will be λFNM + λFM1 if file two is chosen not to contribute to the loss, but it
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will be λFM2 if file one is chosen not to contribute to the loss. Our new construction presented in the main

text does not lead to such issues.

C.2 Approximating the Bayes Estimate

Finding a partition Ẑ such that R(Ẑ) is minimized corresponds to an optimization problem closely related

to graph partitioning problems (e.g., Brandes et al. 2007, Lancichinetti & Fortunato 2009, Newman 2013)

or correlation clustering (e.g., Bansal et al. 2004, Demaine et al. 2006), both of which are known to be

NP-complete. Thus, unlike in Sadinle (2017), we cannot minimize R(Ẑ) exactly in general. All approaches

for graph partitioning problems or for correlation clustering instead rely on heuristic algorithms whose

performance is evaluated empirically via simulation studies and benchmark datasets. We will follow a

similar approach.

We take advantage of the fact that in practice a large number of record pairs will have zero or close

to zero posterior probability of matching P(∆ij = 1 | γobs). Based on this, we propose to threshold

P(∆ij = 1 | γobs) at a small value δ to create a graph where an edge represents a non-negligible probability

of matching between two records. We then break the records up into connected components of this graph,

each component representing groups of records that are more likely to be coreferent. We then find the Bayes

estimate by minimizing R(Ẑ) separately within each of these connected components. We can think of δ as a

way of trading-off between accuracy of the Bayes estimate and computational tractability: larger values of

δ decrease the size of the resulting connected components, making the minimization more tractable within

each component, while smaller δ make the resulting approximation more accurate as using the threshold

δ = 0 is no longer an approximation. We recommend setting δ as the smallest probability such that the

largest connected component is smaller than some pre-specified upper bound that captures a computational

budget. To minimize R(Ẑ) within the connected components, we propose to do so over posterior samples,

{Z [t]}Tt=1, and find the sample which minimizes R(Z [t]). As this minimization is happening separately within

each connected component, the final Bayes estimate of the partition of all r records does not itself have to

be a posterior sample.

To minimize R(Ẑ) when searching for partial estimates, let Ω denote the power set of [r], and let
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Z
[t]
ω denote the posterior draw Z [t] where the records in ω ∈ Ω are set to abstain, A. Then in order to

accommodate partial estimates, we can minimize R(Ẑ) over {Z
[t]
ω | t ∈ [T ], ω ∈ Ω}.

Unless stated otherwise, in all simulations and in the application, for full (partial) estimates, we find the

Bayes estimate separately within connected components of records with posterior probability larger than δ

of matching, where δ is the smallest probability such that the largest connected component is smaller than

50 (12).

D Simulation Appendix

D.1 Tables 3 and 4 from Sadinle (2014)

Table 3 of Sadinle (2014) is reproduced in Table 1. In this table, edit errors are insertions, deletions, or

substitutions of characters in a string, OCR errors are optical character recognition errors, keyboard errors

are typing errors that rely on a certain keyboard layout, and phonetic errors are errors using a list of

predefined phonetic rules. Table 4 of Sadinle (2014) is reproduced in Table 2.

Table 1: Types of errors per field in the simulation studies.

Type of error

Field Missing values Edits OCR Keyboard Phonetic Misspelling

Given name X X X X

Family name X X X X X

Age interval X

Sex X

Occupation X

Phone number X X X X

Postal code X X X X
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Table 2: Construction of levels of disagreement for the simulation studies.

Levels of disagreement

Field Similarity measure 0 1 2 3

Given name Levenshtein 0 (0, 0.25] (0.25, 0.5] (0.5, 1]

Family name Levenshtein 0 (0, 0.25] (0.25, 0.5] (0.5, 1]

Age interval Binary comparison Agree Disagree

Sex Binary comparison Agree Disagree

Occupation Binary comparison Agree Disagree

Phone number Levenshtein 0 (0, 0.25] (0.25, 0.5] (0.5, 1]

Postal code Levenshtein 0 (0, 0.25] (0.25, 0.5] (0.5, 1]

D.2 Prior Sensitivity Analysis for Simulation with Duplicate-Free Files, Equal

Errors Across Files

In Section 6.2 of the main text, we saw that our proposed approach struggled in the no-three-file overlap

setting when there was high measurement error. In practice, if we knew that no entity is represented in all

three datafiles we could enforce that restriction just like we enforce that there are no duplicates in given

files, which would likely lead to better performance. While it is reasonable to assume in some applications

that there are no duplicates in a given file (for example the application considered in Section 7 of the main

text), it is less reasonable to assume with absolute certainty that there is no entity represented in all three

datafiles. Thus we want to instead incorporate the weaker information that there is a low amount of three

way overlap. We can achieve this through an informative specification of α.

