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The earlier leaf onset date (LOD) of northern vegetation 
under recent warming has been widely reported on the basis 
of eddy-covariance flux measurements1,2, in situ records3–6 

and satellite observations7,8. This shift in LOD can contribute to 
enhanced ecosystem productivity, with an earlier start of carbon 
uptake by plants1,9,10. Previous studies have focused mainly on the 
warming effect on LOD5,6,8, particularly in northern areas with 
a large carbon sequestration11,12. The impacts of precipitation on 
LOD, however, are largely elusive, partially because studies have 
focused on total amount of precipitation (Ptotal) without accounting 
for the frequency of precipitation (Pfreq, number of rainy days)13,14. 
Exploring the impacts of Pfreq may therefore help us better under-
stand the responses of LOD to climate change and reduce the con-
siderable uncertainty in predicting LOD.

Recent warming has generally advanced spring LOD with a het-
erogeneous sensitivity to temperature (d °C−1) in northern ecosys-
tems5,8. This is because the chilling accumulation (the amount of 
chilling received by plants during the first dormant stage—endodor-
mancy) and heat requirement (the accumulated forcing temperature 
required for breaking the second dormant stage—ecodormancy) for 
budburst and leaf formation are controlled by temperature, precipi-
tation, radiation and other forcings6,8,15. For example, it has been 
reported that an increase of daytime temperature by 1 °C advanced 
satellite-based LOD by 4.7 days in Europe, 4.3 days in the United 
States and >10 days in northern Siberia and northwestern Canada 
during 1982–20118. Unlike temperature, the effect of precipitation 
on LOD has received less attention due to complex mechanisms 
related to interactions with temperature, radiation, soil moisture 
and snow cover14,16,17. To date, Ptotal has been used as the main char-
acteristic of rainfall to look for influences on ecological processes 
and energy and carbon fluxes at terrestrial surfaces17–19. Extant stud-
ies suggested that an increase in Ptotal may delay LOD in northern 
ecosystems14–16 due to the increase in snowmelt heat requirement 
and the decrease in absorbed solar radiation. For example, larger 
winter precipitation acts as a critical cause of longer-lasting snow 
cover in high latitudes, leading to (1) lower temperature because of 

increased snow-melting latent heat consumption and (2) a decrease 
of absorbed radiation due to high albedo of snow-covered sur-
faces15,16. Consequently, a wet winter could delay the heat accumula-
tion required for leaf onset. Apart from Ptotal, Pfreq is crucial to assess 
climate change impacts20. On the basis of observations21 and model 
projections22,23, Pfreq has been reported to be decreasing due to surface 
warming (thermodynamic contribution) and weakening of tropical 
circulation (dynamic contribution)24. Changes in Pfreq have notably 
affected plant growth and productivity by regulating run-off25, soil 
moisture26, exposure to high radiation and temperature, and energy 
fluxes27. Thus, interannual variations of Pfreq are expected to increase 
the effects on plant phenological transitions under warming, espe-
cially in arid regions. We hypothesize that changes in Pfreq control 
the effects of precipitation on LOD related to incoming radiation, 
heat and chilling accumulation and soil water availability. We tested 
this hypothesis by analysing gridded meteorological data, including 
near-ground mean temperature (Tmean, °C), total cloudiness (Ctotal, %, 
a proxy of solar radiation), Ptotal (mm) and Pfreq (days), together with 
LOD proxies from four independent datasets at northern middle 
and high latitudes (>30° N): (1) 745 site-year records of gross pri-
mary productivity (GPP) from 66 flux sites (Supplementary Fig. 1), 
(2) 30,369 time-series observations from 4,329 in situ sites since the 
1950s, (3) the third generation of the normalized difference vegeta-
tion index (NDVI, GIMMS NDVI3g version 1) for 1982–2015 and 
(4) the NDVI dataset from the MOD13C1 Moderate-Resolution 
Imaging Spectroradiometer (MODIS) product (collection 6) for 
2001–2018.

Widespread decreases in Pfreq in northern ecosystems
In the observation records, both winter and spring Pfreq tended 
to decrease significantly in the Climatic Research Unit (CRU) 
gridded time series, the fifth-generation European Centre for 
Medium-Range Weather Forecasts reanalysis for agriculture and 
agro-ecological studies (AgERA5) (1982–2018), and the FLUXNET 
rain gauge data (1989–2014) (Fig. 1a,c). Average Pfreq and its spa-
tial distribution and temporal pattern were overall consistent for 
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CRU and AgERA5 (Supplementary Fig. 2), so we used the average 
(CRU and AgERA5) data as the final Pfreq. We found predominantly 
decreasing trends of winter Pfreq (42.7% of the area) and spring Pfreq 
(37.8%) against smaller areas with increasing trends (winter: 9.2%; 
spring: 7.3%) in northern ecosystems (P < 0.05) during 1982–2018 
(Fig. 1b,d). Decreasing trends of Pfreq were widespread (such as in 
Siberia and northern Europe) while increasing trends were local-
ized in specific areas such as western Canada and the northern 
United States.

