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Abstract

We introduce a semiparametric model for the primary mass distribution of binary black holes (BBHs) observed
with gravitational waves (GWs) that applies a cubic-spline perturbation to a power law. We apply this model to the
46 BBHs included in the second gravitational-wave transient catalog (GWTC-2). The spline perturbation model
recovers a consistent primary mass distribution with previous results, corroborating the existence of a peak at
35M., (>97% credibility) found with the POWERLAW+PEAK model. The peak could be the result of pulsational
pair-instability supernovae. The spline perturbation model finds potential signs of additional features in the primary
mass distribution at lower masses similar to those previously reported by Tiwari and Fairhurst. However, with
fluctuations due to small-number statistics, the simpler POWERLAW+PEAK and BROKENPOWERLAW models are
both still perfectly consistent with observations. Our semiparametric approach serves as a way to bridge the gap
between parametric and nonparametric models to more accurately measure the BBH mass distribution. With larger
catalogs we will be able to use this model to resolve possible additional features that could be used to perform
cosmological measurements and will build on our understanding of BBH formation, stellar evolution, and nuclear
astrophysics.
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1. Introduction

The LIGO-Virgo Collaboration’s second catalog of compact
object mergers has shown that the universe is teeming with
colliding compact objects with a variety of masses and spins
(Abbott et al. 2016). In contrast to the 11 sources reported in
the first LIGO-Virgo Collaboration (LVC) catalog (GWTC-1
Abbott et al. 2019a), the second catalog (GWTC-2 Abbott et al.
2021a) contains 50 sources, enabling a deeper look into the
formation environments of compact object binaries. The
sources in GWTC-2 include two binary neutron stars (BNSs;
Abbott et al. 2017, 2020a), 46 binary black holes (BBHs), and
2 neutron star black hole (NSBHs) candidates (Abbott et al.
2020d). The 46 confirmed BBHs observed in GWTC-2 include
the first clear evidence of an asymmetric mass binary,
potentially the least massive black hole known, and the most
massive stellar mass black hole to date (Abbott et al.
2020e, 2020d, 2020f, 2020g). With this large catalog of BBH
mergers, one can now begin to robustly infer the properties of
the astrophysical BBH distribution in addition to each
individual event’s properties (Abbott et al. 2019b, 2021b).

Prior to the release of GWTC-2, the inferred mass
distribution for the more massive (primary) components in
mergers was thought to be consistent with a declining power
law that cuts off at ~45 M, (Fishbach & Holz 2017; Abbott
et al. 2019b). When analyzing the BBH primary mass
distribution including events in GWTC-2, Abbott et al.
(2021b) found that a truncated power law is no longer
consistent with the additional observations. The primary mass
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distribution was found to have some feature at ~35-40 M.,
which was best described by either a break to a steeper power
law or a power law with the addition of a peak. The presence of
a peak in the primary mass distribution in this mass range is not
surprising; it would be expected if we are witnessing effects of
pulsational pair-instability supernovae (PPISNe; Talbot &
Thrane 2018). Massive stars that are too light to be fully
disrupted by a pair-instability supernova (PISN) can shed large
amounts of mass in a series of explosive pulsations before
collapsing to a black hole (Woosley 2017, 2019; Farmer et al.
2019). This process leads to a wide range of initial stellar
masses that map onto remnant black holes with masses
30 M., < mpy <45M. (Belczynski et al. 2016; Marchant
et al. 2019; Stevenson et al. 2019). GWTC-2 also includes
more massive binaries than previously observed, most notably
GW190521 (Abbott et al. 2020f, 2020g). Both component
black holes of GW190521 have masses that pose a challenge to
the theoretical prediction that pair-instability (PI) would forbid
isolated stellar evolution from creating remnant black holes
with masses from ~50-125 M. (Heger & Woosley 2002;
Woosley et al. 2002; Heger et al. 2003; Spera & Mapelli 2017).
There is some evidence that GW190521 could be a mass-gap-
straddling binary or the result of other physical processes that
get around the conflict with PISN theory (Farrell et al. 2021;
Fishbach & Holz 2020; Gayathri et al. 2020; Sakstein et al.
2020; Secunda et al. 2020; Cruz-Osorio et al. 2021; Estellés
et al. 2021; Nitz & Capano 2021; Edelman et al. 2021a).
However, the presence of these high-mass-component black
holes could also point toward there being a contribution to the
observed population of BBHs detected by LIGO/Virgo that
formed in a way that avoids PI. These formation possibilities
include hierarchical mergers in dense stellar environments,
relativistic accretion onto heavy BHs in active galactic nuclei
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disks, isolated binary evolution of low-metallicity Population II
stars, or even the presence of new physics beyond the standard
model (Rodriguez et al. 2019; Belczynski 2020; Croon et al.
2020; Doctor et al. 2020; Mapelli et al. 2020; McKernan et al.
2020; Kimball et al. 2020, 2021; Doctor et al. 2021).

