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ABSTRACT

Development of new approaches to adaptive traffic signal control has received significant attention; an 
example is the reinforcement learning (RL), where training and implementation of an RL agent can 
allow adaptive signal control in real time, considering the agent’s past experiences. Furthermore, 
autonomous vehicle (AV) technology has shown promise to enhancing the traffic mobility at highways 
and intersections. In this paper, delayed action deep Q-learning is developed for a vehicle network 
with signalized intersections to control the signal phase. A model predictive control (MPC) scheme is 
proposed to allow AVs to adapt their speed. Several case studies that consider mixed autonomy are 
examined aiming at reducing network traffic and fuel consumption in the traffic network with multiple 
intersections. Simulation studies reveal that even with a few AVs in the network, the waiting time, fuel 
consumption, and the number of stop-and-go movements are significantly reduced, while the travel 
time is increased.
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Introduction

Traffic congestion has become a major issue due to the population 
growth and increasing demand for using vehicles. Until recently, the 
main attempts had been toward improving physical infrastructure to 
reduce traffic although it would not be a cost-effective solution. 
Therefore, an alternative solution has emerged aiming to improve 
current infrastructure by developing new traffic control methods and 
optimizing traffic flow. This solution would be particularly appealing 
for locations such as downtown areas that do not have the capability 
of being physically upgraded due to surrounding buildings or that 
they are already upgraded to their limit (Chowdhury and Sadek 2003; 
El-Tantawy, Abdulhai, and Abdelgawad 2014).

One source of traffic congestion is intersections with traffic 
signals which can reduce traffic flow and increase waiting time of 
the vehicles. Vehicle idling (transition between red light and green 
light, in which the vehicle needs to wait) increases delays in trips 
and reduces vehicle fuel efficiency or miles per gallon. Some timing 
methods have been applied to alleviate the traffic in intersections. 
However, they are not adapted to the dynamic traffic system which 
changes during the day. Two traditional traffic signal controllers are 
pre-timed and actuated. Pre-timed method uses historical traffic 
data to adjust green signal timing in different times of the day. This 
method does not consider any information about traffic dynamics 
and changes. Actuated control method takes current traffic situa-
tion at an intersection to turn green light on for lanes with more 
cars without using any information about traffic in long term (Yau 
et al. 2017). Hence, interactive solutions for traffic signal control 
would improve the performance of current infrastructures by tak-
ing actual traffic information into account. Such solutions are 
referred to as adaptive traffic signal control (Mannion, Duggan, 
and Howley 2016).

Reinforcement learning (RL) consists of an agent which 
interacts with the environment and receives reward based on 
the action it takes at different states. The goal of the agent is to 

maximize the discounted future rewards. Consequently, the 
agent can learn and improve its policy (control action) by 
receiving reward based on the action. The distinguishing feature 
of RL is ‘learning by interaction with the environment’ (Sutton 
and Barto 2018). RL has been applied to different problems in 
the context of intelligent transportation (Mannion, Duggan, and 
Howley 2016; Qu et al. 2020). RL provides real-time solutions 
for traffic signal problem by considering it as a model-free 
system. Various learning methods such as Q-learning 
(Watkins and Dayan 1992) have been widely studied for 
improving the traffic congestion by reducing traveling time or 
waiting time, increasing traffic flow, and so on. RL methods can 
change the control signal phase duration in addition to their 
sequences to handle the traffic in an intersection or a network 
of intersections (Yau et al. 2017).

Various traffic signal control problems using RL have been 
studied. Some researchers considered isolated intersection case 
(Genders and Razavi 2016; Zhang et al. 2018), while others con-
sidered a network of intersections (Abdoos, Mozayani, and Bazzan  
2011; Aziz, Zhu, and Ukkusuri 2018). Furthermore, various algo-
rithms and tools have been applied to the traffic signal control 
problem, e.g., tabular methods (El-Tantawy, Abdulhai, and 
Abdelgawad 2014; Steingrover et al. 2005) and neural networks 
(Ge et al. 2019; Genders and Razavi 2016; Zhang et al. 2018). 
Speed trajectory control has also been studied in various scenarios. 
While some studies have considered improving speed control in an 
intersection without traffic signal (Levin and Boyles 2016; Li et al.  
2019; Lin et al. 2017), in this research, we focus on the literature on 
speed control in a signalized intersection.

