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Semiconductor materials demonstrate promising potential for
wastewater treatment due to their photocatalytic properties,which
canbecontrolled through thedesignof thebandgapstructure.The
photogenerated electron and hole in semiconductor materials
provide efficient oxidation/reduction performance for the degra-
dation of pollutants, either directly or indirectly, through the gen-
eration of reactive species. Photocatalytic degradation has been
utilized to treat contaminants ranging from dyes, chemical pre-
cursors, and pharmaceuticals, to diverse organic and inorganic
waste. Over the past few years, advances in functional materials
haveachievedwider light absorption rangesandextendedcharge
carrier lifetime through the doping of heteroatomsor the formation
of heterojunctions. Despite these advances, innovative strategies
are required to target emerging contaminants with environmental
persistence, such as perfluorinated compounds, and improve the
efficiency of these nanomaterials in real water matrices in the
presence ofmulticomponent interfering ions. In this review, recent
advances on the application of semiconductor catalysts for
wastewater treatment and environmental remediation are
reviewed, and new approaches that may overcome the current
limitations are discussed.
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Introduction
Toxic organic molecules and metal ions produced
through anthropogenicmeans are endangering the health
of humans and the environment. While great strides have
been achieved through electrochemical methods for
wastewater treatment, the electrical energy required for
the treatment often comes from non-renewable sources,
which hampers eco-friendly and sustainable water puri-
fication. In this aspect, semiconductor photocatalysts
have become a promising emerging approach for water
purification and wastewater treatment due to direct

sunlight coupling, allowing eco-friendly and mild reac-
tion conditions, coupled with remarkable reactivity for
decomposing even trace amounts of pollutants [1]. Our
current perspective provides an overview of pollutant
degradation in wastewater using semiconductor photo-
catalysts, focusing on advances from the recent two years.
Materials design approaches for photocatalysts have been
comprehensively covered by several prior reviews [2e4].
Here, we provide a brief overview of the existing strate-
gies for enhancing light absorption and achieving effec-
tive charge separation of semiconductors, and also

discuss pathways for system integration of photocatalysts
with other separation and reaction approaches towards
enabling effective wastewater treatment.

Semiconductor photocatalysts convert clean, renewable
solar energy into electrochemical energy. When light
irradiates a semiconductor with a bandgap (EG) close to
or smaller than the energy of the light, electrons (e�)
initially in the valence band of the semiconductor are

excited to the conduction band which generates free
holes (hþ) in the valence band. Depending on the
energy level of the band edges, the excited electrons
and holes can react with water or oxygen molecules to
form reactive chemicals named reactive oxygen species
(ROS) such as hydroxyl radical (�OH) and superoxide
radical (�O2

-), that can in turn degrade contaminant
molecules. At the same time, the charge carriers can
directly reduce or oxidize the target chemical species as
well (Figure 1a) [5]. Thus, through different chemical
pathways, semiconductors can facilitate eco-friendly

wastewater treatment.

Semiconductor photocatalysts have been shown to
enable the degradation of organic and inorganic pollut-
ants. Dyes have received intense attention as model
contaminants for photodegradation, including methylene
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Figure 1

Schematic diagram of the bandgap structure of various photocatalysts. (a), Generation of electron (red dot)-hole (blue outlined white dot) pair and
following formation of two reactive oxygen species, superoxide radical and hydroxyl radical, upon light irradiation on a semiconductor. (b–c), Narrowed
band gap due to introduction of defect level by (b) heteroatom doping, Ed, and (c) vacancy formation, EVo. Oxygen vacancies on the surface show target
adsorption property of it in (c). (d), Type II heterojunction where both electrons and holes move to more energetically stable CB and VB, respectively. (e),
Z-scheme heterojunction where electrons in a semiconductor with more positive CB combine with holes in its counterpart with more negative VB. (f),
Noble metal deposited on the surface of semiconductor working as an electron sink. (g), Surface plasmon resonance induced hot electron in noble
metal NP flowing into a semiconductor. (h), Light-induced electron–hole pair in the surface complex of pollutant on a semiconductor.