In the no-three-file overlap setting, the overlap table was generated from a multinomial distribution

with probability vector p = (p001, p010, p011, p100, p101, p110, p111) where p001 = p010 = p100 = 0.55/3, p011 =

p101 = p110 = 0.15, p111 = 0. Note that our Dirichlet-multinomial prior can be motivated as the result of first

drawing {qh}h∈H from a Dirichlet distribution with hyperparameters α, then drawing n from a multinomial

distribution of size n with probabilities {qh}h∈H. As discussed in Appendix A.2, α can be interpreted as

prior cell counts, which can be used to incorporate prior information about the amount of overlap between
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datafiles. Thus when specifying an informative α, we want the Dirichlet prior for {qh}h∈H to be centered

roughly around p. We can accomplish this by setting α = κ × (p001, p010, p011, p100, p101, p110, 1/κ). κ + 1

represents the sum of prior cell counts. As κ increases, the Dirichlet prior for {qh}h∈H becomes more

concentrated near p.

We repeated the no-three-file overlap setting simulation from Section 6.2 of the main text using this

informative specification with κ ∈ {49, 99}. The results are presented in Figure 5. We see that when there is

high measurement error, these more informative specifications improve upon the performance of the default

specification of α = (1, · · · , 1).
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Figure 5: Performance comparison for no-three-file overlap simulation with more informative settings of α.

Solid lines show medians, and dashed lines show 2nd and 98th percentiles. “Flat” refers to a flat prior

on tripartite matchings, “Proposed” refers to our structured prior for partitions when α = (1, · · · , 1), and

“kappa = 49” and “kappa = 99” refer to the more informative specifications of α with κ ∈ {49, 99}.

D.3 Files with Duplicates, Full Estimates

This simulation study consists of linkage and duplicate detection for three datafiles, so that the target of

inference is a general multifile partition. We conduct this study with probabilities fixed at p001 = p010 =

p100 = 0.3, p011 = p101 = p110 = 0.025, p111 = 0.025, representing a very low overlap setting, which can be

challenging as seen in Section 6.2 of the main text. For each entity represented in the datafiles we generated

a within-file cluster size from a Poisson distribution with mean λ truncated to {1, · · · , 5}. In this study, in

addition to varying the number of erroneous fields per record over {1, 2, 3, 5} to explore different amounts of
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Figure 6: Performance comparison for simulation with datafiles with duplicates and full estimates. Black

lines refer to results under our structured prior, grey lines refer to the approach of Sadinle (2014), solid lines

show medians, and dashed lines show 2nd and 98th percentiles.

measurement error, and we vary λ over {0.1, 1, 2} to explore low, medium, and high amounts of duplication.

To implement our methodology, in addition to the general set-up described in Section 6.1 of the main

text, we use a Poisson prior with mean 1 truncated to {1, · · · , 10} on the within-file cluster sizes. For

comparison we use the comparison-based model of Sadinle (2014), which treats all of the records as coming

from one file and uses a flat prior on partitions. For both models we use transitive indexing as in described

Appendix B.4 to reduce the number of comparisons, where the initial indexing scheme declares record pairs

as non-coreferent if they disagree in either given or family name at the highest level (according to Table 4

of Sadinle (2014)).

The results of the simulation are seen in Figure 6. In the medium and high duplication settings, the

models have similarly good performance. We believe that the similar performance between models in these

settings is due to the use of the indexing, which significantly reduces the size of the space of possible multifile

partitions, so that the influence of the structured prior is minimized. However, in the low duplication setting

we see that the precision of the proposed model is better across the varying measurement error settings

than the model of Sadinle (2014). This suggests that in low duplication settings, our approach once again
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improves upon an approach that uses flat priors for partitions by protecting against over-matching.

We now explore the sensitivity of our approach to changes in the prior for the number within-file cluster

sizes, and demonstrate how the performance in the low duplication setting can be further improved through

the incorporation of an informative prior for the within-file cluster sizes. In the simulation that was just

described, we used a Poisson prior with mean λ = 1 truncated to {1, · · · , 10} for the within-file cluster

sizes. In the simulation, the within-file cluster sizes were generated from Poisson distributions with mean λ

truncated to {1, · · · , 5}, where λ varied over {0.1, 1, 2}. We now repeat the same simulation using Poisson

priors with mean λ truncated to {1, · · · , 10} for the within-file cluster sizes, where λ ∈ {0.1, 1, 2}. The results

are presented in Figure 7. The results for the medium and high duplication settings are very robust to the

within-file cluster size prior specification. In the low duplication setting we see that the performance among

the different within-file cluster size prior specifications is best when λ = 0.1, and worst when λ = 2 (but still

better than the approach of Sadinle (2014)). This behavior is expected as the within-file cluster size prior

with λ = 0.1 is informative in the low duplication setting.
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Figure 7: Performance comparison for simulation with datafiles with duplicates and full estimates, with

varying priors for the within-file cluster sizes. Solid lines show medians, and dashed lines show 2nd and 98th

percentiles.
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D.4 Files with Duplicates, Partial Estimates

We now examine the performance of partial estimates in the low duplication setting of the simulation

presented in the previous section, where both the proposed approach and the approach of Sadinle (2014)

struggled the most. For partial estimates, we use λFNM = λFM1 = 1, λFM2 = 2, and λA = 0.1, so that

abstaining from making a linkage decision is 10% as costly as making a false non-match. We will assess the

performance of the Bayes estimate using precision and the abstention rate,
∑r

i=1 I(Ẑi = A)/r, the proportion

of records which the Bayes estimate abstained from making a linkage decision. Recall is no longer useful

when using partial estimates, as we are not trying to find all true matches.

