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Universal Manipulation Policy Network for
Articulated Objects

Zhenjia Xu

Abstract—We introduce the Universal Manipulation Policy Net-
work (UMPNet) — a single image-based policy network that infers
closed-loop action sequences for manipulating articulated objects.
To infer a wide range of action trajectories, the policy supports
6DoF action representation and varying trajectory length. To han-
dle a diverse set of objects, the policy learns from objects with
different articulation structures and generalizes to unseen objects
or categories. The policy is trained with self-guided exploration
without any human demonstrations, scripted policy, or pre-defined
goal conditions. To support effective multi-step interaction, we
introduce a novel Arrow-of-Time action attribute that indicates
whether an action will change the object state back to the past or
forward into the future. With the Arrow-of-Time inference at each
interaction step, the learned policy is able to select actions that con-
sistently lead towards or away from a given state, thereby, enabling
both effective state exploration and goal-conditioned manipulation.

Index Terms—Deep learning in grasping and manipulation,
perception for grasping and manipulation.

1. INTRODUCTION

HE ability to effectively interact and manipulate unknown
T articulated objects is critical for many robotics tasks.
However, due to the large variance in the objects’ kinematic
structure and 3D geometry, the actual action trajectories can
vary drastically across different object instances and categories.
Fig. 1 shows examples of action trajectories conditioned on
different objects for opening a door, turning a switch, or opening
a drawer. Extensive prior works have studied how to manually
design or learn an object-specific policy for each type of inter-
action (e.g., opening doors). However, such policies are often
time-consuming to design and fail to generalize across objects
with different articulation structures.

While these interaction sequences are drastically different
in their low-level geometric trajectories, many of them can
be summarized by a similar high-level function conditioned
on the objects’ underlying geometric and kinematic structure.
For example, the motion trajectory of a door opening can be
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represented by a function conditioned on its frame size and
its rotation axis, and a similar function can also be used for
opening a fridge, a microwave, or even a laptop. By learning
to interact with a diverse set of articulated objects, the system
is able to acquire a generalizable knowledge about objects’
articulation structure and how these structures would react to
different actions. Such knowledge goes beyond a specific object
instance or category, allowing a universal interaction policy for
any articulated objects.

Can we enable a robot to automatically acquire these basic
concepts about the object structure through self-supervised in-
teractions and use them to infer the corresponding manipulation
policies? In this paper, we introduce the Universal Manipu-
lation Policy Network (UMPNet) — a single policy network
that discovers possible manipulation policies for an articulated
object from visual observations (i.e., RGB-D images). The ac-
tion trajectories inferred by the policy network (shown in Fig. 1)
highlight the following attributes:

® General action representation: In order to model all pos-

sible actions for any articulated object, the network should
be able to represent a general action space with little con-
straints — it should be able to represent continuous actions
in SE(3) with arbitrary trajectory length. To achieve this
goal, we formulate an action trajectory by its initial 3D
position and a sequence of action directions, which allows
the network to describe complex motion trajectories with
varying sequence lengths.

® (losed-loop action sequence: Instead of predicting a single

step action (e.g., push or pull), we are interested in predict-
ing long-horizon sequential actions that could describe a
complex motion trajectory. However, due to error accumu-
lation and partial observation, directly predicting the full
trajectory from the initial state can be challenging. To ad-
dress this issue, we use a closed-loop formulation where the
network continues to predict the next action conditioned on
the object’s initial and current state, allowing the network
to adjust its action prediction based on its continuous visual
observation of the object.

® Arrow-of-Time awareness: Most of the action trajectories

are bi-directional in time (i.e., they are valid in either
direction). Hence, conditioning on a single state can result
in multiple effective next actions that would change the
object’s state with the same magnitude. However, to avoid
the back-and-forth actions, the network takes the history
state as input and infers an additional “Arrow-of-Time
(AoT)” attribute for each action. This AoT label indicates
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Fig. 1. Universal Manipulation Policy for Articulated Objects. Instead of
predicting a single step action, UMPNet predicts complex closed-loop 6DoF
action sequences with varying trajectory length. As a result, the same policy
network is able to handle a diverse set of objects regardless their joint types or
number of links.

whether this action will change the object state back to the
past or forward into the future. Apart from encouraging
exploring new states, this Arrow-of-Time inference also
allows us to directly apply the network in “goal conditioned
manipulation,” where we can simply swap out the initial
state with the goal state and choose the actions using a
reversed Arrow-of-Time.