2 Green Methods for Pollution Control
blue (MB), methyl orange (MO), and rhodamine B
(RhB). Photodegradation has also addressed antibiotics
of growing concern such as tetracycline (TC), enro-

floxacin (ENR), and other pharmaceuticals including
diclofenac. In addition, other toxic chemicals such as
phenol and cyanide, heavy metal ions including Cr(VI),
and bacteria like E. coli have been the subject of the
photocatalytic water treatment [6]. Remarkably, even
exceptionally stable molecules such as per- and poly-
fluoroalkyl substances (PFAS) were revealed to be
degradable with photocatalysts (Figure 2a), as described
in detail in several reviews [7,8]. Finally, more recently,
Current Opinion in Green and Sustainable Chemistry 2022, 36:100644
photocatalysts have even been shown to be capable of
dissolving and recovering precious metals from e-waste
[9]. This noteworthy reactivity towards various toxic

substances makes semiconductor photocatalysts a
promising approach for sustainable environmental
remediation and even resource recovery.

Conventional strategies to improve
photocatalytic activity
Two major parameters dictate the photocatalytic activity
of semiconductors and thereby their capability to
decompose contaminants: bandgap and charge carrier
www.sciencedirect.com
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Figure 2

Schematic diagram of the bandgap structure of various photocatalysts. (a), Proposed photocatalytic degradation mechanism of PFOA with BiOF
nanosheets. Reproduced with permission from Wang et al. [16], Copyright 2021 Elsevier. (b), Degradation of o-cresol and p-nitrophenol over time upon
visible light irradiation in the presence of TiO2/g-C3N4 photocatalysts. Reproduced with permission from Qu et al. [21], Copyright 2021 Elsevier. (c),
Recyclability of Bi5O7I/ZnO photocatalysts toward PFOA degradation. Reproduced with permission from Yang et al. [22], Copyright 2021 Elsevier. (d),
Schematic diagram showing photothermal catalytic removal of antibiotics. Reproduced with permission from Xia et al. [32], Copyright 2018 Elsevier. (e),
Proposed pollutant removal mechanism of intricately structured photocatalysts. Reproduced with permission from Yu et al. [37], Copyright 2020 Elsevier.
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lifetime. Given that more than half of sunlight is
composed of visible light, materials possessing a narrower

bandgap can utilize a more significant portion of sunlight,
which can improve photocatalytic efficiency. Secondly,
photogenerated electrons and holes are likely to interact
when spatially close and this recombination leads to their
annihilation before reaching the semiconductor’s surface
where photocatalytic reactions occur, thereby losing
photocatalytic activity. In addition to these two parame-
ters, the stability of semiconductors is one factor that
should be considered for efficient use in wastewater
treatment. Some semiconductors suffer from the photo-
corrosion, in which excited electrons or holes reduce or

oxidize a semiconductor itself under illumination, leading
to the decomposition of the semiconductors and subse-
quent contamination of water. To avoid this detrimental
process, oxide semiconductors are often favored due to
their high electrical and physical stability.

To achieve higher light absorption and longer charge
carrier lifetime, the materials design strategies often
can be categorized along two paths: introducing point
defects in semiconductors, or forming heterostructures
with multiple semiconductors and other materials [4].
Defects can introduce additional energy levels
www.sciencedirect.com C
between the valence and conduction band, enhancing
light absorption by lowering the effective bandgap.

Meanwhile, the formation of heterojunction between
two different materials can facilitate effective charge
separation and thereby induce a longer charge carrier
lifetime [10]. The specific strategies will be discussed
below with a concentration of photocatalysts and
target contaminants labeled next to each substance in
brackets.

Introducing point defects
The introduction of point defects adds extra energy
levels to a semiconductor, in which electrons can be
excited from defect levels to the conduction band or
from the valence band to defect levels depending on
its position, thereby allowing a semiconductor to

