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Characterizing physical properties of faults, such as their transmissibility, is crucial for performing predictive 
numerical simulation of subsurface flows, such as those encountered in petroleum engineering and remediation 
of subsurface contamination. This paper provides a complete investigation of the inverse problem for fault 
transmissibility in subsurface flow models, under appropriate assumptions on fault structure. In particular, 
the following aspects are considered: 1) fault modeling and well-posedness of the forward problem; 2) finite 
element (FEM) discretizations of the forward problem and their rigorous a priori convergence analysis; 3) Well-
posedness of the Bayesian inverse problem, FEM discretization of the infinite dimensional Bayesian inverse 
formulation, and its rigorous a priori analysis. Moreover, computation of the maximum a posteriori (MAP) point 
via fast inexact Newton-conjugate gradient optimization and a Laplace approximation of the Bayesian posterior 
are also presented. Numerical results illustrate the use of the proposed fault model in forward and inverse 
problems for subsurface flows in two dimensional domains with multiple faults.

1. Introduction

Accurate modeling and numerical simulation of subsurface flows 
are important for such applications as reservoir engineering, contam-
inant transport, groundwater management, and carbon sequestration. 
In subsurface flow models, the fault (or fracture) structure has a great 
influence on the fluid flow. Therefore, modeling fault structures with 
appropriate physical parameters is important for accurate simulations 
of subsurface flows when fault structures exist in the subsurface domain 
(see, e.g., [1–4] and more references in a recent review article [5]).

Faults in oil reservoirs can be complex geometric structures with 
relatively thin volumes compared to the entire domain of a reservoir 
model. Therefore, high resolution modeling of faults as volumetric ob-
jects requires very fine meshes to describe the full geometric complexity 
of faults. Such an approach, though providing high fidelity simulations, 
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comes at the expense of extremely high computational costs. Moreover, 
detailed information for high resolution models of faults is usually not 
available in practical applications. Existing approaches typically model 
a fault as a manifold of codimension one in the entire domain. This is 
meaningful as the thickness of faults is negligibly small compared to the 
length scale of the entire reservoir model [6–8]. In this paper, we also 
adopt this approach for modeling fault structures.

Some previous studies on subsurface flow models with faults con-
sider a geometric multiscale framework in which specifically designed 
interface conditions are used to couple the flow equations in the whole 
domain with those in the fault domains [6,7]. In this paper, we assume 
that the permeabilities of faults are much lower than the surrounding 
media, and thus fluid does not flow along fault structures [9]. As a con-
sequence, we obtain a reduced single-phase flow model that does not 
require the velocity and the pressure fields on faults as independent 
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unknowns. Moreover, the physical parameters associated with the per-
meability of faults are reduced to the fault transmissibility fields (see 
Section 2 and [9]).

In this paper we discuss fault modeling and numerical methods to-
gether with their analyses for both forward simulation and inversion of 
the fault transmissibility from well data for the aforementioned single-
phase subsurface flow model. For discretization of the forward model, 
one can use many different numerical methods such as the mixed 
method [6,9], the multipoint flux approximation [9], the finite volume 
method [7], and the mimetic finite difference method [10]. In this pa-
per we use the mixed finite element method, since it is well-supported 
by FEniCS [11,12] and hIPPYlib [13,14], the two open source software 
packages for finite element methods and Bayesian inversion problems, 
respectively, that we use for numerical results.

The remainder of the paper is organized as follows. In Section 2 we 
present function space notation, derive the single-phase forward partial 
differential equation (PDE) model of subsurface flow in domain with 
faults, and show its Babuška–Brezzi stability. In Section 3 we discretize 
the model with mixed finite elements and prove a priori error estimates. 
In Section 4 we first present an infinite Bayesian inversion framework 
and show its well-posedness. This is followed by FEM discretizations of 
the prior and the likelihood and their error analyses. We then combine 
prior and likelihood discretizations to construct an FEM discretization 
of the infinite dimensional Bayesian posterior measure and provide its 
convergence analysis. Computation of the MAP point via a fast inexact 
Newton-conjugate gradient optimization method, followed by Laplace 
approximation of the Bayesian posterior, are also presented. Numerical 
results illustrating our theoretical findings are presented in Section 5. 
Section 6 concludes the paper with future research directions.

2. Preliminaries

2.1. Notation

Let Ω be a bounded domain in ℝ! with ! = 2 or 3. For a nonnega-
tive integer ", #"(Ω), #"(Ω; ℝ!) denote the standard ℝ and ℝ!-valued 
Sobolev spaces based on $2 norm, and ‖ ⋅ ‖" with " ≥ 0 the scalar- or 
vector-valued #"-norms. Boldface letters are reserved for vector-valued 
functions.

For functions % , & ∈$2(Ω) and ! , " ∈$2(Ω; ℝ!) let

(% ,&) ∶= ∫
Ω

%& '(, (! ,") ∶= ∫
Ω

! ⋅ "'(.

Similarly, for an (! − 1)-dimensional submanifold ) ⊂ Ω and functions 
% , & ∈$2()), ! , " ∈$2(); ℝ!) we define

⟨% ,&⟩) ∶= ∫
)

% ⋅ & '+, ⟨! ,"⟩) = ∫
)

! ⋅ "'+.

2.2. Modeling fault transmissibility

In this section we derive the fault transmissibility model under the 
assumption of an infinitesimal fault thickness. Let us consider the model 
domain illustrated in Fig. 1 comprising two subdomains Ω+ (the right 
subdomain in Fig. 1) and Ω− (the left subdomain in Fig. 1) divided 
by a fault domain Γ% (the middle subdomain in Fig. 1) with thickness 
'% . For simplicity we assume that the two interfaces Γ+ ∶= ,Ω+ ∩ ,Γ% , 
Γ− ∶= ,Ω− ∩ ,Γ% are parallel to each other. The constant permeability 
parameters on the subdomains are -+, -−, -% , respectively, and .+, .−
are the pressure values on the interfaces Γ+, Γ−. We denote by # the unit 
normal vector field on Γ+ from Γ% to Ω+. We assume that fluid flows 
follow the Darcy law, i.e., the velocity of the fluid is −-∇. for a pressure 
field .. Here we assume that the pressure field . is continuous, so if we 
denote the pressure field in the fault of thickness '% by .% , then .− =
.% |Γ− and .+ = .% |Γ+ . We also assume that Γ% is thin and -% ≪ -+, -−, 

Fig. 1. Modeling of fault.

so the fault has no absorption, drainage of fluids, and tangential fluid 
flows. By this assumption and flux conservation

−(-+∇.) ⋅ #|Γ+ = −(-%∇.% ) ⋅ #|Γ+ , −(-−∇.) ⋅ #|Γ− = −(-%∇.% ) ⋅ #|Γ− .

By the fundamental theorem of calculus along the direction orthogonal 
to Γ+, we have

−-% (.+ − .−) = −

'% ∕2

∫
−'% ∕2

(-%∇.% ) ⋅ #'0.

In our modeling, '% is small, so we may assume that -% is nearly a 
constant on the fault. The approximation of the above integral with the 
trapezoidal rule and the flux continuity give

−-% (.+ − .−) ≈ −
'%
2 ((-+∇.) ⋅ #|Γ+ + (-−∇.) ⋅ #|Γ− ).

The difference between .+ and .− is thus not negligible. In addition, 
since we assume that there is no tangential flow along the fault, we 
have

(-+∇.) ⋅ #|Γ+ = (-−∇.) ⋅ #|Γ− ,

which results in the following constitutive equation for the fault

[[.]] ∶= .+ − .− = 1% (-+ ⋅∇.) ⋅ #|Γ+ = 1% (-− ⋅∇.) ⋅ #|Γ− , 1% =
'%
-%

. (1)

Since '% is much smaller than the characteristic length scale of our sub-
surface model, Γ% is considered as a zero thickness fault in our partial 
differential equation model in Section 2.3.

