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Abstract—In this work, we develop a two time-scale deep
learning approach for beamforming and phase shift (BF-PS)
design in time-varying RIS-aided networks. In contrast to most
existing works that assume perfect CSI for BF-PS design, we
take into account the cost of channel estimation and utilize
Long Short-Term Memory (LSTM) networks to design BF-
PS from limited samples of estimated channel CSI. An LSTM
channel extrapolator is designed first to generate high resolution
estimates of the cascaded BS-RIS-user channel from sampled
signals acquired at a slow time scale. Subsequently, the outputs
of the channel extrapolator are fed into an LSTM-based two
stage neural network for the joint design of BF-PS at a fast
time scale of per coherence time. To address the critical issue
that training overhead increases linearly with the number of
RIS elements, we consider various pilot structures and sampling
patterns in time and space to evaluate the efficiency and sum-rate
performance of the proposed two time-scale design. Our results
show that the proposed two time-scale design can achieve good
spectral efficiency when taking into account the pilot overhead
required for training. The proposed design also outperforms a
direct BF-PS design that does not employ a channel extrapolator.
These demonstrate the feasibility of applying RIS in time-varying
channels with reasonable pilot overhead.

I. INTRODUCTION

In recent years, reconfigurable intelligent surface (RIS)-
aided networks have attracted significant attention as an
emerging technology to increase the network capacity. Smart
radio environments can utilize RIS to manipulate the propa-
gation of incident electromagnetic waves in a programmable
manner to actively alter the channel realization. This turns the
wireless channel into a controllable system block that can be
optimized to improve overall system performance.

A major challenge in RIS-aided multiuser communication
lies in the joint design of base station (BS) transmit beam-
forming matrix W and RIS reflection phase shift θ. Due to
the intricate relationship between W and θ in determining the
sum-rate of a multi-user network, the computation complexity
for determining the optimal beamforming and phase shift (BF-
PS) is often high [1], [2], especially when the number of
RIS elements N is large. To address the complexity issue
of conventional algorithms, machine learning approaches have
been applied to jointly design BF-PS. For instance, reinforce-
ment learning algorithms were adopted in [3], [4] to design
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optimal BF-PS. These, however, can only be applied to find
the optimal BF-PS for one channel realization and one needs
to re-run the learning algorithms whenever channel changes.
In [5], [6], deep neural networks were proposed to compute
the optimal BF-PS such that the same trained network can be
used when channel changes. We note that the above existing
works (both conventional and machine learning approaches)
typically assume that perfect channel state information (CSI)
is available for the optimal BF-PS design. This assumption
is not practical for RIS-aided communications. The very high
dimension of channel matrices, resulting from a large N (in
the order of tens to hundreds), together with multiple transmit
antennas at the BS and multiple users sharing the spectrum,
can induce significant training overhead for channel estima-
tion. In the literature, a lot of works [7]–[10] consider channel
estimation for RIS-aided communications. Some works have
also applied machine learning [11]–[13] to improve the RIS-
aided channel estimation. However, the impact of imperfect
channel estimation on the joint BF-PS design, especially on the
machine-learning aided BF-PS design, has not been studied.

In [14], deep learning-based channel extrapolation is imple-
mented over both antenna and time domains for the acquisition
of time-varying cascaded channels for a RIS-aided system. In
[15], an LSTM based neural network design was proposed
to utilize the past location information of the mobile users
to predict the phase shift of the RIS. Two neural networks
are trained separately, one for the phase shift design from
location information. The other one is for designing the
optimal beamforming matrix W, assuming that the optimal
phase shift matrix has been determined from the first network.

In this work, we develop a two time-scale deep learning ap-
proach for BF-PS design in time-varying RIS-aided networks.
In contrast to most existing works that assume perfect CSI
for BF-PS design, we take the cost of channel estimation into
account and utilize neural networks to design BF-PS from
limited samples of estimated channel CSI. This approach re-
duces pilot overhead needed for channel estimation and makes
the use of RIS in time-varying channels possible. We adopt
a joint optimization for the beamforming matrix W and RIS
phase shift θ. This is in contrast to [15] where the optimization
is done separately using two independently trained networks.
Furthermore, our design does not require the knowledge of
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past location information. The main contributions of this paper
are summarized as follows:

• We propose LSTM-based neural networks for the BF-PS
design over time-varying channels. An LSTM channel
extrapolator is designed first to generate high resolution
estimates of the cascaded BS-RIS-user channel from
sampled signals acquired at a slow time scale. Subse-
quently, the outputs of the channel extrapolator are fed
into an LSTM-based two stage neural network for the
joint design of BF-PS at a fast time scale of per coherence
time.