In Figure 8 we see that, for both approaches, using partial estimates leads to improved precision in

comparison with full estimates, while maintaining a relatively low abstention rate. This result is expected,

as the records to which our partial estimate assigns the abstain option are the most ambiguous in terms

of which records they should be linked to, and therefore they are the most likely to lead to false matches

which decrease the precision. Using partial estimates with an abstain option is therefore a good way of

compromising between automated and manual linkage: records for which linkage decisions are difficult are

left to be handled via clerical review.
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Figure 8: Performance comparison for simulation with datafiles with duplicates and partial estimates. Black

solid and dashed lines refer to precision for partial estimates, grey solid and dashed lines refer to precision

for full estimates, and dot-dashed and dotted lines refer to the abstention rate for partial estimates. Solid

and dot-dashed lines show medians, and dashed and dotted lines show 2nd and 98th percentiles.
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D.5 Results for an Alternative Metric

When evaluating the performance of the full estimates in the simulations thus far, we have focused on the

metrics of precision and recall, which are global measures of how well the true partition is being estimated.

One could also be interested in how well other summaries of the partition are being estimated, e.g. the

number of entities (i.e. the number of clusters), the sizes of the clusters, the overlap table, etc. In this

section we report the performance of the full estimates in the previous simulations when estimating the

number of entities.

For each replicate data set in each simulation scenario considered thus far, we obtained a full estimate

of the partition, which can be used to derive an estimate of the number of entities. For a given simulation

scenario, let n0 denote the true number of entities (in all the scenarios considered thus far, n0 = 500), and

let n̂s denote the estimate of the number of entities based on the full estimate of the partition for replicate

data set s ∈ {1, · · · , 100}. For each simulation scenario, we can thus estimate the bias of these estimates,

∑100
s=1 n̂s − n0, and the mean-squared error of these estimates,

∑100
s=1(n̂s − n0)

2.

D.5.1 Duplicate-Free Files, Equal Errors Across Files

The results for estimating the number of latent entities in the simulations conducted in Section 6.2 of the

main text and Appendix D.2 are seen in Figures 9 and 10. We see that that across the different simulation

settings the proposed approach has a slight negative bias, and the approach using a flat prior has a very large

negative bias. In the no-three-file overlap settings, we see that the more informative prior specifications are

less biased than the proposed approach when there are a larger number of erroneous fields, which mirrors

the results from Appendix D.2. Across all approaches, the bias increases as the number of erroneous fields

increases. The results for the mean-squared error estimates are very similar to the results for the bias

estimates.

D.5.2 Duplicate-Free Files, Unequal Errors Across Files

The results for estimating the number of latent entities in the simulation conducted in Section 6.3 of the

main text are seen in Figures 9 and 10. We see that that across the two simulation settings all approaches
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Figure 9: Bias estimates for simulation with duplicate-free files and equal errors across files. “Flat” refers

to a flat prior on tripartite matchings, “Proposed” refers to our structured prior for partitions when α =

(1, · · · , 1), and “kappa = 49” and “kappa = 99” refer to the more informative specifications of α discussed

in Appendix D.2.
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Figure 10: Mean-squared error estimates for simulation with duplicate-free files and equal errors across files.

“Flat” refers to a flat prior on tripartite matchings, “Proposed” refers to our structured prior for partitions

when α = (1, · · · , 1), and “kappa = 49” and “kappa = 99” refer to the more informative specifications of α

discussed in Appendix D.2.

have a negative bias, with the proposed approach having the smallest bias and the approach using a flat

prior having the largest bias in both scenarios. The results for the mean-squared error estimates are very

similar to the results for the bias estimates.
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Figure 11: Bias estimates for simulation with duplicate-free files and unequal errors across files. “Proposed”

refers to our proposed approach, “Single Model” refers to the approach using a single model for all file-

pairs and our structured prior for partitions, and “Flat Prior” refers to the approach using our model for

comparison data with a flat prior on tripartite matchings.
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Figure 12: Mean-squared error estimates for simulation with duplicate-free files and unequal errors across

files. “Proposed” refers to our proposed approach, “Single Model” refers to the approach using a single

model for all file-pairs and our structured prior for partitions, and “Flat Prior” refers to the approach using

our model for comparison data with a flat prior on tripartite matchings.