absorb light with smaller energy than its bandgap.
However, the defect site can also act as a recombina-
tion site of photogenerated electrons and holes,
inhibiting charge carriers from participating in the
pollutant degradation reactions [11]. However, there
is a limitation in inducing a large concentration of
point defects in nanomaterials, which are widely used
as photocatalysts, owing to the relatively unstable
nature of nanomaterials [12].
urrent Opinion in Green and Sustainable Chemistry 2022, 36:100644
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4 Green Methods for Pollution Control
Doping heteroatoms
Doping heteroatoms in the semiconductor is a
commonly used method to add additional energy levels
in the middle of the bandgap, leading to an increase in
the absorption range of light (Figure 1b). Doping boron
to originally UV active ZnO (B-doped ZnO, BeZnO)
nanoparticles (NP) (1.4 g/L) enabled it to degrade 89%
of cyanide (10 mg/L) in 2 h under visible light [13]. Fe
doping lowered the bandgap of CeO2 NP (2 g/L) and
facilitated Congo red (CR) dye (25 mg/L) degradation
under visible light, resulting in 96% removal in 3 h [14].

While doping could enhance the light absorption effi-
ciency, there needs to be consideration that the energy
level of the semiconductor is adequate relative to carry
out the oxidation/reduction processes that ensure that
the reactive species are still formed, to subsequently
enable degradation. Bandgap control needs to be
performed within the range where the photocatalyst
does not lose the capability to decompose the target
contaminants.

Oxygen vacancy
Oxygen vacancies can enhance the photocatalytic
behavior of semiconductors by inducing defect energy
levels, and by serving as adsorption sites for organic
molecules (Figure 1c) [15]. Oxygen vacancy induced in
(101) faceted BiOF nanosheets (0.7 g/L) narrowed the
bandgap to the extent that it could effectively degrade
PFOA (15 mg/L) to 100% efficiency in 6 h, under UV
[16]. Oxygen vacancy improved light absorption effi-
ciency of NbeBi2WO6 nanosheets (0.5 g/L, 0.3 g/L) by
widening the valence band, which facilitated the 100%
and 65% degradation of RhB (10 mg/L) and TC (20 mg/

L), respectively, under visible light in 2 h [17]. In
addition, the capability of oxygen vacancy on the surface
of In2O3 to adsorb PFOA was critical for MnOx/In2O3

nanorods (0.5 g/L) in degrading PFOA as the hole can
directly attack PFOA when the contaminant comes in
contact with the surface of the photocatalyst. It
removed 99.8% of PFOA (50 mg/L) from the solution
under solar light in 3 h, assisted by improved charge
separation through heterojunction [18]. However, the
controllable formation of oxygen vacancy on the surface
remains a challenge and a meticulous approach is

required in tuning its concentration as oxygen vacancy
can serve as an electronehole recombination center
which deteriorates the activity of photocatalysts [16].

Heterojunction formation
The junction between two different semiconductors
changes the electronic band configuration of the system
depending on type: type I, II, III, and Z-scheme. Among
them, type II or Z-scheme heterojunction are mostly
adopted as charge carriers that can be spatially separated
to improve the charge carrier lifetime, and enhance light
absorption of the photocatalysts [19,20]. A difference in
Current Opinion in Green and Sustainable Chemistry 2022, 36:100644
the band structure induces the migration of electrons and
holes through the heterojunction interface. However, the
interface itself could deteriorate charge transfer between
two components of heterojunction or act as a recombi-
nation site, both of which are harmful in terms of
photocatalytic activity [11].

Type II heterojunction
Type II heterojunction refers to the case where both the
conduction band and valence band of one component
are more positive than those of the other. Photo-
generated electrons accumulate on a more positive
conduction band, while holes are collected on a more
negative, spatially separated valence band (Figure 1d).
More than 95% of phenolic compounds (20 mg/L) such
as o-cresol, p-cresol, p-nitrophenol, and phenol were
removed by defect-rich TiO2/g-C3N4 (0.75 g/L) under
visible light within 100 min (Figure 2b) [21]. Remark-
ably, 91% of a PFOA solution (1 mg/L) was also suc-

cessfully degraded with Bi5O7I/ZnO microspheres
(0.5 g/L) in 6 h under visible light (a few recycling cycles
were demonstrated; Figure 2c) [22]. In addition, TC
(30 mg/L) was nearly fully degraded with inverse opal
TiO2/CdS nanocomposites (0.3 g/L) in 10 min under
visible light [23]. Meanwhile, a ternary heterojunction
Co3O4/(001)/(101) TiO2 nanosheet (0.5 g/L) was able
to degrade 93% of ENR and about 70% of both cipro-
floxacin (CIP) and ibuprofen (IBU) (all 10 mg/L) in 1 h
due to enhanced charge separation between two
different facet TiO2 nanosheets [24]. Nevertheless,

type II heterojunction inevitably adopts weaker oxida-
tion and reduction power of component semiconductors
on account of the nature of it [25].

