@ Taylor & Francis

TRANSPORTATION LETTERS

Transportation Letters
The International Journal of Transportation Research

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/ytrl20

Leveraging autonomous vehicles in mixed-
autonomy traffic networks with reinforcement
learning-controlled intersections

Sahand Mosharafian, Shirin Afzali & Javad Mohammadpour Velni

To cite this article: Sahand Mosharafian, Shirin Afzali & Javad Mohammadpour Velni (2022):
Leveraging autonomous vehicles in mixed-autonomy traffic networks with reinforcement learning-
controlled intersections, Transportation Letters, DOI: 10.1080/19427867.2022.2146302

To link to this article: https://doi.org/10.1080/19427867.2022.2146302

@ Published online: 28 Nov 2022.

G/; Submit your article to this journal &

||||| Article views: 60

A
& View related articles &

® View Crossmark data &

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=ytrl20



TRANSPORTATION LETTERS
https://doi.org/10.1080/19427867.2022.2146302

Taylor & Francis
Taylor & Francis Group

W) Check for updates

Leveraging autonomous vehicles in mixed-autonomy traffic networks with
reinforcement learning-controlled intersections

Sahand Mosharafian, Shirin Afzali and Javad Mohammadpour Velni

School of Electrical & Computer Engineering, University of Georgia, Athens, GA, USA

ABSTRACT

Development of new approaches to adaptive traffic signal control has received significant attention; an
example is the reinforcement learning (RL), where training and implementation of an RL agent can
allow adaptive signal control in real time, considering the agent’s past experiences. Furthermore,
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autonomous vehicle (AV) technology has shown promise to enhancing the traffic mobility at highways
and intersections. In this paper, delayed action deep Q-learning is developed for a vehicle network
with signalized intersections to control the signal phase. A model predictive control (MPC) scheme is
proposed to allow AVs to adapt their speed. Several case studies that consider mixed autonomy are
examined aiming at reducing network traffic and fuel consumption in the traffic network with multiple
intersections. Simulation studies reveal that even with a few AVs in the network, the waiting time, fuel
consumption, and the number of stop-and-go movements are significantly reduced, while the travel

time is increased.

Introduction

Traffic congestion has become a major issue due to the population
growth and increasing demand for using vehicles. Until recently, the
main attempts had been toward improving physical infrastructure to
reduce traffic although it would not be a cost-effective solution.
Therefore, an alternative solution has emerged aiming to improve
current infrastructure by developing new traffic control methods and
optimizing traffic flow. This solution would be particularly appealing
for locations such as downtown areas that do not have the capability
of being physically upgraded due to surrounding buildings or that
they are already upgraded to their limit (Chowdhury and Sadek 2003;
El-Tantawy, Abdulhai, and Abdelgawad 2014).

One source of traffic congestion is intersections with traffic
signals which can reduce traffic flow and increase waiting time of
the vehicles. Vehicle idling (transition between red light and green
light, in which the vehicle needs to wait) increases delays in trips
and reduces vehicle fuel efficiency or miles per gallon. Some timing
methods have been applied to alleviate the traffic in intersections.
However, they are not adapted to the dynamic traffic system which
changes during the day. Two traditional traffic signal controllers are
pre-timed and actuated. Pre-timed method uses historical traffic
data to adjust green signal timing in different times of the day. This
method does not consider any information about traffic dynamics
and changes. Actuated control method takes current traffic situa-
tion at an intersection to turn green light on for lanes with more
cars without using any information about traffic in long term (Yau
et al. 2017). Hence, interactive solutions for traffic signal control
would improve the performance of current infrastructures by tak-
ing actual traffic information into account. Such solutions are
referred to as adaptive traffic signal control (Mannion, Duggan,
and Howley 2016).

Reinforcement learning (RL) consists of an agent which
interacts with the environment and receives reward based on
the action it takes at different states. The goal of the agent is to

maximize the discounted future rewards. Consequently, the
agent can learn and improve its policy (control action) by
receiving reward based on the action. The distinguishing feature
of RL is ‘learning by interaction with the environment’ (Sutton
and Barto 2018). RL has been applied to different problems in
the context of intelligent transportation (Mannion, Duggan, and
Howley 2016; Qu et al. 2020). RL provides real-time solutions
for traffic signal problem by considering it as a model-free
system. Various learning methods such as Q-learning
(Watkins and Dayan 1992) have been widely studied for
improving the traffic congestion by reducing traveling time or
waiting time, increasing traffic flow, and so on. RL methods can
change the control signal phase duration in addition to their
sequences to handle the traffic in an intersection or a network
of intersections (Yau et al. 2017).