Yang, Guler, and Menendez (2016) examined the impact of conven-

tional vehicles (i.e. with no vehicle-to-infrastructure (V2I) communica-

tion), connected, and autonomous vehicles (AVs) (both equipped with 

V2I communication systems) on the delay of an intersection with 

actuated signal control with the goal of optimizing departure sequence 
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of vehicles and AV trajectories. Simulation results showed improvement 

in delay. Rakha and Kamalanathsharma (2011) made an attempt to 

optimize fuel consumption of vehicles using V2I information exchange; 

in the latter study, the vehicles considered were either autonomous and 

their speed could be controlled, or the drivers could receive advisory 

speed based on future traffic signal changes and the size of the queue.
Li et al. (2018) considered cycle-based signal control together with 

electric vehicle (EV) system with eco-driving. Xu et al. (2017) con-
sidered cooperation between vehicles and traffic signal controller to 
minimize trip time and energy consumption. First, the signal timings 
were calculated, and then, vehicles (all assumed to be AVs) adjusted 
their speed based on the signal information. The traffic signal was 
controlled using dual-ring phase control in He, Head, and Ding 
(2011). In this actuated phase control method, the timings for the 
whole cycle were calculated based on current traffic information 
(short-term). More recent research studies such as Tajalli, 
Mehrabipour, and Hajbabaie (2020) and Zhao, Liu, and Ngoduy 
(2019) also considered the same problem, but they assumed that all 
vehicles are autonomous. Additionally, to the best of our knowledge, 
no past work has considered the aforementioned problem, in which 
traffic signal is controlled using RL methods. RL methods have shown 
the capability of controlling traffic in real time and adapting to traffic 
changes with no need to take vehicle dynamic model into account.

In a fully automated traffic network where all the vehicles are 
connected and automated, traffic lights are no longer needed since 
vehicles are able to plan safe and efficient trajectories by leveraging 
wireless communication (Chavoshi, Genser, and Kouvelas 2021). 
However, considering a fully automated traffic is an optimistic 
assumption, and our focus in this paper is to improve the traffic 
networks including both human-driven vehicles and AVs. In general, 
scenarios that involve a mixture of AVs and human-driven vehicles 
(mixed autonomy) bring challenges including controllability issue 
and partial observability (Wu et al. 2017). Here, we intend to study 
the impact of AVs in mixed autonomy. In this paper, our goal is not 
only to adapt traffic signal phase to upcoming traffic using RL (real- 
time control) but also to adjust AVs speed to the current traffic signal 
phase in order to reduce the waiting time of the vehicles in a signalized 
intersection. The novelty of our work lies in employing an RL-based 
traffic signal control and online AV speed adjustment together, while 
we also indirectly consider the queue in front of the AV before the 
traffic light. In the literature, vehicle speed control has been examined 
under the assumption that the length of the traffic phases is known 
(by considering short-term information only); however, in our work, 
we study the case where only the minimum duration of a traffic phase 
is known, but the duration of each phase depends on the traffic and 
the RL agent. To this end, we investigate the impact of different AV 
penetration rates on the waiting time and fuel consumption in 
a network of RL-controlled intersections.

In AV speed control problem, kinematic/dynamic system equa-
tions, as well as physical constraints such as actuator saturation 
limits and speed limit, should be taken into account. These limita-
tions add constraints to the problem of optimizing the AV perfor-
mance. Model predictive control (MPC) allows optimizing multiple 
performance indices (e.g., fuel consumption, comfort, etc.) under 
AV system constraints. In MPC, the future control sequence for 
a chosen horizon is calculated with the goal of optimizing a cost 
function (Raffo et al., 2009). In our work, MPC optimizes each AV 
speed trajectory to reduce waiting time and fuel consumption in 
a traffic network.

The contributions of this paper are as follows: (1) a real-time 
speed control method in an intersection controlled by an RL agent 
is proposed; (2) an MPC-based algorithm for the speed control in 
an RL-controlled intersection is proposed where the exact phase 

timings are not available to vehicles a priori, assuming that AVs 
have access to the current phase and the remaining time until the 
RL controller makes decision; (3) the impact of the queue in front of 
the AV is considered in the proposed speed adjustment algorithm; 
(4) the mixed autonomy under different AV penetration rates is 
studied and the network waiting time and fuel consumption are 
evaluated, demonstrating the success and efficacy of the proposed 
coordinated control method. It is noted that the proposed approach 
for the traffic control in mixed autonomy environment is cooperative 

and hybrid in that it involves both data-driven and model-based 
decision making for signal control and vehicle speed adjustment, 
respectively.

