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Decreasing rainfall frequency contributes to
earlier leaf onset in northern ecosystems

Jian Wang®'™, Desheng Liu®'>, Philippe Ciais®©2 and Josep Pefiuelas ©34

Climate change substantially advances the leaf onset date (LOD) and regulates carbon uptake by plants. Unlike temperature,
the effect of precipitation remains largely elusive. Here we use carbon-flux measurements, in situ records of leaf unfolding and
satellite greenness observations to examine the role of precipitation frequency (P;,,, number of rainy days) in controlling the
LOD in northern ecosystems (>30° N). Widespread decreases in P, during the past three decades positively contributed to
the advance in LOD, possibly due to increased exposure to radiation, exhibiting a dominant control of LOD over ~10% of the
area. Lower P,., may also enhance chilling at night and warming at daytime, consequently leading to earlier LOD. We further

develop a weighted precipitation growing-degree-day algorithm that projected a generally earlier LOD than currently predicted.
These results highlight the need for a comprehensive understanding of the impacts of precipitation on LOD, which is necessary

for improved projections.

under recent warming has been widely reported on the basis

of eddy-covariance flux measurements'?, in situ records’*
and satellite observations”®. This shift in LOD can contribute to
enhanced ecosystem productivity, with an earlier start of carbon
uptake by plants™>'. Previous studies have focused mainly on the
warming effect on LOD>%, particularly in northern areas with
a large carbon sequestration'"'?. The impacts of precipitation on
LOD, however, are largely elusive, partially because studies have
focused on total amount of precipitation (P,,,) without accounting
for the frequency of precipitation (P, number of rainy days)'>'".
Exploring the impacts of P, may therefore help us better under-
stand the responses of LOD to climate change and reduce the con-
siderable uncertainty in predicting LOD.

Recent warming has generally advanced spring LOD with a het-
erogeneous sensitivity to temperature (d°C™) in northern ecosys-
tems®®. This is because the chilling accumulation (the amount of
chilling received by plants during the first dormant stage—endodor-
mancy) and heat requirement (the accumulated forcing temperature
required for breaking the second dormant stage—ecodormancy) for
budburst and leaf formation are controlled by temperature, precipi-
tation, radiation and other forcings®®". For example, it has been
reported that an increase of daytime temperature by 1°C advanced
satellite-based LOD by 4.7 days in Europe, 4.3 days in the United
States and >10 days in northern Siberia and northwestern Canada
during 1982-2011% Unlike temperature, the effect of precipitation
on LOD has received less attention due to complex mechanisms
related to interactions with temperature, radiation, soil moisture
and snow cover'*'®", To date, P, has been used as the main char-
acteristic of rainfall to look for influences on ecological processes
and energy and carbon fluxes at terrestrial surfaces'’-"*. Extant stud-
ies suggested that an increase in P, may delay LOD in northern
ecosystems''® due to the increase in snowmelt heat requirement
and the decrease in absorbed solar radiation. For example, larger
winter precipitation acts as a critical cause of longer-lasting snow
cover in high latitudes, leading to (1) lower temperature because of

| he earlier leaf onset date (LOD) of northern vegetation

increased snow-melting latent heat consumption and (2) a decrease
of absorbed radiation due to high albedo of snow-covered sur-
faces'>'°. Consequently, a wet winter could delay the heat accumula-
tion required for leaf onset. Apart from P,,, Py, is crucial to assess
climate change impacts®. On the basis of observations* and model
projections™*, Py, has been reported to be decreasing due to surface
warming (thermodynamic contribution) and weakening of tropical
circulation (dynamic contribution)*. Changes in P, have notably
affected plant growth and productivity by regulating run-off*, soil
moisture’, exposure to high radiation and temperature, and energy
fluxes”. Thus, interannual variations of Py, are expected to increase
the effects on plant phenological transitions under warming, espe-
cially in arid regions. We hypothesize that changes in Py, control
the effects of precipitation on LOD related to incoming radiation,
heat and chilling accumulation and soil water availability. We tested
this hypothesis by analysing gridded meteorological data, including
near-ground mean temperature (T,,,,, °C), total cloudiness (C,q,, %,
a proxy of solar radiation), P,,, (mm) and Py, (days), together with
LOD proxies from four independent datasets at northern middle
and high latitudes (>30°N): (1) 745 site-year records of gross pri-
mary productivity (GPP) from 66 flux sites (Supplementary Fig. 1),
(2) 30,369 time-series observations from 4,329 in situ sites since the
1950s, (3) the third generation of the normalized difference vegeta-
tion index (NDVI, GIMMS NDVI3g version 1) for 1982-2015 and
(4) the NDVI dataset from the MOD13C1 Moderate-Resolution
Imaging Spectroradiometer (MODIS) product (collection 6) for
2001-2018.