Various traffic signal control problems using RL have been
studied. Some researchers considered isolated intersection case
(Genders and Razavi 2016; Zhang et al. 2018), while others con-
sidered a network of intersections (Abdoos, Mozayani, and Bazzan
2011; Aziz, Zhu, and Ukkusuri 2018). Furthermore, various algo-
rithms and tools have been applied to the traffic signal control
problem, e.g., tabular methods (El-Tantawy, Abdulhai, and
Abdelgawad 2014; Steingrover et al. 2005) and neural networks
(Ge et al. 2019; Genders and Razavi 2016; Zhang et al. 2018).
Speed trajectory control has also been studied in various scenarios.
While some studies have considered improving speed control in an
intersection without traffic signal (Levin and Boyles 2016; Li et al.
2019; Lin et al. 2017), in this research, we focus on the literature on
speed control in a signalized intersection.

Yang, Guler, and Menendez (2016) examined the impact of conven-
tional vehicles (i.e. with no vehicle-to-infrastructure (V2I) communica-
tion), connected, and autonomous vehicles (AVs) (both equipped with
V2I communication systems) on the delay of an intersection with
actuated signal control with the goal of optimizing departure sequence
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of vehicles and AV trajectories. Simulation results showed improvement
in delay. Rakha and Kamalanathsharma (2011) made an attempt to
optimize fuel consumption of vehicles using V2I information exchange;
in the latter study, the vehicles considered were either autonomous and
their speed could be controlled, or the drivers could receive advisory
speed based on future traffic signal changes and the size of the queue.

Li et al. (2018) considered cycle-based signal control together with
electric vehicle (EV) system with eco-driving. Xu et al. (2017) con-
sidered cooperation between vehicles and traffic signal controller to
minimize trip time and energy consumption. First, the signal timings
were calculated, and then, vehicles (all assumed to be AVs) adjusted
their speed based on the signal information. The traffic signal was
controlled using dual-ring phase control in He, Head, and Ding
(2011). In this actuated phase control method, the timings for the
whole cycle were calculated based on current traffic information
(short-term). More recent research studies such as Tajalli,
Mehrabipour, and Hajbabaie (2020) and Zhao, Liu, and Ngoduy
(2019) also considered the same problem, but they assumed that all
vehicles are autonomous. Additionally, to the best of our knowledge,
no past work has considered the aforementioned problem, in which
traffic signal is controlled using RL methods. RL methods have shown
the capability of controlling traffic in real time and adapting to traffic
changes with no need to take vehicle dynamic model into account.

In a fully automated traffic network where all the vehicles are
connected and automated, traffic lights are no longer needed since
vehicles are able to plan safe and efficient trajectories by leveraging
wireless communication (Chavoshi, Genser, and Kouvelas 2021).
However, considering a fully automated traffic is an optimistic
assumption, and our focus in this paper is to improve the traffic
networks including both human-driven vehicles and AVs. In general,
scenarios that involve a mixture of AVs and human-driven vehicles
(mixed autonomy) bring challenges including controllability issue
and partial observability (Wu et al. 2017). Here, we intend to study
the impact of AVs in mixed autonomy. In this paper, our goal is not
only to adapt traffic signal phase to upcoming traffic using RL (real-
time control) but also to adjust AVs speed to the current traffic signal
phase in order to reduce the waiting time of the vehicles in a signalized
intersection. The novelty of our work lies in employing an RL-based
traffic signal control and online AV speed adjustment together, while
we also indirectly consider the queue in front of the AV before the
traffic light. In the literature, vehicle speed control has been examined
under the assumption that the length of the traffic phases is known
(by considering short-term information only); however, in our work,
we study the case where only the minimum duration of a traffic phase
is known, but the duration of each phase depends on the traffic and
the RL agent. To this end, we investigate the impact of different AV
penetration rates on the waiting time and fuel consumption in
a network of RL-controlled intersections.