Incorrectly inferring the BBH mass distribution has been
shown to significantly bias both estimates of merger rates and
the stochastic gravitational-wave background amplitude
(Talbot & Thrane 2018). Additionally, the effects of PI can
imprint features onto the mass distribution such as a high-mass
cutoff in the mass distribution (PISN), or a possible a pileup of
mergers at masses just below the cutoff (PPISN). Resolving
either of these features can provide a mass scale, calibrated
across cosmic time, that enables measurements of the redshift—
luminosity—distance relation to infer cosmological parameters
(Farr et al. 2019). As catalogs of GWs from BBHs grow in size
(Abbott et al. 2020b), we will be able to infer the BBH mass
distribution with greater fidelity to determine if there is the
presence of additional structure beyond a power law. Such
structure could yield insights about the nature of what
environments BBHs form in and how they are connected to
the rich fields of stellar evolution and nuclear astrophysics
(Zevin et al. 2017; Farmer et al. 2019, 2020; Ng et al. 2021).

Bayesian nonparametric models provide a useful data-
oriented approach to modeling when one has little information
or prior knowledge about the structure of a set of data. These
approaches provide little to no constraints on the functional
form imposed by the model and instead use very flexible
functions that have large prior support for a wide variety of
unknown densities. Nonparametric modeling has been widely
applied across different areas of GW astrophysics, including
modeling deviations from GR waveform models, modeling the
noise power spectrum of detectors, modeling the calibration of
the detectors, and creating surrogate models for faster wave-
form execution (Littenberg & Cornish 2015; Doctor et al. 2017;
Edelman et al. 2021b; Vitale et al. 2021b).

In this work, we approach the mass spectrum from a data-
driven perspective, using a semiparametric method rather than
the low-dimensional parametric models used in Abbott et al.
(2019b, 2021b). Our semiparametric method is complementary
to both parametric and fully nonparametric approaches (Mandel
et al. 2016; Tiwari 2021) by incorporating a simple parametric
description of the large-scale structure (i.e., a power law) with an
additional nonparametrically modeled component on top. This
approach can aid in searching for generic deviations to the
underlying parametric descriptions that could be the result of
astrophysical processes. Since nonparametric approaches make
few assumptions on the form that the underlying distributions
may take, our model minimizes biases to the structure such
deviations could take. We expect a large fraction of stellar-mass
BHs to form at the end of life of massive stars, which motivates
our choice of a power-law form of the BBH primary mass
distribution following a similar functional form to the stellar
initial mass function (Kroupa 2001). We therefore reconstruct
the primary mass distribution with the TRUNCATED power-law
model (Fishbach & Holz 2017; Abbott et al. 2021b), in which
we modulate with a nonparametric perturbation. This method
takes advantage of using a simple parametric form to capture the
majority of the structure in the primary mass distribution while
the perturbation function can find data-informed deviations from
the power law. In Section 2 we describe our semiparametric
perturbation population model, and in Section 3 we present and
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Figure 1. Sketch description of the spline perturbation primary mass model.
The inset shows the interpolated cubic spline perturbation function for the
plotted modulated power law.

discuss the inferred properties of the primary mass distribution
when analyzing all 46 BBHs in GWTC-2. Finally, we explore
possible interpretations of our results and conclude in Section 4.

2. Spline Perturbation Model

We use a hierarchical Bayesian inference framework to infer
the properties of the astrophysical distribution of BBHs that
incorporates software injections to estimate selection effects
(Farr 2019; Mandel et al. 2019; Vitale et al. 2021a). This
procedure is described in detail in Appendix A. In order to
capture both the overall trends and any sharper features that may
be in the primary mass distribution, we modulate a base
parametric hyperprior on primary mass, p(m;|A), by a highly
flexible perturbation function—in this case, a cubic spline. We
choose the simplest of previously used parametric models as our
underlying mass distribution, p(m;|A), which is described by a
power law in both primary mass and mass ratio with a sharp
low- and high-mass cutoff (Fishbach & Holz 2017; Abbott et al.
2019b, 2021b). This model was referred to as the TRUNCATED
model in Abbott et al. (2021b). While the TRUNCATED model
alone does not describe GWTC-2 well (Abbott et al. 2021b), it
captures the majority of the large-scale structure found in the
primary mass distribution. For our underlying description, we
extend the TRUNCATED model to allow for a tapering of the
distribution at low masses following the same form used for the
POWERLAW+PEAK model described in Talbot & Thrane (2018)
and Abbott et al. (2021b). Figure 1 shows an illustration of our
spline perturbation model on top of a power law without any
mass cutoffs or tapering. We multiplicatively apply perturbations
to the underlying distribution as:

pspline(mllA’ {mi’ fl‘}) = k*p(mllA)eXp(f(mla {mzaﬁ})) (1)

In the above equation, k is a normalization factor found by
numerically integrating pgprine(mi|A, {m;, f;}) over the entire
range of primary masses, and f(m; {m;, f;}) is the perturbation
function modeled as a cubic spline that is interpolated between
n knots placed in m; space. These knots are denoted by their
locations in mass space, {m;}_;, and their heights at each knot,
{f;}_,. For readability, we hereafter drop explicit dependence
of fon {m;, f;} unless needed.

We fix the locations of each knot to be linear in log m; space
from 5-100 M, and restrict the perturbations to zero at the
minimum and maximum knots. With these restrictions our spline
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model adds n —2 extra hyperparameters to the underlying
primary mass model we are perturbing, one for each of the inner
knots’ heights. We log-space the knots and perturb our
underlying model with the multiplicative factor, exp(f (1)), to
reflect the wide range in orders of magnitude of the underlying
power law. We then impose Gaussian priors on the knot heights
{f;} centered at 0 and with standard deviations, y,o. Our model
then has two specifications which control the resolution () and
the magnitude (oy,op) Of perturbations to which the model is
sensitive. We discuss the effect of changing these model settings
on our prior assumptions and motivate the particular choices we
made for this work in Appendix B.