Widespread decreases in P;,, in northern ecosystems

In the observation records, both winter and spring Py, tended
to decrease significantly in the Climatic Research Unit (CRU)
gridded time series, the fifth-generation European Centre for
Medium-Range Weather Forecasts reanalysis for agriculture and
agro-ecological studies (AgERA5) (1982-2018), and the FLUXNET
rain gauge data (1989-2014) (Fig. la,c). Average P;,., and its spa-
tial distribution and temporal pattern were overall consistent for
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Fig. 1| Temporal trends of precipitation frequency (P;.,) in northern ecosystems (>30°N). a,c, Trends of winter (December-February; a) and spring
(March-May; ¢) P;, anomalies for CRU, AgERA5 (1982-2018, Methods) and FLUXNET (1989-2014) data. b,d, Spatial distribution of winter (b) and spring
(d) Py, trends for average (CRU and AgERA5) data during 1982-2018. P, N and NS indicate the percentages of significantly positive, significantly negative,
and non-significant trends, respectively (P<0.05). Grey represents non-significant and none/sparsely vegetated areas.

CRU and AgERAS5 (Supplementary Fig. 2), so we used the average
(CRU and AgERA5) data as the final P;,.,. We found predominantly
decreasing trends of winter P, (42.7% of the area) and spring P,
(37.8%) against smaller areas with increasing trends (winter: 9.2%;
spring: 7.3%) in northern ecosystems (P < 0.05) during 1982-2018
(Fig. 1b,d). Decreasing trends of P, were widespread (such as in
Siberia and northern Europe) while increasing trends were local-
ized in specific areas such as western Canada and the northern
United States.

Response of LOD to P;, at different scales

As for trends in LOD, we found that GPP-based LOD of 66 sites
significantly advanced and delayed (P<0.05) at nine and two sites,
respectively (Supplementary Fig. 3a). Similarly, LOD showed advanc-
ing (40.5, 52.2 and 8.6% of the area) and delaying (4.5, 16.1 and
3.5%) trends (P <0.05) for in situ, NDVI3g and MODIS data, respec-
tively (Supplementary Fig. 3b-d). T,,..., Pow @and C of preseason,
the site-dependent period before LOD with the highest absolute
partial-correlation coefficient (Methods), have been reported to have
larger impacts on LOD than in winter or spring*®. Thus, we applied
partial-correlation analyses to investigate the response of LOD to
variations of preseason precipitation under three scenarios: (1) LOD
versus P, controlling T, ... and C,, (PARCORL1), (2) LOD versus
P,y controlling T,..., Cy and Py, (PARCOR2) and (3) LOD ver-
sus Py, controlling T,.,., Coq and P,y (PARCOR3) (Methods and
Supplementary Table 1). The partial correlation between anomalies of
GPP-based LOD and P, under PARCORI was significantly positive
for the 66 sites combined (745 site-year records) (P <0.05), indicative
of the strong control of GPP-based LOD variability. Grouping sites into
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plant functional types generated similar results, with significant par-
tial correlations for deciduous broadleaf forests (P<0.01) and mixed
forests (P<0.05) (Fig. 2a). The overall partial correlation became
non-significant, however, after removing the effect of preseason Py,
on GPP-based LOD (PARCOR?2) (Fig. 2¢). By contrast, positive partial
correlations (P<0.001) were overall maintained between anomalies
of GPP-based LOD and Py, under PARCOR3 (Fig. 2i), indicating the
importance of P, in controlling interannual variability of LOD and
the relationship between LOD and P,

Analysis of in situ observations of LOD from 4,329 sites for 28
species (total of 30,369 time series) generated similar results. The
partial correlation between ground-based LOD and P, under
PARCORI was significantly positive (P<0.05) for 14.7% of the
time series, nearly twice the number of the significantly negative
counterparts (7.3%, Fig. 2b). The total percentages of significant
time series decreased to 9.3% under PARCOR?2 (Fig. 2f). Yet, 22%
of ground-based LOD remained significantly (P<0.05) partially
correlated with Py, under PARCOR3, 64.4% with positive partial
correlation (Fig. 2j). Positive-dominant effects of P, (PARCOR1)
on ground-based LOD, especially for typical temperate tree spe-
cies (A. hippocastanum L. and B. pendula Roth), agreed with the
previous study'. Interestingly, we found contrasting effects of
P, (PARCORI) and P;., (PARCOR3) on ground-based LOD
between temperate tree species (positive-dominant) and meadows
(negative-dominant), indicating divergent responses of woody ver-
sus herbaceous species to the two precipitation indicators. Sites with
significantly negative correlations under PARCORI and PARCOR3
were generally located in relatively warm areas (>4°C) during pre-
season (Supplementary Fig. 4a,d).
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Fig. 2 | Impact of precipitation on LOD in northern ecosystems (>30° N). Part
scenarios. a-d, PARCOR1. e-h, PARCOR?2. i-l, PARCOR3. a,e,i, FLUXNET data. E

ial correlations (PARCOR) between LOD and precipitation under three
NF, evergreen needleleaf forests; DBF, deciduous broadleaf forests; MF,

mixed forests; GRA, grasslands. b,fj, In situ data. ¢,g k, NDVI3g data (1982-2015). d,h,I, MODIS data (2001-2018). P and N indicate the percentage of
significantly positive and negative partial correlations, respectively (P<0.05). Grey represents non-significant and none/sparsely vegetated areas.

