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TANDEM: Learning Joint Exploration and Decision
Making With Tactile Sensors

Jingxi Xu

Abstract—Inspired by the human ability to perform complex
manipulation in the complete absence of vision (like retrieving an
object from a pocket), the robotic manipulation field is motivated to
develop new methods for tactile-based object interaction. However,
tactile sensing presents the challenge of being an active sensing
modality: a touch sensor provides sparse, local data, and must be
used in conjunction with effective exploration strategies in order to
collect information. In this work, we focus on the process of guiding
tactile exploration, and its interplay with task-related decision
making. We propose TANDEM (TActile exploration aNd DEcision
Making), an architecture to learn efficient exploration strategies
in conjunction with decision making. Our approach is based on
separate but co-trained modules for exploration and discrimina-
tion. We demonstrate this method on a tactile object recognition
task, where a robot equipped with a touch sensor must explore and
identify an object from a known set based on binary contact signals
alone. TANDEM achieves higher accuracy with fewer actions than
alternative methods and is also shown to be more robust to sensor
noise.

Index Terms—DForce and tactile sensing, reinforcement learning,
recognition, deep learning, tactile exploration.

1. INTRODUCTION

ACTILE sensing plays an important role for robots aiming
T to perform complicated manipulation tasks when vision
is unavailable due to factors like occlusion, lighting, restricted
workspace, etc. The ability of touch to provide useful informa-
tion in the absence of vision is immediately clear in the case
of human manipulation: we are able to search and manipulate
efficiently inside of a bag or pocket without visual data. In
particular, we have little problem in distinguishing between
similar objects from tactile cues only.
However, a number of challenges remain before tactile sens-
ing can be used with similar effectiveness by robotic manipu-
lators. Fundamentally, touch is an active sensing modality, and
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Fig.1. Objectrecognition based on tactile feedback alone. (a) Real robot setup.
Our tactile finger is mounted on a robot arm, and the target object (unknown
identity and orientation) is placed roughly around the workspace center. (b)
Known object set of 10 randomly-generated polygons. (c) Active exploration.
Using our framework, our robot collects data and quickly converges on the
correct object identity (object 4 from the set).

individual tactile signals are very local and sparse. Guidance
becomes critical: tactile sensors need to be physically moved
by a robotic manipulator to obtain new signals, introducing
additional costs for every sensor measurement. Without smart
guidance, we can only blindly scan/grope on a surface [1], [2]
or continuously make repetitive and high amounts of contacts
at tightly controlled positions [3]-[7]. These strategies are ex-
tremely inefficient and often incur prohibitively high costs and
burdens. Furthermore, it is also important to have an intelligent
way to rearrange or encode such local and sparse signals into a
global representation.

In this work, we focus on the process of guiding tactile
exploration, and its interplay with task-related decision making.
Our goal is to provide a method that can train effective guidance
(exploration) strategies. The task we chose to highlight this
interplay and to develop our method is tactile object recognition,
in which one object must be identified out of a set of known
models based only on touch feedback (Fig. 1). The goal of our
method is to correctly recognize the object with as few actions
as possible. In order to learn efficient guidance for such tasks,
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we propose an architecture combining an exploration strategy
(i.e. explorer) and a discrimination strategy (i.e. discriminator).
The explorer guides the tactile exploration process by providing
actions to take; the discriminator attempts to identify the target
object and determines when to terminate the exploration after
enough information has been collected. To convert local and
sparse tactile signals into a global representation, we also use
an encoding strategy (i.e. encoder). In our current version, the
encoder simply rearranges sparse tactile signals into an occu-
pancy grid, but more complex implementations could be used
for future tasks.

In our proposed architecture, both the explorer and the dis-
criminator are learned using data-driven methods; in particular,
the explorer is trained via reinforcement learning (RL) and
the discriminator is trained via supervised learning. In our
current implementation, both of these components are trained
in simulation. The use of binary touch data, which is easier to
simulate accurately compared to other tactile features, facilitates
zero-shot sim-to-real transfer, which we demonstrate in the real
robot experiments.