The rest of the paper is organized as follows. Section 2 provides 
problem statement and AV dynamics and describes our traffic 
signal control algorithm using deep Q-learning. The proposed 
speed adjustment method is described in Section 3. Simulation 
results and discussions are provided in Section 4, and finally, con-
cluding remarks are made in Section 5.

Problem statement and preliminaries

Problem of interest: The main objective of this work is to examine 
the impact of AVs and their speed adjustment based on traffic signal 
phase when the AVs are in vicinity of an intersection. The paper 
examines two interrelated issues as follows: the traffic signal should 
be controlled in a way to reduce the vehicles delay (waiting time), 
and also, AV speed should be optimized aiming to reduce the 
waiting time or even preventing the AVs to stop at intersections. 
Our goal is to show that even with a very small number of AVs in 
a mixed fleet of vehicles, the waiting time of the vehicles in the 
network would be positively affected. To demonstrate this, we study 
multiple scenarios with different AV penetration rates. In all the 
scenarios, a four-intersection network is considered where each 
intersection is controlled independently using RL. The impact of 
AV speed adjustment on network waiting time and fuel consump-
tion with different AV penetration rates in a mixed autonomy is 
also examined.

Description of Q-learning and its use for traffic signal control

The proposed approach of this paper employs an RL method 
(namely, deep Q-learning) to first train agents (in this case traffic 
signals) and then make appropriate decisions based on the circum-
stances. Q-learning is a temporal difference (TD) control algorithm 
(Watkins and Dayan 1992). TD methods do not generally require 
a model of the environment; instead, they learn by experiencing the 
consequences of actions they provide. Similar to dynamic program-
ming (DP), TD algorithms can update estimates without waiting for 
a final outcome (Sutton and Barto 2018). One-step Q-learning 
update formula is as follows: 

QðSt;AtÞ  QðSt;AtÞ þ α Rtþ1 þ γ max
a

QðStþ1; aÞ � QðSt;AtÞ

� �

;

(1) 

where At is the set of actions at time instant t; St is the set of states at t; 
Rt is the set of rewards at t; Qðs; aÞ is an estimate of the value of taking 
action a in state s; α is the learning rate; and γ is the discount-rate 
parameter for the reward value (Sutton and Barto 2018). In deep 
Q-learning (Mnih et al. 2015), Q-value is estimated using neural 
network, where two networks are used: Q-network and target net-
work. Target network weights can be updated with Q-network 
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parameters after every fixed step, or the weights can be updated using 
soft target updates. The loss function for the Q-network is 

L ¼ Eðs;a;r;s0Þ½ðr þ γ max
a0

Qðs0; a0; θtÞ � Qðs; a; θÞÞ2� (2) 

where θ are the parameters of Q-network, while θt are the target 
network parameters. To calculate the loss, observations are stored in 
a replay buffer, and loss is calculated by randomly choosing samples 
from the replay buffer (called mini-batch). Algorithm 1 shows a deep 
Q-learning algorithm used for the non-episodic task in our work. 
One of the strategies for updating QðS;AÞ is ε-greedy selection, in 
which the agent exploits (takes the action that maximizes the 
Q-value) with the probability of 1� ε and explores (selects 
a random action) with the probability of ε. Exploitation results in 
the maximum expected reward in one step, whereas exploration may 
result in a greater Q-value in the long term (Sutton and Barto 2018). 

Algorithm 1 Deep Q-learning algorithm 

1: Initialize neural network parameters θ, empty replay buffer B, 
S0, learning rate α, discount rate γ, and soft update parameter τ.

2: repeat
3: for each step do
4: In current state S, take action A (e.g., using ε-greedy) and 

observe R, S0

5: Store transition ðS;A;R; S0Þ in replay buffer B
6: Sample a random mini-batch from B
7: Calculate loss using the mini-batch data based on (2) and 

update Q-network
8: Update target network using soft target update 

θt  τ θþ ð1� τÞθt

9: S S0

10: end for
11: until forever

In our traffic signal control problem, actions are traffic signal 
phases. We consider two actions: (1) east-west and west-east green 
and (2) north-south and south-north green. Before any transition 
from one action to another, there is a yellow traffic light phase. RL 
agent calculates the action based on ε-greedy action selection. As 
shown in Figure 1, each entering lane within a specific distance di 

from the intersection is divided into some blocks with the length lb. 
If a vehicle exists in the block, corresponding value for the block is 
the normalized vehicle velocity; otherwise, the value is −1. It is 
worth mentioning that the smaller the size of the block is, the larger 
the state space is. Reward, in our problem, is the negative of the 
waiting time per vehicle (in seconds) for vehicles in entering lanes 
in a vicinity of the junction (250 m radius is considered in this 
paper). In our study, the RL agent decision step is TRL ¼ 10 s, and it 
updates its decision every TRL seconds. Thus, each action would 
remain in effect for at least TRL seconds. 