In summary, we present a unified framework that discovers
possible manipulation policies for an articulated object from
visual observations. By using self-guided exploration, the policy
network is able to learn a wide range of action trajectories for a
diverse set of objects and generalize to unseen objects and cate-
gories. The training does not require any human demonstrations
or pre-defined goal conditions. We validate our approach on
two manipulation tasks (1) open-ended state exploration and (2)
goal-conditioned manipulation. The experiments demonstrate
that UMPNet is able to outperform alternative approaches in
both tasks significantly.

II. RELATED WORK

Open-loop manipulation with pose estimation: Many works
have focused on learning task-specific manipulation primitives,
such as grasping [1], pushing [2] and tossing [3]. For articulated
objects, methods have focused on handling doors, and draw-
ers [4]-[12]. These prior works typically start with object pose
estimation [13], [14] and then use the object pose to compute
an open-loop motion trajectory. However, the action trajectory
designed for one task (e.g., opening doors) may be too specific
to be applied to other objects or tasks (e.g., pushing button).
Moreover, performing pose estimation for articulated objects
with unknown category and kinematic structure is an extremely
challenging task. On the contrary, our model does not require
any object detection, pose estimation or part segmentation, and
demonstrates that it is in fact not necessary to perform explicit
pose estimation to perform effective manipulations.

Learning action trajectories from demonstrations: Another
popular method for robots to acquire new manipulation skills
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Fig. 2. Approach overview. UMPNet takes visual observation (i.e., RGB-D
images) of an articulated object as input and generates a sequence of actions in
SE(3) space to explore novel object states. (Left) A grasp position is selected
in the first interaction step. (Right) In following steps, the outcomes for each
action candidates (7g4is; and rao7) are inferred and then used for action direction
selection. rdis‘(a?. ) infers the potential moving distance of the joint after
applying the action adlr A T(ad“) infers whether or not the action will move
the object toward a novel state. The action direction with largest rgis; and positive
7aoT Will be selected.

is learning from demonstrations. This approach has been ex-
plored extensively in reinforcement learning literature [15].
Researchers has tried using behavioral cloning to learn from
human demonstration data captured by various methods, for
example, motion capture [16], [17], videos [18]-[20] and virtual
reality [21], [22]. However, these works requires collection of
large amount of high quality demonstrations with action and
pose annotation, which is expensive to obtain. In contrast, our
framework generates its own training data by allowing the agent
to actively interact with objects and explore the environment.

Single-step action affordance: Action affordance describes
the possibility of an action to be applied to a given location
in the environment. The task of affordance prediction does not
limit to a specific kind of object or action primitive. Building on
the well-studied image segmentation problems, many existing
methods have been developed to learn object affordance through
passive observations, such as learning human-object interaction
hotspots from video [23], [24] and contact heatmap from RGB-D
image [25]. The work most related to ours is “Where2Act” by
Mo et al. [26], where the algorithm can infer single step action
affordance for different articulated objects. However, limited by
its single step formulation, this approach fails to generated long-
horizon motion trajectories for goal-conditioned manipulation
tasks, which is the focus of our approach.

III. APPROACH

The goal of the manipulation policy 7 is to generate a sequence
of actions to interact with a random articulated object which
would result in novel states that haven’t been visited before.
Taking Fig. 2 as an example, to effectively explore novel states
of the object (i.e., a toilet), the algorithm should be able to (a)
choose the right position on the object to interact with (i.e.,
interacting with the cover instead of the base), (b) select a proper
action direction (i.e., pulling up instead of pushing down), and
(c) consistently select actions in the following steps to explore
novel states (i.e., keeping pulling up the cover instead of moving
up-and-down). These three requirements directly correspond to
the three key components of our algorithm, which are action
position selection (a), action distance (b) and Arrow-of-Time
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inference (c) for action direction selection. As a result, the
final system is able to learn through a self-guided exploration
process, without explicit human demonstrations [22], scripted
policy [26], or pre-defined goal conditions [27].