D.5.3 Files with Duplicates, Full Estimates

The results for estimating the number of latent entities in the simulation conducted in Appendix D.3 are

seen in Figures 13 and 14. In the low duplication setting, we see that the proposed approach with λ = 0.1

has the smallest bias across error settings, followed by the proposed approach with λ = 1, then the proposed
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approach with λ = 2, and then the approach of Sadinle (2014) with the largest bias across error settings.

This mirrors the results from Appendix D.3. In the medium and high duplication settings we see that all

approaches have a slight negative bias when there are a small number of erroneous fields, and a slight positive

bias when there are a large number of erroneous fields. The different variants of the proposed approach all

have similar performance in these settings. The proposed approach performs best when there are a small

number of erroneous fields, and the approach of Sadinle (2014) performs best when there are a large number

of erroneous fields. The results for the mean-squared error estimates are very similar to the results for the

bias estimates.
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Figure 13: Bias estimates for simulation with files with duplicates and equal errors across files. “Sadinle

(2014)” refers to the approach of Sadinle (2014) and “lambda=...” refers to the proposed approach, varying

the prior over within-file cluster sizes.

D.6 Simulation Running Times

In this section we present the average running time of our proposed Gibbs sampler across the various

simulations settings (i.e. the average time it takes to draw 1000 samples for each simulation setting). The

running times are based on the implementation in the R package multilink which can be downloaded on

GitHub at https://github.com/aleshing/multilink, with the Gibbs sampler described in Appendix B.2

written in C++, running on a laptop with a 3.1 GHz processor.
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Figure 14: Mean-squared error estimates for simulation with files with duplicates and equal errors across

files. “Sadinle (2014)” refers to the approach of Sadinle (2014) and “lambda=...” refers to the proposed

approach, varying the prior over within-file cluster sizes.

D.6.1 Duplicate-Free Files, Equal Errors Across Files

The average running times of our approach in the simulations conducted in Section 6.2 of the main text are

presented in Table 3. The average number of records was 725 in the settings with no-three-file overlap, 676

in the settings with low overlap, 725 in the settings with medium overlap, and 875 in the settings with high

overlap.

Table 3: Average running time in seconds for proposed approach in simulations with duplicate-free files and

equal errors across files.

Number of Erroneous Fields No 3 File Overlap Low Overlap Medium Overlap High Overlap

1 111.0 77.6 83.7 108.6

2 112.9 77.7 83.7 109.2

3 111.8 77.4 83.0 109.4

5 95.7 73.8 77.3 101.1

D.6.2 Duplicate-Free Files, Unequal Errors Across Files

The average running time of our proposed approach in the simulations conducted in Section 6.3 of the main

text was 121.8 seconds in the no-three-file overlap setting and 104.1 seconds in the high overlap setting. The
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average number of records was 725 in the settings with no-three-file overlap and 875 in the settings with

high overlap.

D.6.3 Files with Duplicates, Full Estimates

The average running times of our approach in the simulations conducted in Appendix D.3 are presented

in Table 4. The average number of records was 590 in the settings with low duplication, and 889 in the

settings with medium duplication, and 1260 in the settings with high duplication. We note here that in

this simulation, compared to the simulations with duplicate-free files, we used indexing, which sped up the

running time.

Table 4: Average running time in seconds for proposed approach in with files with duplicates and equal

errors across files.

Number of Erroneous Fields Low Duplication Medium Duplication High Duplication

1 1.5 8.0 20.9

2 1.1 7.7 20.8

3 1.0 7.4 21.0

5 0.9 6.6 19.2

D.7 Larger Sample Size Simulation

All of the simulations thus far had fixed the true number of latent entities, n, to 500. To explore the running

time of our proposed approach further, we now present an additional set of simulations where the number

of latent entities varies over {100, 500, 1000, 2500}. For concreteness we will focus on the simulation setting

with duplicate-free files, equal errors across files, medium overlap, and 1 erroneous field per record (i.e. one

of the settings from the simulation conducted in Section 6.2 of the main text). For this chosen simulation

setting, we repeat the simulation as conducted in Section 6.2 of the main text, varying the number of latent

entities over {100, 500, 1000, 2500}. For the n = 2500 setting we conduct 25, rather than 100, replications

(due to how long each replication takes). The average number of records was 146 when n = 100, 725 when
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Figure 15: Average running time for simulation varying the number of latent entities.

n = 500, 1452 when n = 1000, and 3629 when n = 2500. In addition to fitting the proposed approach

without indexing as in Section 6.2 of the main text, we additionally fit the proposed approach using the

indexing scheme described in Appendix D.3 to demonstrate the utility of indexing for improving the running

time or our proposed approach, as discussed in Appendix B.4.