2.3. Partial differential equation model (forward problem)

A fault Γ is a union of disjoint (! − 1)-dimensional Lipschitz sub-
manifolds in Ω and we denote Ω ⧵ Γ by Ω̊. We assume that there 
exist open subdomains Ω+, Ω− ⊂ Ω̊ with Lipschitz boundaries such that 
Ω = Ω+ ∪ Ω−, Γ ⊂ ,Ω+ ∩ ,Ω−, and only one side of Γ is in contact with 
Ω+ or Ω−. Let #+ and #− be the two unit normal vector fields on Γ
with opposite directions (#+ = −#−) such that #± correspond to the unit 
outward normal vector fields from Ω±. Suppose that Γ) and Γ3 are 
(! − 1)-dimensional open submanifolds on ,Ω such that Γ) ∪ Γ3 = ,Ω
and Γ) ∩Γ3 = ∅. Here we use the convention that (⋅, ⋅) is the integration 
on Ω and ⟨⋅, ⋅⟩Γ is the integration on Γ.

We also assume that

(A1) for any 4 ∈ $2(Ω) there exists $ ∈ #1(Ω; ℝ!) such that $|Γ = 0, 
div$ = 4, and ‖$‖1 ≤ 5‖4‖0, with a constant 5 > 0 depending only 
on Ω and Γ.
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The assumption (A1) holds, for instance, if both of ,Ω+ ∩ ,Ω and ,Ω− ∩
,Ω have positive (! −1)-dimensional Lebesgue measures. A proof can be 
found in [15, Corollary 2.4].

Let 6+ ∶#1(Ω+) →#1∕2(Γ) and 6− ∶#1(Ω−) →#1∕2(Γ) be the trace 
operators. For a function . ∈#1(Ω̊), we define .± on the fault Γ as

.−(() = 6−., .+(() = 6+., ∀( ∈ Γ.

Suppose that 1% > 0 is a fault transmissibility function on Γ and % is a 
vector-valued function on Ω such that % ⋅ #+ = −% ⋅ #− is single-valued 
on Γ.

Assume that - is a symmetric positive definite permeability tensor 
on Ω. The pressure and flux boundary conditions are given as &) on Γ)
and &3 on Γ3 . Recalling (1), for pressure . and flux % = −-∇. in Ω̊, 
a mixed formulation of the Darcy equation in domain Ω with fault Γ
reads:

-−1%+∇. = 0 in Ω̊, div% = % in Ω̊, (2a)
% ⋅ # = &3 on Γ3 , . = &) on Γ), (2b)

% ⋅ #− 1−1% [[.]] = 0 on Γ. (2c)
Hereafter, we assume that Γ) = ,Ω and &) = 0 for simplicity of ex-
position. Let 7 = $2(Ω), and #(div, Ω) be the space of ℝ!-valued $2

functions on Ω such that its distributional divergence is in $2(Ω). We 
define & as

& = {' ∈#(div,Ω) ∶ ' ⋅ #|Γ ∈$2(Γ)}

and the norm on & is defined by

‖'‖& =
(
‖'‖20 + ‖div'‖20 + ‖' ⋅ #‖20,Γ

) 1
2

where ‖4‖0,Γ ∶= ⟨4, 4⟩1∕2Γ . Here we derive a variational formulation with 
the interior Robin-type boundary condition (2c) on Γ with an additional 
regularity assumptions on the exact solutions % and .. More specifically, 
we assume that the exact solutions % and . satisfy . ∈#1(Ω̊) and % ∈ &
with additional regularity satisfying (2c) almost everywhere on Γ. We 
remark that this approach is inspired by [16] on mixed finite element 
methods for Robin boundary condition problems.

From integration by parts of the first equation in (2a), we have

∫
Ω

-−1% ⋅''(−∫
Ω

. div''(+
⟨
.+,' ⋅ #+

⟩
Γ + ⟨.−,' ⋅ #−⟩Γ = 0 ∀' ∈ & ,

which, after invoking ' ⋅ #+ = −' ⋅ #−, 
⟨
.+,' ⋅ #+

⟩
Γ + ⟨.−,' ⋅ #−⟩Γ =⟨

[[.]],' ⋅ #+
⟩
Γ, and % ⋅ #+ − 1−1% [ [.] ] = 0, becomes

∫
Ω

-−1% ⋅ ''(− ∫
Ω

. div''(+
⟨
1%% ⋅ #+,' ⋅ #+

⟩
Γ = 0 ∀' ∈ & . (3)

In the following, we use ⟨1%% ⋅ #,' ⋅ #
⟩
Γ to denote ⟨1%% ⋅ #+,' ⋅ #+

⟩
Γsince the bilinear form 

⟨
1%% ⋅ #,' ⋅ #

⟩
Γ is the same for # = #+ and # = #−.

In the final variational formulation the exact solution (%, .) satisfies
{ (

-−1%,'
)
− (.,div') +

⟨
1%% ⋅ #,' ⋅ #

⟩
Γ = 0 ∀' ∈ & ,

(div%, 4) = (% , 4) ∀4 ∈7.
(4)

The system (4) can be viewed as a saddle point problem
{

8 (%,') + 9(',.) = : ('),
9 (%, 4) =;(4) (5)

with the two bilinear forms and two linear forms

8 (%,') =
(
-−1%,'

)
+
⟨
1%% ⋅ #,' ⋅ #

⟩
Γ , 9(', 4) = − (div', 4) ,

: (') = 0, ;(4) = −(% , 4).

Theorem 1. Suppose that ‖1%‖$∞(Γ), ‖1−1% ‖$∞(Γ) < +∞ and : and ; are 
bounded linear functionals on & and $2(Ω) in (5). Then, (5) has a unique 
solution (%, .) ∈ & ×$2(Ω).

Proof. By the definition of ‖'‖& it is easy to check

|8(','′) | ≤ ‖8‖‖'‖& ‖'′‖& , |9(', 4)| ≤ ‖'‖& ‖4‖0
with

‖8‖ ∶=max{‖-−1‖$∞(Ω),‖1%‖$∞(Γ)}. (6)
By (A1) we can obtain the inf-sup condition for the Babuška–Brezzi 
stability theory (cf. [17])

inf
4∈7

sup
'∈&

9(', 4)
‖'‖& ‖4‖0

≥ < > 0 (7)

where < depends on Ω. Since we assume ‖1−1% ‖$∞(Γ) < +∞ the coercivity

inf
'∈(

8(',')
‖'‖2&

≥ = > 0, ( ∶= {'′ ∈ & ∶ div'′ = 0} (8)

with = =min{‖-‖−1$∞(Ω), ‖1−1% ‖−1$∞(Γ)}, is obtained by

8(',') =
(
-−1','

)
+
⟨
1%' ⋅ #,' ⋅ #

⟩
Γ

≥min{‖-‖−1$∞(Ω),‖1−1% ‖−1$∞(Γ)}
(
‖'‖20 + ‖' ⋅ #‖20,Γ

)

≥min{‖-‖−1$∞(Ω),‖1−1% ‖−1$∞(Γ)}‖'‖2&
for ' ∈ ( . Then, the well-posedness of (4) follows from the Babuška–
Brezzi theory [17]. □

For an analysis of inverse problem presented in Section 4, we claim 
that the solution of (5) depends continuously on 1% under additional 
assumptions.

Theorem 2. Suppose that ", "̃ ∈ $∞(Γ). and (%, .) and (%̃, ̃.) in & ×7 are 
the solutions of (5) for 1% = ?" and 1% = ?"̃, respectively. Then there exist 
constants 51 and 52 depending on ‖-−1‖$∞(Ω), ‖"‖$∞(Γ), and ‖"̃‖$∞(Γ)
such that

‖%− %̃‖& + ‖.− .̃‖0 ≤ 51‖1% − 1̃%‖$∞(Γ) ≤ 52‖"− "̃‖$∞(Γ).

Proof. For 1% = ?" and 1̃% = ?"̃ the coercivity constants of 8(⋅, ⋅) are

= =min{‖-‖−1$∞(Ω), ?
−‖"‖$∞ (Γ) }, =̃ =min{‖-‖−1$∞(Ω), ?

−‖"̃‖$∞(Γ) }.

By [17, Theorem 4.2.3], the solution (%, .) of (5) satisfies

‖%‖& ≤ 1
=
‖:‖& ′ + 2‖8‖1∕2

=1∕2<
‖;‖0, (9)

‖.‖0 ≤ 2‖8‖1∕2
=1∕2<

‖:‖& ′ + ‖8‖
<2

‖;‖0 (10)

with =, <, ‖8‖ in (8), (7), (6) where

‖:‖& ′ ∶= sup
'∈&

: (')
‖'‖&

, ‖;‖0 ∶= sup
4∈$2(Ω)

;(4)
‖4‖0

.