Response of LOD to Pfreq at different scales
As for trends in LOD, we found that GPP-based LOD of 66 sites 
significantly advanced and delayed (P < 0.05) at nine and two sites, 
respectively (Supplementary Fig. 3a). Similarly, LOD showed advanc-
ing (40.5, 52.2 and 8.6% of the area) and delaying (4.5, 16.1 and 
3.5%) trends (P < 0.05) for in situ, NDVI3g and MODIS data, respec-
tively (Supplementary Fig. 3b–d). Tmean, Ptotal and Ctotal of preseason, 
the site-dependent period before LOD with the highest absolute 
partial-correlation coefficient (Methods), have been reported to have 
larger impacts on LOD than in winter or spring4,8. Thus, we applied 
partial-correlation analyses to investigate the response of LOD to 
variations of preseason precipitation under three scenarios: (1) LOD 
versus Ptotal controlling Tmean and Ctotal (PARCOR1), (2) LOD versus 
Ptotal controlling Tmean, Ctotal and Pfreq (PARCOR2) and (3) LOD ver-
sus Pfreq controlling Tmean, Ctotal and Ptotal (PARCOR3) (Methods and 
Supplementary Table 1). The partial correlation between anomalies of 
GPP-based LOD and Ptotal under PARCOR1 was significantly positive 
for the 66 sites combined (745 site-year records) (P < 0.05), indicative 
of the strong control of GPP-based LOD variability. Grouping sites into 

plant functional types generated similar results, with significant par-
tial correlations for deciduous broadleaf forests (P < 0.01) and mixed 
forests (P < 0.05) (Fig. 2a). The overall partial correlation became 
non-significant, however, after removing the effect of preseason Pfreq 
on GPP-based LOD (PARCOR2) (Fig. 2e). By contrast, positive partial 
correlations (P < 0.001) were overall maintained between anomalies 
of GPP-based LOD and Pfreq under PARCOR3 (Fig. 2i), indicating the 
importance of Pfreq in controlling interannual variability of LOD and 
the relationship between LOD and Ptotal.

Analysis of in situ observations of LOD from 4,329 sites for 28 
species (total of 30,369 time series) generated similar results. The 
partial correlation between ground-based LOD and Ptotal under 
PARCOR1 was significantly positive (P < 0.05) for 14.7% of the 
time series, nearly twice the number of the significantly negative 
counterparts (7.3%, Fig. 2b). The total percentages of significant 
time series decreased to 9.3% under PARCOR2 (Fig. 2f). Yet, 22% 
of ground-based LOD remained significantly (P < 0.05) partially 
correlated with Pfreq under PARCOR3, 64.4% with positive partial 
correlation (Fig. 2j). Positive-dominant effects of Ptotal (PARCOR1) 
on ground-based LOD, especially for typical temperate tree spe-
cies (A. hippocastanum L. and B. pendula Roth), agreed with the 
previous study14. Interestingly, we found contrasting effects of 
Ptotal (PARCOR1) and Pfreq (PARCOR3) on ground-based LOD 
between temperate tree species (positive-dominant) and meadows 
(negative-dominant), indicating divergent responses of woody ver-
sus herbaceous species to the two precipitation indicators. Sites with 
significantly negative correlations under PARCOR1 and PARCOR3 
were generally located in relatively warm areas (>4 °C) during pre-
season (Supplementary Fig. 4a,d).
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Fig. 1 | Temporal trends of precipitation frequency (Pfreq) in northern ecosystems (>30° N). a,c, Trends of winter (December–February; a) and spring 
(March–May; c) Pfreq anomalies for CRU, AgERA5 (1982–2018, Methods) and FLUXNET (1989–2014) data. b,d, Spatial distribution of winter (b) and spring 
(d) Pfreq trends for average (CRU and AgERA5) data during 1982–2018. P, N and NS indicate the percentages of significantly positive, significantly negative, 
and non-significant trends, respectively (P < 0.05). Grey represents non-significant and none/sparsely vegetated areas.
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Results from the analysis of satellite greenness products agreed 
with these findings. Partial correlations between NDVI3g-based 
LOD (1982–2015) and Ptotal under PARCOR1 were positive 
(P < 0.05) in 22.5% of the area, nearly four times the area with 
significantly negative correlations (5.8%, Fig. 2c). The total area 
with significant partial correlation decreased by 49% under 
PARCOR2 (Fig. 2g). Moreover, 16.7% of the area had significant 
and positive partial correlations under PARCOR1, more than 
twice the area with significantly negative correlation for MODIS 
data (2001–2018) (Fig. 2d). The total areas with significant cor-
relations, however, also decreased by 32% under PARCOR2 
(Fig. 2h). As for Pfreq effects, 73% and 64% of the area with sig-
nificant correlation under PARCOR3 were positive for NDVI3g 
and MODIS data (Fig. 2k,l), respectively. For NDVI3g data, sig-
nificantly negative correlations under PARCOR1 and PARCOR3 
were mainly in warm and dry regions with soil temperatures 

>3 °C and soil moisture <0.15 m3 m−3 (Supplementary Fig. 4b,e). 
For MODIS data, negative correlations under PARCOR1 and 
PARCOR3 were mainly in relatively dry regions (Supplementary 
Fig. 4c,f). Patterns of PARCOR1 and PARCOR3 were similar in 
different biomes (Supplementary Fig. 5), and satellite-based LOD 
for herbaceous biomes (temperate and montane grasslands) and 
woody biomes showed contrasting responses to Ptotal and Pfreq. 
To account for the effect of rainfall size in the frequency indi-
cator, we also explored the impact of Pfreq for different rainfall 
event sizes (1 mm d−1, 5 mm d−1 and 10 mm d−1) on satellite-based 
LOD. Two-thirds of the significant correlations between Pfreq at 
1 mm d−1 and LOD are positive (P < 0.05) under PARCOR3, but 
this discrepancy became non-existent for Pfreq at 5 mm d−1 and Pfreq 
at 10 mm d−1 (Supplementary Fig. 6), indicating that the effect of 
Pfreq is controlled by total Pfreq rather than by the frequency of large 
rainfall events. These results suggest that the dominant positive 
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Fig. 2 | Impact of precipitation on LOD in northern ecosystems (>30° N). Partial correlations (PARCOR) between LOD and precipitation under three 
scenarios. a–d, PARCOR1. e–h, PARCOR2. i–l, PARCOR3. a,e,i, FLUXNET data. ENF, evergreen needleleaf forests; DBF, deciduous broadleaf forests; MF, 
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significantly positive and negative partial correlations, respectively (P < 0.05). Grey represents non-significant and none/sparsely vegetated areas.
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partial correlation between LOD and precipitation was mainly 
influenced by Pfreq instead of Ptotal.