The average running time for each setting of the number of entities, n, is presented in Figure 15. Our

proposed approach without indexing runs relatively quickly in the settings with n ∈ {100, 500, 1000}, for

example it only takes around 10 minutes on average to draw 1000 samples when n = 1000. However, when

n = 2500 our proposed approach without indexing runs takes roughly an hour and a half on average to draw

1000 samples. While this running time is manageable, it indicates that the running time in settings with

more records than this would prohibitively slow. When looking at the running time of our proposed approach

using indexing, we see that the average running is reduced drastically. For example, when n = 2500, the

average running time is only around 100 seconds.

These results suggest that our approach without indexing can be run in a manageable amount of time

for thousands of records, but would be prohibitively slow when the number of records is much larger than a

few thousand. Our proposed approach with indexing however can scale to larger file sizes, potentially in the

tens of thousands. Using our approach, with or without indexing, in conjunction with blocking, as suggested

in Appendix B.4, can help to further scale our approach to large file sizes.
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We note that the precision and recall in these simulations, across the different settings of the number of

entities, were comparable to the results for the medium overlap, 1 erroneous field per record setting from

the simulation results in Section 6.2 of the main text.

D.8 Alternative Loss Function Specifications

In this section explore the impact of varying the specification of the losses λFNM, λFM1, λFM2, and λA on the

performance of our proposed approach across the different simulation settings. For full estimates, we follow

Sadinle (2017) and consider the following specifications of the losses λFNM, λFM1, and λFM2 (with λA = ∞).

A) λFNM = 1, λFM1 = 1, λFM2 = 2. This is the specification used in all of the simulations thus far.

B) λFNM = λFM1 = λFM2 = 1. Compared to specification A, this specification does not penalize type 2

false matches as heavily.

C) λFNM = 4, λFM1 = λFM2 = 1. This specification penalizes false non-matches more heavily than false

matches.

D) λFNM = 1, λFM1 = 3, λFM2 = 5. This specification penalizes false matches more heavily than false

non-matches, and type 2 false matches more heavily than type 1 false matches.

E) λFNM = 1, λFM1 = 2, λFM2 = 3. Compared to specification E, this specification does not penalizes false

matches as heavily.

F) λFNM = λFM1 = 1, λFM2 = 4. Compared to specification A, this specification penalizes type 2 false

matches more heavily.

For partial estimates, we consider combining λA ∈ {0.05, 0.1, 0.25} with the six specifications of λFNM, λFM1,

and λFM2 that we have just introduced.

D.8.1 Duplicate-Free Files, Equal Errors Across Files

The performance of our proposed approach in the simulations conducted in Section 6.2 of the main text,

using the different loss function specifications, are seen in Figure 16. So that the figure is easier to scrutinize,
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we do not plot the results under specifications E and F, as the results under specifications E are very similar

to the results under specification D, and the results under specifications F are very similar to the results

under specifications A and B.

We see that when there are a low number of erroneous fields, the results are fairly robust to the loss

function specification. When there are a high number of erroneous fields, we see that specification D leads

to the highest precision and the lowest recall, specification C leads to the lowest precision and the highest

recall, and specifications A and B are somewhere in between. These results are expected, as specification C

penalizes false non-matches much more than false matches, and will thus decide to match records more often

than the other specifications, and specification D penalizes false matches much more than false non-matches,

and thus will decide to match records less often than the other specifications.
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Figure 16: Performance comparison across different loss function specifications for simulation with duplicate-

free files and equal measurement error across files. Solid lines show medians, and dashed lines show 2nd and

98th percentiles.

D.8.2 Duplicate-Free Files, Unequal Errors Across Files

The performance of our proposed approach in the simulations conducted in Section 6.3 of the main text,

using the different loss function specifications, are seen in Figure 17. Overall the results are fairly robust to
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the loss function specification. The results under specifications A, B and F are very similar and the results

under specifications D and E are very similar. Similar to the last section, specifications D and E lead to the

highest precision and the lowest recall, specification C leads to the lowest precision and the highest recall,

and specifications A, B, and F are somewhere in between.
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Figure 17: Performance comparison across different loss function specifications for simulation with duplicate-

free files and unequal measurement error across files. Solid lines show medians, and dashed lines show 2nd

and 98th percentiles.

D.8.3 Files with Duplicates, Full Estimates

The performance of our proposed approach in the simulations conducted in Appendix D.3, using the different

loss function specifications, are seen in Figure 16. So that the figure is easier to scrutinize, we do not plot the

results under specifications E and F, as the results under specifications E are very similar to the results under

specification D, and the results under specifications F are very similar to the results under specifications A

and B.

We see that when there is medium and high duplication, the results are fairly robust to the loss function

specification. When there is low duplication, we see that specification D leads to the highest precision and

the lowest recall, specification C leads to the lowest precision and the highest recall, and specifications A

and B are somewhere in between. These results are expected, as described in the previous sections.
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Figure 18: Performance comparison across different loss function specifications for simulation with files with

duplicates and equal measurement error across files, when using full estimates. Solid lines show medians,

and dashed lines show 2nd and 98th percentiles.