From (5) it is easy to see that
(
-−1(%− %̃),'

)
+
⟨
1% (%− %̃) ⋅ #,' ⋅ #

⟩
Γ + 9(.− .̃,') + 9(%− %̃, 4)

= −
⟨
(1% − 1̃% )%̃ ⋅ #,' ⋅ #

⟩
Γ .

By (9), (10),

‖%− %̃‖& ≤ 1
=
sup
'∈&

−
⟨
(1% − 1̃% )%̃ ⋅ #,' ⋅ #

⟩
Γ

‖'‖&
≤ 1

=
5(", "̃)‖"− "̃‖$∞(Γ)‖%̃ ⋅ #‖$2(Γ),
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and similarly,

‖.− .̃‖0 ≤ 2‖8‖1∕2
=1∕2<

5(", "̃)‖"− "̃‖$∞(Γ)‖%̃ ⋅ #‖$2(Γ).

Finally, ‖%̃ ⋅ #‖$2(Γ) is bounded by the formulas (9) with : = 0, ; = %
where ‖8‖ and = are replaced by

‖8̃‖ ∶=max{‖-−1‖$∞(Ω),‖1̃%‖$∞(Γ)},

and =̃, which leads to the conclusion. □

3. Discretization with mixed methods and the a priori error 
analysis

In this section we discuss the finite element discretization and the a 
priori error analysis of (4). Throughout this section we assume that Ω is 
a bounded domain with a polygonal/polyhedral boundary.

Let ℎ be a triangulation of Ω with !-dimensional simplices without 
hanging nodes with discretization parameter ℎ > 0 which is the maxi-
mum diameter of !-dimensional simplices in ℎ. ℎ is the corresponding 
set of (! − 1)-dimensional simplices generated by ℎ. We always assume 
that a subset of ℎ, denoted by Γ

ℎ , forms a triangulation of the fault Γ, and ℎ is shape-regular with an upper-bound of shape regularity that is 
uniform in ℎ (cf. [18]).

For an integer A ≥ 0 and a set ) ⊂ ℝ!, A()) is the space of poly-
nomials defined on ) of degree at most A. Similarly, A(); ℝ!) is the 
space of ℝ!-valued polynomials of degree at most A. For given A ≥ 1 let 
us define

& BC3
ℎ (C ) = A−1(C ;ℝ!) +

⎛
⎜
⎜⎝

(1
⋮
(!

⎞
⎟
⎟⎠
A−1(C ),

& D)E
ℎ (C ) = A(C ;ℝ!), C ∈ ℎ.

Suppose that & ℎ ⊂ & is the Raviart–Thomas–Nedelec (RTN) or Brezzi–
Douglas–Marini (BDM) element (see, e.g., [17] for details) defined by

& ℎ = {' ∈ & ∶ '|C ∈ & BC3
ℎ (C ), ∀C ∈ ℎ},

or & ℎ = {' ∈ & ∶ '|C ∈ & D)E
ℎ (C ), ∀C ∈ ℎ}.

The finite element space 7ℎ is defined by

7ℎ = {4 ∈7 ∶ 4|C ∈ A−1(C ) ∀C ∈ ℎ}.
Then div& ℎ = 7ℎ and it is well-known that the pair (& ℎ, 7ℎ) satisfies 
(7) with a discrete inf-sup constant <̄ independent of ℎ [17, p. 406].

The discretization of (4) is to seek (%ℎ, .ℎ) ∈ & ℎ ×7ℎ such that
{

(-−1%ℎ,')− (.ℎ,div') + ⟨1%%ℎ ⋅ #,' ⋅ #⟩Γ = 0 ∀' ∈ & ℎ,

(div%ℎ, 4) = (% , 4) ∀4 ∈7ℎ.
(11)

Since (7) and (8) hold with (& ℎ, 7ℎ), well-posedness and the stability of 
this system follow from the standard Babuška-Brezzi theory.

3.1. The a priori error analysis

For error analysis we consider the difference of (4) and (11) which 
reads

(-−1(%− %ℎ),')− (.− .ℎ,div') (12a)
+ ⟨1% (%− %ℎ) ⋅ #,' ⋅ #⟩Γ = 0 ∀' ∈ & ℎ,

(div(%− %ℎ), 4) = 0 ∀4 ∈7ℎ. (12b)
Let Πℎ be the canonical interpolation operator into & ℎ by the standard 
degrees of freedom and Gℎ be the $2 projection into 7ℎ. Then it is 
known (cf. [17]) that

Gℎ div' = divΠℎ' (13)
holds for ' ∈ & ∩$H(Ω; ℝ!), H > 2.

Theorem 3. Suppose that (%, .) and (%ℎ, .ℎ) are the solutions of (4) and 
(11). Assuming that % and . are sufficiently regular to make the norms below 
well-defined, then

‖‖‖-
−1∕2(%− %ℎ)

‖‖‖0 +
‖‖‖1

1∕2
% (%− %ℎ) ⋅ #

‖‖‖0,Γ (14)

≤
{

5ℎA−1∕2 ‖%‖A if & ℎ is RTN element
5ℎA+1∕2 ‖%‖A+1 if & ℎ is BDM element ,

‖‖.− .ℎ‖‖0 ≤
{

5ℎA−1∕2
(‖%‖A + ‖.‖A

) if & ℎ is RTN element
5ℎA(‖%‖A+1∕2 + ‖.‖A) if & ℎ is BDM element . (15)

Proof. We decompose the errors as the following

%− %ℎ = (%−Πℎ%) + (Πℎ%− %ℎ)⏟⏞⏞⏞⏟⏞⏞⏞⏟
?%

=∶ (%−Πℎ%) + ?%,

.− .ℎ = (.− Gℎ.) + (Gℎ.− .ℎ)⏟⏞⏞⏞⏟⏞⏞⏞⏟
?.

=∶ (.− Gℎ.) + ?..

From (12b) Gℎ div% = div%ℎ holds, therefore div ?% = 0 by the definition 
of ?%. Taking ' = ?% in (12a), we have

(-−1?%, ?%) + ⟨1% ?% ⋅ #, ?% ⋅ #⟩Γ
= −(-−1(%−Πℎ%), ?%)−

⟨
1% (%−Πℎ%) ⋅ #, ?% ⋅ #

⟩
Γ . (16)

Applying the Cauchy–Schwarz inequality to (16) we obtain

‖‖‖-
−1∕2?%

‖‖‖0 +
‖‖‖1

1∕2
% ?% ⋅ #

‖‖‖0,Γ
≤ 2‖‖‖-

−1∕2(%−Πℎ%)
‖‖‖0 + 2‖‖‖1

1∕2
% (%−Πℎ%) ⋅ #

‖‖‖0,Γ .

The interpolation Πℎ gives an optimal order of approximation in $2(Ω)
[17] but we lose 1∕2 order in the approximation of ‖‖‖1

1∕2
% ?% ⋅ #

‖‖‖0,Γ be-
cause of the scaling factor in trace inequalities in the theory of finite 
element methods (cf. [19, Lemma 1.49]).

Assuming that % is sufficiently regular, we obtain error estimates

‖‖‖-
−1∕2?%

‖‖‖0 +
‖‖‖1

1∕2
% ?% ⋅ #

‖‖‖0,Γ ≤
{

5ℎA−1∕2 ‖%‖A if & ℎ is RTN element
5ℎA+1∕2 ‖%‖A+1 if & ℎ is BDM element

where 5 > 0 depends on ‖‖‖-
−1‖‖‖$∞ and ‖‖‖1%

‖‖‖$∞ . Then, (14) is obtained 
by the triangle inequality.

To estimate ‖‖.− .ℎ‖‖0, note that (. − .ℎ, div') = (?., div') for ' ∈ & ℎ
owing to (. − Gℎ., div') = 0 by definition of Gℎ. By (A1), there exists 
$ ∈#1(Ω; ℝ!) such that div$ = ?., ‖$‖1 ≤ 5‖?.‖0, $|Γ = 0. Then ' =
Πℎ$ ∈ & ℎ satisfies

div' = ?., ‖'‖div ≲ ‖‖‖?.
‖‖‖0 , ' ⋅ #|Γ = 0, (17)

thanks to (13). Taking this ' in (12a), we have

‖‖‖?.
‖‖‖
2

0
= (-−1(%− %ℎ),') ≤ 5 ‖‖%− %ℎ‖‖0 ‖'‖0 ≤ 5 ‖‖%− %ℎ‖‖0

‖‖‖?.
‖‖‖0 .