Results from the analysis of satellite greenness products agreed
with these findings. Partial correlations between NDVI3g-based
LOD (1982-2015) and P, under PARCORI1 were positive
(P<0.05) in 22.5% of the area, nearly four times the area with
significantly negative correlations (5.8%, Fig. 2c). The total area
with significant partial correlation decreased by 49% under
PARCOR?2 (Fig. 2g). Moreover, 16.7% of the area had significant
and positive partial correlations under PARCORI1, more than
twice the area with significantly negative correlation for MODIS
data (2001-2018) (Fig. 2d). The total areas with significant cor-
relations, however, also decreased by 32% under PARCOR2
(Fig. 2h). As for Py, effects, 73% and 64% of the area with sig-
nificant correlation under PARCOR3 were positive for NDVI3g
and MODIS data (Fig. 2k1), respectively. For NDVI3g data, sig-
nificantly negative correlations under PARCOR1 and PARCOR3
were mainly in warm and dry regions with soil temperatures
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>3°C and soil moisture <0.15m*m™ (Supplementary Fig. 4b,e).
For MODIS data, negative correlations under PARCOR1 and
PARCOR3 were mainly in relatively dry regions (Supplementary
Fig. 4¢,f). Patterns of PARCORI and PARCOR3 were similar in
different biomes (Supplementary Fig. 5), and satellite-based LOD
for herbaceous biomes (temperate and montane grasslands) and
woody biomes showed contrasting responses to P, and P
To account for the effect of rainfall size in the frequency indi-
cator, we also explored the impact of Py, for different rainfall
event sizes (1 mmd~!, 5mmd~" and 10 mm d~!) on satellite-based
LOD. Two-thirds of the significant correlations between Py, at
Immd~' and LOD are positive (P<0.05) under PARCOR3, but
this discrepancy became non-existent for Py, at 5mmd~" and Py,
at 10mmd~' (Supplementary Fig. 6), indicating that the effect of
Py, is controlled by total P, rather than by the frequency of large
rainfall events. These results suggest that the dominant positive
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Fig. 3 | Climatic response to LOD. a, Dominant climatic factors for the
NDVI3g data (Methods). b, Average climate signal, defined as the absolute
value of SV. ¢-f, The SVs derived from ridge regression for T, (¢), P;.,

(d), P, (&) and C,, (F). ND and NS indicate no dominant factor and
non-significant regression (P < 0.05), respectively. Mean indicates the
mean value of SV for all significant areas. Positive and negative SV indicate
delaying and advancing effects on LOD, respectively. Grey represents
non-significant and none/sparsely vegetated areas. The MODIS and in situ
results are detailed in Supplementary Figs. 7 and 8, respectively.

partial correlation between LOD and precipitation was mainly
influenced by P;,, instead of P,

Sensitivity of P, to LOD

Analyses of all four independent lines of evidence (carbon-flux
measurements, in situ records and data from the NDVI3g and
MODIS greenness) confirmed an essential role of P, in controlling
the effect of precipitation on LOD (previous section). Here we used
the climatic signal, calculated as the absolute value of climatic sensi-
tivity (SV, Methods)?, to assess the extent to which climatic factors
influence LOD and determine the dominant factor. On the basis of
NDVI3g data, we found that, among climatic factors, preseason Py,
dominated over 9.7% of the area, close to T,.,, (10.8%), with a larger
contribution than P, and C,, (Fig. 3a,b), suggesting a role of P,
in explaining LOD variations. Sensitivity analyses indicate that T, ,,
had a negative-dominant effect on LOD, whereas Py, had overall
positive effects, especially in the high latitudes (Fig. 3¢c,d). The mean
value of sensitivities also indicates the direction and extent to which
climatic factors influence LOD. Py, (0.13) overall had a stronger
effect on LOD than P, (0.02) and C,, (0.02) (Fig. 3d-f). Given the
recent widespread decrease in P, (Fig. 1), these results also sug-
gest a positive contribution of P, change to the advance of LOD.
Similar results were obtained for MODIS data (Supplementary Fig
7). For in situ observations, we found similar results that preseason
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Py, showed a stronger influence than P, and C,,, for different
species (Supplementary Fig. 8a—f). Interestingly, unlike for temper-
ate tree species, Py, sensitivity of meadows was negative-dominated
(Supplementary Fig. 8g), consistent with the sign of partial cor-
relation between P;., and LOD (Fig. 2j). Furthermore, LOD in
preseasons with lower Py, exhibits a stronger response to Py,
than in preseasons with higher Py, for in situ and NDVI3g data
(Supplementary Fig. 9), indicating a nonlinear response to precipi-
tation controlled by Py,