• To address the critical issue that training overhead in-
creases linearly with the number of RIS elements, we
consider various pilot structures and sampling patterns
in time and space to evaluate the efficiency and sum-
rate performance of the proposed two time-scale design.
We find that with our current network architecture, a
higher temporal resolution in channel sampling has a
more positive impact on the sum-rate performance than
a higher spatial resolution does.

• Our results show that the proposed two time-scale design
can achieve a sum-rate performance that is close to that
of the design assuming perfect CSI. It also outperforms
a direct BF-PS design that does not employ a channel
extrapolator. These demonstrate the feasibility of apply-
ing RIS in time-varying channels with reasonable pilot
overhead.

II. SYSTEM MODEL

A. Channel Model

We consider a system similar to that of [2], shown in Fig.
1, consisting of one base station equipped with M antennas,
one RIS with N unit-cells, and K single-antenna users. Let
G ∈ CN×M denote the channel from BS to RIS. Since the
BS and the RIS are at fixed locations, we assume that G is
fixed. Let hr,k(t) ∈ CN×1 denote the reflected channel from
RIS to user k at time t. Channels G,hr,k(t) include effects of
large scale path loss and small scale fading (with both line-of-
sight (LOS) and non-line-of-sight (NLOS) parts). Elements of
channel matrices can be independent under the rich scattering
assumption of the NLOS part, or correlated, when considering
antenna correlations or sparse scattering environment. For a
multi-user setting, we assume that M ≥ K.

The channels G and hr,k(t) are modeled by

G = L1

(√ ϵ

ϵ+ 1
aN (ϑ)aM (ψ)∗ +

√
ϵ

ϵ+ 1
Ḡ
)

(1)

hr,k(t) = Lr,k(t)
(√ ϵ

ϵ+ 1
aN (ζk(t)) +

√
ϵ

ϵ+ 1
h̄r,k(t)

)
(2)

where L1 and Lr,k(t) are the path losses, ϵ is the
Rician factor. aD(ϕ) is the steering vector defined as
[1, ejπsin(ϕ), ..., ejπsin(ϕ)(D−1)]T ∈ CD×1 with angular pa-
rameter ϕ and antenna number D. ϑ, ψ and ζk(t) are the
corresponding angular parameters. Ḡ and h̄r,k(t) are the

NLOS components following a complex Gaussian distribution
of zero mean and unit variance, denoted by CN (0, 1).

Base Station

…

…
…
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𝒇𝒇𝒓𝒓,𝟏𝟏(𝒕𝒕) estimation

Slow time scale 
𝐇𝐇𝒓𝒓,𝟏𝟏(𝒕𝒕) estimation

Fig. 1: An RIS-aided multiuser network.

We define the phase shift matrix of the RIS as Θ(t) =
diag(θ1(t), θ2(t), · · · , θN (t)), where θn(t) = ejϕn(t) is the
phase shift of the n-th RIS element at time t. Let s(t) =
(s1(t), · · · , sK(t))′ be the transmitted symbol vector, where
sk(t) denotes the transmitted data symbol to user k at time
t. Define the beamforming matrix at the BS as W(t) =
[w1(t), · · · ,wK(t)], where wk(t) ∈ CM×1 denotes the beam-
forming vector for user k at time t. Then the transmitted signal
vector at the BS is x(t) = W(t)s(t) =

∑K
k=1 wk(t)sk(t).

The signal received at user k is given by (4) where uk(t)
is a complex Gaussian random variable with zero mean and
variance σ2

0 .
Then, the received signal at user k at time t is given by

yk(t) = hr,k(t)
′Θ(t)Gx(t) + uk(t), (3)

= fr,k(t)
′x(t) + uk(t), (4)

where fr,k(t)
′ = h′

r,k(t)Θ(t)G ∈ C1×M is defined as the
effective channel vector of the BS-RIS-user-k channel. The
received signal-to-interference-ratio (SINR) at each user k is
then given by

γk(t) =
∥fr,k(t)′wk(t)∥2∑K

i=1,i ̸=k ∥fr,k(t)′wi(t)∥2 + σ2
0

(5)

The objective is to design the optimal BF-PS (W(t), Θ(t))
such that the sum-rate in (6) is maximized. The optimization
is subject to a total power constraint (7).