In addition to the primary mass distribution, we simulta-
neously fit for the mass ratio and redshift distributions, without
any spline perturbations applied. We apply a power-law
distribution for the mass ratio as p(qlmy, Myin, By)
qﬁq@(qml — Mpin) O(my — gm,), with © denoting the Heavi-
side step function that ensures m, is within the range
[Mmin, mi]. We then fit for the evolution of the merger
rate with redshift also with a power law such that

pN) x %%(1 + 7)*, where dV, is the co-moving volume

element (H&og:é‘ 1999; Fishbach et al. 2018; Abbott et al.
2019b, 2021b). We do not fit for a population prior on the BBH
spins, and assume the spin prior used for individual event
parameter estimation in Abbott et al. (2021a), which is uniform
in component spin magnitudes and isotropic in component spin
orientations. We enumerate each of the model’s hyperpara-
meters and corresponding hyperprior distributions used in this
work in Table 1.

3. Results
3.1. Astrophysical BBH Primary Mass Distribution

We use a catalog containing each of the 46 BBH mergers
reported in Abbott et al. (2021a) in which we perform a
hierarchical Bayesian analysis to infer the astrophysical mass
spectrum and merger rate evolution with redshift, as described
in Appendix A. We perform multiple iterations of our
semiparametric model with different numbers of knots and
both a “conservative” (oyyo = 1) and “wide” (oyno = 2) prior
width on the knots. For both cases of prior width we
additionally do a post hoc “marginalization” over the number
of knots by combining posterior draws weighted according to
the ratios in marginal likelihoods. Explicitly, we take
lein %J
minimum ~number of samples of samples in each of the
posteriors, Z,, the marginal likelihood of inference with n knots,
and Z,x, the maximum marginal likelihood of the combined
posteriors. In Figure 2 we plot the posterior merger rate density
as a function of primary mass (top row) for our combined spline
model (combining 10, 15, and 20 knot models), compared to the
POWERLAW-+PEAK model. The most prominent feature in the
primary mass distribution is the apparent peak at ~35M,,
similar to the peak found at the same mass by the POWERLAW
+PEAK model (Talbot & Thrane 2018; Abbott et al. 2021b).

In addition to the peak at ~35 M., there are signs of additional
features—albeit less significant—at lower masses. We find signs
of an inflated rate of mergers with primary masses ~10 M., and
reduced rate around ~7.5 M, when compared with the power-
law structure. The model is less certain about the low-mass
features as there are only a few events with support for
my < 10 M. The dearth of observed low-mass BBHs, combined

samples from each inference where N, is the
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with their small sensitive volume, significantly inflates our
uncertainty at the low end of the mass distribution. In Figure 3,
we show the results inferred by each of the 10, 15, and 20 knot
spline models individually, showing that the spline model
consistently finds common features regardless of the number
and location of knots. The combined spline model based on the
marginal likelihoods is mostly composed of the 15knot result
because the ratios of marginal likelihoods favor 15 knots over 20
at 2:1 odds and 15 over 10 at 3:1. The spline models are best
constrained in the regions of over/underdensities discussed above
and much less certain (prior dominated) in regions between the
features where the parametric component (i.e., power law) can
fully explain the trend. The bottom row of Figure 3 shows the
perturbation function, f(m;), inferred from the different spline
models. While there are some differences between knot choices
due to the different length scales, they are all in agreement when
taking into account the uncertainties and each consistently
recovers similar merger rates and perturbations at both the
10M., and 35 M, peaks. In Figure 4 we plot the posterior
distribution of the perturbation function sliced at the approximate
masses of the three, (f(m;=75M.), f(m =10M.) and
f(m;=35M_.)). We find similar posteriors on the perturbation
at these three mass regions, across the models varying the number
of knots and the spline prior width. We calculate the percentile
where f=0 falls in the posterior distribution for each of these
three cuts, which would be near 50% in the presence of no
deviations to the power law or equivalently for draws from the
spline model prior. The percentiles of zero perturbation for the
combined model with the conservative (wide) priors are 70.8%
(72.6%), 19.4% (13.1%), and 0.8% (2.5%) at 7.5 M., 10 M., and
35 M., respectively.