Mechanisms of the effect of P,
Several mechanisms probably underlay the response of LOD to
changes in Py, First, surface absorbed radiation is directly influenced
by Py, supported by negative-dominant partial correlations between
gridded and flux-tower based P;,, and radiation annual variations
(Fig. 4a and Supplementary Fig. 10). Nearly 75% of the area with a sig-
nificant partial correlation between radiation and satellite-based LOD
had a negative correlation value (Fig. 4d), indicating that decreases in
Py, associated with less cloudiness, enhance radiation and further
lead to earlier LOD. P, -induced changes in radiation could modu-
late the heat requirement for leaf unfolding®, especially when accu-
mulated chilling is not fulfilled. Second, reduced rainfall frequency,
accompanied with more clear-sky days and nights, increases the
daytime surface solar heating and decreases night-time downward
longwave radiation, leading to higher daytime temperature (7,,,,) and
lower night-time temperature (T;,,)” (Fig. 4b,c). These contrasting
effects contribute to earlier LOD with predominantly negative (T,
versus LOD) and positive (T, versus LOD) partial correlations (Fig.
4e,f), suggesting that widespread decreases in Py, could concurrently
accelerate heat accumulation (at days) and chilling accumulation (at
night) before leaf onset. Climatic warming has dual effects on LOD.
Specifically, warming could advance LOD, but this effect is counter-
acted by the reduced chilling during dormancy*. Our results not only
support inconsistent responses of LOD to daytime and night-time
warming shown in ref. ¢, but also show a positive contribution of lower
Py, on LOD advancement via synergetic effects on both higher T,
and lower T, .
Notably, almost one-third of significant correlations (P, versus
LOD) for in situ and satellite data were negative (Fig. 2j-1), mean-
ing that, for example, a decreased P;,, comes with a delayed LOD,
requiring alternative explanations than those proposed in the pre-
ceding. Grouping correlations into different species (biomes) indi-
cates opposite effects of Py, on woody (positive-dominant) versus
herbaceous (negative-dominant) plants (Fig. 2j and Supplementary
Fig. 5¢,d). Here we gave a potential mechanism of Py, effects for
grasslands that are located mainly in semiarid regions. Using
reanalysis-based soil moisture and a drought indicator (Standardized
Precipitation Evapotranspiration Index (SPEI)), we found, after
removing the effect of P,,, the decreases in Py, led to lower soil
water availability (Supplementary Fig. 1la,c), and concentrated
rainfall enhanced water losses from run-off” (Supplementary Fig.
11b). This drought stress further delayed LOD as shown by pre-
dominantly negative correlations (Supplementary Fig. 11d), indicat-
ing that decreases in Py, could aggravate drought stress and delay
LOD accordingly in grasslands. This tendency to postpone LOD
and associated evapotranspiration could reflect a strategy for herba-
ceous species™ or some woody species’’ to adapt to water depletion.
Decreased soil moisture might partly reduce nutrient availability
(for example, nitrogen) in arid and semiarid regions®>** and further
delay LOD", requiring additional manipulation experiments. This
evidence overall supports our hypothesis that lower Py, contributes
to the advance of LOD in northern ecosystems.

Modelling and projections of LOD
Most current spring phenological models based solely on daily T,....

such as conventional threshold methods (CT) and growing-degree
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days (GDD), ignore the predictive strength of precipitation in con-
trolling vegetation seasonality®. Previous studies have illustrated the
importance of precipitation variations in improving the estimation
of satellite-based LOD**. Here, we developed a new algorithm called
GDDygyc (Methods) for predicting LOD by incorporating informa-
tion on precipitation (P, and P,.,) into GDD model, and we com-
pared the performances of CT, GDD and GDDyy;c models using
both in situ and satellite observations (Fig. 5a—d). The new model
(GDDyggc) improved the prediction of frequency of sites/pixels with
significant correlation (observational LOD versus predicted LOD,
P<0.05), the correlation coefficient (R), the root mean square
error (RMSE), the corrected Akaike information criterion (AICc,
Methods) and the simulation of temporal trends of LOD. A frac-
tion of 82, 61 and 35% of the time series from modelled GDD
showed significant positive correlations with observed LOD using
in situ, NDVI3g and MODIS data, respectively. These percentages
decreased to 37, 39, and 19% for CT models and 66, 51 and 25%
for the GDD-only models, respectively (Fig. 5a). Average R indi-
cated 132, 52 and 47% increases versus CT and 32, 23 and 31%
increases versus GDD (Fig. 5b). Lower RMSE further confirmed
the improvement of LOD modelling by the GDDyyc model (Fig.
5¢). The GDDypyec model reduced AICc by 23, 19, and 16% versus
CT and 10, 8 and 8% versus GDD using observed LOD from in situ,
NDVI3g and MODIS data, respectively (Fig. 5d). In addition, we
found a lower absolute difference of LOD regression slope between
observed LOD and modelled value from GDDgpyrc compared with
LOD modelled by CT and GDD (Supplementary Fig. 12), indicat-
ing the improvement of GDDy on predicting the temporal trends
of LOD.

Our new model improved the accuracy of LOD prediction, so we
appliedittopredictfutureLODundertherepresentativeconcentration
pathway (RCP) 4.5 and RCP 8.5 future scenarios using temperature
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and precipitation bias-corrected model (Supplementary Table 2)
projections during 2019-2099 (Fig. 5e-j). Compared with the
ensemble mean LOD derived from GDDyy;. during 2080-2099,
CT advanced LOD estimation in northern Canada and northeast-
ern Asia, with spatially averaged differences of 0.6 and —0.3 d under
RCP 4.5 and RCP 8.5, respectively (Fig. 5e,g). Relative to the widely
used GDD, the ensemble mean LOD from GDD was predicted
to be earlier than currently expected in 62.3% and 68.1% of the area
under RCP 4.5 and RCP 8.5 for 2080-2099, respectively (Fig. 5f,h).
Grouping the results into biomes yielded overall overestimation of
LOD (Fig. 5i). Ensemble mean LOD derived from GDDy tended
to significantly advance during 2019-2099, with slopes of —0.12
and —0.22dyr™" under RCP 4.5 and RCP 8.5 (P<0.001), respec-
tively (Fig. 5j). Projections of LOD from individual bias-corrected
models showed similar overestimation of LOD (Supplementary Fig.
13), contributing to a negative feedback to climate.