Sensitivity of Pfreq to LOD
Analyses of all four independent lines of evidence (carbon-flux 
measurements, in situ records and data from the NDVI3g and 
MODIS greenness) confirmed an essential role of Pfreq in controlling 
the effect of precipitation on LOD (previous section). Here we used 
the climatic signal, calculated as the absolute value of climatic sensi-
tivity (SV, Methods)28, to assess the extent to which climatic factors 
influence LOD and determine the dominant factor. On the basis of 
NDVI3g data, we found that, among climatic factors, preseason Pfreq 
dominated over 9.7% of the area, close to Tmean (10.8%), with a larger 
contribution than Ptotal and Ctotal (Fig. 3a,b), suggesting a role of Pfreq 
in explaining LOD variations. Sensitivity analyses indicate that Tmean 
had a negative-dominant effect on LOD, whereas Pfreq had overall 
positive effects, especially in the high latitudes (Fig. 3c,d). The mean 
value of sensitivities also indicates the direction and extent to which 
climatic factors influence LOD. Pfreq (0.13) overall had a stronger 
effect on LOD than Ptotal (0.02) and Ctotal (0.02) (Fig. 3d–f). Given the 
recent widespread decrease in Pfreq (Fig. 1), these results also sug-
gest a positive contribution of Pfreq change to the advance of LOD. 
Similar results were obtained for MODIS data (Supplementary Fig 
7). For in situ observations, we found similar results that preseason 

Pfreq showed a stronger influence than Ptotal and Ctotal for different 
species (Supplementary Fig. 8a–f). Interestingly, unlike for temper-
ate tree species, Pfreq sensitivity of meadows was negative-dominated 
(Supplementary Fig. 8g), consistent with the sign of partial cor-
relation between Pfreq and LOD (Fig. 2j). Furthermore, LOD in 
preseasons with lower Pfreq exhibits a stronger response to Ptotal 
than in preseasons with higher Pfreq for in situ and NDVI3g data 
(Supplementary Fig. 9), indicating a nonlinear response to precipi-
tation controlled by Pfreq.

Mechanisms of the effect of Pfreq
Several mechanisms probably underlay the response of LOD to 
changes in Pfreq. First, surface absorbed radiation is directly influenced 
by Pfreq, supported by negative-dominant partial correlations between 
gridded and flux-tower based Pfreq and radiation annual variations 
(Fig. 4a and Supplementary Fig. 10). Nearly 75% of the area with a sig-
nificant partial correlation between radiation and satellite-based LOD 
had a negative correlation value (Fig. 4d), indicating that decreases in 
Pfreq, associated with less cloudiness, enhance radiation and further 
lead to earlier LOD. Pfreq-induced changes in radiation could modu-
late the heat requirement for leaf unfolding15, especially when accu-
mulated chilling is not fulfilled. Second, reduced rainfall frequency, 
accompanied with more clear-sky days and nights, increases the 
daytime surface solar heating and decreases night-time downward 
longwave radiation, leading to higher daytime temperature (Tmax) and 
lower night-time temperature (Tmin)29 (Fig. 4b,c). These contrasting 
effects contribute to earlier LOD with predominantly negative (Tmax 
versus LOD) and positive (Tmin versus LOD) partial correlations (Fig. 
4e,f), suggesting that widespread decreases in Pfreq could concurrently 
accelerate heat accumulation (at days) and chilling accumulation (at 
night) before leaf onset. Climatic warming has dual effects on LOD. 
Specifically, warming could advance LOD, but this effect is counter-
acted by the reduced chilling during dormancy5,6. Our results not only 
support inconsistent responses of LOD to daytime and night-time 
warming shown in ref. 8, but also show a positive contribution of lower 
Pfreq on LOD advancement via synergetic effects on both higher Tmax 
and lower Tmin.

Notably, almost one-third of significant correlations (Pfreq versus 
LOD) for in situ and satellite data were negative (Fig. 2j-l), mean-
ing that, for example, a decreased Pfreq comes with a delayed LOD, 
requiring alternative explanations than those proposed in the pre-
ceding. Grouping correlations into different species (biomes) indi-
cates opposite effects of Pfreq on woody (positive-dominant) versus 
herbaceous (negative-dominant) plants (Fig. 2j and Supplementary 
Fig. 5c,d). Here we gave a potential mechanism of Pfreq effects for 
grasslands that are located mainly in semiarid regions. Using 
reanalysis-based soil moisture and a drought indicator (Standardized 
Precipitation Evapotranspiration Index (SPEI)), we found, after 
removing the effect of Ptotal, the decreases in Pfreq led to lower soil 
water availability (Supplementary Fig. 11a,c), and concentrated 
rainfall enhanced water losses from run-off25 (Supplementary Fig. 
11b). This drought stress further delayed LOD as shown by pre-
dominantly negative correlations (Supplementary Fig. 11d), indicat-
ing that decreases in Pfreq could aggravate drought stress and delay 
LOD accordingly in grasslands. This tendency to postpone LOD 
and associated evapotranspiration could reflect a strategy for herba-
ceous species30 or some woody species31 to adapt to water depletion. 
Decreased soil moisture might partly reduce nutrient availability 
(for example, nitrogen) in arid and semiarid regions32,33 and further 
delay LOD14, requiring additional manipulation experiments. This 
evidence overall supports our hypothesis that lower Pfreq contributes 
to the advance of LOD in northern ecosystems.