Remark 1. It is noted that in our study, the RL agent does not apply 
its decision to the traffic signal immediately. Instead, every time RL 
agent gathers information about current state, and it chooses a new 
action but applies it to the intersection in the next decision-making 
event (which is in TRL seconds). Simulation experiments presented 
in Section 4 show that applying RL agent’s decision with delay does 
not deteriorate the performance of the RL algorithm and even 
improves the performance (in terms of waiting time and fuel 
consumption).

Autonomous vehicle system dynamics

For each AV, a linear state-space representation is considered as 
follows: 

_xðtÞ
_vðtÞ

� �

¼
0 1
0 0

� �

xðtÞ
vðtÞ

� �

þ
0
1

� �

uðtÞ (3) 

where xðtÞ and vðtÞ are AV position and velocity, respectively, and 
uðtÞ is the vehicle acceleration (also the control input). By discretiz-
ing the given state-space equation with sampling time ts, vehicle 
dynamics in discrete time are represented as follows: 

xðkþ 1Þ
vðkþ 1Þ

� �

¼
1 ts

0 1

� �

xðkÞ
vðkÞ

� �

þ
0
ts

� �

uðkÞ : (4) 

Furthermore, following constraints are imposed on the system 
states and control input: 

0 � vðkÞ � vmax; (5a) 

Figure 1. A simple demonstration of state definition in a junction. In this example, an entering lane is divided into five blocks. The corresponding value for blocks with 
vehicles (shown by white boxes) is the normalized velocity of the vehicle, while the value for the other blocks is −1. An array including the block values for all entering lanes 
build the state of the junction.
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umin � uðkÞ � umax; (5b) 

where vmax represents road speed limit, and umin and umax are 
minimum and maximum possible values for system input, 
respectively.

Proposed approach to AV speed control

When an AV distance from the intersection goes below some 
predefined value (the value depends on the road speed limit and 
the minimum green signal period; here it is considered 250 m), 
the intersection sends the current traffic phase information to 
the AV through infrastructure-to-vehicle (I2V) communication. 
Then, the AV (we call it adaptive AV) adjusts its speed based 
on that information and the information it receives from 
onboard sensors about its leader vehicle, i.e., the closest vehicle 
in front of it (if any). If there is a vehicle between the adaptive 
AV and the intersection, the closest human-driven (non-AV) 
one to the AV is called the leader vehicle, and the closest AV is 
called the leader AV. As shown in Figure 2, depending on the 
existence of a leader vehicle/AV, an adaptive AV experiences 
one of the following cases:

(1) (case 1) There is no leader vehicle, in which case, the adaptive 
AV adjusts its speed based on its distance from the intersec-
tion, current traffic phase, and the time remaining until the 
current RL agent makes an action.

(2) (case 2) There is a human-driven leader vehicle, in which 
case, first the adaptive AV determines if the leader will pass 
the intersection with its current speed and current signal 
phase information. If yes, then this case is similar to case 1; 
otherwise, the AV should use the speed and position of the 
other vehicle for calculating the possible distance it can 
travel.

(3) (case 3) There is a leader AV, in which case, first the 
adaptive AV determines if the leader AV will pass the 
intersection based on the current leader speed, distance 
from the intersection, and current traffic signal informa-
tion. If yes, this case is similar to either case 1 or case 2; 
otherwise, the adaptive AV does not need to make any 
calculations and follows the traffic in front of it because 
the leader AV will adjust its speed.

To check if a leader vehicle can pass the intersection when the 
traffic light is green, the following inequality conditions can be 
easily checked (assuming that the leader vehicle moves at a fixed 
velocity for the next T seconds): 

VH
L :TG > dH

L (6a) 

VAV
L :TG > dAV

L ; (6b) 

where TG is the expected remaining time of the green phase; VH
L 

and dH
L are the leader vehicle’s speed and distance from the 

intersection, respectively; and VAV
L and dAV

L are the leader AV’s 
speed and distance from the intersection, respectively. If (6a) 
holds, the human-driven leader vehicle will pass the intersec-
tion; if (6b) holds, the leader AV will pass the intersection. 
According to remark 1, when current traffic phase is green, 
TG can be calculated as follows: 

TG ¼ T þ stat:TRL; (7) 

where T is the remaining time until the traffic controller updates its 
decision, and stat is a binary variable which is one if the current and 
next phase are the same otherwise zero. It is worth mentioning that 
according to Remark 1, the current and next traffic phases are 
available, and the intersection shares both with AVs through V2I 
communication.

