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Figure 1: Our bimanual unordered task. (a) A user wearing a Varjo XR-3 headset and holding a Vive controller in each hand.
(b) Example participant view in VR of our task with three cues shown, each of which is a colored line that connects a cylindrical
object to a semitransparent copy at its destination. (c) Example top-down view of study task setup. The testbed contains eight
cylindrical objects on a platform, where the initial position and goal position for each object are randomized to unique locations in an
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eight-by-four grid on the platform.

ABSTRACT

Work on cueing performance in AR and VR has focused on sequen-
tial tasks in which each step must be completed in order before the
user can proceed to the next. However, for unordered tasks such
as putting books back on a library shelf, the user may be able to
perform multiple steps concurrently without needing to follow a
specific order. In such situations, giving the user multiple cues for
potentially concurrent steps may improve performance time. To
investigate this, we built a bimanual VR testbed in which the user
needs to move objects to designated destinations, guided by different
numbers of cues. The user can decide the order to perform the cued
steps and, in some conditions, can affect which cues are shown.

In a formal user study, we found that in most conditions, partici-
pants perform fastest with three cues. Dynamically updating the set
of displayed cues based on hand proximity improves performance,
and updating the set based on eye gaze improves performance even
more. Finally, for both the hand-proximity and eye-gaze mecha-
nisms, performance can be further improved by locking the cues for
objects predicted to be moved next based on hand distance.
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1 INTRODUCTION

In many real-world tasks, visual or textual instructions direct users
to proceed in a fixed sequence, one step at a time, without regard
to spatial context or user preferences. For these tasks, different
ways to prompt information about the current next step (a cue) have
been explored using virtual reality (VR) and augmented reality (AR).
Guidance systems showing a single cue at a time for sequential tasks
have used a variety of visual representations [8, 11,36] and have
leveraged a user’s eye gaze [4] and kinematic patterns [53] to take
into account the user’s intention.

Recent research has examined the effects and benefits of prompt-
ing information about future steps (precues) for sequential tasks.
Hertzum and Hornbzk [19] studied the effect of providing infor-
mation for one future step with desktop 2D touchpad/mouse input.
Volmer et al. [50] explored the effect of giving information about one
future step in projector-based spatial AR. Liu et al. [29] studied the
consequences of precueing multiple future steps in VR. These tasks
are strictly sequential. However, many other real-world tasks, such
as putting library books on a shelf or sorting items in a warehouse,
are not strictly sequential. The steps in such tasks can be completed
in different orders, and the user is able to move multiple task objects
simultaneously, potentially using both hands.

To investigate this, we developed a VR testbed, shown in Figure
1, that supports a pick-and-place task in which a user needs to follow
visual cues to move multiple objects to their destinations. Using this
testbed, we study how the number of cues affects performance and
how hand proximity and eye gaze can be used to update the set of
displayed cues. We make three contributions:

* We present a VR testbed for exploring adaptive visual cues for
guiding a bimanual concurrent unordered task.

* We show through a user study that compared to statically
displayed cues, using hand proximity to dynamically update
the set of displayed cues can decrease task completion time,
while using eye gaze can further shorten it.
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* We show that when using dynamic cue-set—updating mecha-
nisms, performance can be further improved by locking cues
for objects predicted to be moved next based on hand distance.

2 RELATED WORK
2.1 Task Guidance Systems

Task guidance systems are typically built to either teach users skills
that can be later applied in real-world scenarios or directly assist
users during a task. As users become more familiar with these
systems, they may also learn to leverage guidance cues to complete
similar tasks. For example, in the VR game Beat Saber [5], players
become better at following sequences of cues shown during game-
play, slashing multiple beats at the same time using both controllers.

Research on prompting information for sequential tasks has in-
vestigated the benefits of using virtual avatars [4,11,22], graphical
and textual annotations [8, 15,22,29], and virtual proxies [36]. Re-
searchers have also built adaptive systems [22,28]. For example,
Huang et al. [22] varied the level of detail shown in an AR tutorial
based on each user’s characteristics and tutorial-following status,
while Lindlbauer et al. [28] adapted the amount of information dis-
played in AR and VR based on an individual’s real-time cognitive
load across context switches. Much work has also targeted assisting
users in equipment assembly/disassembly, repair, inspection, diag-
nosis, and operation [39]. In contrast to this work, we explore a
generic task that involves moving objects to destinations. Similar
to the adaptive systems mentioned above, we compare different ap-
proaches that leverage eye gaze and hand proximity to update the
information displayed.