The presence of the ~35 M, feature was previously found
and reported in Abbott et al. (2021b) as being either a peak
(likely due to the PPISN pileup Talbot & Thrane 2018) or a
break to a steeper power law. The POWERLAW+PEAK model
returned the highest marginal likelihood of parametric mass
models considered in Abbott et al. (2021b), but was only
favored with roughly 3:1 odds. Due to the inherent nature of
the spline perturbation model, we would be more likely to find
features that look like peaks rather than a power-law break in
the distribution. We additionally fit for spline perturbations on
top of the BROKENPOWERLAW model, which found little to no
support for two different power-law slopes and recovered a
nearly identical primary mass distribution to what was found
when modulating a single power law. The low mass feature
recovered by our spline model was not identified in Abbott
et al. (2021b) because the models considered there did not have
the flexibility to fit such features at low mass: they only include
a smooth rise to the low-mass end of the power law. This could
be explained by additional structure that cannot be described by
a smooth rise to a power law, coming from the upper edge of
the proposed neutron star black hole mass gap. The flexibility
of our semiparametric approach enables us to find additional
structure in the astrophysical mass distribution beyond what
can be found with simpler toy models. While the spline
perturbation model clearly finds structure beyond the power
law around ~35M,, in the analyzed catalog of 46 BBH
mergers, we cannot say for certain that the low mass feature is
inherent to the astrophysical mass distribution. There is still the
possibility that our model could be latching onto fluctuations in
our data due to small-number statistics. This possibility is
reflected in the percentiles in Figure 4. The perturbation function
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Hyperparameters, Their Descriptions, and Chosen Prfi?)tr)slef(}r This Work for Each Respective Population Model
Model Parameter Description Prior
Primary Mass Model Parameters
TRUNCATED o slope of the power law U(—4, 12)
Mumin minimum mass cutoff U2 Mg, 10 M)
Mmax maximum mass cutoff U@35 M., 100 M)
O low-mass smoothing from [Myin, Mmin + Ol U M., 10 M..)
BROKENPOWERLAW g slope of first power law U(—4, 12)
an slope of second power law U(—4, 12)
b fraction between my,;, and m,,, where the power law break lies U@, 1)
Mmin minimum mass cutoff U2 Mg, 10 M)
Mmax maximum mass cutoff U(50 M., 100 M..)
Om low-mass smoothing from [y, Mmin + O] U M, 10 M)
POWERLAW-+PEAK « slope of the power law U(—4, 12)
Mmin minimum mass cutoff U2 M., 10 M)
Mmax maximum mass cutoff U@B0 M, 100 M)
Hp location in mass space where the Gaussian peak lies U0 M., 70 M.,)
op width of the Gaussian peak U0.4 M., 10 M)
A fraction of BBH in the Gaussian component u@, 1)
Om low-mass smoothing from [myin, Mmin + Ol U M, 10 M)
POWERLAW+MULTIPEAK « slope of the power law U(—4, 12)
Mmin minimum mass cutoff U2 Mg, 10 M)
Mmax maximum mass cutoff U@B0 M., 100 M)
Hpi location in mass space where the first Gaussian peak lies UG M, 40 M)
Op,i width of the first Gaussian peak U4 M., 10 M)
Aot fraction of BBH in the first Gaussian component U@, 1)
Hp2 location in mass space where the second Gaussian peak lies UQR0 M., 70 M.)
Opo width of the second Gaussian peak U0.4 M, 10 M)
Ap2 fraction of BBH in the second Gaussian component U@, 1)
Om low-mass smoothing from [#min, Mmin + Ol UM, 10 M)
Mass Ratio Model Parameters
POWERLAWMASSRATIO By slope of the mass ratio power law U(—4, 12)
Redshift Evolution Model Parameters
POWERLAWREDSHIFT A slope of redshift evolution power law (1 + 2 U(-2, 6)
Spline Perturbation Model Parameters
CUBIC SPLINE {m,} location in primary mass of the n spline interpolant knots FIXED
{f.} y-value of the spline interpolant knots Np=0,0=1)

Note. The TRUNCATED model is extended from the version used in Abbott et al. (2021b) to have the option of a low-mass taper of the same form as the POWERLAW
+PEAK model. Note that we do not describe a spin population model in this table since in this work we are not inferring a hyperprior on the spins and instead assume
they are described by the default (uniform in component magnitudes, isotropic in orientations) parameter estimation prior used to producing (Abbott et al. 2021a).
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Figure 4. The posterior distribution of f(rm,) at sliced at the three most apparent inferred perturbations in the posterior which roughly lie at ~7.5 M, (left column),
~10 M, (middle column), and ~35 M, (right column). We show the posteriors for 10 (purple), 15 (blue), and 20 (orange) knots and for both cases of prior width:
Oknot = 1 (top row) and oy, = 2 (bottom row). We additionally show the result when combining the models (weighted by their marginal likelihoods) across the three
choices number of nodes in black. We report the quantile in which f= 0 falls for each of the models and perturbation regions knots in each legend.

at 7.5 M, and 10 M, does not rule out f=0 at high credibility
regardless of prior choices in the spline model, while in contrast,
the perturbation at 35 M, rules out f(35 M) =0 at 97%—99.4%
credibility across each variation of spline model used. We
investigate the possibility that these subsequent deviations from
a power law could appear due to our model’s systematics in
Appendix C. We report no signs of correlations between the
successive perturbations, which would be expected if the spline
function was imposing biases onto our inferred perturbations.
With future larger catalogs of gravitational-wave sources, we
will be able to further resolve these low-mass features to
determine if they are indeed present in the astrophysical mass
distribution or a reflection of the current small catalog size.