As a consequence,

‖‖‖?.
‖‖‖0 ≤

{
5ℎA−1∕2 ‖%‖A if & ℎ is RTN element
5ℎA+1∕2 ‖%‖A+1 if & ℎ is BDM element

In this estimate, the convergence order of ‖‖‖?.
‖‖‖0 is 1∕2 order supercon-vergent if the BDM element is used. Finally, (15) is obtained by the 

triangle inequality. □
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3.2. Improved error analysis

In this subsection we show an improved error analysis under addi-
tional assumptions on 1% . Recall that a function & on a domain ) is in 
N 1,∞()) if & is differentiable in the sense of distributions on ) and the 
derivative of & is in $∞()). For more details on N 1,∞ we refer to stan-
dard references, e.g., [20,21]. We say that 1% is element-wise N 1,∞ on 
Γ if 1% |? ∈N 1,∞(?) for all ? ∈ Γ

ℎ , and 
‖‖‖1%

‖‖‖N 1,∞
ℎ (Γ)

∶=max?∈Γℎ
‖‖‖1% |?

‖‖‖N 1,∞ .
Let 1% be the piecewise constant function on Γ such that 1% |? is the 

mean value of 1% on ? ∈ Γ
ℎ .

Theorem 4. Assume that 1% is element-wise N 1,∞ on Γ. Then,

‖‖‖-
−1∕2(%− %ℎ)

‖‖‖0 ≤
{

5ℎA ‖%‖A if & ℎ is RTN element
5ℎA+1 ‖%‖A+1 if & ℎ is BDM element (18)

and

‖‖.− .ℎ‖‖0 ≤ 5ℎA
(‖%‖A + ‖.‖A

)
. (19)

Proof. Let G Γ
ℎ be the $2 projection to the space

Λℎ ∶= {O ∈$2(Γ) ∶ O|? ∈ 0(?) ∀? ∈ ℎ}

with 0 = A if & ℎ is a BDM element and 0 = A −1 if & ℎ is an RTN element. 
From the definition of Πℎ one can see Πℎ% ⋅#|? = G Γ

ℎ (% ⋅#)|? for all ? ∈ ℎ. 
Then
⟨
1% (%−Πℎ%) ⋅ #, ?% ⋅ #

⟩
Γ =

⟨
(1% − 1% )(%−Πℎ%) ⋅ #, ?% ⋅ #

⟩
Γ . (20)

Applying the Hölder, the Cauchy–Schwarz inequalities, and the Bramble–
Hilbert lemma to (20) gives

| ⟨1% (%−Πℎ%) ⋅ #, ?% ⋅ #
⟩
Γ |

≤ 5ℎ‖‖‖1%
‖‖‖N 1,∞

ℎ (Γ)
‖‖(%−Πℎ%) ⋅ #‖‖0,Γ ‖‖?% ⋅ #‖‖0,Γ . (21)

If we use the above inequality in (16), then the Cauchy–Schwarz in-
equality gives

‖‖‖-
−1∕2?%

‖‖‖0 +
‖‖‖1

1∕2
% ?% ⋅ #

‖‖‖0,Γ

≤ 5
(
‖‖‖-

−1∕2(%−Πℎ%)
‖‖‖0 + ℎ‖‖‖1%

‖‖‖N 1,∞
ℎ

‖‖(%−Πℎ%) ⋅ #‖‖0,Γ
)

(22)

with a constant 5 > 0 depending on ‖1−1% ‖$∞(Γ). From this and the trian-
gle inequality we have an improved estimate

‖‖‖-
−1∕2(%− %ℎ)

‖‖‖0 ≤
{

5ℎA ‖%‖A if & ℎ is RTN element
5ℎA+1 ‖%‖A+1 if & ℎ is BDM element (23)

To estimate ‖‖.− .ℎ‖‖0 we take ' ∈ & ℎ satisfying (17) in (12a), then 
we have

‖‖‖?.
‖‖‖
2

0
= (-−1(%− %ℎ),') ≤ 5 ‖‖%− %ℎ‖‖0 ‖'‖0 ≤ 5 ‖‖%− %ℎ‖‖0

‖‖‖?.
‖‖‖0 .

As a consequence,

‖‖‖?.
‖‖‖0 ≤

{
5ℎA ‖%‖A if & ℎ is RTN element
5ℎA+1 ‖%‖A+1 if & ℎ is BDM element

In this estimate, the convergence order of ‖‖‖?.
‖‖‖0 is one order supercon-vergent if the BDM element is used. Finally, (19) is obtained by the 

triangle inequality. □

4. Inversion of transmissibility

In this section we present a statistical inversion of 1% . We start with 
a Bayesian formulation, prove its well-posedness, present and analyze 
FEM discretizations of both the state and the parameters, and rigorously 
establish the convergence of an FEM approximation of the Bayesian 
posterior measure. We conclude the section with the existence of the 
maximum a posteriori (MAP) point. A Gaussian approximation of the 
posterior at the MAP point is also discussed.

4.1. Bayesian inversion on infinite dimensional parameter space

Since 1% is positive on Γ we can define 1% = ?" for " ∈ $2 (Γ). We 
choose to solve the inverse transmissibility problem using the Bayesian 
framework as it allows us to account for uncertainties. We assume that 
there is no model error and thus only uncertainties due to limited noisy 
data and prior knowledge are taken into account. The Bayesian frame-
work starts with a prior distribution Ppr of the parameter field " and 
then update it to the posterior distribution Ppost using information from 
observational data Q' by the Bayes’ rule
'Ppost
'Ppr

∝ Rlike(Q' |") (24)

where 'Ppost∕'Ppr is the Radon–Nikodym derivative of the posterior 
measure Ppost with respect to the prior measure Ppr , and Rlike(Q' |") is 
the likelihood according to the data Q' .

To show that (24) is well-posed, we postulate the prior distri-
bution of " as a Gaussian measure in $2 (Γ), i.e., Ppr =  ("pr , pr ), 
where "pr resides in the Cameron-Martin space  of pr . It is suffi-
cient for the prior Gaussian measure to be well-defined if we choose pr = (ST − 6Δ)−U for U > (! − 1)∕2 with constants S, 6 > 0 [22,23], where 
we have assumed that Γ is piecewise linear so that the standard Lapla-
cian operator Δ is meaningful. In this case, the parameter ", distributed 
under the prior Ppr , is almost surely H-Hölder continuous on Γ for 
any 0 < H < min{1,U − (!− 1)∕2}, i.e., " ∈ 50,H (Γ), and almost surely 
in #H (Γ) for 0 ≤ H < U − (! − 1)∕2. By forcing the domain of ST − 6Δ
to consist of functions having homogeneous Dirichlet and/or Neumann
boundary conditions, we can show that the Cameron-Martin space is  =#U (Γ).

For the likelihood, we adopt the additive noise model

Q' =  (") + V (25)
where  ∶ $2(Γ) ↦ ℝ!W9+ is the parameter to observable map and the 
noise V follows a Gaussian distribution  (0, Γnoise). For a fixed radius 
B > 0 the local average operator of a function & at a point ( is defined 
by

avg((&) ∶= 1
|9((,B)| ∫

9((,B)

&(Q)'Q, (26)

where 9((, H) is the ball of radius B centered at (. Note that though 
B can have any finite value, its practical value is problem-dependent 
and must be chosen with care. In the numerical results of section 5 in 
which we know a priori that solutions are continuous in certain parts 
of the domain, we take pointwise measurements for convenience and 
this corresponds to B = 0. The observation operator  is defined by the 
linear operator D ∶7 →ℝ!W9+ which takes the local average of pressure 
at !W9+ points in Ω (with given 0 <B ≪ 1)

 (") ∶= D.("), (27)
where .(") solves (4) with 1% = ?". In this case the likelihood has a form

Rlike(Q' |") ∝ exp
(
−1
2‖ (")− Q'‖2Γ−1noise

)
.
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Lemma 1. The Radon-Nikodym derivative in (24) is well-defined in $2 (Γ), 
and the parameter ", under the posterior Ppost , almost surely resides in X ∶=
50,H (Γ) for any 0 < H < min{1,U − (!− 1)∕2}. Furthermore, the posterior 
measure is Lipschitz continuous with respect to the data Q' in the Hellinger 
distance.