If no leader exists, or the leaders pass the intersection based on 
(6), then the adaptive AV needs to evaluate whether it can pass the 
intersection. The AV determines if it can pass the intersection by 
solving the following MPC problem: 

min
uðkÞ

P

N1

k¼0

½uðkÞ�2 þ ½vðkÞ � vmax�
2

subject to : system equations ð4Þ;
system constraints ð5Þ;

xðN1Þ � dAV ;

(8) 

where N1 ¼ TG=ts, ts is the sampling time, and dAV is the adaptive 
AV’s distance from the intersection. Incorporating the vehicle input 
in the cost function prevents the vehicle from unnecessary accel-
eration/deceleration, thereby reducing fuel consumption while 
maximizing vehicle speed improves traffic flow. The last inequality 
forces the MPC to find a solution (if exists) that guarantees passing 
the intersection within the prediction horizon N. Consequently, if 

Figure 2. Different cases for an adaptive AV approaching the intersection. The green vehicle is the adaptive AV, the blue one is other AV, and the black one is a human- 
driven vehicle (non-AV).
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the above optimization problem is feasible, then adaptive AV can 
pass the intersection. Otherwise, the AV cannot pass during the 
next TG seconds; hence, the AV should adjust its speed to avoid 
unnecessary acceleration/deceleration until it can pass the intersec-
tion. Based on the delayed RL agent action execution (see 
Remark 1), we define Td as the expected time that the AV should 
wait until the traffic phase becomes green again, which is calculated 
as follows:  

Td ¼
T þ 2Ty þ TRL; if phase is green

TG þ Ty; if phase is red or yellow

�

(9) 

where Ty is the yellow signal duration (in this paper, Ty ¼ 2s). The 
adaptive AV speed trajectory is then calculated by solving the 
following optimization problem:  

min
uðkÞ

P

N2

k¼0

½uðkÞ�2

subject to : system equations ð4Þ;
system constraints ð5Þ;

xðN2Þ � dAV ;
vðN2Þ � V;
vðkÞ � V;

(10) 

where N2 ¼ Td=ts, and V > 0 and V is a lower bound and 
higher bound on the AV final speed, respectively. The third 
constraint guarantees that the AV will not pass the intersec-
tion at k ¼ N2. The fourth constraint is considered to avoid 
arriving at the intersection with high speed so that the AV 
would be able to stop in the case that traffic phase does not 
turn green after Td seconds as expected. The last constraint 
prevents the adaptive AV from stopping completely within the 
prediction horizon.

In the case that there is a leader AV which cannot pass the 
intersection (either the phase is red or green), the adaptive AV 
does not need to make any calculation based on our earlier discus-
sion for case 3. If the leader is a human-driven vehicle that cannot 
pass the intersection, then the adaptive AV should calculate the 
effective distance (its distance from the intersection while consider-
ing the position of the leader). The effective distance (deff ) is defined 
as follows: 

deff ¼ dAV � ðd
H
L � xÞ � l where x ¼ minðVH

L :Td; dH
L Þ; (11) 

where l is the average vehicle length plus the minimum gap 
between vehicles (here, l is assumed to be 6:5 m). After calcu-
lating deff , AV calculates its speed using (10) by replacing dAV 

with deff . Consequently, every AV within a specified perimeter 

of the intersection changes its speed based on Algorithm 2. 
Each AV runs Algorithm 2 every second so that each adaptive 
AV updates its speed based on the most recent information. 