Critically, even though our architecture separates the explo-
ration and decision making, we interleave their training pro-
cess: we propose a co-training framework that allows batch
and repeated training of the discriminator on a set of samples
collected by the explorer. We call our method TANDEM, for
TActile exploration aNd DEcision Making. In summary, the
main contributions of this paper include:

® We propose a new architecture to learn an efficient and

active tactile exploration policy, comprising distinct mod-
ules for exploration, discrimination, and world encoding.
We also propose a novel framework to co-train the explo-
ration policy along with the task-related decision-making
module, and show that they co-evolve and converge at the
end of the training process.

® We demonstrate our method on a tactile object recognition

task. In this context, we compare our approach against
multiple baselines, including all-in-one learning-based ap-
proaches that do not distinguish between our proposed
components, and other methods traditionally used for ex-
ploration (such as random-walk, info-gain, etc.) or tactile
recognition (such as ICP). Our experiments, performed
in simulation and validated on real robots, show that our
proposed method outperforms these alternatives, achieving
a higher success rate in identifying the correct object while
also using fewer actions, and is robust to sensor noise.

II. RELATED WORK

A. Tactile Object Recognition

Object recognition is a key problem in robotics and is a
fundamental step to gaining information about the environment.
Conventionally, visual perception has been the primary sensing
modality for object recognition. However, due to the limitations
of vision such as illumination and occlusion and with the devel-
opment in tactile perception technology such as DISCO [8],
object recognition with only tactile information is receiving
increasingly wider attention in robotics research. Tactile object
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recognition can be roughly divided into three major categories
depending on the characteristics of the object [9]: (1) rigid object
recognition (the problem in this paper), (2) material recognition,
and (3) deformable object recognition. However, many existing
works are either using predefined action sequences or a heuristic-
based exploration policy such as contour following, while we
focus on developing a learning-based active exploration policy.

B. Tactile Exploration Policy

The Exploration Policy (EP) is the sequence of exploratory
actions the agent executes to gather tactile information. Since
tactile information can only be obtained by interacting with
the target object, the EP plays a critical role. We divide tactile
sensing EPs into three major categories.

1) Passive Mode: The robotic manipulator is fixed, and the
human operator hands over the object to the manipulator, often
times in random orientations and/or translations to collect tactile
data [10]-[12].

2) Semi-Active Mode: The manipulator interacts with the
object according to a prescribed trajectory and does not need
to react based on sensor data, maybe except being compliant
to avoid damage. Examples include poking the object from
uniformly sampled directions or grasping it multiple times with
a predefined set of grasps [3], [13], [14].

3) Active Mode: The manipulator finds the object and ex-
plores it reactively in a closed-loop fashion. The exploratory
action is a function of current and/or past sensor data. EPs can
be heuristic- or learning-based.

Some of the most popular heuristic-based exploration policies
range from contour following [15]-[18] to information gain
(uncertainty reduction) [19]-[22]. Other heuristics to decide
the regions of interest to explore include attention cubes [23],
Monte Carlo tree search [24] and dynamic potential fields [5].
However, while heuristic-based EPs require no training and can
reduce the number of actions effectively, they are also sensitive
to sensor noise and the performance of a particular heuristic
can be task-dependent. In contrast, our learning-based EP is
trained with sensor noise, and thus outperforms heuristic-based
baselines when such noise is present in the evaluation.

Similar to ours, other works combine exploration and decision
making, whereby a classifier is pre-trained from pre-collected
data and used to estimate action quality with Bayesian methods
to reduce uncertainty [25]-[29]. Most of these make effective
use of high-dimensional or multimodal tactile data. Our use of
relatively simple contact signals allows training an exploration
policy through trial and error in simulation, with zero-shot trans-
fer to real robots, eliminating the need for training on physical
objects. Nevertheless, we achieve high recognition accuracy
with relatively few actions, which we attribute in part to the fact
that, unlike in previous methods, our discriminator is constantly
updated as the exploration policy improves.

ITII. ARCHITECTURE

Our work aims to develop a framework that combines ef-
fective exploration and decision-making when using an active
and local sensing modality, such as touch. Our key insight is
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Fig. 2.