In AV speed control problem, kinematic/dynamic system equa-
tions, as well as physical constraints such as actuator saturation
limits and speed limit, should be taken into account. These limita-
tions add constraints to the problem of optimizing the AV perfor-
mance. Model predictive control (MPC) allows optimizing multiple
performance indices (e.g., fuel consumption, comfort, etc.) under
AV system constraints. In MPC, the future control sequence for
a chosen horizon is calculated with the goal of optimizing a cost
function (Raffo et al., 2009). In our work, MPC optimizes each AV
speed trajectory to reduce waiting time and fuel consumption in
a traffic network.

The contributions of this paper are as follows: (1) a real-time
speed control method in an intersection controlled by an RL agent
is proposed; (2) an MPC-based algorithm for the speed control in
an RL-controlled intersection is proposed where the exact phase

timings are not available to vehicles a priori, assuming that AVs
have access to the current phase and the remaining time until the
RL controller makes decision; (3) the impact of the queue in front of
the AV is considered in the proposed speed adjustment algorithm;
(4) the mixed autonomy under different AV penetration rates is
studied and the network waiting time and fuel consumption are
evaluated, demonstrating the success and efficacy of the proposed
coordinated control method. It is noted that the proposed approach
for the traffic control in mixed autonomy environment is cooperative
and hybrid in that it involves both data-driven and model-based
decision making for signal control and vehicle speed adjustment,
respectively.

The rest of the paper is organized as follows. Section 2 provides
problem statement and AV dynamics and describes our traffic
signal control algorithm using deep Q-learning. The proposed
speed adjustment method is described in Section 3. Simulation
results and discussions are provided in Section 4, and finally, con-
cluding remarks are made in Section 5.

Problem statement and preliminaries

Problem of interest: The main objective of this work is to examine
the impact of AVs and their speed adjustment based on traffic signal
phase when the AVs are in vicinity of an intersection. The paper
examines two interrelated issues as follows: the traffic signal should
be controlled in a way to reduce the vehicles delay (waiting time),
and also, AV speed should be optimized aiming to reduce the
waiting time or even preventing the AVs to stop at intersections.
Our goal is to show that even with a very small number of AVs in
a mixed fleet of vehicles, the waiting time of the vehicles in the
network would be positively affected. To demonstrate this, we study
multiple scenarios with different AV penetration rates. In all the
scenarios, a four-intersection network is considered where each
intersection is controlled independently using RL. The impact of
AV speed adjustment on network waiting time and fuel consump-
tion with different AV penetration rates in a mixed autonomy is
also examined.

Description of Q-learning and its use for traffic signal control

The proposed approach of this paper employs an RL method
(namely, deep Q-learning) to first train agents (in this case traffic
signals) and then make appropriate decisions based on the circum-
stances. Q-learning is a temporal difference (TD) control algorithm
(Watkins and Dayan 1992). TD methods do not generally require
a model of the environment; instead, they learn by experiencing the
consequences of actions they provide. Similar to dynamic program-
ming (DP), TD algorithms can update estimates without waiting for
a final outcome (Sutton and Barto 2018). One-step Q-learning
update formula is as follows:

Q(St,Ar) — Q(S1, A1) + & |Rip +y max Q(St41,a) — Q(S, Ar) |

(1)

where A; is the set of actions at time instant t; S; is the set of states at ;
R, is the set of rewards at t; Q(s, a) is an estimate of the value of taking
action a in state s; « is the learning rate; and y is the discount-rate
parameter for the reward value (Sutton and Barto 2018). In deep
Q-learning (Mnih et al. 2015), Q-value is estimated using neural
network, where two networks are used: Q-network and target net-
work. Target network weights can be updated with Q-network



parameters after every fixed step, or the weights can be updated using
soft target updates. The loss function for the Q-network is
L= E(s,u,r.s/) [(T’ + )/Inﬁx Q(5,7 a/§ Gt) - Q(Sv a; 0))2] (2)
where 6 are the parameters of Q-network, while 6 are the target
network parameters. To calculate the loss, observations are stored in
a replay buffer, and loss is calculated by randomly choosing samples
from the replay buffer (called mini-batch). Algorithm 1 shows a deep
Q-learning algorithm used for the non-episodic task in our work.
One of the strategies for updating Q(S, A) is e-greedy selection, in
which the agent exploits (takes the action that maximizes the
Q-value) with the probability of 1 —¢& and explores (selects
a random action) with the probability of e. Exploitation results in
the maximum expected reward in one step, whereas exploration may
result in a greater Q-value in the long term (Sutton and Barto 2018).