D.8.4 Files with Duplicates, Partial Estimates

The performance of our proposed approach in the simulations conducted in Appendix D.4, using the different

loss function specifications, are seen in Figure 19. So that the figure is easier to scrutinize, we do not plot

the results under specifications F, as the results under specifications F are very similar to the results under

specifications A and B.

We see that as we increase λA, the abstention rate decreases and the precision decreases across the

different specifications of λFNM, λFM1, and λFM2. Further, for each loss specification the abstention rate

increases as the number of erroneous fields increases, as there is more uncertainty in the linkage. For a

given setting of λA, the precision is fairly robust to the different specifications of λFNM, λFM1, and λFM2, with

specifications D and E having slightly higher precision that specifications A, B and C. For a given setting of

λA, the abstention rate is highest under specifications D and E, lowest under specifications A and B, with

specification C somewhere in between.
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Figure 19: Performance comparison across different loss function specifications for simulation with files with

duplicates and equal measurement error across files, when using partial estimates. Solid lines show medians,

and dashed lines show 2nd and 98th percentiles.

D.9 Convergence Diagnostics

For all simulations we ran the Gibbs sampler described in Appendix B.2 for 1, 000 iterations, discarding

the first 100 samples as burn-in. We initially came up with these sampling and burn-in lengths based on a

small number of test runs for each simulation scenario. In particular, for each simulation scenario we ran a

small number of test runs and examined the trace plots for the number of entities, n. As the chains for n

appeared to converge quickly based on these trace plots, we determined that a burn-in period of 100 samples

was appropriate. To illustrate this procedure, for each simulation scenario we now present trace plots for

the number of entities, n, for a small number of runs.

D.9.1 Duplicate-Free Files, Equal Errors Across Files

For the simulations conducted in Section 6.2 of the main text with 3 erroneous fields per record, for each

overlap setting we present the trace plots for n for the last 5 of the 100 simulation runs in Figure 20. The

chains for the other scenarios with 1, 2, and 5 erroneous fields per record converged similarly quickly.
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Figure 20: Trace plots for n for the last 5 of 100 runs for the simulation with duplicate-free files and equal

measurement error across files. “Proposed” refers to the proposed approach and “Flat” refers to the approach

using a flat prior for tripartite matchings.

D.9.2 Duplicate-Free Files, Unequal Errors Across Files

For the simulations conducted in Section 6.3 of the main text, for each overlap setting we present the trace

plots for n for the last 5 of the 100 simulation runs in Figure 21.

D.9.3 Files with Duplicates, Full Estimates

For the simulations conducted in Appendix D.3 with 3 erroneous fields per record, for each overlap setting

we present the trace plots for n for the last 5 of the 100 simulation runs in Figure 22. The chains for the

other scenarios with 1, 2, and 5 erroneous fields per record converged similarly quickly.
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Figure 21: Trace plots for n for the last 5 of 100 runs for the simulation with duplicate-free files and unequal

measurement error across files. “Proposed” refers to our proposed approach, “Single Model” refers to the

approach using a single model for all file-pairs and our structured prior for partitions, and “Flat Prior” refers

to the approach using our model for comparison data with a flat prior on tripartite matchings.
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Figure 22: Trace plots for n for the last 5 of 100 runs for the simulation with files with duplicates and equal

measurement error across files, when using full estimates. “Proposed” refers to the proposed approach and

“Sadinle (2014)” refers to the approach of Sadinle (2014).
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E Colombia Application

In this appendix we re-examine the three record systems containing information on homicides from 2004 in

the Quindio province of Colombia, previously studied in Sadinle & Fienberg (2013). These record systems,

provided by the Conflict Analysis Resource Center (CERAC), were maintained by the Colombian National

Statistics Office (Departamento Administrativo Nacional de Estadistica, DANE), the Colombian National

Police (Policia Nacional de Colombia, PN), and the Colombian Forensics Institute (Instituto Nacional de

Medicina Legal y Ciencias Forenses, ML). While the purpose of DANE is to record all homicides occurring

in Colombia, PN and ML only record homicides obtained from their daily activities (Departamento Admin-

istrativo Nacional de Estadisticas, DANE 2009, Restrepo & Aguirre 2007). Linking DANE to PN and ML is

thus an important step in assessing the coverage of DANE and arriving at better estimates of the number of

homicides in Colombia. Previously the records were linked by hand, which gives us a ground truth to assess

the performance of our proposed approach. The linkage methodology of Sadinle & Fienberg (2013) did not

scale to a large number of records, so the authors restricted their analysis to the 162 records from the last

three months of 2004. We will now use our proposed approach to link all the 769 records from 2004.