An overview of the proposed architecture, and its application to tactile object recognition. The tactile finger interacts with the target object and generates

local and sparse sensor data (in this task, binary collision signals). The encoder keeps a history buffer of such sequential signals and converts them into a global
representation. Our encoder in this task rearranges them into an occupancy grid image. The discriminator takes in the global representation and attempts to identify
the object along with a confidence estimate. If the confidence is higher than a predefined threshold, the exploration is terminated and the final prediction is produced.
Otherwise, the explorer reads the representation and generates the next move. The neural networks used by the discriminator and explorer are shown inside their
respective block. The parameters of the conv2D layer are the number of filters, kernel size, and stride. The parameters of the max pool layer is stride. The
parameters of the f£c layer are input dimension and output dimension. The parameter of dropout layer is the probability of an element being zeroed out.

that exploration and decision-making are distinct, yet deeply
intertwined components of such a framework. An ideal ex-
ploration strategy will strive to reveal information that the
decision-making component can make the best use of. Similarly,
a decision-making component will adapt to the constraints of
a real-world robot collecting touch data, which can only be
obtained sequentially and incrementally.

The concrete task we develop and test our method on is
touch-only object recognition using a robot arm equipped with
a tactile finger. We assume a set of known two-dimensional
object shapes (randomly-generated polygons). One object is
placed in the robot’s workspace, in an unknown orientation.
The robot must determine the object’s identity using only tactile
data, and with as little movement as possible. Performance is
measured by both identification accuracy and the number of
robot movements.

Our proposed architecture is illustrated in Fig. 2. The key
components are the following: (1) The explorer, which gen-
erates an action for the robot to take in order to collect more
data. In our implementation, the explorer consists of a policy
trained via deep RL. (2) The discriminator, which predicts the
identity of the object, along with a confidence value. This is
a supervised learning problem, implemented in this case as a
Convolutional Neural Network (CNN). Finally, in addition to
the explorer and discriminator, we distinguish one additional
component, namely (3) the encoder which converts the sequence
oflocal and sparse tactile signals into a global representation. For
our object recognition problem, the encoder simply aggregates
binary touch signals into an occupancy grid.

An equally important aspect of the proposed architecture
is the training process. While we formulate distinct explorer
and discriminator modules, trained via different formalisms
(RL vs. supervised learning), we choose to interweave their
training processes. This allows us to train the discriminator
with data batches gathered by the explorer, which significantly
improves data efficiency compared to an all-in-one approach
that combines exploration and decision-making into a single
component. In the co-training process, the explorer learns to
increase the discriminator’s confidence as fast as possible, and

the discriminator learns to predict object identity based on the
type of data generated by the explorer.

A. Encoder

The job of the encoder is to maintain a history buffer of
the sequence of contact data, convert that history into a global
representation, and provide this representation as input to both
the explorer and the discriminator. In our current implemen-
tation, we use binary signals indicating touch / no-touch. The
encoder simply integrates these into an occupancy grid repre-
sentation of the world, as shown in Fig. 2.

All pixels of the occupancy grid are initially grey (unex-
plored). After each action, if contact is detected, the correspond-
ing pixel is colored white; otherwise, it is colored black. We also
use a special value (light grey) to mark the current position of
the finger on the grid. Knowing the current location of the finger
is useful for the explorer to compute the next action; however,
this special color is eliminated when the grid is provided as input
to the discriminator because such information is not necessary
for predicting the object identity.

For the task addressed here, we believe an occupancy grid
works well due to its simple nature, ability to represent geo-
metrical information, and small size in memory. However, when
aggregating more complex information (e.g. from tactile sensors
providing more than binary touch signals) or for more complex
tasks, we expect that different encoding methods will be needed,
even while the role in the architecture will be the same. We
hope to explore more complex, learning-based encoders for our
architecture in future studies.

B. Discriminator

The discriminator is the component of our pipeline in charge
of interpreting sensor data for task-related purposes. Thus, for
our problem, its jobis to provide a prediction regarding the object
identity, along with an associated confidence value. Making a
confident prediction also implicitly terminates the exploration.