Algorithm 1 Deep Q-learning algorithm

1: Initialize neural network parameters 6, empty replay buffer B,
So, learning rate a, discount rate y, and soft update parameter 7.

2: repeat

3: for each step do

4: In current state S, take action A (e.g., using e-greedy) and
observe R, §'

5: Store transition (S, A, R, ') in replay buffer B

Sample a random mini-batch from B

7: Calculate loss using the mini-batch data based on (2) and
update Q-network

8: Update target network using soft target update
O —10+01—-1)0

9: §—¢

10: end for

11: until forever

@

In our traffic signal control problem, actions are traffic signal
phases. We consider two actions: (1) east-west and west-east green
and (2) north-south and south-north green. Before any transition
from one action to another, there is a yellow traffic light phase. RL
agent calculates the action based on e-greedy action selection. As
shown in Figure 1, each entering lane within a specific distance d;
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from the intersection is divided into some blocks with the length ;.
If a vehicle exists in the block, corresponding value for the block is
the normalized vehicle velocity; otherwise, the value is —1. It is
worth mentioning that the smaller the size of the block is, the larger
the state space is. Reward, in our problem, is the negative of the
waiting time per vehicle (in seconds) for vehicles in entering lanes
in a vicinity of the junction (250 m radius is considered in this
paper). In our study, the RL agent decision step is Tg;, = 10 s, and it
updates its decision every Tg; seconds. Thus, each action would
remain in effect for at least Ty; seconds.

Remark 1. It is noted that in our study, the RL agent does not apply
its decision to the traffic signal immediately. Instead, every time RL
agent gathers information about current state, and it chooses a new
action but applies it to the intersection in the next decision-making
event (which is in Ty, seconds). Simulation experiments presented
in Section 4 show that applying RL agent’s decision with delay does
not deteriorate the performance of the RL algorithm and even
improves the performance (in terms of waiting time and fuel
consumption).

Autonomous vehicle system dynamics

For each AV, a linear state-space representation is considered as

follows:
x(0)] [0 1] [=x(t) 0
{v(r)} = [0 o} [v(t)} * H u(t)
where x(t) and v(t) are AV position and velocity, respectively, and
u(t) is the vehicle acceleration (also the control input). By discretiz-

ing the given state-space equation with sampling time f;, vehicle
dynamics in discrete time are represented as follows:

e = 4[] + [0 oo

Furthermore, following constraints are imposed on the system
states and control input:

3)

(4)

0< V(k) < Vinaxs

(5a)

block 5 block 4 block 3 block 2
value =-1 value = value =-1 value =
velocity velocity

block 1
value =-1

Figure 1. A simple demonstration of state definition in a junction. In this example, an entering lane is divided into five blocks. The corresponding value for blocks with
vehicles (shown by white boxes) is the normalized velocity of the vehicle, while the value for the other blocks is —1. An array including the block values for all entering lanes

build the state of the junction.



4 e S. MOSHARAFIAN ET AL.

Umin S u(k) S Umax, (Sb)

where vy, represents road speed limit, and u;, and u,,, are
minimum and maximum possible values for system input,
respectively.

Proposed approach to AV speed control

When an AV distance from the intersection goes below some
predefined value (the value depends on the road speed limit and
the minimum green signal period; here it is considered 250 m),
the intersection sends the current traffic phase information to
the AV through infrastructure-to-vehicle (I2V) communication.
Then, the AV (we call it adaptive AV) adjusts its speed based
on that information and the information it receives from
onboard sensors about its leader vehicle, i.e., the closest vehicle
in front of it (if any). If there is a vehicle between the adaptive
AV and the intersection, the closest human-driven (non-AV)
one to the AV is called the leader vehicle, and the closest AV is
called the leader AV. As shown in Figure 2, depending on the
existence of a leader vehicle/AV, an adaptive AV experiences
one of the following cases:

(1) (case 1) There is no leader vehicle, in which case, the adaptive
AV adjusts its speed based on its distance from the intersec-
tion, current traffic phase, and the time remaining until the
current RL agent makes an action.