maxW(t),Θ(t)

K∑
k=1

log(1 + γk(t)), (6)

subject to
K∑

k=1

∥wk(t)∥2 ≤ PT . (7)

For the optimization of Θ(t), it is convenient to introduce
θ(t) = (θ1(t), · · · , θK(t))′ to denote the RIS phase shift
vector at time t. Then, we can rewrite (4) as (8) such that

yk(t) = θ′Hr,kx(t) + uk(t), (8)

where Hr,k(t) = diag(hr,k(t))G ∈ CN×M denotes the cas-
caded channel matrix of the BS-RIS-user-k channel. Here, the

2628Authorized licensed use limited to: The University of Utah. Downloaded on December 30,2022 at 23:29:48 UTC from IEEE Xplore.  Restrictions apply. 



notation diag(hr,k(t)) denotes the diagonal matrix consisting
of diagonal elements from hr,k(t).

We see from (8) that in order to design Θ(t), we need
to estimate the cascaded channel matrix Hr,k(t) for every
user k. This requires an estimation of K ×M × N channel
elements. On the other hand, once Θ(t) is given, it is sufficient
to estimate the effective channel vector fr,k(t) for every user
k in order determine the optimal beamforming vector. This
requires an estimation of only M×K channel elements. Since
the training overhead required to estimate the effective channel
is much lower than that is needed for the cascaded channel, in
the remainder of the paper, we assume that fr,k(t) is estimated
at the fast time scale (for every coherence time Tc), but the
estimation is done less frequently (at a slower time-scale) for
Hr,k(t) due to large pilot overhead.

III. PROPOSED TWO TIME-SCALE DESIGN

A. Transmission Protocols

Let Tca denote the time duration required to estimating the
cascaded channels and let Tc denote the channel coherence
time. Depending on the relationships between Tca and Tc, we
consider three data transmission formats as shown in Fig. 2.

• Case 1: Tca ≪ Tc. This case applies to a scenario with
a small number of RIS elements N . In this case, we can
take Tca symbol times within each coherence interval to
estimate the cascaded channels. This will not reduce the
transmission efficiently significantly.

• Case 2: Tca ≈ Tc. This applies to a moderate value of
N . Since channel remains roughly constant over the time
duration of Tca, we estimate the full cascaded channel
using least square estimation. In this case, we assume
that the cascaded channel is estimated for every Q1

coherence times. With each Tc, we will estimate the
effective channel using a time duration of Tef, followed
by data transmission.

• Case 3: Tca ≫ Tc. This case is for a larger value of N .
In this case, if one estimates the full cascaded channel,
the channel would have changed during Tca. Thus, we
choose to turn off some RIS elements and only estimate
the cascaded channels for those elements that are on. We
denote the time needed to estimate the subset of active
RIS elements at T on

ca . After every Q2 coherence time, we
estimate another set of cascaded channels for a different
set of active RIS elements.

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝟏𝟏: 𝑻𝑻𝒄𝒄𝒄𝒄 ≪ 𝑻𝑻𝒄𝒄

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝟐𝟐: 𝑻𝑻𝒄𝒄𝒄𝒄 ≈ 𝑻𝑻𝒄𝒄

𝑻𝑻𝒄𝒄𝒄𝒄 𝑻𝑻𝒄𝒄

𝑻𝑻𝒄𝒄𝒄𝒄

𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝟑𝟑: 𝑻𝑻𝒄𝒄𝒄𝒄 ≫ 𝑻𝑻𝒄𝒄; 𝑻𝑻𝒄𝒄𝒄𝒄𝒐𝒐𝒐𝒐 = 𝑻𝑻𝒄𝒄𝒄𝒄
𝒐𝒐𝒐𝒐,𝟏𝟏 + 𝑻𝑻𝒄𝒄𝒄𝒄

𝒐𝒐𝒐𝒐,𝟐𝟐

𝑻𝑻e𝒇𝒇 𝑻𝑻𝒄𝒄

𝑻𝑻e𝒇𝒇𝑻𝑻𝒄𝒄𝒄𝒄
𝒐𝒐𝒐𝒐,𝟏𝟏

𝑻𝑻𝒄𝒄𝒄𝒄

𝑻𝑻𝒄𝒄𝒄𝒄
𝒐𝒐𝒐𝒐,𝟐𝟐

⋯

⋯

⋯

𝑻𝑻𝒄𝒄

𝑻𝑻𝒄𝒄

Fig. 2: Three transmission data formats

B. Estimation of Cascaded Channel

To estimate the cascaded channel, we adopt the uplink chan-
nel estimation algorithm in [11]. Due to channel reciprocity,
the downlink channel can be estimated as the transpose of the
uplink channel estimates. Following the channel estimation
protocol of [11], each channel estimation frame consists of
C sub-frames. In each sub-frame, the RIS is set as one
column of the matrix P = [Φ1, ...,ΦC ] ∈ CN×C and K
orthogonal message vectors of length L are transmitted from
users, where L ≥ K. The message vector of user k is denoted
as vk = [vk,1, ...vk,L]