In our implementation, underlying the discriminatoris a CNN,
as shown in Fig. 2, taking as input the occupancy grid produced
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by the encoder. The network consists of two convolutional layers
followed by a max-pool layer. After the dropout layer, the input
is then flattened to go through another two fully-connected
layers. A softmax function is applied to the raw 10-dimensional
output from the fully-connected layer to generate a probability
distribution. The object with the highest probability is chosen
as the predicted identity and its corresponding probability is
the confidence estimate. If the prediction confidence is greater
than a preset threshold, the exploration is terminated and a final
prediction is made. Otherwise, the occupancy grid is passed to
the explorer to generate the next move.

As part of the co-training process, the discriminator is trained
on partially complete occupancy grids, which can be ambigu-
ous over objects, especially when very few pixels have been
explored. This ambiguity is in fact the supervision needed to
learn a confidence estimate. For instance, if the discriminator
data buffer contains multiple duplicates of a highly incomplete
grid, each with a different object label, then, in order to minimize
theloss, the discriminator network will assign equal probabilities
to all candidate objects, thus decreasing the confidence in each
individual prediction.

C. Explorer

The job of the explorer is to generate the next action for the
robot, actively collecting additional information. For our task,
this means selecting the next move (up, down, left, or right).
Tactile data is collected automatically during the move and
passed to the encoder as described above.

We implement the explorer as a Proximal Policy Optimization
(PPO) [30] agent taking the occupancy grid provided by the
encoder as input. It has a similar architecture as the discriminator
but the last fully-connected layer is replaced by a separate
fully-connected layer for both the actor and critic, as shown
in Fig. 2. Even though the discriminator and explorer share part
of the same architecture, we found through experiments that
keeping the weights separate has a much better performance.
This is likely because the discriminator and explorer focus on
different aspects of the grid and should learn separate interme-
diate embeddings. As mentioned earlier, the grid input to the
explorer has an extra bit of information providing the current
location of the agent.

The reward structure warrants additional discussion. The ex-
plorer receives a reward if the discriminator reaches a confidence
level that exceeds a preset threshold and thus terminates the
exploration. However, the reward for the explorer is not condi-
tioned on the correctness of the prediction. This is in keeping
with our tenet of separating the exploration from decision mak-
ing: the explorer is not aware of prediction correctness and it
is rewarded as long as the discriminator is confident enough to
make a prediction.

D. Co-Training

While our architecture is constructed around separate dis-
criminator and explorer modules, we find that the interplay and
inter-dependencies between the two components make indepen-
dent training infeasible and suggest a co-training framework. On
one hand, training the discriminator requires a labeled dataset
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Fig.3. Training plots of the discriminator and explorer, and illustration of how
they affect each other in the co-training process. The left and right plots show
the success rate and the number of actions over the last 100 episodes. Results
are averaged over three random seeds and one standard deviation is shaded.

Algorithm 1: Co-training Discriminator and Explorer.

Initialize discriminator randomly;

Initialize explorer randomly;

Collect an initial data buffer D using the explorer;
while steps < maximum step do

Train the discriminator for Ny epochs;

Fix the discriminator, train the explorer for N,
steps, and push all occupancy grids (with object
identity labels) collected by the explorer into data
buffer D,

end

with partial observations of object geometry, but the distribution
of partial observability highly depends on the exploration policy.
On the other hand, training the explorer needs termination
signals provided by the discriminator. This termination signal
can highly affect the explorer’s learning efficiency. Co-training
is also important because any pre-trained discriminator will not
generalize well as the explorer evolves and implicitly changes
the distribution of the data presented to the discriminator. To
handle this shift, the discriminator needs to co-evolve with the
explorer.

Our co-training process is shown in Algorithm 1. Initially,
both discriminator and explorer are initialized randomly. We
collect an initial data buffer of labeled samples for the discrim-
inator with a randomly initialized explorer. In the co-training
loop, we first train the discriminator using the data buffer. Then
we fix the discriminator, train the explorer, and, at the same
time, push the partially observed occupancy grids collected by
the explorer along with their ground truth identities into the data
buffer. The updated data buffer is used for discriminator training
in the next iteration.