Proof. From the definition of the observation operator we have, for 
any Y > 0 and " ∈X

‖ (")‖2 ≤√
!W9+ max

Z=1,…,!W9+

|||avg(Z (.)
||| ≤

√
!W9+ |Ω|

|9(0,B)| ‖.‖0

≤
√
!W9+ |Ω|

|9(0,B)|
‖8‖
<2

‖%‖0 ≤
√
!W9+ |Ω|

|9(0,B)|
‖%‖0
<2

5(-)?‖"‖∞ ,

where 5 (-) is a constant depending only on - and we have used the 
bounds on ‖.‖0 and ‖8‖ in the proof of Theorem 2. In addition, from 
Theorem 2, ., as a function of 1% , and hence ", is Lipschitz continuous, 
and as a result, the forward map is locally Lipschitz continuous in ", 
i.e.,
‖‖‖

(
"1)− (

"2)‖‖‖2 ≤ 5 ‖‖‖"
1 −"2‖‖‖X

for some constant 5 . The well-definedness of the Radon-Nikodym 
derivative in (24) then follows [22, Theorem 4.1] and the local Lipschitz 
continuity with respect to the data in the Hellinger distance follows [22, 
Theorem 4.2]. □

4.2. Analysis of an FEM approximation of the Bayesian posterior

In this section, we first approximate the forward problem (and hence 
the likelihood) of the Radon-Nikodym derivative (24) using the mixed 
FEM presented in section 3. We then approximate the parameter, and 
hence the prior measure, with a continuous FEM method. We then com-
bine these two approximations to arrive at an FEM approximation of 
the Bayesian posterior. Rigorous analysis of each approximation will be 
presented.

4.2.1. Likelihood approximation with mixed FEM
For clarity of the exposition, we consider only the mixed FEM with 

the BDM elements, since the analysis for the RTN elements follows sim-
ilarly. We denote by ℎ (") the observation operator D.ℎ where (%ℎ, .ℎ)
is the solution of (11) with 1% = ?". The following result is a direct con-
sequence of Theorem 3.

Lemma 2. For any B > 0 in (26), and " ∼ Ppr , there exists a constant 5
independent of the mesh size ℎ such that

‖‖ (")−ℎ (")‖‖ ≤ 5ℎA?‖"‖∞ .

4.2.2. Prior approximation with continuous FEM
We denote by "ℎ,1 = Tℎ" the discretization (interpolation) of " using 

the standard 50 finite element method of degree A" ≥ 1 on the tri-
angulation Γ

ℎ of Γ (cf. [18]). Note that due to the low regularity of 
" ∈ 50,H(Γ), the usual (ℎA" ) convergence rate of the FEM interpolation 
error does not apply here. To obtain such an estimate, we first recall an 
embedding result of Hölder spaces into Sobolev spaces: for (+, 4), + ≥ 0, 
1 ≤ 4 <∞ satisfying (! − 1)∕4 + + = H we have

‖"‖N +,4 (Γ) ≤ 5‖"‖50,H(Γ), (28)
for 5 > 0 depending only on Γ. By choosing a sufficiently large 4, we 
can take + < H as close to H as we desire. For fixed 0 ≤ H <min{1, U − (! −
1)∕2)}, we can use (28) to conclude that " ∈N +,4(Γ) for (+, 4) satisfying

+ = H− Y
2 ,

!− 1
4

= Y
2 ,

with an arbitrarily small 0 < Y ≪ min{1, U − (! − 1)∕2}. For this (Y, +, 4), 
by [18, Theorem 4.4.20], we have
‖‖"−"ℎ,1‖‖∞ ≤ 5ℎ+−

!−1
4 ‖"‖N +,4 (Γ) = 5ℎH−Y ‖"‖N +,4 (Γ) . (29)

Here, the FEM interpolation order A" is not involved3 in this estimate 
due to H < 1.

The following is a simple application of Theorem 2 to the discrete 
system (11) together with the error bound (29), Lemma 2, and (28).

Lemma 3. Let .ℎ and .ℎ,1 be the solutions of the discrete system (11) cor-
responding to " and "ℎ,1, respectively. Let " ∼ Ppr , and thus " ∈ 50,H(Γ), 
where H ∈ (0,min{1,U − (!− 1)∕2}), and 0 < Y ≪min{1, U− (! −1)∕2}. Then 
there exists a constant 5 = 5(Y) independent of the mesh size ℎ but depen-
dent on Y such that
‖‖‖ℎ (")− ℎ

(
"ℎ,1

)‖‖‖ ≤ 5ℎH−Y?‖"‖∞ ,

and
‖‖‖ (")−ℎ

(
"ℎ,1

)‖‖‖ ≤ 5
(
ℎH−Y + ℎA

)
?‖"‖∞ .

Since the interpolation Tℎ is a linear operator on " ∈ X and Ppr is 
Gaussian, "ℎ,1 = Tℎ" is distributed by the pushforward measure Pℎ

pr in-
duced by Tℎ that is also a Gaussian. Let us denote by P⟂

pr the complement 
measure of Pℎ

pr in X ∶= 50,H (Γ) such that Ppr = Pℎ
pr
⨂

P⟂
pr , as this will be 

useful for the fully discrete Bayes formula presented below.

4.2.3. FEM approximation of the Bayesian posterior
Let us denote by Pℎ,1

post the FEM approximation of the posterior 
measure Ppost using the likelihood and prior approximations in sec-
tions 4.2.1–4.2.2.

Theorem 5 (Well-posedness and convergence of FEM posterior Pℎ,1
post). The 

FEM posterior measure Pℎ,1
post is absolutely continuous with respect to the prior 

measure Ppr and the Radon-Nikodym derivative is given by

'Pℎ,1
post

'Ppr
∝ exp

(
−1
2‖ℎ("ℎ,1)− Q'‖2Γ−1noise

)
. (30)

Furthermore, there hold:

• the FEM posterior measure Pℎ,1
post is locally Lipschitz continuous with 

respect to the data Q' in the Hellinger distance.
• '#?00

(
Ppost ,P

ℎ,1
post

) ≤ 5
(
ℎH−Y + ℎA

), where '#?00 (⋅, ⋅) is the Hellinger 
distance and 0 < Y ≪ min{1, U − (! − 1)∕2}. Thus, the FEM posterior 
Pℎ,1
post converges to the true posterior measure Ppost as the mesh is re-
fined.

Proof. Similar to Lemma 1, it is sufficient to show that ℎ("ℎ,1) is ex-
ponentially bounded in " and locally Lipschitz continuous with respect 
to ". For the boundedness, we have

‖‖‖ℎ
(
"ℎ,1

)‖‖‖2 ≤
√
!W9+ |Ω|

|9(0,B)|
‖‖.ℎ,1‖‖0 ≤

√
!W9+ |Ω|

|9(0,B)|
‖8‖
<2

‖%‖0

≤
√
!W9+ |Ω|

|9(0,B)|
‖%‖0
<2

5(-)?
‖‖‖"ℎ,1

‖‖‖∞ ≤ 5
√
!W9+ |Ω|

|9(0,B)|
‖%‖0
<2

5(-)?‖"‖∞ ,

3 If U > (! − 1), then " resides in 50,H for 0 < H < min{1,U − (!− 1)∕2} and 
‖"‖∞ ≤ 5‖"‖#H (Γ) for (! − 1)∕2 < H < U − (! − 1)∕2. In this case, a higher order 
estimate by polynomials of degree A" can be obtained as

‖‖"−"ℎ,1
‖‖∞ ≤ 5ℎ+− !−1

2 ‖"‖#+(Γ) ,
!− 1
2 < + ≤min{H,A"},

by [18, Theorem 4.4.20].
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Fig. 2. The domain with a vertical fault in numerical experiments (left figure) and the graphs of the pressure field in (34) (middle and right figures).

where, in the second to last inequality, we used the linearity and the 
boundedness of the finite element interpolant Tℎ. For the Lipschitz con-
tinuity, Theorem 2 is also valid for .ℎ,1, and thus
‖‖‖‖ℎ

(
"1
ℎ,1

)
−ℎ

(
"2
ℎ,1

)‖‖‖‖ ≤ 5 ‖‖‖"
1
ℎ,1 −"2

ℎ,1
‖‖‖∞ ≤ 5 ‖‖‖"

1 −"2‖‖‖∞ . □

Now, owing to the fact that P.H = Pℎ
.H
⨂

P⟂
.H, Pℎ,1

post is absolutely con-
tinuous with respect to P.H, and the right hand side of (30) is a function 
of only "ℎ,1, we deduce that Pℎ,1

post = Pℎ
post

⨂
P⟂
pr , where

'Pℎ
post

'Pℎ
pr

∝ exp
(
−1
2‖ℎ("ℎ,1)− Q'‖2Γ−1noise

)
(31)

is a well-defined finite dimensional approximation of the infinite di-
mensional Bayes formula (24). This expression can then be employed 
in computations, including the Laplace approximation presented in the 
next section.