H and vH
k vk = P , where P is the

transmitted power of each user over L symbol time. Therefore,
at BS, the received vector at l-th time slot via the RIS Φc

can be expressed as, rc,l(t) =
∑K

k=1 H
′
r,k(t)Φcvk,l+nc,l(t),

where nc,l(t) ∼ CN (0, σ2
nIM ). Based on the assumption that

the cascaded channel is constant during channel estimation, the
stacked received matrix Rc ∈ CM×L of L received vectors at
c-th sub-frame can be expressed as, Rc =

∑K
k=1 H

′
r,kΦcv

H
k +

Nc, where Nc = [nc,1, ...,nc,L] ∈ CM×L. According the
orthogonality of message vectors, the received vector sc,k
subject to the k-th user at the c-th sub-frame can be extracted
by multiplying message vector vk as,

sc,k =
1

P

K∑
k=1

H′
r,kΦcv

H
k vk +

1

P
Ncvk = H′

r,kΦc + n′
c,

By stacking all received vectors subject to the k-th user over
C sub-frames as the matrix Sk = [s1,k, ..., sC,k] ∈ CM×C as,
Sk = H′

r,kP+N′ where N′ = [n′
1, ...,n

′
C ] ∈ CM×C . Then,

the Least Square (LS) estimation of uplink cascaded channel
H′

r,k can be given by multiplying the pseudoinverse of P as,
Ĥ′

r,k = SkP
H(PPH)−1 The design of matrix P is also based

on the discrete Fourier transform (DFT) as proposed in [11].
However, due to lack of direct channels between users and the
BS in our setting, our matrix P removes the all-one row of
the DFT matrix.

C. Proposal two time-scale neural network design

In this section, we propose a two time-scale neural network
design, which consists of three modules as shown in Fig. 3.
A Space-Time Channel Extrapolation Neural Network(STN)
generates extrapolated cascade channel data in time and RIS
element space domain every t time slot based on estimated
cascade channel. Next, a two-stage neural network, consisting
of a Phase Shift Neural Network (PSN) and a Beamforming
Neural Network (BFN) is trained jointly to optimize the BF-
PS. The PSN-BFN two-stage architecture is motivated from
a similar architecture first proposed in [6]. The difference
here is that we apply LSTM to both PSN and BFN in order
to utilize history channel information, whereas architecture
of [6] is designed under the assumption of perfect CSI.
The role of the proposed PSN is to obtain the optimized
phase shift matrix Θ(t) with consideration of both spatial
and temporal features of time varying channel. Once the
phase shift matrix Θ(t) is given, estimated effective channel
matrix fr(t) = [fr,1(t), · · · , fr,K(t)] ∈ CK×M is sent to a
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Beamforming Neural Network (BFN) to acquire the optimized
beamforming matrix W(t). After acquiring the beamforming
matrix W(t), the sum rate can be calculated with the effective
channel matrix according to (6). Therefore, we can design the
loss function as the negative of sum rate over L time slots:

Loss = − 1

L

L∑
t=1

K∑
k=1

log(1 + γk(t)) (9)

Θ(t) and W(t) are jointly optimized via the backpropaga-
tion algorithm from the loss function and when PSN and BFN
are trained jointly, pre-trained STN is used.