3.2. Posterior Predictive Checks

With the large flexibility that comes from taking nonpara-
metric approaches to modeling, one must be careful in validating
inferences, especially in cases with small numbers of observa-
tions. One way we evaluate our semiparametric model is through
posterior predictive checks. We employ the same injection set
used to estimate our search’s selection effects mentioned in
Appendix A to create mock detected populations under a given
population described by a posterior on hyperparameters. We
then compare these mock populations to the observed popula-
tion. To do this, we first re-weight the injections to our inferred
population for Ny, draws of hyperparameters from our
population posterior, then take Ny, (46 for this BBH-only
analysis) draws for each of the re-weightings. This generates
Naraw sets of Ngps “Predicted” observations for a given
population inference. Next, we re-weight the individual event
posterior samples to the same inferred population for Ny
draws of hyperparameters from the posterior. For each draw of
hyperparameters, we take a fair draw from each re-weighted
event posterior to generate our corresponding Nypaw Sets of N
“Observed” observations for a given population inference. From
this procedure we generated 500 sets of 46 “Observed” and
“Predicted” catalogs, which we compare to each other in
Figure 5 to confirm that our inferred population model
predictions are consistent with the observations. We show the

cumulative probability as a function of observed primary mass in
the top row, the relative error in predicted primary masses to
observed in the second row, and the last row shows the observed
and predicted primary mass distributions averaged over all of the
hyperparameters inferred in our posterior. The colored bands in
the top row of Figure 5 show that a model is inconsistent with
observations when the dark “Observed” band extends outside of
the lighter “Predicted” band. We see this behavior at
~40-50 M, for the TRUNCATED model which illustrates a
conclusion from Abbott et al. (2021b): the TRUNCATED model
is inconsistent with the mergers in GTWC-2. The spline
perturbation model is the only primary mass model that recovers
both the low and high mass features seen in the observed
distribution, but it does exhibit more uncertainty than other
models in the regions between the ~10 M., and ~35 M, peak.
When considering possible fluctuations due to small-number
statistics, the observations at low mass are still consistent with
both the POWERLAW-+PEAK and BROKENPOWERLAW models.

3.3. Astrophysical Implications

The BBH mass distribution is particularly well suited to
answering a wide range of astrophysical questions. In particular,
the masses of detected events are relatively well measured, and
different channels of BBH formation result in different mass
distributions (e.g., Zevin et al. 2017), implying that the formation
history is encoded within these distributions. With the tens of
detected events available now, disentangling the overlapping
subpopulations in the full population (if they exist) is a challenge.
Our perturbation model can be used to see if or where a
distribution describing a single (dominant) subpopulation or
formation channel may fail to fully fit the data, which would
provide evidence that there may be non-negligible contributions
due to additional formation channels. The hints of structure we see
at the low end of the mass distribution could point to such a
superposition of multiple formation channels. Another factor that
can affect the mass distribution is the physics of PISN or PPISN.
Stellar evolution models describing mass loss and PPISN have
uncertainties that can drastically change predictions on the masses
at which the PPISN and PISN play a role. For example, choices in
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Figure 5. Posterior predictive checks for three of the parametric models used in Abbott et al. (2021b) and the spline perturbation model of this work. We show the
spline model result with the highest marginal likelihood which was the 15 knot and oy, = 1 model. The observed and predicted values for primary masses are
generated by re-weighting either the injection set or the set of posterior samples for each BBH analyzed, for 500 draws from each models inferred posterior on the
hyperparameters, and then drawing 46 values from the re-weighted injections and a single fair draw from each of the 46 event re-weighted posterior samples. The top
panel shows the CDF generated from these sets observed and predicted events for each of the 4 models, with the 90% credible levels enclosed by the bands, the
median shown with thick black lines, and the thin black lines showing 50 of the 500 sets of 46 predicted events. The middle row uses the same set of predicted and

observed events and the y-axis shows the relative error in predicted to observed mass ((m

Pred ) /mPed) as a function of mP®. The last row of plots shows the

PDF of the top row averaged over the 500 draws from the posterior on the hyperparameters for both sets of events.

nuclear reaction rates within stellar cores can affect the BBH mass
distribution (Farmer et al. 2019, 2020). Our spline model enables
us to measure these imprints of BBH formation in the observed
distribution without enforcing the specific distribution shapes that
are inherent to parametric models. Our findings corroborate the
existence of a feature consistent with a PPISN “pileup” in the
30-40 M., range, and we infer its shape without assuming a
simple functional form. With more GW detections, further
resolution of this peak with the spline model could offer insights
into supernova physics.

4. Conclusions

Accurate estimation of the BBH mass distribution is paramount
to getting accurate estimates of merger rates, the GW stochastic
background, and false-alarm rates for potential new triggers. Low-
dimensional parametric models have the advantage of being easily
interpreted but are limited in their flexibility and subject to a priori
expectations. We presented a semiparametric approach to
modeling the primary mass distribution of BBH mergers, using
cubic splines that modulate a power law. We show that our
flexible semiparametric approach, when applied to the BBHs in
GWTC-2, consistently recovers the previously reported excess of
observed mergers near ~35M., and shows potential signs of
additional features in the low-mass end of the BBH distribution.
These low-mass features beyond the power-law structure,
correspond with similar features found in the chirp mass
distribution using a separate nonparametric approach based on a
flexible Gaussian mixture model (Tiwari & Fairhurst 2021). We
show through posterior predictive checks that the spline model is
at least as good as the POWERLAW+PEAK model at fitting the
high-mass structure in our catalog while having the flexibility
beyond a smooth rise into a power law to capture the apparent

excess at 10 M. Structure in the mass distribution could arise
from many different astrophysical phenomena but if we are able to
confidently identify either a high-mass cutoff or pileup in the mass
distribution, it is likely to be related to effects of PISN or PPISN.
These two features can both be used as calibrated mass scales to
measure a redshift-luminosity—distance relation with which it is
possible to infer cosmological parameters with Farr et al. (2019).