2.2 Cueing Multiple Steps

Prior work has demonstrated the advantages of prompting infor-
mation about future steps in a sequential task. Hertzum and Horn-
bak [19] studied the effect of showing cues for the current step
and the next step with desktop 2D touchpad/mouse input. In their
study, participants were asked to alternately tap/click a center target
and one of a circular set of surrounding targets. They showed that
participants moved faster to the single precued center target than to
surrounding targets. Volmer et al. [50] studied the effect of showing
information about the next step using a cue in a projector-based AR
environment and showed that visualizing one more step improves
user performance. Volmer et al. [49] next examined the performance
of sleep-deprived users in that task. They showed that users can still
benefit from a cue prompting the next step. Liu et al. [29] investi-
gated the effect of using cues to show information about multiple
future steps in a VR path-following task and showed that people
could use two to three future cues if the cues contained lines and
only one future cue if the cues did not contain lines. Later, Liu
et al. [30,31] considered a compound sequential task in which the
users need to pick up an item, move and rotate it, and deposit it at a
specified destination in each step.

Though many have studied prompting with multiple cues in se-
quential tasks, our understanding of how to guide users in tasks
allowing multiple steps to be performed concurrently remains lim-
ited. Systems for such tasks have focused on context switching
between unrelated or sparsely related tasks and performing a single
task at a time [2,7,28] or handling multiple unrelated physical ob-
jects at the same time [38]. Though many mundane tasks are indeed
well captured by these systems, popular time-sensitive games such
as Overcooked! 2 [45] and Moving Out [13] remind us that one
approach to faster performance is to simultaneously have multiple
players each tackle one step at a time. While many real-world tasks
are performed by one person, these tasks often allow for concurrent
steps to be performed using two hands. Thus, drawing inspiration
from time-sensitive games and in contrast to prior studies, we inves-
tigate ways of showing multiple cues for an unordered task in which
a user can accomplish two steps simultaneously.
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Our motivation is similar to that of Illing et al. [24], who inves-
tigate how varying amounts of visual assistance for parallel tasks
affect performance in tablet-based AR. In their system, the user was
presented with a set of parallel tasks, each containing a set of sequen-
tial steps. The number of cued tasks was determined by the system
and only the next step of each of these tasks was cued. In contrast,
our work compares different adaptive approaches for dynamically
determining the subset of steps that are cued. More specifically, we
explore the number of steps to show, and how to select and update
the set of displayed cues.

2.3 Predicting Actions Through Eye Gaze and Hand
Movement

Understanding intention from a user’s behavior is important to pre-
dicting behavior and may be used to cue performance. Becchio et
al. [6] noted that a person’s intention is revealed in the kinematics
of arm and hand actions, and those movements can be used for
action prediction. Other research has shown that eye gaze reveals
the intention of future actions and precedes spoken requests [21],
and should be carefully studied within the context of a particular
task [32]. Building on these findings, more recent work leveraged
gaze interaction by proposing an AR space that allows for gaze-
mediated control [40] and compared user preference for and speed
of a gaze-adaptive AR interface with an always-on AR interface [41].

Many have studied the correspondence between eye gaze and
hand movements. Early research investigated the temporal relation-
ship between eye and hand movements by tracking cursor move-
ments in a graphical user interface [10,23,42] and found that eye
gaze often leads mouse movement. More recently, Mutasim et
al. [35] concluded that a user’s gaze in their VR task reaches the
target before their hands touch it. Work that extends beyond these
findings has also leveraged this correlation in predicting and prevent-
ing erroneous actions before the user’s hand reaches the incorrect
target [53] and predicting indecision by using the distance between
the finger and the eyes for a tablet memory game [51]. Our work
builds on these previous findings of inferring intention with kine-
matic patterns and hand-eye correspondence in manual tasks by
testing different dynamic mechanisms that update the displayed set
of cued steps based on the user’s eye gaze and hand positions.