E.1 Implementation Details

The three record systems are believed to be free of duplicates, so the target of inference is a tripartite

matching. The fields available from all three record systems are municipality and date of the homicide,

whether the location of the homicide was urban or rural, and the age, sex, and marital status of the victim.

Additionally, educational status of the victim is available in DANE and ML, which we are able to use despite

it being missing in PN, as explained in Section 4. Although we have seven fields available for the linkage,

none of them provide a large amount of discriminative information, which comparison-based approaches

rely on. Thus we expect there to be significant uncertainty in the linkage, making the proposed approach

particularly relevant.

There are r1 = 323 records in DANE, r2 = 157 records in ML, and r3 = 289 records in PN, so there

are 189, 431 record pairs for which we construct comparison data, according to Table 5. We use transitive

indexing as described in Appendix B, where the initial indexing scheme declares record pairs as non-coreferent
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Table 5: Construction of levels of disagreement for the Colombian homocide record systems.

Levels of disagreement

Field Similarity measure 0 1 2 3

Date Absolute Difference 0 1− 2 3− 7 8+

Age Absolute Difference 0 1− 2 3− 9 10+

Other Fields Binary comparison Agree Disagree

if they disagree in either municipality, sex, date by more than 60 days, or age by more than 9 years. This

reduces the number of candidate coreferent record pairs down to 60, 324.

We present results from our approach under two prior specifications. The first is the default specification

used in the simulations in Sections 6.2 and 6.3. The second specification differs from the default by placing a

more informative prior on the overlap table through α. In particular, based on characteristics of the record

systems described in Restrepo & Aguirre (2007), we specify a prior that captures the beliefs that: 1) if a

homicide is recorded in PN or ML, it is highly likely to also be recorded in DANE, and 2) DANE and PN

are expected to have a high coverage of homicides. This prior is described in more detail in the following

section. We used the same loss function specification as outlined in Section 6.1 and Appendix D. We ran

3, 000 iterations of the Gibbs sampler presented in Appendix B, discarding the first 1, 000 as burn-in. In

Section E.5 we discuss convergence of the Gibbs sampler for this application.

E.2 An Informative Prior Specification

We will guide our prior specification using the following two passages from Restrepo & Aguirre (2007)

(translated to English):

• “According to DANE, ‘The differences in the Legal Medicine and DANE data are mainly due to the fact

that the latter organization receives, in addition to the death certificates sent by Legal Medicine (which

are sent to DANE after a technical examination), the homicide reports made by police inspectors,

nurses or health promoters - in places where there are no legal doctors - who arrive at the site where

the body is found and register the cases as homicide without a technical examination and according
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to the picture that presents the corpse’. So we find here a reason for the increased coverage of vital

statistics” (Restrepo & Aguirre 2007, p. 331).

• “The National Police assures to have coverage at the national level, making an institutional presence in

all the municipalities of the country: ‘We have a presence throughout the country and we know all the

cases; Legal Medicine does not have the same coverage and thus their data is not exact’ ” (Restrepo

& Aguirre 2007, p. 330).

Note that our Dirichlet-Multinomial prior for the overlap table can be motivated as the result of first

drawing {qh}h∈H from a Dirichlet distribution with hyperparameters α, then drawing n from a multinomial

distribution of size n with probabilities {qh}h∈H. Based on these passages we specify α as follows, referring

in our notation to DANE as list 1, ML as list 2, and PN as list 3:

• If a homicide is going to be recorded by one of the three record systems, it is very likely that it will be

known by DANE. Therefore, we choose α1++ = α100+α101+α110+α111 and α0++ = α001+α010+α011

such that mode(q1++) = 0.95 and P(q1++ > 0.9) = 0.95, where q1++ = q100 + q101 + q110 + q111 ∼

Beta(α1++, α0++) is the prior probability of a homicide being recorded in DANE given it is recorded

in one of the three systems.

• If a homicide is recorded by PN, then it is very likely that it will be recorded by DANE. Therefore, we

choose α1+1 = α101 + α111 and α0+1 = α001 + α011 such that mode(q1+1) = 0.95 and P (q1+1 > 0.9) =

0.9, where q1+1 = q101 + q111 ∼ Beta(α1+1, α0+1) is the prior probability of a homicide being recorded

in DANE given it is recorded in PN.

• If a homicide is recorded by ML, then it is very likely that it will be known by DANE. Therefore, we

choose α11+ = α110 + α111 and α01+ = α010 + α011 such that mode(q11+) = 0.95 and P (q11+ > 0.9) =

0.9, where q11+ = q110 + q111 ∼ Beta(α11+, α01+) is the prior probability of a homicide being recorded

in DANE given it is recorded in ML.

• The above induce six constraints, which determine α011, α001, and α010, but we need one extra con-

straint to determine the remaining α. We thus choose the configuration of α100, α101, α110, and α111
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that maximizes α101, which controls the prior probability of a homicide being jointly recorded by

DANE and PN, given that these systems that are supposed to have the largest coverage of homicides.