Our semiparametric approach has advantages compared to
other fully nonparametric approaches modeling the BBH mass
distribution (Mandel et al. 2016; Tiwari 2021; Tiwari &
Fairhurst 2021). The semiparametric approach leverages the
information learned from the parametric models to explain the
majority of the structure, while reserving the flexibility to see
where observations may start to diverge from previous inferences.
This same method of applying cubic spline perturbations to
simpler population models can be used on any of the other
commonly modeled population distributions such as the mass
ratio, spins, or redshift evolution. With the relatively small catalog
sizes currently available, structure, if present, would likely only
appear in the best measured parameters. In future work, we plan to
extend this method to incorporate multi-dimensional splines, that
could uncover correlations between different parameters such as
peaks in the mass distribution associated with a high spin
magnitude. Such correlations would be a tell-tale sign of
hierarchical mergers, for example (Fishbach & Holz 2017; Gerosa
& Berti 2017; Doctor et al. 2020, 2021; Kimball et al. 2020).
Future work could also extend this method to more than just the
BBH mass distribution and allow for adaptive resolution splines
that allow the knot locations to vary (Edelman et al. 2021b). With
additional observations of GWs associated with BNSs and
NSBHs (Abbott et al. 2021c) our spline perturbation model is
well suited to modeling the joint mass distribution of all GW-
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observed compact objects. This would complement the parametric
model of Fishbach et al. (2020), giving insights on the structure
(or lack thereof) of the “lower mass gap” that may exist between
the heaviest neutron stars and lightest black holes.

We thank Will Farr for countless useful discussions related to
this work and hierarchical modeling. This research has made use
of data, software, and/or web tools obtained from the Gravita-
tional Wave Open Science Center (https://www.gw-openscience.
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Collaboration and the Virgo Collaboration. This work benefited
from access to the University of Oregon high performance
computer, Talapas. This material is based upon work supported in
part by the National Science Foundation under Grant PHY-
1807046 and work supported by NSFs LIGO Laboratory which is
a major facility fully funded by the National Science Foundation.

Software: ASTROPY (Astropy Collaboration et al. 2018),
NUMPY (Harris et al. 2020), SCIPY (Virtanen et al. 2020),
MATPLOTLIB (Hunter 2007), BILBY (Ashton et al. 2019),
GWPOPULATION (Talbot et al. 2019), DYNESTY (Speagle 2020).

Appendix A
Hierarchical Inference

We use hierarchical Bayesian inference to simultaneously
infer the population distributions of the primary masses (),
mass ratios (¢) and the redshifts (z) of observed BBHs. For a set
of hyperparameters, A, and local (z=0) merger rate density
(units of mergers per co-moving volume per time), R, we write
the overall number density of BBH mergers in the universe as:

dN (my, g, z|Ro, A)
dmydqdz
_ ch( Tobs )dR(ml’ g, 2ZRo, N)
dz\1+z dmydq
= Rop (m|A)p(glmi, M)p(z|A) (A1)

Above, dV, is the co-moving volume element (Hogg 1999) and
Tons, the observing time period that produced the catalog with
the related factor of 1 + z converting this detector-frame time to
source frame. We assume a Lambda CDM cosmology using the
cosmological parameters from Ade et al. (2016). The redshift
evolution of the merger rate follows p(z|\) o ‘?ji(l + 2N
Integrating Equation (A1) across all masses, and up to some
redshift, z,,, returns the total number of BBH mergers in the
universe out to that redshift. Let {d;} represent a set of data from
Nops Observed gravitational waves associated with BBH mergers.
We model the merger rate as an inhomogenous point process and
when imposing a log-uniform prior on the merger rate, we can
marginalize over the merger rate to get the posterior distribution of
our hyperparameters, A (Mandel et al. 2019; Vitale et al. 2021b).

A
PNt o L1 | [ 2, <)

x p(mi|A)p(glmi, N)p(z|A)dmidgdz], (A2)

where, L(d;lm, q, z), is the single-event likelihood function
from each events original analysis, and &(A) is the detection
efficiency given a population distribution described by A. The
procedure for calculating £(A) is described in more detail
below. The LVC reports out posterior samples for each
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observed event, with which we can use importance sampling to
estimate the integrals above in Equation (A2). We replace the
integrals with ensemble averages over K; posterior samples
associated with each event in the catalog:

p(AI{d:}) oc p(A) [T

Uk, P 1M)p(qH10)pEHIA)
o _zlep I1M)p(gIA)p (]

A
X (A3)

7T(’n]i’j9 qi’js Zi’j)

Here j indexes the K; posterior samples from each event and
w(my, q, z) is the default prior used by parameter estimations
that produced the posterior samples for each event. In the
analyses of GWTC-2 the default prior used is uniform in
detector-frame masses and Euclidean volume. The corresp-
onding prior evaluated in source frame masses and redshift is
w(mi, q, z) o< my(1 + Z)ZDLz(z)dd—l}, where D is the luminosity
distance. '

To carefully incorporate selection effects to our model we
need to quantify the detection efficiency, £(A), of the search
pipelines that were used to create GWTC-2, at a given
population distribution described by A.