3 VisUuAL CUES FOR TASK GUIDANCE
3.1 Testbed and Task

Our goal is to investigate how visual cues affect user performance in
a bimanual concurrent unordered task. To address this, we developed
a VR testbed using Unity 2020.3.11f1 [47] and a task that involves
moving objects to specified destinations. Our testbed contains a
0.6m by 1.5m virtual platform in the xz-plane on which there are
eight cylindrical objects (4cm radius, Scm height) constrained to be
upright at all times. The initial positions and destination positions for
the objects are randomized to unique locations in an eight-by-four
grid on the platform. Our task is comprised of eight steps. In each
step, the participant (Figure 1a) must move one of their controllers
to an object, press the trigger button to grab the object, move the
controller and object to a specified location, and release the trigger.
The user may move two objects at the same time, one per hand.

Once a task object is away from its destination by less than 2cm
on the xz-plane and 3cm on the y-axis, the task object is snapped
to its destination, turns dark gray to signify step completion, and
can no longer be moved. Each controller vibrates for 0.1s when it
completes a step or comes into contact with an object that is not at
its destination. Note that since our task is not sequential, the user
can decide the order in which to move cued objects. The task is
considered complete when all objects are moved to their respective
destinations. Figure 1(b) shows an example of a participant’s view
in VR and Figure 1(c) shows an example of a top-down schematic
view of the task setup.
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Figure 2: Cue-set—updating mechanisms. (a) Static mechanism. The order in which cues are displayed is predetermined and will not change.
(b—c) Hand-Proximity mechanism. In this sequence, the cues are updated after both controllers are moved to the left. (d—e) Eye-Gaze mechanism.
The cyan dot indicates gaze position. In this sequence, the user’s gaze moves to the right and hits a new object, its corresponding pink cue
appears, and the green cue for the object that is least recently looked at disappears.

3.2 Cues
3.2.1 Cue Visualization

We define cues as visualizations that provide information about
actionable steps to guide users to perform them. This differs from
the definitions used in previous work, which distinguished a cue
for the current step and one or more predictive cues [49, 50] (or
precues [19,29-31]) for the future steps. Since our task is unordered,
the user can decide the order in which the actionable steps are
performed. Depending on the order the user performs the steps,
each of our cue visualizations can be a cue or a precue under the
definitions used in previous work. However, we decided not to make
these distinctions since the order is entirely up to the user and can
change as they proceed.

Each of our cues consists of a colored line connecting the object
to a semitransparent replica of the object that has an additional
opaque cylindrical base. The combination of the colored line and
the cylindrical base is similar to the CircleLine visualization in Liu
et al. [29]. The line guides the user from the object to its destination,
while the cylindrical base highlights the place of the destination.
Based on an early pilot study, we found that the combination of
the semitransparent replica and its opaque base helped discourage
the user from grabbing the destination by mistake. Users made a
considerable number of errors during early pilot studies when the
cue lines were rendered with the same color, especially when there
were a significant number of crossed lines. To address this, we used
a color-vision—deficiency friendly palette proposed by Okabe and
Ito [37], and ensured that each object would always receive the same
color within a trial.

3.2.2 Number of Cues

We tested different numbers of displayed cues across different condi-
tions. In a condition where n cues are used, the testbed shows either
a set of n cues when there are at least n unfinished steps in the task,
or cues to all unfinished steps for the last n — 1 steps of a task. We
did not insert additional objects and cues in the last n — 1 steps of
a task to maintain the number of cues shown to the user, since our
focus was on studying how long the user took to finish moving the
given set of objects. If we had included additional objects and cues
in these last n — 1 steps, the user could have attempted to move some
of these objects, potentially changing the task difficulty.

3.2.3 Cue-Set-Updating Mechanisms

The cue-set—updating mechanisms determine which cues are pro-
vided. As research has shown that a user’s eye-gaze direction and
hand positions can indicate intention [6,21,32], we factored eye
gaze and hand positions into determining which cues to show and
developed three mechanisms:

1. Static mechanism (Figure 2a). In this baseline condition,
the ordering of the cues shown is updated only when one of
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the previously shown steps is completed. We achieve this by
generating a fixed ordering of the steps at the start of each task
and always displaying cues to the first # unfinished steps.

2. Hand-Proximity mechanism (Figure 2b—c). Each unfinished
task is ranked based on its distance to its closest controller and
the cues to the n steps with the closest distances are always
shown.

3. Eye-Gaze mechanism (Figure 2d—e). At the start of a task, the
displayed set of cues is identical to that of the Static mechanism.
Then, whenever the user looks at an object whose step has not
yet been finished (their eye-gaze direction intersects the object),
the cue for that object is added to the set of displayed cues,
and the oldest cue in the set gets removed. Thus, the set of
displayed cues always includes cues for the n most recently
looked at objects.