Cascade
Channel 

Converter

Space Time
Channel 

Extrapolation
Neural Network

(STN)

( )r tH( )r tH ( )r tH

Phase Shift
Neural 

Network
(PSN)

Effective
Channel 

Estimation

Beamforming
Neural 

Network
(BFN)

( )tΘ ( )r tf ( )tW( )r tH

(a) Training of STN

(b) Joint training of PSN and BFN

Fig. 3: A system diagram for Two Time-Scale Architecture

We convert the estimated cascade channel matrix
Hr(t) = [Hr,1(t), · · · ,Hr,K(t)] ∈ CK×N×M of
BS-RIS-all users channel into the channel matrix
H̄r(t) = [H̄r,1(t), · · · , H̄r,N (t)] ∈ CN×K×M in which
H̄r,n(t) is the converted cascade channel matrix of
transmission from base station to all users through n-th
RIS element at t time slot. Depending on the transmission
protocol, sequence of converted cascade channels has different
form. In the case 1, Tca is short enough to estimate cascade
channel matrix every Tc and the sequence of converted
cascade channel matrix has the form described in Fig. 4(a).
However, in case 2, cascade channel Hr,k(t) cannot be
estimated every Tc because transmission burden and the
sequence of converted cascade channel matrix has zero
padded form in temporal axis as Fig. 4(b) in which the grey
matrices denote zero matrices. For case 3, Tca is longer
than Tc and, as described in Section III.C, cascade channel
estimation is performed within Tc by turning off some RIS
elements. If κ-th RIS element is turned off in Tca, then
the converted cascade channel matrix H̄r,κ(t) is the zero
matrix because H̄r,κ(t) is the channel matrix of BS-κth RIS
element-all users. Transmission protocol Case 3 has two
degree of freedom in time and RIS element space and they
are denoted by RT and RS , respectively. In Fig. 4(e), half
of RIS elements are turned off in each TC and the cascade
channel data is transmitted alternately in time. Thus, the
spatial rate RS is 1

2 , temporal rate RT is 1
2 , and the total rate

R = RT ·RS = 1
4 .

Space-Time channel extrapolation Neural Network (STN)
structure is shown in Fig. 5. It is trained under supervised
learning with the MSE loss function. In case 1 (RT = RS =
1), the converted cascade channel data can be obtained every

Fig. 4: Estimated Cascade Channel

Tc and STN just passes over the channel matrix sequence to
the PSN. However, if RT or RS has fractional value, STN
performs extrapolation in time domain and RIS element space
domain. STN adopts LSTM to take advantage of temporal
features from the input sequence but it loses some spatial in-
formation via serializing converted cascade channel matrices.
We observe that STN has better performance in time than
spatial domain in Fig. 6 as well.

Fig. 5: The architecture of STN

Fig. 6: STN performance comparison

Phase Shift Neural Network (PSN) is composed of Con-
volutional Neural Network (CNN) module, Long short-term
memory (LSTM) cell, and fully Connected Layer, as illustrated
in Fig. 7. PSN has sequence of extrapolated converted cascade
channel matrices from STN as an input. Considering converted
cascade channel matrix’s spatial characteristic, CNN module is
suitable choice to pre-process input to the LSTM cell. CNN
module also reduces the dimension of input to LSTM cell
especially in the case of large number of RIS elements en-
vironment. Extracted features from CNN module is serialized
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and concatenated to be sent to LSTM cell for temporal feature
exploration. To make use of temporal features of time varying
channel, L sequence of extracted features from CNN module
are fed to LSTM cell. Hidden cell output from LSTM is sent
to a fully connected layer to generate phase shift matrix Θ(t).

Given phase shift matrix Θ(t), estimated effective chan-
nel matrix fr(t) is obtained by uplink estimation in Tef
as described in Fig. 2. Here, fr(t) is flattened and stacked
with L numbers in time sequence to be sent to LSTM cell
of Beamforming Neural Network (BFN). Fully connected
network exploits features from hidden cell output of LSTM
cell and makes beamforming matrix W(t). At the end of BFN,
power normalization is conducted to fulfill the total transmit
power constraint (7). When PSN and BFN are trained jointly,
pre-trained STN is used.

Fig. 7: The architecture of PSN and BFN

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
two time-scale learning approach. We first describe the channel
environment setup and then present the simulation results.

Wireless channel environment setting is as follows:
• Carrier Frequency: fc = 3.5 GHz
• Transmission Bandwidth: BW = 180 KHz
• Mobility: v = 3.85 m/s
• Maximum Doppler: fd = fc · v

c = 45 Hz

• Coherence Time: Tc = 1
8fd

= 2.8 ms
• Normalized Maximum Doppler: fd · Ts = 2.5× 10−4.
• # of symbols per coherence time:
NC = Tc

Ts
= Tc ·BW = 500 symbols

We consider an RIS-aided network, where one BS, equipped
with M = 8 antennas, communicates K = 4 single antenna
users via an RIS with N elements. It requires (N + 1) ×K
symbol times to estimate all elements in the cascaded BS-RIS-
user channels. Assume the users are randomly distributed in a
circle with a radius of 10 m and the direct links between BS
and users are blocked, as illustrated in Fig. 8.