Modelling and projections of LOD
Most current spring phenological models based solely on daily Tmean, 
such as conventional threshold methods (CT) and growing-degree 
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results are detailed in Supplementary Figs. 7 and 8, respectively.
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days (GDD), ignore the predictive strength of precipitation in con-
trolling vegetation seasonality8. Previous studies have illustrated the 
importance of precipitation variations in improving the estimation 
of satellite-based LOD34. Here, we developed a new algorithm called 
GDDPREC (Methods) for predicting LOD by incorporating informa-
tion on precipitation (Ptotal and Pfreq) into GDD model, and we com-
pared the performances of CT, GDD and GDDPREC models using 
both in situ and satellite observations (Fig. 5a–d). The new model 
(GDDPREC) improved the prediction of frequency of sites/pixels with 
significant correlation (observational LOD versus predicted LOD, 
P < 0.05), the correlation coefficient (R), the root mean square 
error (RMSE), the corrected Akaike information criterion (AICc, 
Methods) and the simulation of temporal trends of LOD. A frac-
tion of 82, 61 and 35% of the time series from modelled GDDPREC 
showed significant positive correlations with observed LOD using 
in situ, NDVI3g and MODIS data, respectively. These percentages 
decreased to 37, 39, and 19% for CT models and 66, 51 and 25% 
for the GDD-only models, respectively (Fig. 5a). Average R indi-
cated 132, 52 and 47% increases versus CT and 32, 23 and 31% 
increases versus GDD (Fig. 5b). Lower RMSE further confirmed 
the improvement of LOD modelling by the GDDPREC model (Fig. 
5c). The GDDPREC model reduced AICc by 23, 19, and 16% versus 
CT and 10, 8 and 8% versus GDD using observed LOD from in situ, 
NDVI3g and MODIS data, respectively (Fig. 5d). In addition, we 
found a lower absolute difference of LOD regression slope between 
observed LOD and modelled value from GDDPREC compared with 
LOD modelled by CT and GDD (Supplementary Fig. 12), indicat-
ing the improvement of GDDPREC on predicting the temporal trends 
of LOD.

Our new model improved the accuracy of LOD prediction, so we 
applied it to predict future LOD under the representative concentration 
pathway (RCP) 4.5 and RCP 8.5 future scenarios using temperature  

and precipitation bias-corrected model (Supplementary Table 2) 
projections during 2019–2099 (Fig. 5e–j). Compared with the 
ensemble mean LOD derived from GDDPREC during 2080–2099, 
CT advanced LOD estimation in northern Canada and northeast-
ern Asia, with spatially averaged differences of 0.6 and −0.3 d under 
RCP 4.5 and RCP 8.5, respectively (Fig. 5e,g). Relative to the widely 
used GDD, the ensemble mean LOD from GDDPREC was predicted 
to be earlier than currently expected in 62.3% and 68.1% of the area 
under RCP 4.5 and RCP 8.5 for 2080–2099, respectively (Fig. 5f,h). 
Grouping the results into biomes yielded overall overestimation of 
LOD (Fig. 5i). Ensemble mean LOD derived from GDDPREC tended 
to significantly advance during 2019–2099, with slopes of −0.12 
and −0.22 d yr−1 under RCP 4.5 and RCP 8.5 (P < 0.001), respec-
tively (Fig. 5j). Projections of LOD from individual bias-corrected 
models showed similar overestimation of LOD (Supplementary Fig. 
13), contributing to a negative feedback to climate.

Conclusion
Our results generally indicate a new but important role of Pfreq in 
controlling the effect of precipitation on LOD in northern ecosys-
tems. The synthesis of carbon-flux measurements, in situ records, 
and data from satellite greenness products suggests that the recent 
decreases in Pfreq partially explain the advance of LOD. The signifi-
cant response of LOD to Ptotal, consistent with previous studies13,14, 
could be considerably negated by controlling the effect of Pfreq, indi-
cating the importance of Pfreq in the relationship between precipi-
tation and LOD. We further found predominantly positive (nearly 
two-thirds) partial correlations between Pfreq and LOD. We consid-
ered three mechanisms linking variations in Pfreq with changes in 
LOD: (1) lower Pfreq increases surface absorbed radiation, further 
advancing LOD; (2) decreases in Pfreq, accompanied with more 
clear-sky days and nights, result in lower night-time temperature 
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and higher daytime temperature. Divergent temperature responses 
concurrently contribute to the advance of LOD, associated with bet-
ter fulfilments of both chilling and heat requirements; (3) for her-
baceous plants located mainly in semiarid regions, lower Pfreq could 
aggravate drought stress and delay LOD accordingly. Our improved 
model generally projected an earlier LOD than currently expected, 
advancing nearly twice as fast under RCP 8.5 than under RCP 4.5. 
The length of future growing seasons and the amount of carbon 
uptake might be consequently underestimated.
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ing summaries, source data, extended data, supplementary infor-
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data and code availability are available at https://doi.org/10.1038/
s41558-022-01285-w.

Received: 22 July 2021; Accepted: 11 January 2022;  
Published online: 14 February 2022

References
	1.	 Keenan, T. F. et al. Net carbon uptake has increased through 

warming-induced changes in temperate forest phenology. Nat. Clim. Change 
4, 598–604 (2014).

	2.	 Barichivich, J. et al. Large-scale variations in the vegetation growing season 
and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 
2011. Glob. Change Biol. 19, 3167–3183 (2013).

	3.	 Vitasse, Y. et al. Assessing the effects of climate change on the  
phenology of European temperate trees. Agr. Forest Meteorol. 151, 969–980 
(2011).

	4.	 Menzel, A. et al. European phenological response to climate change matches 
the warming pattern. Glob. Change Biol. 12, 1969–1976 (2006).

	5.	 Fu, Y. H. et al. Declining global warming effects on the phenology of spring 
leaf unfolding. Nature 526, 104–107 (2015).

	6.	 Wang, H. et al. Overestimation of the effect of climatic warming on spring 
phenology due to misrepresentation of chilling. Nat. Commun. 11, 4945 
(2020).

	7.	 Myneni, R. C. et al. Increased plant growth in the northern high latitudes 
from 1981 to 1991. Nature 386, 698–702 (1997).