Though task-specific heuristics could be applied to improve the
ordering of steps in the Static mechanism, we focus on leveraging the
inferred intention from user behavior to circumvent the implemen-
tation of task-specific heuristics by proposing a set of mechanisms
that will be generalizable to other task domains.

3.2.4 Locking

We observed through our pilot studies that a user’s rapidly changing
eye movements or hand positions often introduce unwanted instabil-
ity in the set of cues shown. Users expressed frustration when their
moving gaze or hands unintentionally caused the cue for the step on
which they were working to leave the set of visible cues.

To address this, we introduce locking, which pauses cue-set up-
dates for objects that are predicted to be moved next based on hand
distance. When an object is added to the cue set, we record that
object’s distances to each of the controllers. Once the dynamically
calculated distance between this cued object and one of the con-
trollers falls below the initially recorded distance (for that controller)
multiplied by 0.5, that object’s cue is “locked” in the displayed set
of cues until its step is completed. Based on pilot studies, we chose
the multiplier 0.5 so that the cue-set updates would not occur so
frequently as to distract the user, while still offering the benefits of
dynamically updating the displayed cue-set based on the user’s eye
gaze and hand proximity. Figure 3 shows an example of locking.

4 USER STUDY
4.1 Pilot Studies

We conducted pilot studies to test different cue-set—updating mech-
anisms. In addition to the Static, Hand-Proximity, and Eye-Gaze
mechanisms described in Section 3.2.3, we also tried to use headset
orientation (Head-Gaze), as it partially indicates the direction in
which the user is looking [4] but is less sensitive than Eye-Gaze.
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Figure 3: Locking for dynamic cue-set—-updating mechanisms. Red cylinders visualize objects with locked cues in this figure, but are blue in the
testbed. (a) Three cues initialized based on cue-set—updating mechanism (Eye-Gaze in this case). (b) Left controller moves closer to a cued
object, locking its cue. (c) Right controller moves closer to another object, locking its cue. (d) Right controller continues moving such that the
cue for an additional object also gets locked. (e) Right controller picks up the rightmost locked object in (d) and moves it to its destination. Upon

completing this step, a new cue is displayed.

Table 1: Average task completion time in a pilot study.

S H H-L E E-L
2 cues 12.674 11.894 11.433 11.502 11.450
3 cues 12.640 11.090 10.044 10.182 9.810
4 cues 12.970 11.640 10.747 10.838 11.258
6 cues 11.700
8 cues 11.214

The results showed that participants’ performance with Head-Gaze
was similar to but worse than Eye-Gaze. Therefore, we decided not
to test the Head-Gaze mechanism in the formal study.

Our earlier pilot studies on cue-set—updating mechanisms did not
use locking. User feedback about the abruptness with which cues
disappeared and reappeared in adaptive cue-set—updating mecha-
nisms encouraged us to address this. Observing how hand pose can
indicate how certain a user can be of their intentions and can predict
future actions, after several rounds of refinement, we came up with
the locking technique discussed in Section 3.2.4.

In another pilot study with three participants, we included five
approaches for updating the set of displayed cues: Static (S), Hand-
Proximity without Locking (H), Hand-Proximity with Locking (H-
L), Eye-Gaze without Locking (E), and Eye-Gaze with Locking (E-
L). For each of these approaches, we tested two, three, and four cues.
For S, we also tested six and eight cues. The average task completion
times are listed in Table 1. Generally speaking, participants did not
perform better when given more than four cues and performed best
with three cues. The only exception was S, where participants
performed best with six or eight cues. However, they performed
worse than with H, H-L, E, and E-L with three cues.

4.2 Hypotheses

We formulated three hypotheses regarding the number of cues, the
cue-set—updating mechanism, and locking:

H1. Task completion time will be faster with three cues than with
two cues or four cues. Previous work [19,29,49,50] has shown that
providing additional cues for future steps in sequential tasks can
shorten task completion time, since the user can prepare for future
steps while working on the current one. In our task, the user can
simultaneously work on up to two steps, guided by two cues. We
hypothesize that adding a third cue can help the user prepare for the
future and improve their performance (shortening task completion
time). However, based on our pilot studies, adding a fourth cue
could make the scene too cluttered and increase task completion
time.