(2) (case 2) There is a human-driven leader vehicle, in which
case, first the adaptive AV determines if the leader will pass
the intersection with its current speed and current signal
phase information. If yes, then this case is similar to case 1;
otherwise, the AV should use the speed and position of the
other vehicle for calculating the possible distance it can
travel.

(3) (case 3) There is a leader AV, in which case, first the
adaptive AV determines if the leader AV will pass the
intersection based on the current leader speed, distance
from the intersection, and current traffic signal informa-
tion. If yes, this case is similar to either case 1 or case 2;
otherwise, the adaptive AV does not need to make any
calculations and follows the traffic in front of it because
the leader AV will adjust its speed.

)

To check if a leader vehicle can pass the intersection when the
traffic light is green, the following inequality conditions can be
easily checked (assuming that the leader vehicle moves at a fixed
velocity for the next T seconds):

Vi Tg>dl (6a)

AV AV
VL -TG>dL ,

(6b)

where Tg is the expected remaining time of the green phase; V!
and dff are the leader vehicle’s speed and distance from the
intersection, respectively; and V&V and di'V are the leader AV’s
speed and distance from the intersection, respectively. If (6a)
holds, the human-driven leader vehicle will pass the intersec-
tion; if (6b) holds, the leader AV will pass the intersection.
According to remark 1, when current traffic phase is green,
T can be calculated as follows:

Tg = T + stat. Ty, (7)

where T is the remaining time until the traffic controller updates its
decision, and stat is a binary variable which is one if the current and
next phase are the same otherwise zero. It is worth mentioning that
according to Remark 1, the current and next traffic phases are
available, and the intersection shares both with AVs through V2I
communication.

If no leader exists, or the leaders pass the intersection based on
(6), then the adaptive AV needs to evaluate whether it can pass the
intersection. The AV determines if it can pass the intersection by
solving the following MPC problem:

Ny
min 3 [u(k)]* + [v(k) = Viar]®
u(k) k=0
subject to : system equations (4), (8)
system constraints (5),
x(N1) > dav,

where Ny = Tg/t,, t, is the sampling time, and d4v is the adaptive
AV’s distance from the intersection. Incorporating the vehicle input
in the cost function prevents the vehicle from unnecessary accel-
eration/deceleration, thereby reducing fuel consumption while
maximizing vehicle speed improves traffic flow. The last inequality
forces the MPC to find a solution (if exists) that guarantees passing
the intersection within the prediction horizon N. Consequently, if

g

b ¥ ¥

= —

War
o B
*™e wyr Case 1
Wwar
o B
e ) wir Case 2
Wwar
o B
[ Dol ) wir Case 3

Figure 2. Different cases for an adaptive AV approaching the intersection. The green vehicle is the adaptive AV, the blue one is other AV, and the black one is a human-

driven vehicle (non-AV).
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Table 1. List of parameters used in the simulation study.

7 =0.0001 V:‘Im/s
a = 0.00005 V=01m/s
y=2038 Vmax = 15.65m/s

I=65m TRL:1OS
lp=65m T,=2s
di =260 m tt=1s

the above optimization problem is feasible, then adaptive AV can
pass the intersection. Otherwise, the AV cannot pass during the
next T seconds; hence, the AV should adjust its speed to avoid
unnecessary acceleration/deceleration until it can pass the intersec-
tion. Based on the delayed RL agent action execution (see
Remark 1), we define T, as the expected time that the AV should
wait until the traffic phase becomes green again, which is calculated
as follows:

if phase is green
if phaseis red or yellow

Td:{T+2Ty+TRL, ©)

TG + Ty,

where T, is the yellow signal duration (in this paper, T, = 2s). The
adaptive AV speed trajectory is then calculated by solving the
following optimization problem:

N, R
min Y [u(k)]
u(k) k=0
subject to : system equations (4),
system constraints (5),
x(N2) < dav,
v(Np) <V,
v(k) = V,

(10)

where N, = Ty/t, and V>0 and V is a lower bound and
higher bound on the AV final speed, respectively. The third
constraint guarantees that the AV will not pass the intersec-
tion at k = N,. The fourth constraint is considered to avoid
arriving at the intersection with high speed so that the AV
would be able to stop in the case that traffic phase does not
turn green after T, seconds as expected. The last constraint
prevents the adaptive AV from stopping completely within the
prediction horizon.