Conclusion

Our results generally indicate a new but important role of Py, in
controlling the effect of precipitation on LOD in northern ecosys-
tems. The synthesis of carbon-flux measurements, in situ records,
and data from satellite greenness products suggests that the recent
decreases in Py, partially explain the advance of LOD. The signifi-
cant response of LOD to P, consistent with previous studies'",
could be considerably negated by controlling the effect of Py, indi-
cating the importance of P;,, in the relationship between precipi-
tation and LOD. We further found predominantly positive (nearly
two-thirds) partial correlations between Py, and LOD. We consid-
ered three mechanisms linking variations in Py, with changes in
LOD: (1) lower Py, increases surface absorbed radiation, further
advancing LOD; (2) decreases in Py, accompanied with more
clear-sky days and nights, result in lower night-time temperature
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Fig. 5 | Comparison of the three predictive algorithms for modelling and projections of LOD. The three predictive algorithms are the CT, GDD and
GDDyggec (Methods). a-d, The criteria for evaluating the algorithms include the frequency of sites/areas with significant correlation (P<0.05) (a), R (b),
the RMSE (c¢) and the AICc (d). The legend in a applies to all panels. e-h, Spatial pattern of LOD differences, GDDygec — CT (RCP 4.5 (e), RCP 8.5 (g))
GDDgpgec — GDD (RCP 4.5 (f)), RCP 8.5 (h) using bias-corrected multimodel (Supplementary Table 2) projections during 2080-2099. P, N and mean
indicate the percentages of positive and negative differences and spatially averaged differences, respectively. i, Average differences in LOD (2080-2099)
for vegetation types. BF, boreal forests; TD, tundra; TBF, temperate broadleaf forests; TG, temperate grasslands; TCF, temperate coniferous forests; MG,
montane grasslands; XS, xeric shrublands; MF, Mediterranean forests (Supplementary Fig. 1). j, Temporal trends of predicted LOD (2019-2099) using

three algorithms. Shaded areas show the standard deviation of LOD.

and higher daytime temperature. Divergent temperature responses
concurrently contribute to the advance of LOD, associated with bet-
ter fulfilments of both chilling and heat requirements; (3) for her-
baceous plants located mainly in semiarid regions, lower P, could
aggravate drought stress and delay LOD accordingly. Our improved
model generally projected an earlier LOD than currently expected,
advancing nearly twice as fast under RCP 8.5 than under RCP 4.5.
The length of future growing seasons and the amount of carbon
uptake might be consequently underestimated.
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Methods

In situ observations. We applied three independent in situ datasets for
ground-based LOD (leaf unfolding date, LUD) (>30°N):

(1) The Pan European Phenology Project’ (PEP725, http://www.pep725.eu/),
which provides an open-access and long-term (since 1868) phenological
database for 19,608 sites and 78 species across 25 European countries

(2) The Chinese Phenological Observation Network* (CPON), which has
compiled phenological observations since 1963 for 112 species and 145 sites
across China

(3) The USA National Phenology Network” (NPN, https://www.usanpn.org/),
which has received contributions from many citizen scientists using a stand-
ardized protocol for observing plant phenology across the United States

The definition of spring LUD differs among the three datasets. PEP725, CPON
and NPN define LUD as the date of the first visible foliar stalk for tree species
(BBCH code 11) and 25% green in spring for meadow (BBCH code 101), 50%
full foliar expansion and the timing of the first bud break, respectively. To identify
and remove potential outliers, we applied the median absolute deviation (MAD)
method, which is more resilient to outliers in a dataset than the standard deviation.
In our case, MAD of LUD dataset (LUD,, LUD,,..., LUD,) can be expressed as:

MAD = median (|JLUD; — median (LUD)|) (1)

For each site, any data record with more than 2.5 times MAD is considered
an outlier. We also excluded all LUD records that were shorter than 15years. In
this way, we used a total of 30,369 time series from 4,329 sites and 28 species for
1951-2018. The distribution and descriptions of the in situ sites are detailed in
Supplementary Fig. 1 and Table 3.

Carbon-flux phenology. We used eddy-covariance flux measurements to
determine the GPP-based LOD (the start of growing season, SOS). After removing
sites with insufficient observations (<5yr), we applied all 66 available flux sites
(Supplementary Fig. 1 and Table 4) with a total of 745 year-site records of daily
GPP from the FLUXNET database (https://fluxnet.org/). We applied a site-based
relative threshold of 10% of the annual maximum GPP to determine SOS*. The
choice of relative threshold does not affect the interannual variability of SOS, but
higher or lower thresholds will lead to later or earlier mean SOS, respectively’. We
thus utilized yearly anomalies of SOS from all sites for the same plant function type
to analyse the responses of SOS to precipitation at the plant-type level.