H2. Eye-gaze approaches with or without locking will result in
faster task completion time than hand-proximity approaches with or
without locking, which will be faster than the static approach. Hand
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and eye actions can indicate user intention [6,21,32], so incorpo-
rating them into the cue-set—updating mechanism could reduce task
completion time. This appeared to be the case in our pilot studies.
In addition, our pilot studies suggested that the eye-gaze approaches
performed better than the hand-proximity approaches.

H3. Locking will reduce task completion time for both the Eye-
Gaze and Hand-Proximity mechanisms. In our pilot studies, we
found that without locking, cues sometimes disappeared before
a participant successfully grabbed an object. This confused par-
ticipants and slowed task progress. Locking (Section 3.2.4) was
developed to avoid this situation, so we hypothesize that Eye-Gaze
with Locking will be faster than Eye-Gaze without Locking, and
Hand-Proxmity with Locking will be faster than Hand-Proximity
without Locking.

4.3 Methods
4.3.1 Participants

Our study was approved by our institutional review board. We
recruited 15 participants from our institution (7 female), 21-33 years
old (average 23.3), through convenience sampling using department
email lists and posted flyers. Two participants are left-handed and
one is ambidextrous. One participant owns a VR headset, two had
used VR in class projects, nine had used AR/VR several times, and
three had no AR/VR experience. Each participant received a USD
15 gift card.

4.3.2 Equipment

Each participant used a Varjo XR-3 headset [48] (with its pass-
through cameras off) with a 115° horizontal (134° diagonal) field
of view and a 90Hz refresh rate. The XR-3 was run in its outside-
in tracking mode and was tracked with four HTC SteamVR Base
Station 2.0 units. The headset ran on a computer powered by an
Intel® Core™ i19-11900K Processor and an Nvidia GeForce RTX
3090 graphics card. Two Vive hand-held controllers were used to
manipulate objects.

4.3.3 Study Design

Our user study aims to evaluate our hypotheses on how partici-
pants will perform in our bimanual unordered task. We include
five approaches for updating the set of displayed cues: Static (S),
Hand-Proximity without Locking (H), Hand-Proximity with Locking
(H-L), Eye-Gaze without Locking (E), and Eye-Gaze with Lock-
ing (E-L). For each of these five approaches, we tested two, three,
and four cues, since we found through our pilot studies (Section
4.1) that participants performed the best with the help of three cues
in most cases. Thus, we tested 5 (approaches) x 3 (number of
cues/approach) = 15 conditions. In the remainder of this paper, we
will refer to a condition by concatenating its approach name with
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Table 2: Number of timed trials labeled as outliers in each condition
summed over all participants.

S H HL E EL
2 cues 3 4 1 2 1
3 cues 4 4 1 3 1
4 cues 1 2 5 1 2

Table 3: Average task completion time and standard deviation for each
condition. Numbers in parentheses are standard deviations.

2 cues 3 cues 4 cues
S 11.137 (2.163) 10.917 (1.806) 10.868 (2.136)
H 11.228 (2.315) 10.696 (1.906) 10.890 (2.072)
H-L 10.855 (2.139) 10.387 (2.353) 10.650 (2.215)
E 10.067 (1.867) 10.336 (2.335) 10.215 (2.119)
E-L 10.002 (2.174) 9.747 (2.086) 9.895 (2.020)

its number of cues. For example, H-L2 is Hand-Proximity with
Locking and two cues.

For each condition, a participant performed a block of eight
timed trials, preceded by an untimed practice trial, where each trial
involved moving eight objects. Thus, each participant performed 15
(blocks) x 8 (timed trials/block) = 120 timed trials. A five-second
cooldown period during which no task was shown was added before
each block and a three-second cooldown period was added before
each timed trial. A timed trial began when the participant pressed
the trigger buttons of both controllers at the same time.

We counterbalanced the order in which conditions were presented.
To accomplish this, we grouped conditions first by their cue-set—
updating mechanism (Static, Hand-Proximity, and Eye-Gaze), next
by the number of cues (2, 3, and 4), and finally, for the two rele-
vant mechanisms, by whether or not locking is used. We shuffled
the order in which participants encountered the cue-set—updating
mechanisms, the number of cues, and whether locking is used. For
example, one participant might experience, in order, first the hand-
proximity condition blocks (H-L4, H4), (H2, H-L2), (H3, H-L3),
next the static condition blocks (S2), (S4), (S3), and finally the
eye-gaze condition blocks (E3, E-L3), (E-L2, E2), (E-L4, E4).