In this process, the discriminator affects episode termination
and the explorer affects partial observability of the labeled
training data (Fig. 3). The explorer is rewarded when the dis-
criminator becomes certain and terminates the episode; thus, it
learns to make the discriminator confident as quickly as possible.
Batch training of the discriminator with samples collected by the
explorer also facilitates data reuse and efficiency. Every time one
component gets improved, the other component adapts to the
distributional shift. Because updates happen with each iteration,
this shift is manageable. As a result, the discriminator and the
explorer co-evolve, gradually pushing the other to improve and
eventually converge.
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IV. EXPERIMENTS

In this section, we describe our experimental setup, in both
simulation and the real world." Our method is trained entirely
in simulation; it can then be tested either in simulation or on a
real robot. We present an extensive set of comparisons against a
number of baselines in simulation, then validate the performance
of our method on real hardware.

A. Setup

Our experiments assume a tactile finger that moves ona 30 cm
by 30 cm plane and is always perpendicular to the plane (Fig. 1).
The target object is placed roughly at the center of the workspace
in any random orientation. The object is fixed and does not move
after interaction with the finger. At each time step ¢, the robot
can execute an action a; € A = {up, right, down, left} which
corresponds to a 5 mm translation in the 4 directions on the
plane. After each action, the robot receives a binary collision
signal s; € {0,1}, where 0 indicates collision and 1 indicates
collision-free. As described above, this information is encoded
in an occupancy grid with a 5 mm cell size.

In real-world experiments, we use the DISCO finger [8] as our
tactile sensor (Fig. 1), but discard additional tactile information
(such as contact force magnitude) and only rely on touch/no-
touch data. We mount the finger on a URS robot arm. For
simulation, we use the PyBullet engine and assume a floating
finger with similar tactile capabilities.

Sensor noise is an important consideration since most real-
world tactile sensors exhibit some level of noise in their readings,
and ours is no exception. It is important for any tactile-based
methods to be able to handle erroneous readings without com-
promising efficiency or accuracy. In particular, we found through
empirical observations of our sensors that the chance of an
incorrect touch signal being reported is around 0.3%—0.5%. We
thus compared all the methods presented below for relevant
levels of tactile sensor noise. For learning-based methods, we
also have the option of simulating noise during the training
process in order to increase robustness; in our case, we simulate
a 0.5% sensor failure rate in the co-training process for our
method.

We generate 10 polygons with random shapes as our test
objects, as shown in Fig. 1. These polygons are generated by
walking around the circle, taking a random angular step each
time, and at each step putting a point at a random radius. The
maximum number of edges is 8 and the maximum radius for
each sampled point is 10 cm. We 3D-print these polygons for
real-world experiments or use their triangular meshes for the
simulated versions. For simulation, we decompose each polygon
into a set of convex parts for collision checking.

Each episode is terminated when the confidence of the dis-
criminator is greater than the preset threshold of 0.98 or the
number of actions has exceeded 2,000. At termination, the
prediction of the discriminator is compared to the ground truth
identification of that object to check success.

For real-world video demonstrations or more information, please visit our
project website at https://jxu.ai/tandem.
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B. Training

We train our proposed method entirely in simulation. In each
co-training iteration, the discriminator is trained for Ng = 15
epochs on the data buffer of size |D| = 1€°, and the explorer
is trained for N, = 2¢5 steps. A 0.5% sensor failure noise is
applied during training.

Fig. 3 shows the training plots during our co-training process.
Our method’s ability to correctly recognize the object (success
rate) improves consistently during the process; however, the
number of actions taken for the explorer to make the discrim-
inator confident starts at a low level, first increases, and then
drops after peaking at around 5 M steps. Our discriminator is
initialized randomly and when the training starts, it is making
bold decisions to terminate the exploration quickly. This is
why the number of actions starts low and the success rate is
also bad in the beginning. However, as more and more labeled
counter-examples of such wrong termination are gathered by the
explorer and added to the data buffer of the discriminator, the
discriminator starts to become cautious, and thus the number
of actions to make it confident grows. At around 5 M steps, a
decent enough discriminator is obtained for the explorer and
discriminator to start co-evolving until convergence.