	8.	 Piao, S. et al. Leaf onset in the Northern Hemisphere triggered by daytime 
temperature. Nat. Commun. 6, 6911 (2015).

	9.	 Richardson, A. D. et al. Influence of spring and autumn phenological 
transitions on forest ecosystem productivity. Phil. Trans. R. Soc. B 365, 
3227–3246 (2010).

	10.	Piao, S. et al. Plant phenology and global climate change: current progresses 
and challenges. Glob. Change Biol. 25, 1922–1940 (2019).

	11.	White, A., Cannell, M. G. R. & Friend, A. D. The high-latitude terrestrial 
carbon sink: a model analysis. Glob. Change Biol. 6, 227–245 (2000).

	12.	Piao, S. et al. Net carbon dioxide losses of northern ecosystems in response to 
autumn warming. Nature 451, 49–53 (2008).

	13.	Fu, Y. H. et al. Unexpected role of winter precipitation in determining heat 
requirement for spring vegetation green-up at northern middle and high 
latitudes. Glob. Change Biol. 20, 3743–3755 (2014).

–6

–3

0

3

6
RCP 8.5

D
iff

er
en

ce
 (

d)

GDDPREC – CT
GDDPREC – GDD

GDDPREC – CT
GDDPREC – GDD

XS MFTD  MGTGBF TCF

Vegetation type

TBF

RCP 4.5

e

i

0

20

40

60

80

100

MODISNDVI3g

Data type Data type Data type Data type

F
re

qu
en

cy
 (

%
)

In situ

CT
GDD
GDDPREC

0

6

12

18

24

MODISNDVI3g

R
M

S
E

 (
d)

In situ
0

3

6

9

MODISNDVI3g

A
IC

c

In situ
0

0.3

0.6

0.9

MODISNDVI3g

R

In situ

a

45
°W

45
°W

f

b

g

c

h

d

P: 55.2%  N: 44.8%
Mean: 0.6 d

P: 37.7%  N: 62.3%
Mean: –2.1 d

P: 48.9%  N: 51.1%
Mean: –0.3 d

P: 31.9%  N: 68.1%
Mean: –2.3 d

LO
D

 difference (d)

–20

–10

0

10

20

j

0

10

30

20

40

F
re

qu
en

cy
 (

%
)

0

10

30

20

40

F
re

qu
en

cy
 (

%
)

0

10

30

20

40

F
re

qu
en

cy
 (

%
)

0

10

30

20

40

F
re

qu
en

cy
 (

%
)

2020

GDD
CT

RCP 8.5

M
ea

n 
LO

D
 (

da
y 

of
 th

e 
ye

ar
)

80

100

120

140

160

2040 2060

Year

2080 2100

GDDPREC

Slope of GDDPREC

GDD
CT

RCP 4.5
GDDPREC

Slope of GDDPREC

Slope: –0.12 d yr–1

P < 0.001

Slope: –0.22 d yr–1

P < 0.001

Fig. 5 | Comparison of the three predictive algorithms for modelling and projections of LOD. The three predictive algorithms are the CT, GDD and 
GDDPREC (Methods). a–d, The criteria for evaluating the algorithms include the frequency of sites/areas with significant correlation (P < 0.05) (a), R (b), 
the RMSE (c) and the AICc (d). The legend in a applies to all panels. e–h, Spatial pattern of LOD differences, GDDPREC − CT (RCP 4.5 (e), RCP 8.5 (g)) 
GDDPREC − GDD (RCP 4.5 (f)), RCP 8.5 (h) using bias-corrected multimodel (Supplementary Table 2) projections during 2080–2099. P, N and mean 
indicate the percentages of positive and negative differences and spatially averaged differences, respectively. i, Average differences in LOD (2080–2099) 
for vegetation types. BF, boreal forests; TD, tundra; TBF, temperate broadleaf forests; TG, temperate grasslands; TCF, temperate coniferous forests; MG, 
montane grasslands; XS, xeric shrublands; MF, Mediterranean forests (Supplementary Fig. 1). j, Temporal trends of predicted LOD (2019–2099) using 
three algorithms. Shaded areas show the standard deviation of LOD.

Nature Climate Change | VOL 12 | April 2022 | 386–392 | www.nature.com/natureclimatechange 391

https://doi.org/10.1038/s41558-022-01285-w
https://doi.org/10.1038/s41558-022-01285-w
http://www.nature.com/natureclimatechange


Articles Nature Climate Change

	14.	Yun, J. et al. Influence of winter precipitation on spring phenology in boreal 
forests. Glob. Change Biol. 11, 5176–5187 (2018).

	15.	Fu, Y. H. et al. Increased heat requirement for leaf flushing in temperate 
woody species over 1980–2012: effects of chilling, precipitation and 
insolation. Glob. Change Biol. 21, 2687–2697 (2015).

	16.	Wipf, S., Stoeckli, V. & Bebi, P. Winter climate change in alpine tundra: plant 
responses to changes in snow depth and snowmelt timing. Climatic Change 
94, 105–121 (2009).

	17.	Peñuelas, J. et al. Complex spatiotemporal phenological shifts as a response to 
rainfall changes. New Phytol. 161, 837–846 (2004).

	18.	Paschalis, A. et al. Rainfall manipulation experiments as simulated by 
terrestrial biosphere models: where do we stand? Glob. Change Biol. 26, 
3336–3355 (2020).

	19.	Green, J. K. et al. Regionally strong feedbacks between the atmosphere and 
terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).

	20.	Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The changing 
character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1217 (2003).

	21.	Qian, W., Fu, J. & Yan, Z. Decrease of light rain events in summer associated 
with a warming environment in China during 1961–2005. Geophys. Res. Lett. 
34, L11705 (2007).