Algorithm 2 Proposed AV speed control strategy 

1: FH  0
2: FAV  0
3: if there is a human-driven (non-AV) leader vehicle then
4: VH

L  leader vehicle speed
5: dH

L  leader vehicle distance from the intersection
6: if current phase is green and (6a) does not hold then
7: FH  1
8: else if current phase is not green then
9: FH  2
10: end if
11: end if
12: if there is a leader AV then
13: VAV

L  leader AV speed
14: dAV

L  leader AV distance from the intersection
15: if current phase is green and (6b) does not hold then
16: FAV  1
17: else if current phase is not green then
18: FAV  2
19: end if
20: end if
21: if FAV > 0 then
22: follow the traffic
23: else
24: if FH ¼¼ 0 then
25: if signal is green and (8) is feasible then
26: adjust speed based on (8)
27: else
28: adjust speed using (10)
29: end if
30: else
31: dAV  calculate deff using (11)
32: use (10) to adjust speed
33: end if
34: end if

Simulation studies and discussion

Simulation of Urban Mobility (SUMO) (Lopez et al. 2018) is 
used as the traffic simulation environment. SUMO provides 
information about possible movements at intersections and 
right-of-way rules in details. To obtain the waiting time, fuel 
consumption, location, and speed of vehicles, Traffic Control 
Interface (TraCI) is used (Lopez et al. 2018), while the deep 
Q-learning controller is implemented using Keras library in 
Python (Chollet et al. 2015), and the MPC optimization pro-
blem is implemented and solved using CVXPY (Agrawal et al.  
2018; Diamond and Boyd 2016). Parameters used in the simu-
lation are listed in Table 1. For the Q-network and target 
network, neural networks with five hidden layers are used, 
each of which consists of 1024 units with rectified linear 
activation functions. The traffic network used in the simula-
tion studies is shown in Figure 3. This network initializes 
without vehicles inside, and vehicles enter the network from 

Table 1. List of parameters used in the simulation study.

τ ¼ 0:0001 V ¼ 1 m=s l ¼ 6:5 m TRL ¼ 10 s

α ¼ 0:00005 V ¼ 0:1 m=s lb ¼ 6:5 m Ty ¼ 2 s

γ ¼ 0:8 vmax ¼ 15:65 m=s di ¼ 260 m ts ¼ 1 s
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eight entering lanes. Since the RL agent controls the traffic 
using ε� greedy and may select actions randomly, and the 
vehicles are generated randomly in SUMO, the simulations are 
performed repeatedly and the average over those simulations is 
calculated. The rest of this section is divided into three parts; 
first, the simulation studies are done without micro-simulation 
calibration. Then, micro-simulation calibration is discussed, 
and finally, simulation studies are conducted using the cali-
brated environment.

Simulation studies without a micro-simulation calibration

In the first study, the performance of the deep Q-learning algorithm 
with and without action delay is investigated. The average traffic 
flow in the vertical lanes is assumed to be 540 veh=h, while in the 
horizontal lanes, the average flow is 360 veh=h. As shown in 
Figure 4, the two top subplots represent vehicle waiting time, 
while the bottom subplots depict the vehicle fuel consumption. 
Results show that applying the RL decision with delay in the next 

Figure 3. Network of four connected intersections used in our simulation studies. Each intersection is controlled by an independent RL agent. In each of the network’s 
incoming lanes, a detector is installed, namely, DH

1 -DH
4 for horizontal lanes and DV

1 -DV
4 for vertical lanes. The detectors are later used for micro-simulation calibration.

Figure 4. Performance of the RL agent in two different cases. In the first case, whose results are shown in the left two subplots, the agent applies its decision immediately; 
in the second case shown in the right two subplots, the action is applied in the next decision-making event. The delayed action case performance is slightly better than the 
case without action delay in terms of mean waiting time and mean fuel consumption.
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decision-making step slightly improves the performance of the RL 
traffic controller in our study. The mean waiting time and fuel 
consumption per vehicle from time 500 s to 2500 s for no action 
delay case are 6:174 s, and 1:091 ml=s, respectively, while for the 
delayed action case, the mean waiting time is 5:751 s and the fuel 
consumption is 1:088 ml=s.

Remainder of the simulations investigate the impact of the 
proposed AV speed adjustment method in the mixed autonomy 
with different AV penetration rates. It is expected that increas-
ing the AV penetration rate improves the traffic system through 
reducing waiting time and fuel consumption. Figures 5–7 depict 
the waiting time and fuel consumption with different AV pene-
tration rates. It is noted that these plots show average results of 
several runs. The mean waiting time and fuel consumption per 
vehicle from time 500 s to 2500 s are calculated for each case, 
and the results are summarized in Figure 8. Comparing the case 
without AVs with those that include AVs in the network reveals 
the significantly high impact of our proposed MPC-based speed 
adjustment on improving the traffic flow. The results demon-
strate that even a relatively low number of AVs in the mixed 
autonomy improves the traffic flow. The case study considering 
10% penetration rate reveals that the mean waiting time per 