In the case that there is a leader AV which cannot pass the
intersection (either the phase is red or green), the adaptive AV
does not need to make any calculation based on our earlier discus-
sion for case 3. If the leader is a human-driven vehicle that cannot
pass the intersection, then the adaptive AV should calculate the
effective distance (its distance from the intersection while consider-
ing the position of the leader). The effective distance (d,f) is defined
as follows:

defp = day — (dif — x) — I where x = min(VI. Ty, dit),  (11)
where [ is the average vehicle length plus the minimum gap
between vehicles (here, [ is assumed to be 6.5 m). After calcu-
lating d,p, AV calculates its speed using (10) by replacing dav
with d,g. Consequently, every AV within a specified perimeter
of the intersection changes its speed based on Algorithm 2.
Each AV runs Algorithm 2 every second so that each adaptive
AV updates its speed based on the most recent information.

Algorithm 2 Proposed AV speed control strategy

1. F H < 0
2: F AV 0
3: if there is a human-driven (non-AV) leader vehicle then

4: VI « leader vehicle speed

5. dif — leader vehicle distance from the intersection
6: if current phase is green and (6a) does not hold then
7: Fyg—1

8: else if current phase is not green then

9: Fy 2

10:  end if

11: end if

12: if there is a leader AV then

13: V&V — leader AV speed

14: d‘L‘W « leader AV distance from the intersection
15:  if current phase is green and (6b) does not hold then
16: FAV — 1

17:  else if current phase is not green then

18: F AV 2

19:  end if

20: end if

21: if F4yv >0 then

22: follow the traffic

23: else

24: if Fy == 0 then

25: if signal is green and (8) is feasible then

26: adjust speed based on (8)
27: else

28: adjust speed using (10)
29: end if

30: else

31: dav « calculate degy using (11)
32: use (10) to adjust speed

33: endif

34: end if

Simulation studies and discussion

Simulation of Urban Mobility (SUMO) (Lopez et al. 2018) is
used as the traffic simulation environment. SUMO provides
information about possible movements at intersections and
right-of-way rules in details. To obtain the waiting time, fuel
consumption, location, and speed of vehicles, Traffic Control
Interface (TraCI) is used (Lopez et al. 2018), while the deep
Q-learning controller is implemented using Keras library in
Python (Chollet et al. 2015), and the MPC optimization pro-
blem is implemented and solved using CVXPY (Agrawal et al.
2018; Diamond and Boyd 2016). Parameters used in the simu-
lation are listed in Table 1. For the Q-network and target
network, neural networks with five hidden layers are used,
each of which consists of 1024 units with rectified linear
activation functions. The traffic network used in the simula-
tion studies is shown in Figure 3. This network initializes
without vehicles inside, and vehicles enter the network from
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Figure 3. Network of four connected intersections used in our simulation studies. Each intersection is controlled by an independent RL agent. In each of the network’s
incoming lanes, a detector is installed, namely, D4-D¥ for horizontal lanes and DY-DY for vertical lanes. The detectors are later used for micro-simulation calibration.

eight entering lanes. Since the RL agent controls the traffic
using ¢ — greedy and may select actions randomly, and the
vehicles are generated randomly in SUMO, the simulations are
performed repeatedly and the average over those simulations is
calculated. The rest of this section is divided into three parts;
first, the simulation studies are done without micro-simulation
calibration. Then, micro-simulation calibration is discussed,
and finally, simulation studies are conducted using the cali-
brated environment.
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Simulation studies without a micro-simulation calibration