C. Baselines

In order to evaluate the effectiveness of our learned explo-
ration policy on the tactile object recognition task, we choose
to compare our approach to learned all-in-one (without separat-
ing exploration and discrimination) and non-learned (heuristic-
based) baselines. The metrics that we are most interested in
are the number of actions and the success rate in accurately
identifying the objects. The methods we evaluate are as follows:

1) Random-walk: This method generates a random move at
each step. A discriminator is trained with this exploration policy
for object identification and terminating exploration. We apply
a 0.5% sensor failure rate during training.

2) Not-go-back: Similar to Random-walk, except that the
random move generated at each time step is always to an
unexplored neighboring pixel.

3) Info-gain: This method uses the info-gain heuristics: it
also picks an action that leads to an unexplored pixel, but, unlike
Not-go-back which picks it randomly, it picks the action that
provides the most salient information. At time step ¢, let p
denote the probability distribution over 10 objects predicted by
the discriminator on the current grid. Let p,, and py, denote the
new probability distributions if the newly explored pixel turns
out to be white and black respectively, after applying a particular
action. Then the action a; is chosen by:

o0 = argmin { W) — (3H(ow) + 7HEw)) |

acA

where H denotes the entropy of a probability distribution. It uses
entropy as a measure of uncertainty and picks an action that pro-
vides the most information gain (reduces the most uncertainty).
A discriminator is trained and we apply a 0.5% sensor failure
rate during training.
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TABLEI
COMPARATIVE PERFORMANCE OF VARIOUS METHODS IN SIMULATION UNDER 0.1% AND 0.5% SENSOR FAILURE RATE. FOR EACH METHOD, WE PRESENT THE
NUMBER OF ACTIONS TAKEN (#ACTIONS) AND THE NUMBER OF PIXELS EXPLORED (#EXPLORED PIXELS) BEFORE MAKING A PREDICTION, AS WELL AS THE
SUCCESS RATE IN IDENTIFYING THE CORRECT OBJECT (SUCCESS RATE). MEAN AND STANDARD DEVIATION OVER 1,000 TRIALS ARE SHOWN. A DETAILED
DESCRIPTION OF EACH METHOD CAN BE FOUND IN SECTION IV-C

0.1% Sensor Failure

0.5% Sensor Failure

Methods #Actions #Explored Pixels Success Rate #Actions #Explored Pixels Success Rate
Random-walk 1427 + 654.8 3548 £ 1489 0.31 1350 £ 667.4 338.3 = 1485 0.27
Not-go-back 684.5 = 565.9 466.6 &+ 3204 0.49 621.4 £ 524.7 4279 £ 293.8 043

Info-gain 435.1 + 3975 341.7 £ 250.3 045 365.1 + 360.6 2912 + 2322 042
Edge-follower 60.05 £+ 218.6 33.01 £ 1595 0.91 95.24 £ 282.5 3248 + 32.81 0.75

Edge-ICP 136.1 + 339.1 72.29 £ 16.78 0.94 400.6 & 719.4 75.63 £ 41.35 0.81

PPO-ICP 9212 £ 679.1 286.2 £+ 189.6 0.35 860.4 £+ 698.3 2317 £ 1724 031

All-in-one 28.63 £+ 207.8 3.827 £ 6.735 0.23 66.05 £ 328.0 6.229 & 15.15 0.22

TANDEM (ours) | 54.97 & 106.5 44.74 £ 3732 0.96 64.76 £ 109.3 49.71 & 36.27 0.95

4) Edge-follower: This method uses the popular contour-
following heuristic as the exploration policy. A discriminator is
trained in this method but we do not apply sensor noise during
training. We notice that when applying sensor noise during train-
ing, the performance of the Edge-follower drops significantly.
This is because Edge-follower can sometimes get trapped at
locations where a collision-free pixel is identified as collision
and starts circling that pixel. In such a case, unlike other methods
such as Random and Not-go-back, the Edge-follower can not
keep exploring with random actions. Thus, the discriminator
trained in Edge-follower becomes unnecessarily cautious but its
exploration policy is not able to increase its confidence.