To encourage participants to develop strategies based on different
cue-set—updating mechanisms, participants were informed of the cue-
set—updating mechanism for each block. However, the participants
were not informed whether locking was used in a block. We chose
to do this because we observed in pilot studies that locking could
improve task performance regardless of whether participants knew
it was being used.

We also wanted to ensure that the participants would not be able
to memorize or recall specific task configurations, while having each
configuration be used enough times for each condition (so that our
linear mixed-effects model could factor out the impact of its diffi-
culty). To do this, we generated 40 unique configurations of our task,
each consisting of eight pairs (one per object) of unique initial and
destination positions. These positions were randomly sampled from
an eight-by-four grid on the platform. We then assigned each con-
figuration to a trial such that every configuration was used roughly
the same number of times across all conditions and each participant
completed each configuration roughly the same number of times.

4.3.4 Procedure

Before each session, the headset, trackers, and table used in the
study were sanitized with 70% isopropanol and the headset was also
sanitized in a Cleanbox CX1 [12] UVC system. Each participant
was then welcomed by the study coordinator and presented with an
information sheet. After giving their consent, the participant was
then introduced to the flow of the experiment and given the Stereo
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Figure 4: Average task completion time plotted by (a) number of cues
and by (b) cue-set-updating approach.

Optical Co. Inc. Stereo Fly Test [43] to screen for stereo vision and
the Ishihara Pseudo-Isochromatic Plate test [25] to screen for color
vision deficiencies. All participants passed both tests.

The study coordinator then put the headset on the participant,
adjusted it, and gave the participant the controllers. The coordinator
then started the study program, which began by calibrating the XR-3
eye tracker using the built-in five-dot calibration. Following this, the
workspace position and orientation were calibrated relative to the
participant.

Throughout the study, we recorded the timestamped eye-gaze
direction for each eye, the status of each task object (location, task
completeness and whether its cue is being displayed), as well as the
position and orientation of the headset and hand-held controllers.
We also recorded whether each controller was holding a task object.
Over the session, the participant’s interaction was monitored by the
study coordinator through a separate desktop display.

After finishing all trials, the participant was asked to fill out a
questionnaire. The questionnaire included questions on the partici-
pant’s demographics, a modified unweighted NASA TLX [16], and
a request to rank the different cue-set—updating mechanisms based
on their effectiveness. Our TLX survey was modified to use a 1-7
scale, with 1 as best, rather than the original 0-20. Each partici-
pant rated each of the three cue-set—updating mechanisms (Static,
Hand-Proximity, and Eye-Gaze) for each TLX metric. We decided
to conduct the survey at the end of the study to avoid the concern that
a participant’s criteria for answering the questions might change be-
tween conditions. A session took about 60—70 minutes for a typical
participant to complete.

4.4 Results

Before analyzing the results, we used Tukey’s outlier filter [46] to
label outliers. The “outside fence” for each condition and participant
was computed separately, as we expected the conditions would have
a significant effect on completion time, and we noticed that some
participants performed substantially better than others. Applying
Tukey’s outlier filter, trials that took more than the third quartile plus
1.5 x interquartile range (third quartile minus first quartile) or less
than the first quartile minus 1.5 x interquartile range were labeled
as outliers. For each condition, there were 15 (participants) x 8
(trials/participant) = 120 trials. Between 1 to 5 trials were labeled as
outliers for each condition, as shown in Table 2, and were excluded
from the analysis. Average task completion times after removing
outliers and standard deviations for each condition are shown in
Table 3. We also plot task completion time against number of cues
and cue-set—updating approach in Figure 4.