§W) = [ dmdgdzR(m. g, 2)
x p(mi|N)p(glmi, N)p(z|A) (A4)

The above integral is not tractable since there is no analytic
prescription for R (my, g, z), the detection probability of an
individual event. To estimate this integral we use a software
injection campaign where GWs from a fixed, broad population of
sources are simulated, put into real detector data, and then run
through the same search pipelines that were used to produce the
catalog we are analyzing.” With these search results in hand, we
use importance sampling to evaluate the integral in Equation (A4):

Nround i i i
c(h) = 3% pmilhp(g Iiml,i A)ip(z IA)
Ninj i3 pinj(ml, q',7")

(A5)

Where the sum indexes only over the Np,,q injections that
were successfully detected out of Nj,; total injections, and
Pinj(mi, g, z) is the reference distribution from which the
injections were drawn. Additionally, we follow the procedure
outlined in Farr (2019) to marginalize the uncertainty in our
estimate of £(A) due to a finite number of simulated events. We
make the assumption that repeated sampling of £(A) will follow
a normal distribution with £(A) ~ NM(u(A), o(A)), where the
mean, g, is the estimate from Equation (AS), while the
variance, 02, is defined as:
@z 1

UZ(A) = ~ _Z{\ﬁound
Nes N

inj

2
o | POmlDpalm, MpGIA) | 2 A)
Dinj (m1, q, 2) Ninj

(A6)

3 For 03a we used the injection sets used by Abbott et al. (2021b), which can
be found at https://dcc.ligo.org/LIGO-P2000217 /public. For O1/02 we used
the mock injection sets used by Abbott et al. (2019b) which can be found at
https://dcce.ligo.org /LIGO-P2000434 /public.
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Above we define N as the effective number of independent
draws contributing to the importance sampled estimate, in
which we verify to be sufficiently high after re-weighting the
injections to a given population (i.e., Negr > 4Nyps). We write
the hyperposterior marginalized over the merger rate and
uncertainty in estimation of &(A), neglecting terms of O(Ny?)
or greater (Farr 2019), as:

log p(Al{d;}) o< - log
K, mmﬂAwwWAm&Wm
m(m,?, q'v, z)
3Nobs + Nozbs
2Negr

—Z

Nobs log 1 + + OWNg?). (A7)
We explicitly enumerate each of the models used in this work
for p(m;|A), p(g|m;, A), and p(z|A) along with their respective
hyperparameters and prior distributions in Table 1. To calculate
marginal likelihoods and draw samples of the hyperparameters
from the hierarchical posterior distribution shown in
Equation (A7), we use the BILBY (Ashton et al. 2019;
Romero-Shaw et al. 2020) and GWPOPULATION (Talbot et al.
2019) Bayesian inference software libraries with the DYNESTY
dynamic nested sampling algorithm (Speagle 2020).

Appendix B
Model Comparisons and Prior Specifications

To compare competing population models in the aforemen-
tioned Bayesian framework we calculate two different measures
of model goodness of fit, namely the marginal likelihoods (Z) and
deviance information criterion (DIC) (Spiegelhalter et al. 2002).
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The marginal likelihood for a given model is a constant that
enforces that the posterior distribution is normalized (i.e.,
Z= fdAp(A|{d,-})), which has the property that it is higher
for models that fit the data better or find higher likelihoods, while
penalizing more complicated models by their prior volumes. As
our semiparametric approach has arbitrary prior choices one needs
to make, this can significantly affect the marginal likelihoods
inferred. We also calculate the DIC, a metric developed
specifically for Bayesian hierarchical models (Spiegelhalter et al.
2002), which is less sensitive to the arbitrary prior choices for our
semiparametric model. While there are some limitations to the
DIC (Spiegelhalter et al. 2014), it provides a secondary metric to
validate our model choices. The DIC is defined as:

DIC = —2Tog(Z) + pp

= —2(log(£) — var(log(£))) (B

With log £ the mean log-likelihood, and pj the effective
number of dimensions, defined as p, = %Var(—Zlog L) with
var(...) denoting the variance. Lower DICs indicate better
models which, similarly to the marginal likelihood, favors
models that find higher likelihoods while penalizing the more
complicated models through the effective dimension term. We
compare two models by calculating the ratio of their marginal
likelihoods (i.e., Bayes Factors4), defined as the ratio of each
models marginal likelihoods. To compare DICs, we take the
difference of two models values (DIC dif =DIC, — DICp)
where positive differences indicate preference for model B, and
negative differences indicate preference for model A.

We use these model comparisons to motivate a sensible
choice for our spline models prior flexibility, namely the
number of knots (n). Figure 6 shows changing prior widths on
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Figure 7. We show the two model comparison methods, Bayes factors (orange,
left y-axis) and the DIC difference (blue, right y-axis), each comparing our
spline perturbation model (denoted as SP) to the TRUNCATED model (denoted
as PL). The comparisons are calculated such that positive values of either
metric denote the spline perturbation model being favored over the
TRUNCATED. Both values are shown for varying specifications for the spline
prior. Along the x-axis we show different discrete choices (5, 10, 15, and 20)
for the number of nodes, n. Each of these spline model analyses shown was
performed with oy, = 1. The horizontal dashed lines show the Bayes factor
(orange) and DIC difference (blue) found when comparing Abbott et al.
(2021b)’s favorite mass model, POWERLAW+PEAK, to the TRUNCATED
model.