	22.	Sun, Y., Solomon, S., Dai, A. & Portmann, R. W. How often will it rain? J. 
Clim. 20, 4801–4818 (2007).

	23.	Chou, C. et al. Mechanisms for global warming impacts on precipitation 
frequency and intensity. J. Clim. 13, 3291–3306 (2012).

	24.	Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global 
warming. J. Clim. 19, 5686–5699 (2006).

	25.	Fowler, M. D., Kooperman, G. J., Randerson, J. T. & Pritchard, M. S. The 
effect of plant physiological responses to rising CO2 on global streamflow. 
Nat. Clim. Change 9, 873–879 (2019).

	26.	Belnap, J., Phillips, S. L. & Miller, M. E. Response of desert biological soil 
crusts to alterations in precipitation frequency. Oecologia 141, 306–316 
(2004).

	27.	Knapp, A. K. et al. Consequences of more extreme precipitation regimes for 
terrestrial ecosystems. Bioscience 58, 811–821 (2008).

	28.	Chen, L. et al. Leaf senescence exhibits stronger climatic responses  
during warm than during cold autumns. Nat. Clim. Change 10,  
777–780 (2020).

	29.	De Boeck, H. J., Dreesen, F. E., Janssens, I. A. & Nijs, I. Climatic 
characteristics of heat waves and their simulation in plant experiments. Glob. 
Change Biol. 16, 1992–2000 (2010).

	30.	Shen, M. et al. Precipitation impacts on vegetation spring phenology on the 
Tibetan Plateau. Glob. Change Biol. 21, 3647–3656 (2015).

	31.	Peaucelle, M. et al. Spatial variance of spring phenology in temperate 
deciduous forests is constrained by background climatic conditions. Nat. 
Commun. 10, 5388 (2019).

	32.	Estiarte, M. & Peñuelas, J. Alteration of the phenology of leaf senescence and 
fall in winter deciduous species by climate change: effects on nutrient 
proficiency. Glob. Change Biol. 21, 1005–1017 (2015).

	33.	Austin, A. T. et al. Water pulses and biogeochemical cycles in arid and 
semiarid ecosystems. Oecologia 141, 221–235 (2004).

	34.	White, M. A., Thornton, P. E. & Running, S. W. A continental phenology 
model for monitoring vegetation responses to interannual climatic variability. 
Glob. Biogeochem. Cycles 11, 217–234 (1997).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2022

Nature Climate Change | VOL 12 | April 2022 | 386–392 | www.nature.com/natureclimatechange392

http://www.nature.com/natureclimatechange


ArticlesNature Climate Change

Methods
In situ observations. We applied three independent in situ datasets for 
ground-based LOD (leaf unfolding date, LUD) (>30° N):

	(1)	 The Pan European Phenology Project35 (PEP725, http://www.pep725.eu/), 
which provides an open-access and long-term (since 1868) phenological 
database for 19,608 sites and 78 species across 25 European countries

	(2)	 The Chinese Phenological Observation Network36 (CPON), which has 
compiled phenological observations since 1963 for 112 species and 145 sites 
across China

	(3)	 The USA National Phenology Network37 (NPN, https://www.usanpn.org/), 
which has received contributions from many citizen scientists using a stand-
ardized protocol for observing plant phenology across the United States

The definition of spring LUD differs among the three datasets. PEP725, CPON 
and NPN define LUD as the date of the first visible foliar stalk for tree species 
(BBCH code 11) and 25% green in spring for meadow (BBCH code 101), 50% 
full foliar expansion and the timing of the first bud break, respectively. To identify 
and remove potential outliers, we applied the median absolute deviation (MAD) 
method, which is more resilient to outliers in a dataset than the standard deviation. 
In our case, MAD of LUD dataset (LUD1, LUD2,..., LUDi) can be expressed as:

MAD = median (|LUDi − median (LUD)|) (1)

For each site, any data record with more than 2.5 times MAD is considered 
an outlier. We also excluded all LUD records that were shorter than 15 years. In 
this way, we used a total of 30,369 time series from 4,329 sites and 28 species for 
1951–2018. The distribution and descriptions of the in situ sites are detailed in 
Supplementary Fig. 1 and Table 3.

Carbon-flux phenology. We used eddy-covariance flux measurements to 
determine the GPP-based LOD (the start of growing season, SOS). After removing 
sites with insufficient observations (<5 yr), we applied all 66 available flux sites 
(Supplementary Fig. 1 and Table 4) with a total of 745 year-site records of daily 
GPP from the FLUXNET database (https://fluxnet.org/). We applied a site-based 
relative threshold of 10% of the annual maximum GPP to determine SOS38. The 
choice of relative threshold does not affect the interannual variability of SOS, but 
higher or lower thresholds will lead to later or earlier mean SOS, respectively1. We 
thus utilized yearly anomalies of SOS from all sites for the same plant function type 
to analyse the responses of SOS to precipitation at the plant-type level.

Satellite-based phenology. Two independent satellite greenness products were 
applied to determine the satellite-based LOD (vegetation green-up date, VGD). 
GIMMS NDVI3g v.1 data (1982–2015) were derived from the measurements of 
advanced very high resolution radiometer having a spatial resolution of 1/12° and 
a temporal resolution of 15 days. Terra MODIS NDVI data (2001–2018) were 
derived from the 16-day MOD13C1 composite product39 (collection 6) with a 
spatial resolution of 0.05°.

To exclude snow effects, we substituted all contaminated NDVI by the mean 
of snow-free NDVI values in winter (December–February) of all years40. A 
modified Savitzky–Golay filter was then applied to remove the abnormal values 
and reconstruct NDVI time series41. In addition, we eliminated areas with sparse 
vegetation by removing areas with a mean annual NDVI <0.1 (ref. 42). We applied 
two methods to calculate VGD to minimize the uncertainty from a single method, 
the dynamic-threshold approach and the double-logistic function43.