A. Problem Formulation

The task is defined as follows: given a visual observation of an
articulated object in the form of an RGB-D image at the initial
and current state og, 0; € RW>*>*4  the agent with a policy 7
generates an action a; at each step w (o, 09) — a; that satisfies
the aforementioned requirements. The action is represented in
SE(3) space, parameterized by end-effector (i.e., a suction-based
gripper) position and moving direction a; = (a}**, a$i), where

ab®® € R? is a 3D coordinate and a{* € R3, (Haflr” =1)isa
unlt vector in 3D indicating the end-effector moving direction.

In the first interaction step, the policy selects a 3D position

ab™ to apply action (i.e., an immobilizing grasp via suction).
To execute the action, the agent moves its end-effector to this
position, with an orientation perpendicular to the object surface.
Note that the gripper orientation (determined by the surface nor-
mal) can be different from the action direction ay dir (determined
by the Direction Inference Networks Section III-C). In each
following step, the agent will select a 3D direction a{" and
move its end-effect 0.18(m) along that direction, the position

ay* is fixed relative to the objects surface. The suction behavior
is 1mplemented as a force constraint between the suction cup
and the selected 3D position on the object. The orientation of
the end-effector is always aligned with the surface normal during
the interaction.

B. Position Inference

To start, the policy needs to determine a suitable position on
the object 3D surface af}® to apply action (i.e., a immobilizing
grasp via suction). To do so, the algorithm needs to select a pixel
from the observation image og to apply action. The selected pixel
will then be projected back to the 3D space using the depth value
provided in the RGB-D image.

We formulate this problem as an image labeling task, where
the position network (Fig. 2(a)) takes in an RGB-D image and
predicts per-pixel position affordance score P € [0, 1] *#  The
affordance score P(w,h) implies the likelihood of the object
part movement when applying an action in this position. We use
a U-Net architecture for this task, the network is supervised by
the outcome of the executed action (one out of W x H pixels).
The ground truth label is 1 if and only if the object state is
changed in any of the future steps. The network is trained with
Binary Cross-Entropy loss.

Note that simply selecting a position belonging to a movable
link is a necessary but not sufficient criteria. For example, if
the selected position is very close to the joint axis, the agent
will not be able to apply enough force to move the object part.
Furthermore, the label is affected by the quality of direction
selection. A correct position can still be labeled as a negative
case if the object state is not changed due to wrong direction
predictions in the following steps.
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C. Direction Inference

At this point, the end-effector has grasped the object link
at af”® which is visible to the camera. Conditioned on this
information, the policy then needs to select a 3D direction
a?ir. To select the action direction, the algorithm need to first
sample a set of action candidates, and evaluate each action
candidate’s effectiveness. The “effectiveness” is measured by
the moving distance of the object joint position rqis; (af'*) and
Arrow-of-Time attribute 75,7 (al"), defined as following:

rdlbt(a’t ) - H]t _]t 1||
V= (jt _jt—l) : (.;t—l - fo)

-1 lest(at ) >0 & v < 0
0 lest( ) <4
1 lest(at ) >0 & v>0

i) =

TAOT(

where j; is the object joint state in each step ¢ and § is a threshold
to determine whether the state is effectively changed. § is 0.15 m
for prismatic joint and 8.6° for revolute joint. The following
paragraph provides details on how to generate action candidates
{ad*}, and infer rqig; (af™) and raoT (adh).

To generate direction candidates {a%"}, one naive method
would be uniformly sampling in the SO(3) space. However, lim-
ited by the number of samples, the sampled directions can only
cover a small portion of the continuous action space that does
not include the optimal directions. To address this issue, we use a
heuristic approach, iterative cross-entropy method (CEM), to re-
duce the sampling space to achieve efficient direction sampling.
The algorithm starts with uniform sampling the SO(3) space
for N samples. Then, it evaluates the sampled actions based
on the predicted action scores: s(@) = Fist (@4) - Faor(ad™).
In the next iteration, the algorithm re-sampls the candidates
with probability correlated to its score: p(a) o< e7**(®), where
T = 20 is a temperature value. Added a random noise, they are
considered as candidates in the second interaction. In this way,
the samples in the second iteration will concentrate on the region
that has more “potential,” leading to better performance with
the same number of samples. Detailed comparisons are listed in
appendix. Our final model uses CEM sampling with 64 samples.