Under this specification we arrive at the setting α001 = 1.63, α010 = 1.63, α011 = 2.94, α100 = 0, α101 =

30.96, α110 = 30.96, α111 = 37.78. For the sake of propriety, we set α100 = 0.1.

E.3 Results

Under the default prior specification the precision and recall of the full estimate are 0.90 and 0.93 respectively.

Recall is no longer useful when using partial estimates, as we are not trying to find all true matches. Thus we

will assess the performance of the partial estimates using precision and the abstention rate, the proportion

of records which the Bayes estimate abstained from making a linkage decision. The partial estimate has

an abstention rate of 11%, and improves the precision of the estimate to 0.93. Under the informative prior

specification the precision and recall of the full estimate are 0.93 and 0.96 respectively. The partial estimate

has an abstention rate of 11%, and improves the precision of the estimate to 0.95. Due to the performance

difference, we will focus on the results under the informative prior specification for the rest of this section.

Analogous results under the default specification are provided in the next section.

The total number of homicides based on the hand labelling is 383. Under the informative prior specifi-

cation a 95% credible interval for the number of unique homicides n is [372, 383], with an estimate based on

the full estimate of the tripartite matching of 376. In Table 6 we display the posterior distribution for the

overlap table and the overlap table derived from the full estimate, along with the overlap table derived from

the ground truth hand labelling. We can see that n111, the number of homicides recorded in all three files,

and n100, the number of homicides recorded in just DANE, are overestimated, and the remaining cells of the

overlap table (and n) are underestimated.

While the performance of the estimated matching is fairly good, with precision of both the full and

partial estimate (before clerical review) above 0.9, the overestimation of n111 and the underestimation of n is

indicative of over-matching. We believe this over-matching occurrs due to the low amount of discriminative

information provided by the fields. In particular, the only fields we believe can be fully trusted are municipal-

ity of the homicide (of which there are 12) and sex of the victim (which is coded as binary), which can only
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Table 6: Posterior distribution of the overlap table for the Colombian record systems, under the informative

prior specification. Black lines indicate the ground truth, dotted lines indicate quantities derived from the

full estimate of the tripartite matching.

In PN Out PN

DANE In ML Out ML In ML Out ML

In

n111

98 106 114 122

n101

135 141 147 153

n110

9 13 17 21

n100

41 46 51 56 61

Out

n011

1 4 7 10

n001

18 24 30 36

n010

16 21 26 31

−

partition the records into 22 blocks of candidate coreferent records (there are no records of female homicide

victims in two municipalities). The remaining fields all have some amount of error and do not provide highly

discriminative information since they are either low dimensional categorical fields (urban/rural location of

the homicide has two categories, marital status has five categories, and educational status has six categories)

or numeric fields that are essentially ordinal categorical (date of homicide and age of victim). Therefore,

records of different homicides may look similar based on the comparisons of these fields, causing them to be

mistakenly matched. In these low-information settings, clerical review becomes especially important for the

record linkage workflow, which our proposed approach of using partial estimates incorporates by design.

E.4 Results Under Default Prior

Under the default prior specification a 95% credible interval for the number of unique homicides n is [376, 389],

with an estimate based on the full estimate of the tripartite matching of 378. Thus we see that n is better

estimated under the default prior compared to the informative prior (though the point estimate is still an

underestimate). In Table 7 we display the posterior distribution for the overlap table and the overlap table
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derived from the full estimate, along with the overlap table derived from the ground truth hand labelling. We

can see that, as with the informative prior specification, n111 and n100 are overestimated, and the remaining

cells of the overlap table (and n) are underestimated.

Table 7: Posterior distribution of the overlap table for the Colombian record systems, under the default

prior specification. Black lines indicate the ground truth, dotted lines indicate quantities derived from the

full estimate of the tripartite matching.

In PN Out PN

DANE In ML Out ML In ML Out ML

In

n111

98 106 114 122

n101

129 137 145 153

n110

6 11 16 21

n100

41 49 57 65

Out

n011

1 4 7 10

n001

20 25 30 35 40

n010

18 22 26 30 34

−

E.5 Convergence Diagnostics

In the application, we ran the the Gibbs sampler described in Appendix B.2 for 3, 000 iterations, discarding

the first 1, 000 samples as burn-in, under a default and an informative prior specification. In Figure 23 we

present the the trace plots for the number of entities, n, under each of these prior specifications. The chains

for n appear to converge quickly based on these trace plots. For each of these chains we computed Geweke’s

convergence diagnostic as implemented in the R package coda (Plummer et al. 2006). The Geweke’s Z-scores

indicated it was reasonable to treat these chains as drawn from their stationary distributions.
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Figure 23: Trace plots for n in Colombia application.
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