Remark 1. It should be emphasized that Pℎ,1
post is the FEM approximation 

of the posterior measure Ppost while Pℎ
post is the computable part of Pℎ,1

post . 
Thus, unlike the forward error analysis presented in sections 3.1–3.2, 
for which we can verify the convergence rates numerically, it is not 
trivial to verify the theoretical convergence result via Hellinger distance 
in Theorem 5 as P⟂

pr—a measure on infinite dimensional space—is not 
known.

4.3. MAP computation and Laplace approximation

The Maximum a posteriori (MAP) point of Ppost is a solution of

argmin
"∈

1
2

(
‖ (")− Q'‖2Γ−1noise

+ ‖"−"pr‖2
)
. (32)

The existence of such a MAP point is a direct consequence of the com-
pactness of the Cameron-Martin space  and the continuity of  (").

Therefore the MAP computation can be considered as solving a de-
terministic inverse problem in which the regularization naturally comes 
from the prior distribution. When 'Ppr is Gaussian and the PDE model 
and  are linear, then the posterior distribution is not guaranteed to be 
Gaussian with mean "post and covariance post of the form
"post ="MAP, post = (∗Γ−1noise + −1

pr )
−1 =("MAP)−1.

If the linearity assumptions on the PDE model and  are not true, 
then the posterior distribution is not Gaussian. Nonetheless it is rea-
sonable to expect in many applications that the Laplace approximation  ("MAP, ("MAP)−1) is still a good approximation of Ppost . An approach 
to compute the MAP point "MAP efficiently using an inexact Newton 
method is discussed in Appendix A.

For the Laplace approximation we need to compute ("MAP)−1 but 
it is prohibitive to do so explicitly for infinite dimensional parameter 
spaces because the discretized Hessian is a full matrix, each of whose 
columns requires a linearized forward PDE solve to construct. For effi-
cient approximation of ("MAP)−1, we use the definition

("MAP)−1 = (misf it ("MAP) + −1
pr )

−1,

where misf it ("MAP) is the Hessian of the misfit 1
2‖ (") − Q'‖2Γ−1noise

at 
"MAP. The expected information gain from the data between the prior 
and the posterior is given (in the linear case) by ΣZ log(1 + OZ), where 
OZ are the eigenvalues of the prior-preconditioned data misfit Hessian1∕2
pr misf it ("MAP)1∕2

pr [23]. Thus, when the eigenvalues decay rapidly 
as is common for ill-posed inverse problems, the directions in param-
eter space most informed by the data can be estimated by finding the 
H eigenvectors of 1∕2

pr misf it ("MAP)1∕2
pr corresponding to OZ > 1. This 

allows us to replace misf it ("MAP) by a low-rank approximation with 
controllable accuracy. The computation of the low-rank approximation 
can be done independent of the parameter space dimension by random-
ized singular value decomposition algorithms [24,25] at the cost of H
forward/adjoint PDE solves. Then an approximation of ("MAP)−1 can 
be computed efficiently using the Sherman–Morrison–Woodbury for-
mula (see, e.g., [23,14] for details).

5. Numerical results

In our numerical experiments we use hIPPYlib [13,14] and FEniCS 
2019.1.0 [12].

5.1. Forward problems

In this subsection we numerically assess the convergence rate of the 
FEM approximation of the subsurface flow model in faulted domains 
(forward model). In all numerical experiments below we use the low-
est order Raviart–Thomas element and piecewise constant element for 
% and ., so the expected optimal convergence rates are 1 for % and .
if they are in #1(Ω; ℝ+) and #1(Ω). In the first numerical experiment 
we manufacture a solution that has enough regularity to achieve the 
expected rate of convergence. In the second numerical experiment we 
consider a fault geometry of practical interest and a manufactured so-
lution % with the Sobolev regularity only #+ for some + < 1.

In the first numerical experiment we consider a special manufac-
tured solution with smooth functions on Ω̊ ∶=Ω ⧵Γ. Specifically, on the 
unit square domain Ω = [0, 1] × [0, 1] with fault Γ = {((, Q) ∶ ( = 1∕2}, let 
., % be

.((,Q) =
{

(3 if ( < 1
2

(3 + 1 if ( > 1
2
, %((,Q) = (3(2,0). (33)

Note that % can be extended to Γ as a smooth function on Ω, and one 
can check that (2c) is satisfied with 1% = 4

3 . Let Γ$, ΓB, ΓC , ΓD be the 
left, right, top, and bottom boundary parts of Ω. We impose Dirichlet 
boundary conditions on Γ$ ∪ ΓB and Neumann boundary conditions on 
ΓC ∪ΓD with the manufactured solution. For % = div% convergence rates 
of numerical solutions are obtained in Table 1. Note that 1% satisfies the 
assumption in Theorem 4, so the results in Table 1 show the expected 
convergence rates in our error analysis.

In the second numerical experiment we consider a domain Ω =
[0, 1] × [0, 1] with fault Γ = {1∕2} × [1∕4, 3∕4] ⊂ Ω (see the left panel of 
Fig. 2). The manufactured solution (see the middle and right panels of 
Fig. 2 for its graph) for this test case is given by
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Fig. 3. An unstructured mesh containing the interfaces of 4 subdomains (cf. (35)) in the union of edges, and its two refinements.

Table 1
Convergence rates for the example with the manufac-
tured solution (34).
ℎmax ‖%− %ℎ‖ ‖.− .ℎ‖

error rate error rate
0.3750 2.25e-01 – 7.88e-02 –
0.1875 1.13e-01 0.99 3.93e-02 1.00
0.0938 5.67e-02 1.00 1.96e-02 1.00
0.0469 2.84e-02 1.00 9.80e-03 1.00
0.0234 1.42e-02 1.00 4.90e-03 1.00
0.0117 7.10e-03 1.00 2.45e-03 1.00

.((,Q) =

⎧
⎪
⎪
⎨
⎪
⎪⎩

0 if Q < 1
4 or Q >

3
4

sin 3R(
2 cos2

(
2R

(
Q− 1

2

))
if ( < 1

2 and
1
4 ≤ Q ≤ 3

4

− sin 3R(1−()
2 cos2

(
2R

(
Q− 1

2

))
if ( > 1

2 and
1
4 ≤ Q ≤ 3

4 .

(34)

Setting - = 1 we can compute %= −∇. and % = div% on Ω̊. It can be ver-
ified by direct computation that limits of the normal component of % on 
Γ are continuous across Γ and the condition 1%% ⋅ #− [ [.] ] = 0 holds with 
1% = 4∕(3R). However, by computing ,.∕,Q of . in (34) and taking lim-
its as ( → 1

2
+ and ( → 1

2
−, one can check that the tangential component 

of % is not continuous on Γ. Therefore, the regularity of % is lower than 
#1(Ω; ℝ2).

By using Γ$, ΓB, ΓC , ΓD to denote the boundary parts as before, we 
impose boundary conditions

. = 0 on Γ$ ∪ ΓB, % ⋅ # = 0 on ΓC ∪ ΓD .