To infer the moving distance lest(at ") for an action candi-
date, the network needs to consider the object’s current state and
grasp position which are both encoded in the current observation
o;. Taking in the RGB-D image of the current state, DistNet
(Fig. 2(b)) outputs embedding vector ¢)(o;). Then DistDecoder
(Fig. 2(d)) takes both embedding vector ¢ (0;) and action a as
input, and outputs a scalar as the distance prediction 7 g;st (a?ir).
DistNet is a convolution neural network and the output is flat-
tened to an embedding vector. Dist-Decoder is a fully-connected
neural network trained using MSE loss Lg;s; for the executed

action a;.
Different from Fdist(a‘thr) inference, Arrow-of-Time
Faor(ad) inference is conditioned on on both current

observation and initial observation. For single-step interaction,
any action that changes the object’s state would result in a
novel state. However, it is not true for multi-step interactions
— the policy can move the object link back-and-forth without
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exploring any new states. To address this issue, we proposes an
“Arrow-of-Time” (AoT) action attribute that indicates whether
the action will change the object state back to the initial state
or forward into the future (i.e., a novel state). Specifically,
AoTNet (Fig. 2(c)) takes the current and initial observation as
input and outputs another embedding vector ¢(o;,00). This
embedding vector is then combined with the action embedding
to infer the final AoT label for this action 7aor(a dl’f) The
network architectures of the AoT branch is similar to those
of the Dist branch while the only differences are the different
input dimensions of the Dist Net and the AoT Net as well as the
different output dimensions of the AoT Decoder and the Dist
Decoder. The model is trained as a three-way classification with
Cross-Entropy loss £ 4,7. The final loss for direction inference
is: L = ALgist + L aor, where A = 100 in our experiments.

D. Training

All training data come from interaction trials executed by the
policy trained from scratch. A FIFO replay buffer (size=6400)
is used to store training data. To collect data with both positive
and negative AoT labels, we employ contradictory policy for
direction inference within a sequence. In the first half of each
sequence, we select action with positive AoT prediction for
execution to move the object away from its initial state. In the
second half, actions with negative AoT prediction are executed to
encourage the object to move back. 16 trajectories are collected
in each epoch. The sequence length is 4 at the beginning.
After 1000 epochs, it increases by 2 every 400 epochs, until
reaching 20. e-greedy is used during training, where e decreases
linearly from 1 to €,,;, within n epochs. In position inference,
n = 300 and €,,;, = 0.1. In direction inference, n = 500 and

Position module and direction module are trained with 8
iterations accordingly in each epoch. In each position training
iteration, we sample a batch (size=16) of examples from the
replay buffer with a 1:1 positive to negative ratio. In each di-
rection training iteration, 1:1:1 samples from positive, negative,
and not-moving data form a batch (size=24).

E. Goal Conditioned Manipulation With Reversed AoT

While open-ended interaction is useful for exploring and col-
lecting information about the environment, most manipulation
tasks are goal conditioned — the policy needs to generate actions
that would lead toward a given goal state instead of a random
novel state. Although the policy is trained with only open-ended
exploration, the learned policy can be directly applied to perform
goal conditioned manipulation without additional training.

The key idea for performing the goal-conditioned task is to
swap out the initial observation with the goal state observation
as the input to the policy. Then by executing the actions with a
reversed Arrow-of-Time (i.e., negative AoT), the policy tries to
move object back to the “past,” which will effectively move the
objects toward the goal. If the AoT prediction of all direction
candidates are non-negative (no blue arrows in Fig. 3), the
trajectory will terminate.
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Apart from choosing the right action direction, another unique
challenge for goal-conditioned manipulation is how to choose
the correct link to interact when there are multiple movable
links on the object (e.g., fridge with double doors in Fig. 3).
While the position heatmap predicted by the network covers all
movable links, only interacting with the right one can lead to the
goal. Therefore, to choose a proper position, we first compute
a difference mask between the initial and target observation.
Then, we multiply the raw position heatmap and the mask to
get the filtered position affordance (remove the pixels that are
not changed). The final position is selected from the filtered
heatmap. The algorithm for goal-conditioned manipulation is
illustrated in Fig. 3.