vehicle is reduced by 24% and the fuel consumption per vehicle 
is reduced by 12%. This improvement occurs since AVs are able 
to shape the behavior of the vehicles following them and hence 
traffic. When penetration rate is increased to 50%, waiting time 
and fuel consumption are reduced by 63% and 35%, respec-
tively. In the case that all vehicles in the network are autono-
mous, waiting time is reduced by 72% and fuel consumption is 
reduced by 40%. Although a network including only AVs is the 
ideal case because of the lowest waiting time and fuel consump-
tion, it may not be feasible to achieve such a network. However, 
even a small number of AVs show promising impact on 
improving the traffic system. It is noted that as the penetration 
rate increases, AVs, and hence human-driven vehicles following 
them, have a high chance of passing the intersection without 
going to a stop behind the traffic light. According to Figure 7, 
in the ideal case, vehicle’s waiting time gets very close to zero at 
some intervals.

Next, two sets of simulations are conducted considering two 
different traffic flows to evaluate the impact of the traffic flow 
on the performance of the proposed approach. In the first case, 
the average traffic flow is 50% of the flow used in the previous 
simulations (results are shown in Figure 9), while the average 

Figure 5. Performance of the proposed method for AV penetration rate of 10% in the left two subplots and 20% in the right two subplots.

Figure 6. Performance of the proposed method for AV penetration rate of 30% in the left two subplots and 40% in the right two subplots.
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traffic flow in the second case is 150% of the flow used in the 
previous simulations (results are shown in Figure 9). In both 
cases, comparison is made between two AV penetration rates; 
0% and 10%. The mean waiting time and fuel consumption per 
vehicle from time 500 s to 2500 s are calculated for each case, 
and the results are summarized in Figure 10. In the simulation 
with 50% traffic of the original flow, the 10% penetration rate 
reduces the waiting time by 15% and the fuel consumption by 
8%. When the flow is increased to 150% of the original flow, 
the 10% penetration rate improves the traffic network by 
decreasing the waiting time by 32% and the fuel consumption 
by 18% (see the results shown in Figure 11). The results validate 
the capability of the proposed MPC-based speed adjustment in 

improving the traffic system, considering relatively high and low 
flows in the four-intersection network used in this paper.

Results with micro-simulation calibration

It is noted that calibrating a simulation environment to match the 
field data is an important step toward simulation models and results 
validation (Abuamer et al. 2017). In our simulation setup, we expect 
that after flow calibration, a specific speed profile in each incoming 
lane is realized. Since our setup is a hypothetical network, instead of 
using real-world data, hypothetical flow and speed profiles shown 
in Figure 12 are generated. To calibrate the traffic flow and velocity, 

Figure 7. Performance of the proposed method for AV penetration rate of 50% in the left two subplots and 100% in the right two subplots.

Figure 8. The average waiting time per vehicle and average fuel consumption per vehicle for different AV penetration rates. Results show that increasing the number of AVs 
in the network improves the traffic flow by decreasing both waiting time and fuel consumption.
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the SUMO calibrator is employed, which may add or remove 
vehicles and change the velocity of a lane to reach a specified 
flow/speed profile. In each of the incoming lanes, one detector is 
placed (detectors DV

1 -DV
4 , and DH

1 -DH
4 as shown in Figure 3). Similar 

to Abuamer et al. (2017), Geoffrey E. Heavers (GEH) statistics is 
used to compare the calibrated simulation results with the desired 
performance. GEH is calculated as follows: 

GEH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2½RðkÞ�SðkÞ�2

RðkÞþSðkÞ

q

; (12) 

where RðkÞ is the real-world flow (in our case, the desired flow), 
while SðkÞ is the simulation data. GEH statistics for all detectors are 
summarized in Table 2. Results demonstrate that at least 85% of 
GEH values are within the error equal or less than five at all lanes’ 
loop detectors. Hence, the hypothetical setup can now represent the 
hypothetical expected desired flow (Abuamer et al. 2017; Sadat and 
Celikoglu 2017). The speed profiles in the simulation environment 

after calibration for DH
1 , as well as DV

1 are depicted in Figure 13.