Z-scheme heterojunction
Z-scheme heterojunction can overcome the disadvan-
tages of type-II band structure and point defects.
Although Z-scheme heterojunction has the same
bandgap configuration as type II, electrons and holes
transfer in a different way. At the interface, excited
electrons generated in a semiconductor with a more
positive conduction band recombine with holes

generated in the other with a more negative valence
band so that this heterostructure can exhibit higher
reduction and oxidation power (Figure 1e). For
instance, AgI NP/Zn3V2O8 nanosheet Z-scheme
heterojunction (0.33 g/L) could degrade 91% of TC
(20 mg/L) in 140 min under visible light, which would
have been impossible if it had been type II [26]. More
than 99% of RhB (30 ppm) and MB (10 ppm) also could
be destroyed by Ag3PO4/WO3 nanocomposite (1 g/L) in
6 min and MneBi2WO6/graphene oxide (GO)/MoS2
ternary nanocomposite (0.5 g/L) in 1 h under visible

light [27,28]. Although Z-scheme seems superior to
type II, there is also a limitation in the selection of
materials to obtain this specific type of heterojunction
www.sciencedirect.com
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as the type is determined by the Fermi level of the
compound [29], which is an inherent property of a
material.

Composite integration with non-semiconductor
materials
Noble metal
Noble metal NPs deposited on a semiconductor can act
as an electron trap site that assists charge separation
(Figure 1f). For example, Ag NPs on CdSe deposited on
GO/cellulose acetate support (120 g/L) facilitated
degradation of malachite green dye (5 ppm), resulting in
97% removal in 25 min under solar light [30]. Light-
induced surface plasmon resonance (SPR) of Au NPs
generates hot electrons (Figure 1g), enhancing the
photocatalytic dye degradation behavior of Bi2S3 (0.5 g/
L) under visible light [31]. Besides, Ag-doped MnO2

porous microsphere (0.2 g/L) could completely inacti-

vate E. coli (107 cfu/mL) in 10 min through photo-
thermocatalytic reaction under sunlight due to Ag atoms
deposited on the surface of MnO2 (Figure 2d) [32].
Still, usage of noble metal may be limited given the
scarcity and high-cost of these critical resources.

Surface complex
In some cases, organic molecules could form a complex
with a semiconductor, which can be activated by light

(Figure 1h). 10 mg/L of TC formed TC-TiO2 NP com-
plex on the surface of TiO2 NP (0.2 g/L), and this
enabled 25.1% removal of TC even under 700 nm light
in 2 h [33]. It showed up to 77% removal depending on
wavelength within the visible light range. Meanwhile,
0.05 mM of peroxymonosulfate (PMS) formed a com-
plex with TiO2 nanotubes and was activated by visible
light to generate sulfate radical (�SO4

e) that degraded
94.6% of BPA in solution (1 mg/L) in 30 min [34]. Going
forward, a systematic exploration of these surface com-
plex-forming molecules should be carried out, in

conjunction with careful surface spectroscopy, to un-
derstand the pathways for interfacial interaction of these
molecules and even design tailored photocatalysts to
take advantage of these effects.

Other heterostructures
Finally, there are several other heterostructure photo-
catalysts of interest for wastewater treatment. Poly-
propylene (PP) microplastic was shown to be degradable
by ZnO photocatalysts. The volume of PP particles
(70 mg/L) decreased by 65% over two weeks under