IV. EVALUATION

Our simulation environment uses objects from PartNet-
Mobility [28] and physics engine from Pybullet [29]. We use
12 categories for training and 10 categories for testing. There
are 504 training object instances, 132 testing object instances
from training categories, and 261 object instances in the testing
categories. We randomly load an articulated object into the sim-
ulation for each interaction session with a randomly initialized
pose and joint configurations.

A. Open-Ended State Exploration

We first evaluate UMPNet’s effectiveness in exploring novel
states of an articulated object. Being able to effectively explore
the possible states of an object without a specific goal is a critical
first step for many robot learning algorithms since it is often used
to collect the initial observation about the environment to initiate
the training. While random explorations can be used for simple
environments, they are often not sufficient for tasks involving
high-dimensional action space, where the majority of the actions
will not change the object joint state in a meaningful way.

Instead, an effective state exploration policy should be able to
choose actions that can (1) significantly change the joint state of
an object and (2) lead to novel states that have not been visited
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TABLE I
EFFECTIVE STATE EXPLORATION'

Novel instances in training categories

ﬁ = i‘i L
2.08 1.10 0.79

0.92
142 1.05 0.63 0.62
1.68 1.04 0.53

0.91
2.08 137 073 0.92

]
0.94
0.99
0.84
1.02

‘Where2Act
AoTOnly
SignedDist
UMPNet

Testing categories

=] S AR
CEOEBEg M™M=
148 1.01 1.17 1.17 195 0.82
1.10 1.06 1.10 1.14 146 049
1.10 1.06 1.10 1.14 0.49

1.46
150 114 118 132 1.87 0.77

=
|

1.38
1.21
121
1.69

0.96
0.75
0.75
110

0.81
0.80
0.80
0.90

0.57
0.51
0.51
0.66

1.02
0.86
0.86
1.05

Single action effects 1

Where2Act
‘Where2Act+HP
SingleStep
AoTOnly
SignedDist
UMPNet
UMPNet+HP

0.38
0.72
0.31
0.58
0.43
0.70
0.71

0.45
0.85
0.42
0.77
0.59
0.85
0.86

0.34
0.89
0.39
0.69
0.66
0.90
0.90

0.25
0.48
0.26
0.42
0.38
0.52
0.57

0.52
0.60
0.47
0.47
0.47
0.60
0.64

0.56
0.83
0.51
0.68
0.54
0.87
0.88

0.49
0.85
0.48
0.62
0.58
0.81
0.83

0.56
0.72
0.49
0.67
0.58
0.74
0.74

0.45
0.62
0.44
0.50
0.46
0.64
0.65

0.50
0.63
0.47
0.44
0.38
0.55
0.60

0.58
0.73
0.57
0.59
0.48
0.74
0.74

0.26
0.50
0.24
0.44
0.38
0.52
0.55

0.39
0.75
0.44
0.70
0.60
0.77
0.77

0.39
0.87
0.38
0.76
0.57
0.85
0.88

0.45
0.79
0.39
0.65
0.51
0.76
0.78

0.42
0.84
0.41
0.82
0.58
0.85
0.86

0.51
0.81
0.45
0.61
0.57
0.80
0.83

0.53
0.89
0.45
0.81
0.65
0.92
0.92

0.50
0.54
0.47
0.44
0.36
0.56
0.56

0.66
0.86
0.78
0.80
0.55
0.86
0.88

0.24
0.91
0.29
0.83
0.68
0.93
0.93

0.34
0.65
0.31
0.50
0.47
0.68
0.70

Ratio of unique states visited T

before. The first property requires the system to understand the
object structure, and the second property requires the system to
be aware of the interaction history.

Metrics: We use two metrics to evaluate the effectiveness of
state exploration: (1) Single action effects — measures the joint
state difference before and after each interaction step D = | |th —
Ji-1]|/6. The threshold of significant state change 4 is 0.15 m
for prismatic joint and 8.6° for revolute joint.

This metric evaluates whether the algorithm can choose the
action that would change the state of the object most sig-
nificantly. (2) Novel state visited — measures the ratio be-
tween the number of unique states visited among all interaction
steps: ratio = #unique_states/#steps. Two states consider
the “same” when the object’s joint difference is less than §. This
metric evaluates whether the algorithm is aware of the interaction
history and chooses the action leading to novel states that have
not been visited before.