Note that %, . are smooth on the 4 subdomains

0 < ( < 1,0 ≤ Q < 1
4 , 0 < ( < 1, 34 < Q < 1, (35a)

0 < ( < 1
2 ,

1
4 < Q < 3

4 ,
1
2 < ( < 1, 14 < Q < 3

4 . (35b)
A standard approximation theory requires a regularity of exact solutions 
only on each triangle, not on Ω. Therefore, if the interfaces of these 4 
subdomains are in the union of edges of triangulations (see Fig. 3), then 
we can expect convergence rates of % and . that are optimal for the 
finite element spaces. For error computation we use Πℎ% and Gℎ. of the 
manufactured solutions, and compute the $2 norms of the difference 
of these projected functions and numerical solutions. The errors and 
convergence rates for the lowest order (A = 1) RTN and BDM elements 
are presented in Table 2 and Table 3.

For convenience of numerical implementation with the manufac-
tured solution (34), we used meshes conforming to the 4 subdomains 
(35). However, we do not know the 4 subdomains in (35) such that ex-
act solutions are smooth in general, so there is no guarantee that we 
can find ideal triangulations such that exact solutions are smooth on 
each triangle. From this point of view, the second order convergence 

Table 2
Convergence rates for the example with the manufac-
tured solution (34) and the lowest order RTN element.
ℎmax ‖Πℎ%− %ℎ‖0 ‖Gℎ.− .ℎ‖0

error rate error rate
0.2500 3.32e-01 – 9.67e-02 –
0.1398 8.34e-02 1.99 4.82e-02 1.00
0.0699 2.97e-02 1.49 2.48e-02 0.96
0.0349 1.22e-02 1.28 1.25e-02 0.99
0.0175 5.69e-03 1.10 6.26e-03 1.00
0.0087 2.79e-03 1.03 3.12e-03 1.00

Table 3
Convergence rates for the example with the manu-
factured solution (34) and the lowest order BDM el-
ement.
ℎmax ‖Πℎ%− %ℎ‖0 ‖Gℎ.− .ℎ‖0

error rate error rate
0.2500 3.37e-01 – 1.02e-01 –
0.1398 6.95e-02 2.28 4.90e-02 1.05
0.0699 1.75e-02 1.98 2.49e-02 0.98
0.0349 4.38e-03 2.00 1.25e-02 1.00
0.0175 1.09e-03 2.00 6.26e-03 1.00
0.0087 2.73e-04 2.00 3.12e-03 1.00

rate of ‖Πℎ%− %ℎ‖0 in Table 3 is due to ideal triangulations, and we re-
mark that convergence rates of ‖Πℎ%− %ℎ‖0 with the lowest order BDM 
elements on general meshes are lower than 2. By direct computation 
one can verify % is continuous on the segments Q = 1∕4 and Q = 3∕4, and 
therefore % ∈ #1(Ω̊, ℝ2). However, the derivatives of % have disconti-
nuities on Q = 1∕4 and Q = 3∕4. Therefore, if the segments Q = 1∕4 or 
Q = 3∕4 split a triangle in a triangulation of Ω, then numerical approxi-
mation of exact solutions on such a triangle will not give a second order 
convergence rate.

5.2. MAP computation as deterministic inverse problem

To numerically test the deterministic inverse problem solution, we 
find the MAP point of the problem (32) using the inexact Newton-CG 
algorithm in Appendix A. The domain and fault are Ω = [0, 1] × [0, 1], 
Γ = {1∕2} × [1∕4, 3∕4], and boundary conditions are

. = 0 on Γ$, . = 1 on ΓB, % ⋅ # = 0 on ΓC ∪ ΓD .

We set - = 1 on Ω and assume that the true transmissibility field on Γ
is 1% = ?" with

"(Q) = 2 sin
(
8R

(
Q− 1

2

))
, 1

4 ≤ Q ≤ 3
4 . (36)

For the prior we use pr = (S − 6Δ)−1 with S = 0.4, 6 = 0.004, and 
"pr = 0. For the likelihood term, pointwise observations of pressure are 
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Fig. 4. The pressure and velocity fields with fault parameter 1% = ?" for " ="true in (36), and 4 × 4 and 8 × 8 observation points for fault parameter inversion.

taken at A × A (A = 4, 6, 8) uniform lattice points on the observation do-
main [0.2, 0.8] × [0.1, 0.9] as shown in Fig. 4 for the case of 4 × 4 and 
8 × 8 observation points. We corrupt the observed data vector ) ∈ ℝ3 , 
3 = 16, 36, 64, by adding a Gaussian noise vector [ ∈ ℝ3 . Entries of [
are independent identically distributed and follow a normal distribu-
tion  (0, U2) with U = 0.01‖)‖0∞ . Then, transmissibility inversion by 
constrained minimization is done with the noisy data ) + [ .

The approximate MAP points4 by deterministic inversion for 4 × 4, 
6 × 6, and 8 × 8 observation points are shown in Fig. 5. Since 4 × 4 ob-
servations do not provide sufficient information to inform the inverse 
parameter field, the approximate MAP point is not much different from 
the prior mean " ≡ 0 (also used as the initial guess in our algorithm). 
Nevertheless, the approximate MAP points with 6 × 6 and 8 × 8 obser-
vation points capture major features of the true parameter field: clearly 
it is impossible to capture the true parameter field exactly due to lim-
ited and noisy data, the ill-posed nature of the inverse problem, and the 
smoothing effects of the prior.

5.3. Bayesian inverse problem

We limit ourselves to the Laplace approximation  ("MAP,("MAP)−1) of the Bayesian inverse problem. A more complete ex-
ploration of the Bayesian posterior can be done by standard sampling 
methods such as Markov chain Monte Carlo methods [26–29]. While 
such sampling methods provide a full characterization of the discrete 
finite dimensional posterior (31), they do not provide additional in-
sights or novelties to our work, and thus are not considered.

In the first experiment we consider a simple model with one ver-
tical fault shown in Fig. 4. We first present the dominant eigenvalues 
of prior-preconditioned Hessian of data misfit 1∕2

pr misf it ("MAP)1∕2
pr in 

4 Note that our optimization method is local in nature and thus computed 
MAP points are not guaranteed to be global maximizers.

Fig. 5. The log(1% ) fields of true parameter and approximate MAP points for 
4 × 4, 6 × 6, and 8 × 8 observation points.

Fig. 6. In the case of 4 × 4 observations, just two eigenvalues are larger 
than 1, indicating just two directions in the space of parameters can be 
inferred from the data with high confidence (the rest are insufficiently 
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Fig. 6. Eigenvalues of the prior-preconditioned Hessian of the data misfit to 
different sets of observations.

informed by the data, and are thus dominated by the prior). Moving 
to 6 × 6 observations results in a slower decay of eigenvalues, yielding 
four data-informed parameter directions. Finally, increasing the obser-
vations to an 8 × 8 grid yields further increases in eigenvalues, and thus 
more information gain, though there are diminishing returns. This al-
lows us to compute the Laplace approximation  ("MAP, ("MAP)−1)
efficiently with low rank approximation (see, e.g., [30] for more de-
tails).

In Fig. 7, we compare the credibility intervals of

 (0,pr ) and  ("MAP,("MAP)−1)

for 4 × 4 observation points. The shaded (yellow) regions denote the 
union of pointwise credibility intervals with the length 2Ustd where Ustd
are the empirical pointwise variances. We draw 5 random samples from  (0, pr ) and  ("MAP, ("MAP)−1) and plot them in the corresponding 
subfigures.

Similarly, Figs. 8 and 9 present pointwise credibility intervals of 
the prior and the Laplace approximation of the posterior for the cases 
with with 6 × 6 and 8 × 8 observation points, respectively. It is clear 
that  ("MAP, ("MAP)−1) corresponds to a much narrower credibil-
ity region than that of  (0, pr ). This is expected due to observational 

Fig. 7. The comparison of pointwise credibility interval, mean, and samples with  (0, pr ) and the Laplace approximation  ("MAP, ("MAP)−1) with 4 ×4 observation 
points. Left is for the prior and right for the Laplace approximation.

data. This in turns significantly reduces the uncertainty in the poste-
rior distribution compared to the prior distribution. We also present 5 
samples drawn from  (0, pr ) and  ("MAP, ("MAP)−1): again those 
drawn from the Laplace approximation of the posterior are closer to the 
true parameter field.