visible light in the solution with ZnO nanorods on glass
fibers (60 mg of nanorods on 10 g of fiber) [35]. Carbon
QD implanted CdS nanosheet (0.2 g/L) formed heter-
ostructure inducing lowered band gap and suppressed
recombination, and this reduced 94% of Cr(IV) (20 mg/
L) in 10 min under visible light [36]. Cooperation of
several approaches covered above was also tested in the
www.sciencedirect.com C
following works. Ag/AgCl@Ti3þ-TiO2 mesocrystals
(0.5 g/L) showed 90% removal of TC (50 mg/L) in
24 min and about 55% removal of real industrial para-
ester wastewater in 2 h under visible light [37].
Defect levels in TiO2 enabled the formation of
electronehole pairs under visible light, while hot elec-
trons formed in Ag due to light-induced SPR transferred
to AgCl to make superoxide radical and holes left in Ag

combined with electrons in TiO2 to form Z-scheme
heterojunction, all improving overall degradation effi-
ciency (Figure 2e). Likewise, Bi/BiOI1-xFx hollow
microsphere (0.4 g/L) degraded almost all PFOA
(40 mg/L) under visible light in 2 h, due to the lowered
band gap of the semiconductor material originating from
F doping, the SPR effect of Bi, and large surface area
coming from its hollow structure [38].
Conclusions and perspectives
As discussed, there have been significant advances and
improvements in the photocatalytic performance of
semiconductor materials for wastewater treatment and
water purification. To achieve higher degradation effi-
ciencies for contaminants, recent work has been focused
on engineering material properties, such as introducing

point defects and creating heterojunctions that can lead
to improved photocatalytic performance. Adoption of
these strategies has improved the effectiveness of these
materials for the elimination of both organic and inor-
ganic contaminants, even under solar irradiation. How-
ever, critical limitations and challenges remain to be
solved before widespread commercialization of these
photocatalysts. Important challenges are the scalability
and stability of photocatalysts for practical wastewater
and groundwater matrices. There is a need to create
materials with sufficient longevity, to make the photo-
degradation process economically feasible on the long-

term. Even though certain photocatalysts can achieve
close to 100% degradation of pollutants under visible
light, the technology remains limited to lab-scale ex-
periments (Table 1). In addition, considering most
studied photocatalysts have nanostructures that could
be possibly sensitive to degradation or morphology
changes, stability checks should be performed in a more
rigorous manner beyond just a few cycles. For example,
higher number of cycles across different pH solutions
[39] could potentially demonstrate the effectiveness of
these materials in real wastewater applications.

The study of the effect of interfering species in real
wastewater is critical, as many other species present in
the solutions may negatively affect photocatalytic
properties. Since wastewater has a range of species in
excess of the target molecules, the use of real water
matrices or synthetic matrices with these interfering
species can help de-risk the application of semi-
conductor photocatalysts for practical wastewater
urrent Opinion in Green and Sustainable Chemistry 2022, 36:100644
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Table 1

Various photocatalysts modification approaches for enhanced degradation of pollutants.

CapType Materials Dose (g/L) Target pollutant Concentration Degradation
(in %)/time (in h)

Activation
source

References

Doping B–ZnO 1.4 Cyanide 10 mg/L 89%/2 Solar light [13]
Fe–CeO2 2 CR 25 mg/L 96%/3 Visible light [14]

Oxygen vacancy (101) BiOF
nanosheet

0.7 PFOA 15 mg/L 100%/6 UV [16]

MnOx/In2O3 0.5 PFOA 50 mg/L 99.8%/3 Solar light [18]
Nb–Bi2WO6 0.5, 0.3 RhB, TC 10, 20 mg/L 100, 65%/2 Visible light [17]

Type II hetero-
junction

Bi5O7I/ZnO 0.5 PFOA 1 mg/L 91%/6 Visible light [22]
Defect-rich TiO2/
g-C3N4

0.75 o-cresol, p-cresol, p-
nitrophenol, phenol

20 mg/L >95%/1.67 Visible light [21]

inverse opal
TiO2/CdS

0.3 TC, RhB 30 mg/L 99, 60%/0.33 Visible light [23]

Co3O4 NP/(001)/
(101) TiO2

nanosheet

0.5 ENR, CIP, IBU 10 mg/L 93, 75, 70%/1 Visible light [24]

Z-scheme
hetero-junction

Mn–Bi2WO6/GO/
MoS2

0.5 MB 10 ppm 99%/1 Solar light [28]

AgI NP/Zn3V2O8

nanosheet
0.33 TC 20 mg/L 91%/2.33 Visible light [26]