Algorithm comparisons: We compare our final model with
the following alternative approaches:

e Where2Act [26]: This algorithm takes the current obser-
vation as input and selects single-step action. The model is
with binary-classification loss where the action is positive
if only the moving distance is larger than a threshold.

e Where2Act+HP: an additional heuristic that filters out
actions that has alarger than 90° angle with last-step action.
This heuristic helps to avoid back-and-forth actions, how-
ever cannot be applied for goal-conditioned manipulation.

e SingleStep: Single-step version of our method that only
takes the current observation as input.

e Ao0TOnly: This method only outputs AoT label for each
action without the distance inference.

e SignedDist: Instead of inference AoT and distance as sep-
arate outputs, this method infers signed distance by multi-
plying the AoT and distance value rgnged = T'A0T * Tdist

Results and analysis: Quantities and qualitative results are
summarised in Table I and Fig. 4.

Effect of the AoT prediction: Both [ Where2Act | and [
SingleStep ] only take the current observation as input and infer
actions for one step; hence, they do not need to understand the

1Categories: fridge, folding chair, laptop, stapler, trashcan, microwave, toilet,
window, cabinet, switch, kettle, toy, box, phone, dish washer, safe, oven, washing
machine, table, kitchen pot, bucket, door.
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Fig. 4.  Open-ended state exploration. Arrow length indicates the inferred
distance value, color indicates the inferred AoT label. We visualized the uniform
samples to better illustrate the AoT distribution. (Left) Qualitative comparisons.
All methods are able to choose a suitable position, however, both SingleStep and
Where2Act cannot distinguish between actions that are moving away from or
back to initial state (all directions are red) leading to inefficient exploration.
In contrast, UMPNet is able to infer the correct AoT labels, hence, select the
correct action to explore novel states. (Right) Number of unique state visited up
to each step using different exploration strategy (laptop testing instances). The
error bar is measure with five random seeds.

Init

interaction history. From Table I we can see that [ Where2Act
] is able to achieve similar performance in “single action
effects,” however, both [ Where2Act ] and [ SingleStep ] cannot
effectively explore novel states with more interaction steps.
Since both algorithms are not aware of interaction history,
we observe that the policy often selects actions that would
manipulate the object link back-and-forth instead of exploring
new possible object states. When combined with the heuristic
the algorithm [ Where2Act+HP ] can avoid back-and-forth
action, however, it is sensitive to error propagation, where one
sub-optimal action would affect all following steps through the
filtering process, results in worse performance. Fig. 4 shows
examples of action prediction results for [ UMPNet ]. With just
the Arrow-of-Time prediction, [ UMPNet ] is able to identify
the actions that would always move the object from the past
states (i.e., red arrows); therefore, it is able to visit novel states
much more frequently. When combined with heuristic filter, the
performance improves slightly.

Effect of the distance prediction: Compared to [AoTOnly],
we can observe that by explicitly predicting the distance value
for each action candidate, [UMPNet]| can better differentiate
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TABLE II
GOAL CONDITIONED MANIPULATION
Novel Instances in Train Categories Test Categories

[ | 1 | = () sm A = SN A - O

A=y @ aR@T iEdapgTee
Inverse [30]| 0.30 021 032 031 027 0.7 028 009 027 025 009 034]025 032 009 017 027 015 021 000 051 027
AoTOnly | 023 0.18 0.2 022 032 0.8 0.5 016 032 038 0.2 008|030 005 007 018 031 018 027 000 031 0.8
SignedDist | 0.26 024 0.11 020 035 0.19 022 015 041 044 013 012|032 009 0.I1 020 034 022 031 000 030 022
UMPNet | 020 0.19 0.05 0.19 023 0.16 012 0.13 028 021 0.1 004|026 003 006 015 021 0.6 022 0.00 022 0.17

Normalized distance to target |
Inverse [30]| 0.43 0.68 0.72 055 0.63 0.89 078 0.65 061 052 083 054|067 059 080 073 058 083 067 100 039 0.68
AoTOnly | 046 0.76 081 071 052 083 086 052 045 043 081 088|061 086 086 07 052 077 06 100 050 0.77
SignedDist | 047 059 0.84 0.75 048 0.88 075 052 049 037 078 083|058 084 083 069 046 071 057 1.00 052 0.74
UMPNet 0.67 078 090 0.73 0.68 086 090 058 0.63 0.57 079 094 | 0.68 0.89 0.86 0.76 0.62 080 0.68 1.00 0.57 0.79
Success rate T