Satellite-based phenology. Two independent satellite greenness products were
applied to determine the satellite-based LOD (vegetation green-up date, VGD).
GIMMS NDVI3g v.1 data (1982-2015) were derived from the measurements of
advanced very high resolution radiometer having a spatial resolution of 1/12° and
a temporal resolution of 15 days. Terra MODIS NDVI data (2001-2018) were
derived from the 16-day MOD13C1 composite product™ (collection 6) with a
spatial resolution of 0.05°.

To exclude snow effects, we substituted all contaminated NDVI by the mean
of snow-free NDVI values in winter (December-February) of all years™. A
modified Savitzky-Golay filter was then applied to remove the abnormal values
and reconstruct NDVI time series’'. In addition, we eliminated areas with sparse
vegetation by removing areas with a mean annual NDVI <0.1 (ref. ). We applied
two methods to calculate VGD to minimize the uncertainty from a single method,
the dynamic-threshold approach and the double-logistic function®.

We calculated NDVT ratios annually for each pixel as:

NDVI — NDVIpin

NDVljo = —mm 2 min 2
9 7 NDVImax — NDVInin @

where NDVI, NDVI, ;. and NDVI, , are the daily NDVI and the annual minimum
and maximum of the NDVI curve, respectively. Spring VGD was defined as the day
of the year when the NDVI,_,,, increased to 0.5 (ref. **).

We divided the annual NDVI curve into two sections using the maximum
NDVTI and applied a piecewise logistic function to fit each section for each area™.

1 1
1 + e(as—t)/a - 1 + e(as—1)/as

y(t) = a1 + (a2 — azt) 3)

where tis time in days, y(¢) is the NDVI at time t and a,-a; are fitting parameters:
a, is the background NDVT; g, is the difference between the background and
the amplitude of the late summer and autumn plateau, both in NDVT units; a,
and a;, are the midpoints in the days of the year of the transitions for green-up
and senescence/abscission, respectively; a, and a, are the transition curvature
parameters (normalized slope coefficients); and 4, is the summer green-down
parameter. Spring VGD was defined as the time when the rate of change in
curvature reached its first local maximum in spring.

These two methods produce similar results*, so we determined average
VGD from the dynamic-threshold approach and double-logistic function
as the final satellite-based LOD. To exclude the impact of human activity on
agricultural ecosystems, we removed all cropland areas using the MCD12Q1
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MODIS land-cover product (collection 6). We then utilized the borders of the
biomes* to conduct the analyses for different vegetation types (Supplementary
Fig. 1). Some caution is needed when interpreting the results for heterogeneous
pixels within different biomes. It also should be noted that there could be some
biases between ground-, GPP- and satellite-based LOD, especially regarding the
photosynthesis processes and greenness changes. To minimize this effect, we
conducted independent analyses for different datasets (carbon-flux measurements,
in situ records and data from two satellite greenness products) instead of directly
integrating or comparing these datasets.

Climatic data. We derived two independent datasets of precipitation frequency
(Pfreq number of rainy days per month) from (1) the CRU time series* (CRU-TS
4.03) at a spatial resolution of 0.5° (https://crudata.uea.ac.uk/cru/data/hrg/),
which is interpolated by massive climatic stations, and (2) the AGERAS5 at a spatial
resolution of 0.1° (https://cds.climate.copernicus.eu). CRU provides a monthly
climatological variable of the number of rainy days, defined as the number of
rainy days with >0.1 mm of precipitation’>***". We extracted AgERA5-based
monthly numbers of rainy days using daily AGERA5 precipitation (>0.1 mm). We
noticed that multiyear averages and trends of P, from CRU and AgERA5 were
very similar (Supplementary Fig. 2), so we calculated the average Py, and Py,
(mm month™') datasets for CRU and AgERA5 as final Py, and P, for 1982-2018
to reduce the uncertainty from a single dataset. Monthly P;,, and P, during
1950-1982, monthly surface T,,,, (°C) and C,,, (%, a proxy of solar radiation)

for 1951-2018 and monthly T, (°C) and T, (°C) for 1982-2015 at a spatial
resolution of 0.5° were obtained from CRU. For the flux sites, we directly utilized
monthly T,.,,, incoming shortwave radiation (W m), P, and Py, (number

of rainy days with >0.1 mm of precipitation) measured by flux towers. For the
LOD models, we used daily T,,.,, (the average of T, and T,;,) and P, at spatial
resolutions of 0.5° from the Climate Prediction Center, provided by the National
Oceanic and Atmospheric Administration/Oceanic and Atmospheric Research/
Earth System Research Laboratories Physical Sciences Laboratory (https://psl.
noaa.gov/). For projections of future LOD under two climatic scenarios (RCP 4.5
and RCP 8.5), we used daily T,,.,, and P, (with a spatial resolution of 0.5°x 0.5°)
simulated by four bias-corrected models from the Inter-Sectoral Impact Model
Intercomparison Project ** (Supplementary Table 2).