In the second numerical experiment we present inverse results 
for a problem with 3 faults with 6 × 6 observations in the rectangle 
[0.15, 0.85] × [0.15, 0.85] as in Fig. 10. The prior pr = (S − 6Δ)−1 with 
S = 0.4, 6 = 0.004, and "pr = 0 is used for all faults. Observational data 
are synthetically generated using the same procedure as above, and the 
Laplace approximations on each fault are computed using low rank ap-
proximations. The credibility regions and 5 randomly drawn samples of  (0, pr ) and  ("MAP, ("MAP)−1) are shown in Fig. 11. This problem 
is more challenging compared to the one-fault case. As can be seen, the 
prior mean and samples are very different from the ground truth param-
eter. With the help of observational data, the posterior results using the 
Laplace approximation are closer to the ground truth parameter field 
for each fault. As can be seen, the inversion result for the second fault 
is better than the others. This is not surprising as the second fault is the 
longest and is surrounded by the largest number of observation points. 
In order to obtain better inverse results for faults 1 and 3, more obser-
vations are needed. Indeed, Fig. 12 shows that the inverse results, both 
the MAP and uncertainty estimation, are more accurate with 12 × 12
observation points.

6. Conclusions

This paper concerns the forward and inverse modeling of subsur-
face flow in domains with faults. In particular, we consider the inverse 
problem for fault transmissibility in subsurface flow models under ap-
propriate assumptions on fault structures. We provide a complete and 
thorough analysis of the transmissibility inverse problem including fault 
modeling, well-posedness of the forward PDE, FEM discretizations of 
the forward PDE and their rigorous analysis, well-posedness of the 
Bayesian inverse formulation, discretizations of Bayesian inverse for-
mulation and their rigorous analysis, and numerical illustrations. We 
also presented transmissibility inversion problems by a PDE-constrained 
optimization approach and developed an efficient numerical optimiza-
tion method utilizing the efficient computation of Hessian action via 
Lagrangian approach. The results show that our approach can provide 
reasonable inverse solutions together with their associated uncertainty 
estimation. Ongoing work is to extend our framework to problem with 
more realistic networks of faults and three dimensional problems.
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Fig. 8. The comparison of pointwise credibility interval, mean, and samples with  (0, pr ) and the Laplace approximation  ("MAP, ("MAP)−1) with 6 ×6 observation 
points. Left is for the prior and right for the Laplace approximation.

Fig. 9. The comparison of pointwise credibility interval, mean, and samples with  (0, pr ) and the Laplace approximation  ("MAP, ("MAP)−1) with 8 ×8 observation 
points. Left is for the prior and right for the Laplace approximation.

Fig. 10. A domain with three faults and observation points.

Data availability

No data was used for the research described in the article.

Appendix A. MAP computation with an inexact Newton method

Below we present an inexact Newton-Conjugate Gradient (Newton-
CG) approach to compute the map point. For concreteness, we consider 
! = 2, and it is sufficient to take U = 1 for the Gaussian prior to be well-
defined. In this case the Cameron-Martin space is  =#1 (Γ) (in fact 
an equivalence of #1 (Γ) with S and 6 as weights: see the definition 
below). Then the MAP problem becomes the following: solve

argmin
"∈  (")

with

 (") ∶= 1
2

(
‖D.− Q'‖2Γ−1noise

+
(⟨S("− "̄), ("− "̄)⟩Γ

))

+ 1
2 ⟨6∇("− "̄),∇("− "̄)⟩Γ

where (%, .) is the solution of forward equation
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Fig. 11. The comparison of pointwise credibility interval, mean, and samples with  (0, pr ) and the Laplace approximation  ("MAP, ("MAP)−1) with 6 × 6 obser-
vation points for the problem with three faults. The top row is for the prior and the bottom one is for the posterior using the Laplace approximation.
(
-−1%,'

)
+ ⟨?"% ⋅ #,' ⋅ #⟩− (.,div') = 0, ' ∈ & , (A.1a)

(div%, 4) = (% , 4) 4 ∈7. (A.1b)
We solve this problem using inexact Newton-type methods with the 

gradient and Hessian-vector project as in [30]. To compute the gradient 
of  (") we use the Lagrangian functional

((%,.),", (', 4))
=  (") +

(
-−1%,'

)
+ ⟨?"% ⋅ #,' ⋅ #⟩Γ − (.,div') + (div%, 4)− (% , 4) ,

with (%, .), (', 4) ∈ & ×7. The Lagrangian approach for the gradient com-
putation at " = "0 leads to the forward equation (A.1) and the adjoint 
problem: finding ('0, 40) ∈ & ×7 such that for all (%̃, ̃.) ∈ & ×7

⟨D.̃,D.0 − Q'⟩Γ−1noise +
(
-−1%̃,'0

)
+ ⟨?"%̃ ⋅ #,'0 ⋅ #⟩Γ −

(
.̃,div'0

)

+
(
div %̃, 40

)
= 0, (A.2)

where (%0, .0) is the forward solution obtained from (A.1) for " = "0. 
Then the gradient of  (") at " ="0 in weak form is: for any "̃ ∈
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Fig. 12. The credibility interval, mean, and samples with the Laplace approximation  ("MAP, ("MAP)−1) obtained with 12 × 12 observation points for the problem 
with three faults.

(("0), "̃) =
1
2
(⟨S("0 − "̄), "̃⟩Γ + ⟨6∇"0,∇"̃⟩Γ

)
+ ⟨"̃?"0%0 ⋅ #,'0 ⋅ #⟩Γ .

(A.3)
For the Hessian-vector product we define  as

 ((%,.),", (', 4); (%̂, .̂), "̂, ('̂, 4̂))

= (("), "̂) + (
-−1%, '̂

)
+ ⟨?"% ⋅ #, '̂ ⋅ #⟩− (.,div '̂) + (div%, 4̂)− (% , 4̂)

+ ⟨D.̂,D.− Q'⟩Γ−1noise +
(
-−1%̂,'

)
+ ⟨?"%̂ ⋅ #,' ⋅ #⟩Γ − (.̂,div') + (div %̂, 4) .

The variational forms of the incremental forward (finding (%̂, .̂)) and 
incremental adjoint (finding ('̂, 4̂)) equations are
(
-−1%̂, '̃

)
+ ⟨?"%̂ ⋅ #, '̃ ⋅ #⟩Γ − (.̂,div '̃)

− (div '̂, 4̃) + ⟨?""̂% ⋅ #, '̃ ⋅ #⟩Γ = 0 ∀('̃, 4̃), (Inc. Fwd.)
⟨D.̃,D.̂⟩Γ−1noise + (-−1%̃, '̂) + ⟨?"%̃ ⋅ #, '̂ ⋅ #⟩Γ − (.̃,div '̂)

− (div %̃, 4̂)− ⟨?""̂%̃ ⋅ #,' ⋅ #⟩Γ = 0 ∀(%̃, .̃). (Inc. Adj.)
For ("0), the Hessian of  evaluated at " = "0, the action of ("0)
on "̂ ∈ can be written in weak form as
(
"̃,("0)"̂

)
= ⟨S"̂, "̃⟩Γ + ⟨6∇"̂,∇"̃⟩Γ + ⟨"̃"̂?"0%0 ⋅ #,'0 ⋅ #⟩Γ
+
(
-−1%0, '̂

)
+ ⟨"̃?"0%0 ⋅ #, '̂ ⋅ #⟩Γ

−
(
.0,div '̂

)
+
(
div%0, 4̂

)
− (% , 4̂)

+ ⟨"̃?"0 %̂ ⋅ #,'0 ⋅ #⟩Γ ∀"̃ ∈.

Based on the gradient and the Hessian action computation algo-
rithms, the maximum a posteriori (MAP) point can be found by a 
standard Newton method. For efficient performance of Newton methods 
an inexact Newton-CG algorithm can be used. In the inexact Newton-CG 
algorithm the system ("A)SA = −("A) is solved by a preconditioned 
CG method with early termination of CG iterations using the Eisenstat–
Walker criterion and the Steihaug criterion (to prevent oversolving) 
and the backtracking algorithm (to avoid negative curvature) (see, e.g., 
[31,14]).
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