We calculated NDVI ratios annually for each pixel as:

NDVIratio =
NDVI − NDVImin

NDVImax − NDVImin
(2)

where NDVI, NDVImin and NDVImax are the daily NDVI and the annual minimum 
and maximum of the NDVI curve, respectively. Spring VGD was defined as the day 
of the year when the NDVIratio increased to 0.5 (ref. 34).

We divided the annual NDVI curve into two sections using the maximum 
NDVI and applied a piecewise logistic function to fit each section for each area44.

y (t) = a1 + (a2 − a7t)
[ 1
1 + e(a3−t)/a4

−

1
1 + e(a5−t)/a6

]

(3)

where t is time in days, y(t) is the NDVI at time t and a1–a7 are fitting parameters: 
a1 is the background NDVI; a2 is the difference between the background and 
the amplitude of the late summer and autumn plateau, both in NDVI units; a3 
and a5 are the midpoints in the days of the year of the transitions for green‐up 
and senescence/abscission, respectively; a4 and a6 are the transition curvature 
parameters (normalized slope coefficients); and a7 is the summer green-down 
parameter. Spring VGD was defined as the time when the rate of change in 
curvature reached its first local maximum in spring.

These two methods produce similar results43, so we determined average 
VGD from the dynamic-threshold approach and double-logistic function 
as the final satellite-based LOD. To exclude the impact of human activity on 
agricultural ecosystems, we removed all cropland areas using the MCD12Q1 

MODIS land-cover product (collection 6). We then utilized the borders of the 
biomes45 to conduct the analyses for different vegetation types (Supplementary 
Fig. 1). Some caution is needed when interpreting the results for heterogeneous 
pixels within different biomes. It also should be noted that there could be some 
biases between ground-, GPP- and satellite-based LOD, especially regarding the 
photosynthesis processes and greenness changes. To minimize this effect, we 
conducted independent analyses for different datasets (carbon-flux measurements, 
in situ records and data from two satellite greenness products) instead of directly 
integrating or comparing these datasets.

Climatic data. We derived two independent datasets of precipitation frequency 
(Pfreq, number of rainy days per month) from (1) the CRU time series46 (CRU-TS 
4.03) at a spatial resolution of 0.5° (https://crudata.uea.ac.uk/cru/data/hrg/), 
which is interpolated by massive climatic stations, and (2) the AgERA5 at a spatial 
resolution of 0.1° (https://cds.climate.copernicus.eu). CRU provides a monthly 
climatological variable of the number of rainy days, defined as the number of 
rainy days with ≥0.1 mm of precipitation22,23,47. We extracted AgERA5-based 
monthly numbers of rainy days using daily AgERA5 precipitation (≥0.1 mm). We 
noticed that multiyear averages and trends of Pfreq from CRU and AgERA5 were 
very similar (Supplementary Fig. 2), so we calculated the average Pfreq and Ptotal 
(mm month–1) datasets for CRU and AgERA5 as final Pfreq and Ptotal for 1982–2018 
to reduce the uncertainty from a single dataset. Monthly Pfreq and Ptotal during 
1950–1982, monthly surface Tmean (°C) and Ctotal (%, a proxy of solar radiation) 
for 1951–2018 and monthly Tmax (°C) and Tmin (°C) for 1982–2015 at a spatial 
resolution of 0.5° were obtained from CRU. For the flux sites, we directly utilized 
monthly Tmean, incoming shortwave radiation (W m−2), Ptotal and Pfreq (number 
of rainy days with ≥0.1 mm of precipitation) measured by flux towers. For the 
LOD models, we used daily Tmean (the average of Tmax and Tmin) and Ptotal at spatial 
resolutions of 0.5° from the Climate Prediction Center, provided by the National 
Oceanic and Atmospheric Administration/Oceanic and Atmospheric Research/
Earth System Research Laboratories Physical Sciences Laboratory (https://psl.
noaa.gov/). For projections of future LOD under two climatic scenarios (RCP 4.5 
and RCP 8.5), we used daily Tmean and Ptotal (with a spatial resolution of 0.5° × 0.5°) 
simulated by four bias-corrected models from the Inter-Sectoral Impact Model 
Intercomparison Project 48 (Supplementary Table 2).

Monthly run-off data for 1982–2015 were derived from TerraClimate49, a 
dataset of monthly climate for global terrestrial surfaces at a spatial resolution of 
1/24°. We utilized the monthly SPEI (3-month scalar) for 1982–2015 at a spatial 
resolution of 0.5°, calculated by the difference between precipitation and potential 
evapotranspiration from the SPEI base v.2.5 at Consejo Superior de Investigaciones 
Científicas50. Volumetric soil water (a proxy for soil moisture, m3 m−3) was derived 
from ERA5-Land monthly average data. We calculated the average volumetric soil 
water of the top two layers (0–7 cm, 9–28 cm) as the final monthly soil moisture for 
mechanistic analyses of herbaceous plants.

Analyses. We applied the Theil–Sen slope estimator, a non-parametric and 
median-based slope estimator, to analyse the past and projected temporal trends of 
LOD for the ground and satellite observations. The trends were evaluated using the 
Mann–Kendall trend test at a significance level of 0.05.

Tmean, Ptotal and Ctotal jointly control LOD so that a simple linear-correlation 
analysis would have uncertainties of factor-combined effect. For example, Tmean is 
numerically related to both LOD and Ptotal, violating the independence of variables 
in correlation analyses. We thus applied partial-correlation analysis to explore and 
explain the impact of Pfreq on LOD. The partial-correlation analysis was categorized 
into three scenarios: (1) partial correlation between LOD and Ptotal, removing the 
effects of Tmean and Ctotal (PARCOR1); (2) partial correlation between LOD and Ptotal, 
removing the effects of Tmean, Ctotal and Pfreq (PARCOR2); and (3) partial correlation 
between LOD and Pfreq, removing the effects of Tmean, Ctotal and Ptotal (PARCOR3) 
(Supplementary Table 1). Significance was set at P < 0.05, with an R threshold of 
±0.355 for a 34 yr analysis (NDVI3g, 1982–2015) and ±0.514 for an 18 yr analysis 
(MODIS, 2001–2018). Preseason forcings predicted LOD better than winter or 
spring climatic forcing alone; the optimal preseason length differs among species 
and locations. The preseason period was defined as the period with one-month 
steps until December of the previous year before the month of multiyear mean 
LOD. During preseason, the absolute partial-correlation coefficient between LOD 
and climatic factor (for example, Pfreq) should be the highest compared with other 
periods42.