Simulation studies after calibrating simulation environment

For the rest of our simulation studies, the calibrated network is used 
to investigate the impact of the proposed AV speed adjustment 
method in the mixed autonomy environment with different AV 
penetration rates. Four criteria are used to evaluate the impact of 
AV penetration rate on the traffic network’s performance: average 
waiting time, average fuel consumption, average travel time, and 
the number of stop-and-go movements (SAGs). According to 
Figures 14 and 15, increasing the number of AVs in the traffic 
network results in lower waiting time, fuel consumption, and SAG 
movements (except for the 50% penetration rate), but it comes with 
the cost of increasing the travel time. Similar to the results in the 
subsection ‘Simulation studies without a micro-simulation calibra-
tion,’ even with a small number of AVs in the network, the 
improvement in waiting time and fuel consumption is noticeable. 
The percentage of the improvements compared to the 0% penetra-
tion rate is shown in Figure 16. The case study considering the 10% 
penetration rate reveals that the average waiting time per vehicle is 

Figure 9. Performance of the proposed method when the average traffic flow is 50% of the average flow considered in the previous simulation studies (Figures 4–8). 
Results for AV penetration rate of 0% are shown in the left subplots and 10% in the right subplots.

Figure 10. The average waiting time per vehicle and average fuel consumption per vehicle for different vehicle flows. Results show that the proposed AV speed control 
method is successfully able to reduce the network waiting time and fuel consumption with high and low network average traffic flow (note that 100% traffic flow is the 
flow in the previous simulation studies (Figures 4–8)).
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reduced by 27%, the average fuel consumption per vehicle is 
reduced by 8%, and the number of SAGs is reduced by 21%; 
however, the average travel time is increased by 5%. When the 
penetration rate is increased to 50%, the waiting time, fuel con-
sumption, and the number of SAGs are reduced by 75%, 26%, and 
43%, respectively. However, the average travel time is increased by 
26%. In the case that all vehicles in the network are autonomous, 

the waiting time is reduced by 88%, the fuel consumption is reduced 
by 39%, the SAG count is reduced by 78%, yet the travel time is 
increased by 36%.

Although a network including only AVs seems to be the ideal case 
because of the lowest waiting time, fuel consumption, and SAG counts, 
the noticeable increase in the travel time makes it less appealing. 
Besides, even a small number of AVs shows a promising impact on 

Figure 11. Performance of the proposed method when the average traffic flow is 150% of the average flow considered in the previous simulation studies (Figures 4–8). 
Results for AV penetration rate of 0% are shown in the left subplots and 10% in the right subplots.

Figure 12. Desired flow and speed profiles for the micro-simulation calibration.

Table 2. GEH statistics summary.

Detector Mean Variance Detector Mean Variance

DH
1

2:36 2:44 DV
1

2:25 3:09

DH
2

2:28 2:30 DV
2

2:71 3:74

DH
3

2:08 3:23 DV
3

2:24 2:59

DH
4

1:88 3:49 DV
4

2:31 1:53

Figure 13. Desired and simulated speed profiles in one of the horizontal and vertical lanes.
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improving the traffic system. Based on the results in Figures 14–16, we 
notice that 40% penetration rate is of great importance since going 
from 40% to 50% penetration rate results in higher SAG counts and 
a noticeable increase in travel time.

Conclusion

In this work, we examined the impact of an MPC-based AV speed 
adjustment in signalized intersections in a mixed autonomy 

environment, where each traffic light is controlled using a deep 
Q-learning RL algorithm. In the proposed speed adjustment 
method, AVs plan their trajectory by solving an MPC problem to 
minimize their acceleration/deceleration and avoid stopping at the 
intersection as much as possible. Simulation results show that AV 
speed adjustment can improve the traffic system efficacy. In 
a network of four connected intersections controlled by indepen-
dent RL agents, with only a relatively small number of AVs (10% 
penetration rate), the vehicle waiting time and fuel consumption 

Figure 14. The average waiting time per vehicle and average fuel consumption per vehicle for different AV penetration rates. Results show that increasing the number of 
AVs in the network improves the traffic flow by decreasing both the waiting time and fuel consumption. It is noted that the results are consistent with the ones presented 
earlier using the uncalibrated simulation environment (see Figure 5).

Figure 15. Total stop-and-go (SAG) movements and average travel time per vehicle for different AV penetration rates. Generally, increasing the AV penetration rate results 
in higher travel time in the network, while the number of SAGs reduces except for the 50% penetration rate.

Figure 16. The improvement in waiting time, fuel consumption, SAG movements count, and travel time in percent compared to the case that no AV is present in the traffic 
network. According to the results, it is concluded that 40% penetration rate is of great importance since going from 40% to 50% results in higher SAG counts and 
a noticeable increase in travel time.
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are noticeably reduced. In addition, reduction of network waiting 
time and average fuel consumption becomes more significant as the 
number of AVs in the network increases.
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