5) Edge-ICP: This method uses the same exploration policy
as Edge-follower. However, instead of training a learning-based
discriminator, it uses the Iterative Closest Point (ICP) algorithm.
The occupancy grid is converted to a point cloud using the center
location of each pixel. The discriminator runs ICP to match the
point cloud to each object using 36 different initial orientations
evenly spaced between [0°, 360°]. For each object, the minimum
error among all orientations represents the matching quality. If
the error is smaller than 0.0025 cm then the object is marked
as a match. The output probability distribution assigns equal
probabilities to the matched objects and zeroes to not-matched
ones. There is no training required for this method.

6) PPO-ICP: This method trains a PPO explorer using the
ICP discriminator as in Edge-ICP. A 0.5% sensor failure rate is
applied during training.

7) All-in-one: This method does not separate explorer and
discriminator. It has the same structure as the PPO explorer
proposed in our approach except that the action space has been
expanded to 14 actions. The first 4 actions correspond to a move
and the remaining 10 actions correspond to a prediction. If a
prediction is made, the episode is terminated. A reward of 1 is
given only when the episode is terminated and the prediction is
correct. A 0.5% sensor failure rate is applied during training.

8) TANDEM: This is our proposed method.

D. Comparative Performance Analysis

We compare all methods described above over a large set of
simulated experiments, as shown in Table I.

For both sensor noise levels we consider, TANDEM outper-
forms the baselines in terms of both success rate and the number
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Fig. 4. (a) Performance of TANDEM and Edge-follower as the sensor failure
rate increases from 0.6% to 2.5%. For #Actions, +0.1 standard deviation is
shaded. For Effective Action Rate, 0.2 standard deviation is shaded. With
higher sensor noise, both methods need more actions. However, TANDEM retains
a high success rate and action efficiency while those of Edge-follower deteriorate
continuously. (b) Exploration behavior of TANDEM and Edge-follower when
sensor failure happens. The location of the sensor failure is circled in red (in the
simulation we can ensure it occurs at the same location for both methods). (i),
(iii) show a sensor failure after contacting object 1, and (ii), (iv) show a sensor
failure before contacting object 5. For these two examples, Edge-follower makes
the wrong prediction with 39 and 6 actions while TANDEM correctly identifies
the objects with 38 and 79 actions respectively.

of actions required. Only All-in-one uses fewer actions at 0.1%
sensor noise but at the price of an extremely low success rate.
We attribute this gap in performance to multiple factors. For
example, while Random-walk or Not-go-back are clearly inef-
ficient exploration strategies, Info-gain is a popular heuristic-
based method and has been shown to be efficient in other contexts
by previous works. However, we found it to not work well in con-
junction with a CNN discriminator. Compared to other methods,
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Fig. 5.

10 examples of our method on real robot experiments. The top row shows the object poses, the medium row shows the occupancy grids at termination,

and the last row shows the results for each trial. The first 9 examples are successful and the last one is a failure case. While sensor noise can happen anywhere in a
trial, it is easier to identify when it occurs before the contact. We highlight in red circles such sensor noise for objects 3 and 8. Our method is able to bypass the

noisy pixel, continue exploring and make the correct prediction.
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Fig. 6. Success Rate and #Actions when using different threshold values

(annotated in text box) in co-training. Each number is computed with 1,000
trials. Note that a threshold of 1 is too strict and the models converge at around
1,500 actions and a 0.4 success rate.

the Info-gain explorer is more dependent on the discriminator
because the discriminator affects not only the termination of
each episode but also the action selection at each time step.
For the Info-gain explorer to be effective, it likely requires
a discriminator with high accuracy to begin with, which our
method does not. The All-in-one method, which is not equipped
with a dedicated discriminator, cannot train decision-making
directly using the labeled samples collected by the explorer,
leading to inefficient training and much worse performance if
given the same amount of training time as TANDEM.
Edge-following, unsurprisingly, is an efficient exploration
heuristics for our task, given its 2D nature. Edge-follower and
Edge-ICP have the best performance among all baselines. How-
ever, they are shown to be very sensitive to sensor noise, in
terms of both accuracy and efficiency. To further investigate this
aspect, we compared TANDEM and Edge-follower for sensor
failure chance further increased up to 2.5%. As shown in Fig. 4,
despite being trained with a fixed 0.5% sensor noise, TANDEM
maintains a high success rate even in the presence of more noise.
We also report the Effective Action Rate (EAR) in this experi-
ment, where EAR is computed as #Explored Pixels / #Actions
per episode, a metric reflecting the effectiveness of the move in
exploring new locations. We can see that the actions generated
by our method maintain high exploration efficiency as shown
by the EAR plot. In comparison, both EAR and success rate
drop as the sensor failure rate increases for Edge-follower. Both
methods need longer episode lengths to handle larger sensor
noise. Two examples of exploration behavior under noise are
shown in Fig. 4. Edge-follower makes the wrong prediction for
both examples while TANDEM successfully handles both. This