In the first study, the performance of the deep Q-learning algorithm
with and without action delay is investigated. The average traffic
flow in the vertical lanes is assumed to be 540 veh/h, while in the
horizontal lanes, the average flow is 360 veh/h. As shown in
Figure 4, the two top subplots represent vehicle waiting time,
while the bottom subplots depict the vehicle fuel consumption.
Results show that applying the RL decision with delay in the next

delayed action case
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Figure 4. Performance of the RL agent in two different cases. In the first case, whose results are shown in the left two subplots, the agent applies its decision immediately;
in the second case shown in the right two subplots, the action is applied in the next decision-making event. The delayed action case performance is slightly better than the
case without action delay in terms of mean waiting time and mean fuel consumption.
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Figure 5. Performance of the proposed method for AV penetration rate of 10% in the left two subplots and 20% in the right two subplots.

decision-making step slightly improves the performance of the RL
traffic controller in our study. The mean waiting time and fuel
consumption per vehicle from time 500 s to 2500 s for no action
delay case are 6.174 s, and 1.091 ml/s, respectively, while for the
delayed action case, the mean waiting time is 5.751 s and the fuel
consumption is 1.088 ml/s.

Remainder of the simulations investigate the impact of the
proposed AV speed adjustment method in the mixed autonomy
with different AV penetration rates. It is expected that increas-
ing the AV penetration rate improves the traffic system through
reducing waiting time and fuel consumption. Figures 5-7 depict
the waiting time and fuel consumption with different AV pene-
tration rates. It is noted that these plots show average results of
several runs. The mean waiting time and fuel consumption per
vehicle from time 500 s to 2500 s are calculated for each case,
and the results are summarized in Figure 8. Comparing the case
without AVs with those that include AVs in the network reveals
the significantly high impact of our proposed MPC-based speed
adjustment on improving the traffic flow. The results demon-
strate that even a relatively low number of AVs in the mixed
autonomy improves the traffic flow. The case study considering
10% penetration rate reveals that the mean waiting time per
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vehicle is reduced by 24% and the fuel consumption per vehicle
is reduced by 12%. This improvement occurs since AVs are able
to shape the behavior of the vehicles following them and hence
traffic. When penetration rate is increased to 50%, waiting time
and fuel consumption are reduced by 63% and 35%, respec-
tively. In the case that all vehicles in the network are autono-
mous, waiting time is reduced by 72% and fuel consumption is
reduced by 40%. Although a network including only AVs is the
ideal case because of the lowest waiting time and fuel consump-
tion, it may not be feasible to achieve such a network. However,
even a small number of AVs show promising impact on
improving the traffic system. It is noted that as the penetration
rate increases, AVs, and hence human-driven vehicles following
them, have a high chance of passing the intersection without
going to a stop behind the traffic light. According to Figure 7,
in the ideal case, vehicle’s waiting time gets very close to zero at
some intervals.

Next, two sets of simulations are conducted considering two
different traffic flows to evaluate the impact of the traffic flow
on the performance of the proposed approach. In the first case,
the average traffic flow is 50% of the flow used in the previous
simulations (results are shown in Figure 9), while the average
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Figure 6. Performance of the proposed method for AV penetration rate of 30% in the left two subplots and 40% in the right two subplots.
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Figure 8. The average waiting time per vehicle and average fuel consumption per vehicle for different AV penetration rates. Results show that increasing the number of AVs
in the network improves the traffic flow by decreasing both waiting time and fuel consumption.

traffic flow in the second case is 150% of the flow used in the
previous simulations (results are shown in Figure 9). In both
cases, comparison is made between two AV penetration rates;
0% and 10%. The mean waiting time and fuel consumption per
vehicle from time 500 s to 2500 s are calculated for each case,
and the results are summarized in Figure 10. In the simulation
with 50% traffic of the original flow, the 10% penetration rate
reduces the waiting time by 15% and the fuel consumption by
8%. When the flow is increased to 150% of the original flow,
the 10% penetration rate improves the traffic network by
decreasing the waiting time by 32% and the fuel consumption
by 18% (see the results shown in Figure 11). The results validate
the capability of the proposed MPC-based speed adjustment in

improving the traffic system, considering relatively high and low
flows in the four-intersection network used in this paper.