Monthly run-off data for 1982-2015 were derived from TerraClimate®, a
dataset of monthly climate for global terrestrial surfaces at a spatial resolution of
1/24°. We utilized the monthly SPEI (3-month scalar) for 1982-2015 at a spatial
resolution of 0.5° calculated by the difference between precipitation and potential
evapotranspiration from the SPEI base v.2.5 at Consejo Superior de Investigaciones
Cientificas™. Volumetric soil water (a proxy for soil moisture, m*m~) was derived
from ERA5-Land monthly average data. We calculated the average volumetric soil
water of the top two layers (0-7 cm, 9-28 cm) as the final monthly soil moisture for
mechanistic analyses of herbaceous plants.

Analyses. We applied the Theil-Sen slope estimator, a non-parametric and
median-based slope estimator, to analyse the past and projected temporal trends of
LOD for the ground and satellite observations. The trends were evaluated using the
Mann-Kendall trend test at a significance level of 0.05.

Trneans Prowa and C,y jointly control LOD so that a simple linear-correlation
analysis would have uncertainties of factor-combined effect. For example, T,,.,, is
numerically related to both LOD and P,,,), violating the independence of variables
in correlation analyses. We thus applied partial-correlation analysis to explore and
explain the impact of P, on LOD. The partial-correlation analysis was categorized
into three scenarios: (1) partial correlation between LOD and P,,,, removing the
effects of T,.,, and C,,,; (PARCOR1); (2) partial correlation between LOD and P,
removing the effects of T,,.,., C,rq and Py, (PARCOR2); and (3) partial correlation
between LOD and P, removing the effects of T, Cior a0d Py (PARCOR3)
(Supplementary Table 1). Significance was set at P<0.05, with an R threshold of
+0.355 for a 34 yr analysis (NDVI3g, 1982-2015) and +0.514 for an 18 yr analysis
(MODIS, 2001-2018). Preseason forcings predicted LOD better than winter or
spring climatic forcing alone; the optimal preseason length differs among species
and locations. The preseason period was defined as the period with one-month
steps until December of the previous year before the month of multiyear mean
LOD. During preseason, the absolute partial-correlation coefficient between LOD
and climatic factor (for example, P,) should be the highest compared with other
periods®.

To avoid potential multicollinearity between climatic factors, we applied ridge
regression that adds a penalty parameter to reduce the variance of the regression
coefficient to determine climatic sensitivities. The response variable was LOD, and
the predictors were preseason climatic factors. We used normalized anomalies of
climatic factors and LOD as regression inputs, and regression coefficients were
determined as climatic sensitivities (SVs), including SV-T,,¢,., SV-Pgoq, SV-Pg
and SV-C,,. To directly compare the effect of different climatic factors on LOD,
we calculated the absolute value of regression coefficients as climatic signals®,
indicating the extent to which climatic factors influence leaf unfolding without
considering the direction of the effect (delay, advance). For each pixel, we defined
the dominant factor as the factor with the highest climatic signal that is greater
than the sum of climatic signals of the other three factors.
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To evaluate the LOD models, we calculated the frequency of sites/pixels with
significant correlations, R, RMSE, AICc and temporal trends of LOD for CT, GDD
and GDDyg, respectively. In our case, the sample size (time series for a site or
pixel) was small, so we used AICc to address the potential overfitting of AIC. AICc
of the model is:

alc = =2t (4)
n
n 52
where [ = 7; (14 1n(27) +1In (W) , (5)
2K + 2k
s0 AICc = AIC + 2k (6)
n—k—1

where k is the number of parameters in the model, 7 is the sample size, L is the
log of the maximized value of the likelihood function for the model, y; is the LOD
predicted by the model for year i and j; is the estimated LOD based on y,.

Models for predicting LOD. Most phenological modules in current

ecosystem models are based solely on T,,.,,. Previous studies have applied
temperature-threshold models (for example, T, > 5 °C for five consecutive
days’"™?) to estimate plant spring phenology. GDD models are widely used to
estimate past and future spring phenology”. Considering the potential impacts of
precipitation on LOD, we incorporated precipitation (P, and P,,) into one of the
GDD models (GDDygg) and compared GDD g with the currently applied CT
and GDD model.

We compared the three algorithms (CT, GDD and GDDyyy) for LOD
estimation using in situ and satellite observations. We calculated the average daily
T nean Of five consecutive days before LOD each year. We then set the multiyear
mean as the threshold temperature (T p) to predict CT-based LOD. If T,,,,, was
higher than Ty, for five consecutive days from 1 December of the previous year,
the first date was determined as CT-based LOD.

The GDD model was calculated as:

GDD (d) = max (Timean (d) — Tp, 0) @

LOD
GDDihreshold = } d—d GDD (d) (8)
=dy

where GDD(d) is the growing degree on date d, T, is the base temperature, set as
0°C (5 and 10°C provided similar results in this study), T,,...(d) is the daily mean
temperature on date d, GDD 0 is the accumulated growing degree from d,
to LOD required for leaf unfolding and d,, is the first day of accumulation, set as
1 December of the previous year. GDD-based LOD was defined as the date that
GDD(d) first exceeded the multiyear mean GDDy,.014-

We incorporated P, and Py, into the GDD model to predict LOD. We first
calculated the multiyear average intensity of precipitation as:

L(_)D POB d
AIP = mean %‘1(; 9)
Zd:du freq ( )
Peot
GDD,, (d) = max (Tmm (d) + k x %}gd) — Ty, o) (10)

where AIP represents the multiyear average intensity of precipitation (mmd-), d,
is set as 1 December of the previous year and k is a weighted factor ranging from
—15 to 15 with steps of 0.1. The effect of precipitation on LOD prediction is jointly
controlled by k, P, and P;,,. Intensive precipitation strongly affected GDD g
(% > 1). If P, on date d was 0 or k was 0, the accumulated growing degree
was solely dependent on T,
We selected the optimal parameters for GDDyy by comparing the RMSEs
between the modelled and observed LOD. k with the lowest RMSE was determined
as the final weighted factor. We used the map of k and GDD, ., based on
GDD )y for 1982-2015 as empirical input data to predict LOD for 2019-2099
(Supplementary Fig. 14).