TABLEII
REAL ROBOT EXPERIMENT RESULTS (MEAN AND STANDARD
DEVIATION OVER 30 TRIALS)

Success Rate
0.90 (27/30)

Method |  #Actions
TANDEM | 67.33 + 2347

#Explored Pixels
53.95 + 18.16

is due to Edge-follower’s discrimination policy overfitting to the
edge-following behavior and not being able to explore further
after being trapped at an incorrect collision signal.

Unlike Edge-ICP, PPO-ICP struggles to achieve similar per-
formance. ICP needs a sufficient number of points to achieve
decent recognition accuracy and terminate the exploration be-
cause it is not able to utilize non-collision pixels. While the edge-
following policy is good at collecting points through constantly
touching the object, the PPO explorer struggles at learning
similar behavior because of the extremely sparse termination
reward provided by ICP.

E. Confidence Threshold

The confidence threshold used by the discriminator to deter-
mine termination has a large effect on the performance of the
co-training framework. Our threshold value of 0.98 is chosen
empirically. Fig. 6 shows the number of actions and success rate
with different thresholds used in co-training. Smaller confidence
thresholds make the discriminator terminate the exploration
earlier. Thus, when the co-training converges, fewer actions
are needed but at the same time, the success rate of correctly
identifying the objects is worse. We choose 0.98 because it
achieves a good trade-off between the success rate (>0.95) and
the number of actions (< 65).

FE. Real-World Performance

We validate the performance of TANDEM on a real robot. We
run 3 trials for each of 10 objects with random orientations (30
trials total), with results shown in Table II.

Our method still achieves a high identification accuracy,
even if slightly lower when compared to simulation results at
a 0.5% sensor failure rate. Exploration efficiency, as illustrated
by the number of actions, is at similar levels. We attribute the
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sim-to-real gap to imperfections in our noise models, shape
printing, and robot control.

Fig. 5 shows ten examples of TANDEM in operation, one for
each object in a random orientation, also showing the occupancy
grid at the moment that a decision is made. This decision
is correct 90% of the time despite the limited nature of the
information collected by that point. We also note that our method
is robust enough to handle sensor noise, even before making first
contact (objects 3 and 8). We also show a failure case where our
method incorrectly recognizes object 9 as object 7: both these
polygons have a large opening triangle, which makes them hard
to distinguish when this area is under contact. Our learned explo-
ration policy is often similar to edge-following, but has the added
ability to handle sensor noise, and also learns to take shortcuts
when appropriate and take advantage of non-collision pixels
for discrimination: the discriminator terminates the episode at a
non-collision location for object 0.

V. CONCLUSION

We present TANDEM, a new architecture to learn active and
efficient exploration policy with task-related decision making.
Our approach consists of distinct modules for exploration, dis-
crimination, and world encoding. Even though our approach
separates exploration and discrimination, they are co-trained
interweavingly. The explorer learns to reveal useful information
to the discriminator efficiently and the discriminator adapts to
the partial observability of labeled data collected by the explorer.
We show that they co-evolve and converge at the end of the
training process. We demonstrate our method on tactile object
recognition and compare our approach against multiple base-
lines for exploration (such as edge-following and info-gain) and
recognition (such as ICP). Our experiments show that TANDEM
recognizes objects with a higher success rate and lower number
of movements. Our real-robot experiments demonstrate that our
approach, despite being trained purely in simulation, transfers
well to the real hardware, and is robust to sensor noise. Future
directions include generalizing to high-dimensional tactile data
and extending our framework to also estimate object orientations
and locations along with object identities.
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