To avoid potential multicollinearity between climatic factors, we applied ridge 
regression that adds a penalty parameter to reduce the variance of the regression 
coefficient to determine climatic sensitivities. The response variable was LOD, and 
the predictors were preseason climatic factors. We used normalized anomalies of 
climatic factors and LOD as regression inputs, and regression coefficients were 
determined as climatic sensitivities (SVs), including SV–Tmean, SV–Pfreq, SV–Ptotal 
and SV–Ctotal. To directly compare the effect of different climatic factors on LOD, 
we calculated the absolute value of regression coefficients as climatic signals28, 
indicating the extent to which climatic factors influence leaf unfolding without 
considering the direction of the effect (delay, advance). For each pixel, we defined 
the dominant factor as the factor with the highest climatic signal that is greater 
than the sum of climatic signals of the other three factors.
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To evaluate the LOD models, we calculated the frequency of sites/pixels with 
significant correlations, R, RMSE, AICc and temporal trends of LOD for CT, GDD 
and GDDPREC, respectively. In our case, the sample size (time series for a site or 
pixel) was small, so we used AICc to address the potential overfitting of AIC. AICc 
of the model is:

AIC =
2k − 2L̂

n
(4)

where L̂ = −

n
2 (1 + ln(2π) + ln

(

∑n
i=1 (yi − ŷi)2

n

)

, (5)

so AICc = AIC +
2k2 + 2k
n − k − 1 (6)

where k is the number of parameters in the model, n is the sample size, L̂ is the 
log of the maximized value of the likelihood function for the model, yi is the LOD 
predicted by the model for year i and ŷi is the estimated LOD based on yi.

Models for predicting LOD. Most phenological modules in current 
ecosystem models are based solely on Tmean. Previous studies have applied 
temperature-threshold models (for example, Tmean > 5 °C for five consecutive 
days51,52) to estimate plant spring phenology. GDD models are widely used to 
estimate past and future spring phenology53. Considering the potential impacts of 
precipitation on LOD, we incorporated precipitation (Ptotal and Pfreq) into one of the 
GDD models (GDDPREC) and compared GDDPREC with the currently applied CT 
and GDD model.

We compared the three algorithms (CT, GDD and GDDPREC) for LOD 
estimation using in situ and satellite observations. We calculated the average daily 
Tmean of five consecutive days before LOD each year. We then set the multiyear 
mean as the threshold temperature (TTHOLD) to predict CT-based LOD. If Tmean was 
higher than TTHOLD for five consecutive days from 1 December of the previous year, 
the first date was determined as CT-based LOD.

The GDD model was calculated as:

GDD (d) = max (Tmean (d) − Tb, 0) (7)

GDDthreshold =
∑LOD

d=d0
GDD (d) (8)

where GDD(d) is the growing degree on date d, Tb is the base temperature, set as 
0 °C (5 and 10 °C provided similar results in this study), Tmean(d) is the daily mean 
temperature on date d, GDDthreshold is the accumulated growing degree from d0 
to LOD required for leaf unfolding and d0 is the first day of accumulation, set as 
1 December of the previous year. GDD-based LOD was defined as the date that 
GDD(d) first exceeded the multiyear mean GDDthreshold.

We incorporated Ptotal and Pfreq into the GDD model to predict LOD. We first 
calculated the multiyear average intensity of precipitation as:

AIP = mean
(

∑LOD
d=d0 Ptotal (d)

∑LOD
d=d0 Pfreq (d)

)

(9)

GDDpr (d) = max
(

Tmean (d) + k ×

Ptotal (d)
AIP − Tb, 0

)

(10)

where AIP represents the multiyear average intensity of precipitation (mm d−1), d0 
is set as 1 December of the previous year and k is a weighted factor ranging from 
−15 to 15 with steps of 0.1. The effect of precipitation on LOD prediction is jointly 
controlled by k, Ptotal and Pfreq. Intensive precipitation strongly affected GDDPREC 
(Ptotal(d)AIP > 1). If Ptotal on date d was 0 or k was 0, the accumulated growing degree 
was solely dependent on Tmean.

We selected the optimal parameters for GDDPREC by comparing the RMSEs 
between the modelled and observed LOD. k with the lowest RMSE was determined 
as the final weighted factor. We used the map of k and GDDthreshold based on 
GDDPREC for 1982–2015 as empirical input data to predict LOD for 2019–2099 
(Supplementary Fig. 14).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The in situ phenological data can be accessed from http://www.pep725.eu/ and 
https://www.usanpn.org/. The flux datasets can be accessed from https://fluxnet.
org/. The MODIS NDVI datasets can be accessed from https://modis.gsfc.nasa.gov/
data/dataprod/mod13.php. The CRU TS4.00 datasets can be accessed from https://
crudata.uea.ac.uk/cru/data/hrg/. The AgERA5 data can be accessed from https://

cds.climate.copernicus.eu. The TerraClimate data can be accessed from http://
www.climatologylab.org/terraclimate.html. The CPC datasets can be accessed from 
https://psl.noaa.gov/. The data for future climates (2019–2099) are available at 
https://esg.pik-potsdam.de/search/isimip/.

Code availability
The codes used for data analysis in this study are available on Zenodo at https://doi.
org/10.5281/zenodo.5801049.
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