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

The in situ phenological data can be accessed from http://www.pep725.eu/ and
https://www.usanpn.org/. The flux datasets can be accessed from https://fluxnet.
org/. The MODIS NDVI datasets can be accessed from https://modis.gsfc.nasa.gov/
data/dataprod/mod13.php. The CRU TS4.00 datasets can be accessed from https://
crudata.uea.ac.uk/cru/data/hrg/. The AGERAS5 data can be accessed from https://

cds.climate.copernicus.eu. The TerraClimate data can be accessed from http://
www.climatologylab.org/terraclimate.html. The CPC datasets can be accessed from
https://psl.noaa.gov/. The data for future climates (2019-2099) are available at
https://esg.pik-potsdam.de/search/isimip/.

Code availability
The codes used for data analysis in this study are available on Zenodo at https://doi.
org/10.5281/zenodo.5801049.
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Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

D The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

< A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

D

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XXX 0 O0XX X OO s

NN

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used.

Data analysis Arcgis 10.3 was used to produce figures and raster data processing.
IDL from ENVI 5.1 was used to calculate satellite-based phenology, partial correlation analysis, and modification of GDD model.
Matlab R2016a was used to apply ridge regression for determining climatic sensitivities.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability
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The in situ phenological data can be accessed from http://www.pep725.eu/ and https://www.usanpn.org/. The flux data sets can be accessed from https://
fluxnet.org/. The data from GIMMS NDVI3g version1 can be accessed from https://ecocast.arc.nasa.gov/data/pub/gimms/. The MODIS NDVI data sets can be
accessed from https://modis.gsfc.nasa.gov/data/dataprod/mod13.php. The CRU TS4.00 data sets can be accessed from https://sites.uea.ac.uk/. The AgERAS data
can be accessed from https://cds.climate.copernicus.eu. The TerraClimate data can be accessed from http://www.climatologylab.org/terraclimate.html. The CPC
data sets can be accessed from https://psl.noaa.gov/. The data for future climates (2019-2099) is available at https://esg.pik-potsdam.de/search/isimip/.




Field-specific reporting
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description This research studied the effects of precipitation frequency on spring leaf unfolding date and underlying mechanisms. As a novel
aspect, we analyzed and compared the response of spring leaf unfolding to precipitation amount, precipitation frequency,
temperature, and solar radiation using eddy covariance flux data, ground observations, and two satellite greenness products. We
also improved current GDD model by incorporating precipitation, and predicted future spring leaf unfolding date under RCP4.5 and
RCP8.5.

>
QO
—
C
=
(D
=
D
W
(D
Q
=
@)
>
=
(D
©O
]
=
>
(e}
%)
c
3
QO
=
<

Research sample 1. 30,369 time series of phenological observations at 4329 sites since 1950s
2. 745 site-year records of flux measurements at 66 sites
3. GIMMS NDVI3g data (1982-2015)
4. MODIS NDVI data (2001-2018)

Sampling strategy Because the analyzed data in our study were obtained from open-access database instead of designed experiments, sampling is not
applicable to our study.

Data collection Three independent in situ data sets for spring leaf unfolding date were collected from: 1) The Pan European Phenology Project
(PEP725, http://www.pep725.eu/). 2) The Chinese Phenological Observation Network. 3) The USA National Phenology Network (NPN,
https://www.usanpn.org/).

Daily gross primary productivity (GPP) from the FLUXNET database (www. fluxnet.fluxdata.org).

Two satellite greenness products were collected from GIMMS NDVI 3g and MODIS (MOD13C1).

Climate data were collected from Climatic Research Unit Time Series (CRU-TS 4.03) and the fifth generation ECMWF re-analysis for
agriculture and agro-ecological studies (AgERAS)

Timing and spatial scale  Between 1951-2018.
Mid-high northern ecosystem (>30 N)

Data exclusions Median absolute deviation (MAD) was used to exclude outliers from the in situ datasets.

Reproducibility Both the phenology, climate data and models are open access. The findings of our study can be reproduced using the statistical
methods shown in the manuscript.

Randomization Because the analyzed data in our study were obtained from open-access database instead of designed experiments, randomization is
not applicable to our study.

Blinding Because the analyzed data in our study were obtained from open-access database instead of designed experiments, blinding is not
applicable to our study.

Did the study involve field work? |:| Yes No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry >
Palaeontology and archaeology |Z |:| MRI-based neuroimaging %
Animals and other organisms S
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Clinical data
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