our knots only only effects magnitude of perturbations the
spline is sensitive to. Additionally, we see that as we add more
knots, the model is free to fit sharper fluctuations. This
flexibility comes with a penalty in our comparison metrics
due to increased model complexity. Therefore, we would
expect to see the model comparisons increasingly favor our
spline perturbation model as we increase our models
complexity /flexibility up to a point where the penalty will
start to overpower the higher likelihoods found with more
flexibility. Figure 7 shows how the DIC differences and log
Bayes factors (InB) change when comparing the spline
perturbation model to the TRUNCATED model with different
choices for n. We see that the comparisons favoring our
spline model peaks around 15 knots, indicating that 15
knots is a good trade-off between our models flexibility and
goodness of fit. We also report the marginal likelihoods and
model comparisons (relative to the most preferred model)
for each of the parametric primary mass models from
Abbott et al. (2021b) and various specifications of the
spline model in Table 2. From this table we see that the
spline model is consistently favored despite our arbitrary
model specifications, giving credence to the hypothesis that
there are features in the data our semiparametric method is
capable of finding that previously used parametric mass
models are not sensitive to. We do not use the comparisons
in Table 2 to determine the validity of the POWERLAW
+SPLINE models over others, and further studies on
simulated populations and the effect of small-number
statistics are needed to fully assess the significance and
robustness of these features. However, as catalogs of BBH

* The true “Bayesian” way to compare models is using odds, which are Bayes

factors multiplied by the ratio of prior odds of each model. Because we do not
a priori have expectations of which population model would be more likely, we
use Bayes factors which are odds ratios with equal prior weights for each
model.
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Table 2
Model Comparison Results, Listing Each Model Tested (Semiparametric
Spline Model or Parametric Mass Model from Abbott et al. (2021b)) and Their
Respective Marginal Likelihoods (Z) along with In 8 and DIC dif

Model Name InzZ InB DIC dif

Powerlaw+-Spline (n = 15, oypo = 1) —347.10 0.00 0.00

Powerlaw+Spline (n = 20, oynor = 1) —347.77  —0.67 —2.43

Powerlaw+Spline (n = 15, oypor = 1, —347.83 —-0.74 —3.27
6 =10)

Powerlaw+Spline (n = 10, oypor = 1) —348.21 —1.11 —2.96

Powerlaw+Spline (n = 10, oypor = 1, —34824 —1.14 —3.25
6 =10)

Powerlaw+Spline (n = 20, oynor = 1, —348.26 —1.16 —3.57
6 =10)

Powerlaw+Spline (n = 15, oynor = 2) —348.40 —1.30 —1.00

Powerlaw+Spline (n = 15, oynor = 2, —34853 143 —2.85
6 =10)

Powerlaw+Spline (n = 20, oyno; = 2) —348.62 —1.52 —3.00

Powerlaw+Spline (n = 20, oynor = 2, —-349.01 —1091 —3.39
6 =10)

Powerlaw+MultiPeak —349.27 -2.18 —6.87

Powerlaw+Spline (n = 10, oxpor = 2, —34943  -2.34 —-3.12
6 =10)

Powerlaw+MultiPeak (6,, = 0) —349.44 235 —6.27

Powerlaw-+Peak —349.53 —-2.43 —3.80

Powerlaw+Spline (n = 10, oynor = 2) —349.66  —2.57 —3.22

Powerlaw+Peak (6,, = 0) —349.70 —2.60 —4.96

Broken Powerlaw (6, = 0) —349.92 -2.83 —9.32

Broken Powerlaw —-350.21 -3.11 —8.90

Truncated —352.57 547 —1432

Truncated (6, = 0) —-353.27 —6.18 —16.10

Note. Both comparison metrics for each of the listed models are relative to the
“best performing” model or the one with the highest (lowest) marginal
likelihood (DIC), which, in both cases, was the Powerlaw+Spline (n = 15,
0,=1) model. We note that the POWERLAW-+MULTIPEAK finds higher
marginal likelihoods than the POWERLAW+PEAK model which was not the
case in Abbott et al. (2021b). This is because we used different priors for the
POWERLAW+MULTIPEAK model that allowed for a peak at lower masses than
the ~35 M, peak instead of higher.

mergers increase in size, the impact of small-number
statistics will diminish.

Appendix C
Correlations of Peaks

We look for the effect of our spline function biasing the
inferred perturbation function by plotting a corner plot of the
value of f(m,) sliced through the masses that show the largest
deviations. This is shown in Figure 8 for the conservative knot
prior and Figure 9 for the wide knot prior. If the dip followed
by the peak feature at 7.5 and 10 solar masses was found due to
the nature of cubic splines we would expect to see correlations
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Figure 8. Corner plot that shows the posterior distribution on the power-law slope, «, and the height of the perturbation function, f(m,), sliced at the three masses of
most significant deviation: 7.5 M, 10 M, and 35 M. We show the results for spline models with o,oc = 1 and 10 (purple), 15 (blue) and 20 (orange) nodes. The

median and 90% credible intervals quoted are for the 15 knot model.

between the heights at these values which do not appear in
either Figures 8 or 9. Since we are fitting for the underlying
power law model simultaneously with the perturbations we also
might expect to see some correlations with the power law slope
and the peaks. There are slight signs of an expected anti-
correlation of the 10 M., peak height and the power law slope,
and corresponding correlation of the 35 M, peak height with

the slope. This happens due to the degeneracy between the
parametric and nonparametric portions of our model. If the
10 M, peak is small, the power law slope becomes steeper so
that the “turnover” power law at low mass can contribute to
fitting this over-density. With a steeper power law slope, the
power law portion of the model under fits the excess at 35 M,
leading to a larger peak found in the perturbation. We also note
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