Fig. 8: Simulation Setup

To generate training data, users’ locations are randomly
selected per 100 Tc. Since the distance travelled as a user
moves in 100 Tc is 1.08 meters, the path loss change is less
than 0.5 dB. Thus, the path loss is approximately constant
within this time (280 ms), while small scale fading changes.
We use the filter method to simulate the continuous, time-
varying channel with small scale fading. Complex Gaussian
with zero mean and unit variance is filtered by the auto-
correlation function R0[n] = 2a2πJ0(n · 2πfn) in which
fn = fd · Ts is the normalized maximum Doppler frequency
and J0 is the zeroth-order Bessel function of the first kind:
J0(x) :=

1
π

∫ π

0
ejxcosθdθ.

In Fig. 9, we first compare the sum rate achieved by three
architectures. The first one, CNN+FC with full CSI represents
a performance upper bound where full CSI at every Tc is fed
into the CNN and Fully Connected (FC) layer architecture [6]
for optimal BF-PS design. The performance lower bound is
obtained using CNN+FC with RT = 1/2. For this architec-
ture, we feed the two time-scale channel inputs to the same
architecture [6]. Here, to apply the temporal rate (RT = 1/2)
input, the network is modified to be trained with two time scale
transmission protocol. When zero padded cascade channel is
fed to CNN, output phase shift matrix holds previous value
and CNN blocks are detached from computation graph. Only
FC layers for beamforming matrix are updated by backprop-
agation algorithm. Our proposed architecture is denoted by
STN+PSN+BFN, which shows superior performance to the
CNN+FC with RT = 1/2, while showing a performance gap
compared to the idealized CNN+FC with full CSI.

Next, we will make performance comparisons based on
spectral efficiency, which takes pilot overhead into account.
With our proposed frame structure, pilot overhead rate for
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uplink channel estimation can be calculated by Op =
(N+1)·K·RS+( 1

RT
)·K

(N+1)·K·RS+( 1
RT

)·NC
= (N+1)·K·R+K

(N+1)·K·R+NC
in which R = RS ·

RT . Thus, the system spectral efficiency that takes into account
pilot overhead is (1−Op) ·

∑K
k=1 log(1 + γk(t)).

Fig. 9: Sum rate comparisons over various architectures.

Fig. 10a compares the spectral efficiency over three combi-
nations of temporal rate RT and spatial rate RS while fixing
the total rate R to be 1

4 . Two architectures are compared, one
with STN, and one without. Fig. 10a shows that having the
STN improves the spectral efficiency by about 1 bits/s/Hz.
We also note that increasing N from 64 to 96 only improves
the spectral efficiency slightly. This is due to the higher pilot
overhead required for the case of N = 96. As seen from Fig.
10a, assigning a lower temporal rate RT than RS provides
higher spectral efficiency.

Fig. 10b makes performance comparison over three archi-
tectures. LSTM cell in PSN and BFN can exploit previous
cascade channel and we can observe taking into account
previous channel gives advantage in the time varying channel
environment by comparing the architecture (CNN+FC) with
the proposed PSN+BFN spectral efficiency. With STN, spec-
tral efficiency of R = 1

2 and R = 1
4 are reversed. Reducing

pilot overhead inevitably generates more zero padded channel
data both in time and RIS element space and LSTM cells in
PSN and BFN can deal with can deal with sparse zero padded
input. However, more zero padded input is fed, a module
dedicated to channel extrapolation such as SFN can improve
spectral efficiency as shown in Fig. 10b.

V. CONCLUSION

This paper proposed a two-time scale phase shift and
beamforming neural network architecture to reduce channel
estimation overhead in time-varying channel for RIS-aided
networks. In the proposed phase-shift and beamforming ar-
chitecture, LSTM and CNN are combined to exploit temporal
features from time-varying channel and spatial features from
the converted cascade channel. Phase shift and beamforming
matrix are optimized jointly. To reduce channel estimation
overhead, two time-scale transmission protocol is presented
and a channel extrapolation Neural Network architecture is
designed to manipulate zero padded channel data from the
two-time scale protocol. Our results show that the proposed
approach is effective to enable BF-PS design for time-varying
channels with good spectral efficiency performance.

(a) Over various protocol designs (b) Over various architectures

Fig. 10: Spectral Efficiency comparison
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