Init Target Position Middlel Middle2 Full Inverse

~

s : 1)

1
f_lj .
Fig. 5. Goal conditioned manipulation results. At the beginning or in the middle of a trajectory, the action candidates have positive (red) and negative (blue)

AoT labels. To move toward the goal, the policy selects the action with the largest distance prediction and a negative AoT label (the longest blue arrow) to execute.
When reaching the goal state (current and goal state are similar), the AoT labels turn non-negative for all actions since all actions will either make no change or
move further away from the goal state. The [Inverse] model (right-most column) often chooses sub-optimal action directions (highlighted by red dash circles) at
the beginning of the interaction sequence where the current observation is far away from the goal states.

between different action directions and choose the optimal ac-
tion direction that would introduce larger state changes. As a
result, [UMPNet] can achieve a better “single action effect” for
all object categories, leading to more efficient state exploration
when considering the entire sequence.

Effect of decomposing AoT and distance prediction: Different
from [SignedDist] that directly predicts a signed distance value
that combines the AoT and distance, [UMPNet] decompose its
output as an AoT label (trained with classification) and a distance
value (trained with regression). This decomposition helps the
algorithm better disentangle these two concepts, allowing the
algorithm to achieve more accurate predictions for both. As are-
sult, [UMPNet] can achieve better performance in both metrics.

B. Goal Conditioned Manipulation

In this experiment, we evaluate UMPNet’s performance in
the task of goal-conditioned manipulation. Given a target state
in the form of an RGB-D image, the task is to infer a sequence
of actions that manipulate the object toward the target state and
halts when the object reaches the target state.

Metrics: The performance for this task is measured by (1) nor-
malized distance g1 to target state after interaction: Egpal =

||fend — fgoa1|| / ||j'goal — j}nit|\, where ; is vector of object’s

joint state. (2) success rate, where a successful case is defined as
the normalized distance to the goal state is smaller than 0.1. To
make the task more challenging, the initial and goal states are
selected from the upper and lower limits of the joint. The initial
state may be moved to ensure the task can be accomplished in
15 steps.

Algorithm comparisons: We compare with the [Inverse]
model proposed by Agrawal et al. [30], a single-step inverse
model for goal-conditioned manipulation. Each step takes the
current and goal observation as input and predicts the action that
would change the state from the current state to the goal state.
This model is trained on the same state-action pairs (s¢, S¢41, G¢)
as our method, and the action output is trained with direct
regression loss.

Results and analysis: Table 11 shows that comparing to prior
works [Inverse] and other alternative approaches, [UMPNet] is
able to achieve more precise goal-conditioned manipulations
by moving the object to a state that is closer to the target
(lower Egoa1 value). From the qualitative comparisons in Fig. 5
we can observe that the performance of the [Inverse] model
is much worse at the beginning of the interaction, where
the algorithm often selects sub-optimal action directions that
make less progress towards the goal (actions highlighted
in red dash circle). Since the [Inverse] model only takes
consecutive observations as input during training, it struggles
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to handle long-horizon manipulation tasks, where the current
observation is far away from the goal states. Similar to
exploration experiments, we observe that [AoTOnly] often
chooses sub-optimal action direction as it is unaware of the
actual magnitudes (i.e., distance) of different action effects.

C. Inferring Objects’ Articulation Structure From Interactions

We hypothesize that one of the requirement for learning
a universal policy for any articulated object is the ability to
understand the object’s underlying articulation structure and
how this structure react to different actions. Hence, the action
selected by the policy should also, in return, reflects its belief on
the objects’ structure. For example, we often apply forces along
the axis for prismatic joints while applying actions perpendicular
to the rotation axis for revolute joints.