Results with micro-simulation calibration

It is noted that calibrating a simulation environment to match the
field data is an important step toward simulation models and results
validation (Abuamer et al. 2017). In our simulation setup, we expect
that after flow calibration, a specific speed profile in each incoming
lane is realized. Since our setup is a hypothetical network, instead of
using real-world data, hypothetical flow and speed profiles shown
in Figure 12 are generated. To calibrate the traffic flow and velocity,
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Figure 10. The average waiting time per vehicle and average fuel consumption per vehicle for different vehicle flows. Results show that the proposed AV speed control
method is successfully able to reduce the network waiting time and fuel consumption with high and low network average traffic flow (note that 100% traffic flow is the

flow in the previous simulation studies (Figures 4-8)).

the SUMO calibrator is employed, which may add or remove
vehicles and change the velocity of a lane to reach a specified
flow/speed profile. In each of the incoming lanes, one detector is
placed (detectors DY-DX, and D{I -Df as shown in Figure 3). Similar
to Abuamer et al. (2017), Geoffrey E. Heavers (GEH) statistics is
used to compare the calibrated simulation results with the desired
performance. GEH is calculated as follows:

2[R(k)—S(k)]”

R(R)TS(k) (12)

GEH =

where R(k) is the real-world flow (in our case, the desired flow),
while S(k) is the simulation data. GEH statistics for all detectors are
summarized in Table 2. Results demonstrate that at least 85% of
GEH values are within the error equal or less than five at all lanes’
loop detectors. Hence, the hypothetical setup can now represent the
hypothetical expected desired flow (Abuamer et al. 2017; Sadat and
Celikoglu 2017). The speed profiles in the simulation environment
after calibration for D, as well as D} are depicted in Figure 13.

Simulation studies after calibrating simulation environment

For the rest of our simulation studies, the calibrated network is used
to investigate the impact of the proposed AV speed adjustment
method in the mixed autonomy environment with different AV
penetration rates. Four criteria are used to evaluate the impact of
AV penetration rate on the traffic network’s performance: average
waiting time, average fuel consumption, average travel time, and
the number of stop-and-go movements (SAGs). According to
Figures 14 and 15, increasing the number of AVs in the traffic
network results in lower waiting time, fuel consumption, and SAG
movements (except for the 50% penetration rate), but it comes with
the cost of increasing the travel time. Similar to the results in the
subsection ‘Simulation studies without a micro-simulation calibra-
tion,” even with a small number of AVs in the network, the
improvement in waiting time and fuel consumption is noticeable.
The percentage of the improvements compared to the 0% penetra-
tion rate is shown in Figure 16. The case study considering the 10%
penetration rate reveals that the average waiting time per vehicle is
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Figure 13. Desired and simulated speed profiles in one of the horizontal and vertical lanes.

reduced by 27%, the average fuel consumption per vehicle is
reduced by 8%, and the number of SAGs is reduced by 21%;
however, the average travel time is increased by 5%. When the
penetration rate is increased to 50%, the waiting time, fuel con-
sumption, and the number of SAGs are reduced by 75%, 26%, and
43%, respectively. However, the average travel time is increased by
26%. In the case that all vehicles in the network are autonomous,

the waiting time is reduced by 88%, the fuel consumption is reduced
by 39%, the SAG count is reduced by 78%, yet the travel time is
increased by 36%.

Although a network including only AVs seems to be the ideal case
because of the lowest waiting time, fuel consumption, and SAG counts,
the noticeable increase in the travel time makes it less appealing.
Besides, even a small number of AVs shows a promising impact on
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a noticeable increase in travel time.

improving the traffic system. Based on the results in Figures 14-16, we
notice that 40% penetration rate is of great importance since going
from 40% to 50% penetration rate results in higher SAG counts and
a noticeable increase in travel time.

Conclusion

In this work, we examined the impact of an MPC-based AV speed
adjustment in signalized intersections in a mixed autonomy

environment, where each traffic light is controlled using a deep
Q-learning RL algorithm. In the proposed speed adjustment
method, AVs plan their trajectory by solving an MPC problem to
minimize their acceleration/deceleration and avoid stopping at the
intersection as much as possible. Simulation results show that AV
speed adjustment can improve the traffic system efficacy. In
a network of four connected intersections controlled by indepen-
dent RL agents, with only a relatively small number of AVs (10%
penetration rate), the vehicle waiting time and fuel consumption
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are noticeably reduced. In addition, reduction of network waiting
time and average fuel consumption becomes more significant as the
number of AVs in the network increases.
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