Ag3PO4/WO3 1 RhB 30 ppm 99.9%/0.1 Visible light [27]
With noble metal Ag atom/MnO2 0.2 E. coli 107 cfu/mL 100%/0.17 Solar light [32]

Au NP/Bi2S3 0.5 RhB, MO 17.2, 92.7 mM 95%, 97%/1.5 Solar light [31]
Ag NP/CdSe/GO/
cellulose acetate

120 Malachite green 5 ppm 97%/0.42 Visible light [30]

Surface complex TC-TiO2 0.2 TC 10 mg/L 25–77%/2 Visible light [33]
PMS-TiO2

nanotube
electrode

PMS 50 mM BPA 1 mg/L 94.6%/0.5 Visible light [34]

Other hetero-
structures

ZnO nanorod/
glass fiber

6 mg/g PP microplastic 70 mg/L 65%/2 weeks Visible light [35]

Carbon QD/CdS
nanosheet

0.2 Cr(IV) 20 mg/L 94%/0.17 Visible light [36]

Ag/AgCl@Ti3+-
TiO2

0.5 TC para-ester
wastewater

50 mg/L
–

90%/0.4
55%/2

Visible light [37]

Bi/BiOI1-xFx

hollow
microsphere

0.4 PFOA 40 mg/L 100%/2 Visible light [38]
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applications. For instance, solutions with inorganic ions
such as CO3

2�, PO4
3�, SO4

2�, Cl�, and Cu2þ can have a
detrimental effect on performance, and confirming
photocatalytic activity in the presence of these ions is
critical for translation to real world applications in
groundwater and industrial wastewater [24,39]. More-
over, the presence of other photocatalytic-active pol-
lutants may affect the degradation behavior of the target
molecules [40], so performing studies in the presence of

other photodegradable species can be important as well.

In this context, integration with electrochemically-
driven advanced separations could be a promising
pathway in overcoming challenges from interfering
species during the wastewater treatment. For example,
the selectivity of photocatalysts can be enhanced
through the separation and concentration of the target
molecules from competing molecules [41e44]. Several
redox-active materials, including organic conducting
Current Opinion in Green and Sustainable Chemistry 2022, 36:100644
polymers and metallopolymers, were reported and
utilized to selectively adsorb ionic species depending
on the redox state of functional groups in the polymers
[44]. TEMPO-based copolymers were able to selec-
tively separate PFOA from water through a combina-
tion of electrostatics and affinity interactions [42].
Characteristic affinity properties depending on the
type of polymer can even achieve selectivity between
structurally close anions [45]. Coupling intrinsically

non-selective photocatalysts with selective redox-
electrodes can achieve more specific contaminant
degradation. Other electrode materials for electro-
sorption can also potentially be coupled with photo-
catalysts to enhance overall performance of the systems
for contaminant remediation [43]. Among them,
MXene, layer structured metal carbides, nitrides, or
carbonitrides, could improve overall efficiency of water
treatment system by virtue of its hydrophilic nature
and intercalation-based pseudocapacitive nature [46e
www.sciencedirect.com
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48]. It can also serve as a large surface area support for
photocatalysts or components of heterojunction
photocatalysts [49], thereby consolidating separation
and degradation of target molecules.

Moreover, electrochemistry-based separation systems
could potentially couple with the photoelectrochemical
(PEC) degradation of pollutants, to enable sustainable

process intensification. Electrochemistry can amplify
charge separation, dragging photogenerated electrons
from the photocatalyst to the electrical circuit under
anodic potentials [15,50e53], while the electrode itself
can contribute to the formation of reactive radicals. In
addition, PEC can potentially advance the efficient
degradation of stable fluorine-containing pharmaceuti-
cals and PFAS, which are often challenging compounds
to decompose. Provided that a number of widely studied
photocatalysts carry toxic elements by themselves,
further development of PEC technologies can explore

the tradeoff between the utilization of environmentally-
benign materials and degradation efficiency [54]. Thus,
moving forward, the integration of photocatalyst with
electrochemical systems presents a unique opportunity
to bring innovation and green chemistry concepts into
wastewater treatment.
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