To visualize the policy’s implicit belief about the object’s
structure, we compute the joint parameters inferred from the
actions selected by the policy. To compute the prismatic joint,
we simply take the average of the action directions. To compute
the revolute joint, we first compute a common action plane in the
3D space (brown plane in Fig. 6). The normal direction of the
plane 77 € R is chosen as miny -y 3, |7 - az|, where a; is
the action direction in each interaction step. Then we vote for the
axis position by computing the interaction sections between the
directions perpendicular to all the actions in the common plane
(blue lines in Fig. 6). Finally, the final axis position is voted
among the intersection points between each pair of the perpen-
dicular lines. Fig. 6 shows examples of inferred joint parameters
for objects with different articulation structures (red lines).

We also quantitatively evaluate the inferred joint parameters.
While the algorithm has never been supervised on any of the
joint parameters, it is able to estimate the joint axis orientation
with an average error < 11.6° for revolute joints and < 32.2° for
prismatic joints. Note that the error in prismatic joint estimation
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is higher since these objects often has higher tolerance on the
sub-optimal action directions.

D. Real-World Experiment

Finally, we validate our method on a real-world platform with
a calibrated RGB-D camera (Intel RealSense D415), a URS
robot, and a suction gripper. Fig. 8(a) shows the real-world
setup. In this experiment, we directly tested UMPNet trained in
simulation on four different objects — box, laptop, microwave,
and stapler. The inferred action trajectories to open and close
the microwave are shown in Fig. 8(b). The qualitative result of
goal-conditioned manipulation shown in Fig. 8(c) demonstrates
that the trained model is able to infer proper grasping positions
and action directions for different objects and goal conditions.
While performing large-scale real-world training for UMPNet
can still be challenging, we believe these results demonstrate the
promises of the proposed method in real-world applications. We
observed that there are a few real2sim gaps that could impact
real-world performance. For example, the noise captured by
the depth camera could affect direction inference. For objects
don’t have a fixed base (e.g., microwave), they might experience
unexpected movements during interactions, and therefore nega-
tively impact the algorithm performance. In addition, our policy
doesn’t consider real robot situation, for example, whether the
grasping position can be reached by a real robot, the moving
trajectory is safe, the grasping surface is flat enough for a robust
suction. All these issues about real robot platforms should be
considered in our policy in future works.

E. Limitations and Failure Cases

Assumptions: To allow goal-conditioned manipulation with
reversed AoT actions, we assume the action trajectories are
bi-directional in time (i.e., they are valid in either direction).
While this assumption is true for most articulated objects, it
does not apply toirreversible actions such as gluing or locking. In
addition, our system assumes the agent uses a suction-based end-
effector, which can provide robust grasps for a large variety of
objects and is widely used in many real-world robotics systems.
However, the policy cannot generalize to other grippers that
requires more precise grasp poses. Finally, our system assumes
there is only a single articulated object with 1 DoF prismatic or
revolute joint on a planar surface, and the goal state can only be
input as an image with the same scene.

Failure Cases: Fig. 7 case (a) is ambiguous in position selec-
tion since the door could be opened from both sides, where
the policy chooses to drag the middle of the door. In case
(b), the selected action can’t change the object state since the
microwave’s door reaches boundary. However, the joint range
can’t be easily inferred from observation since some microwaves
can be opened up to 180°. In case(c), policy infers actions that
will cause collisions between the end-effector and the object. In
case(d), the end-effector is occluded after interactions. While a
human is able to change the viewpoint for better observation,
our agent uses a fixed camera position and therefore not robust
for occlusion. Both (c) and (d) could be addressed by better
modeling the agent’s embodiment including end-effector and
camera placement.
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(c) Goal Conditioned Manipulation

Real-world experiment. We test the model trained in simulation on a real-world platform. (a) We an RGB-D camera to capture visual observation and

a URS with a suction gripper for manipulation. (b) Action trajectory. (¢) For each object, we visualize the inferred action position and direction for two different
target states. To move toward the goal, the policy will select the action with the largest distance prediction and a negative AoT label (the longest blue arrow) to
execute.

V. CONCLUSION

We introduce the Universal Manipulation Policy Network
(UMPNet) — a single image-based policy network that infers
closed-loop action sequence for manipulating articulated ob-
jects. The policy is trained with self-guided exploration with-
out human demonstrations, scripted policy, or pre-defined goal
conditions. Our experiment results demonstrate that the learned
policy is able to perform well in both open-ended exploration
and goal-conditioned manipulation and outperforms alternative
approaches in both tasks.
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