We evaluated the hypotheses for significance with & = .05. We fit
a linear mixed-effects model to our data using the MATLAB Statis-
tics, and Machine Learning Toolbox [33]. In the model, we used the
task completion time as the measurement, the cue-set—updating ap-
proaches (S, H, H-L, E, or E-L) and the number of cues as the fixed-
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effect variables, and the participant and the task configuration as the
random effect variables. To make the comparison easier, we used
the S approach and three cues as the baselines of the two fixed-effect
variables. We added the interaction between the cue-set—updating
approach and the number of cues in an alternative model and found
most of the p-values of the interaction terms are not significant, so
we decided to exclude that interaction from our model. Note that
this means when we compare the cue-set—updating approaches, we
are comparing their average performance across all numbers of cues
rather than for a specific number of cues, and when we compare the
number of cues, we are comparing the average performance across
all cue-set—updating approaches rather than a specific approach. We
also found that handedness and AR/VR experience are not signif-
icant factors. The effect sizes of this model are N> = 0.441 and
Cohen’s d = 0.764, which show large effects [9]. For the full details
of the linear mixed-effects model and the alternative model, please
see the supplementary material.

To evaluate H1, we checked the estimates and p-values of the
two-cue and four-cue terms. The model shows that adding the third
cue reduces task completion time by 0.255s relative to two cues
(p = .003). While adding the fourth cue increases task completion
time by 0.125s relative to three cues, its p-value is not significant
(p = .141). Therefore, H1 is partially supported insofar that adding
the third cue improves performance.

To evaluate H2, we first check the p-values of H (p = .701), H-L.
(p=.002), E (p < .001) and E-L (p < .001) relative to S. This sup-
ports that H-L, E, and E-L (but not H) have faster task completion
times than S. To further check if using eye gaze improves perfor-
mance more than hand proximity, we test the contrasts between E
and H, between E-L and H-L, between E and H-L, and between E-L
and H. The p-values of these four comparisons are all < .001. This
supports that all eye-gaze approaches result in faster task completion
time than all hand-proximity approaches. Therefore, H2 is mostly
supported, except for the comparison between H and S.

To evaluate H3, we test the contrast between H-L and H and the
contrast between E-L and E. The p-values of these two comparisons
of task completion time are .008 and .023, respectively. This shows
that using locking reduces task completion time for Eye-Gaze and
Hand-Proximity mechanisms. Therefore, H3 is supported.

To avoid type-I errors, we ran a correction using the Holm—
Bonferroni method [20]. We checked a total of 12 p-values (2
for H1, 8 for H2, and 2 for H3) to validate our hypotheses and 10
of them are significant before correction. Among these 10 p-values,
six are < .001, and the remaining four are .002, .003, .008, and .023
(lowest-to-highest). With this order, the p-values are smaller than
.05/10, .05/9, ..., .05/1, respectively, meaning they survive their
corresponding Holm—Bonferroni-corrected o.

Note that the comparison for H1 is based on the average perfor-
mance across all cue-set—updating approaches rather than a specific
approach. Table 3 shows that for E, task completion time is fastest
with two cues, while for S, it is fastest with four cues. We discuss
possible causes for these two different trends in Section 5.1. The
comparison for H2 is based on average performance across all num-
bers of cues. The difference between E3 and H-L3 is fairly small.
For the comparison for H3, the difference between E2 and E-L.2 is
also fairly small. Therefore, while using the Eye-Gaze mechanism
vs. the Hand-Proximity mechanism, or using locking vs. not using
locking, helps reduce task completion time in most cases, additional
verification is needed to make sure it is the case for a specific number
of cues.

4.41 User Feedback

NASA TLX results are shown in Figure 5. Friedman tests yielded

PMentalDemand = -8717, PPhysicalDemand = .5092, PTemporalDemand =
-1969, PPerformance = 1561, PEffort = 2542, and pFrustration =
.1938. The p-values for all metrics are > .05, so we did not find a
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significant difference between the cue-set—updating mechanisms.

The participants then ranked the cue-set—updating mechanisms
based on their preferences. The results are shown in Figure 6. Par-
ticipants most preferred the Eye-Gaze mechanism, followed by the
Static mechanism, and finally the Hand Proximity mechanism. Par-
ticipants were also asked how many cues they thought were the most
useful: two participants answered two, eight participants answered
three, and five participants answered four.

4.4.2 Error Rate

We looked into the errors participants made in each condition to un-
derstand how different conditions affect the error rates. We observed
that participants made the following major types of errors:

Failed Grab: We considered that a Failed Grab error was made
if a participant pressed the trigger when the controller was within
Scm of a cued object but had not collided with it.

Grab Destination: We considered that a Grab Destination error
was made if a participant pressed a trigger when the controller
collided with the target replica rather than the object.

Failed Deposit: We considered that a Failed Deposit error was
made if a participant released the trigger and deposited the object
within Scm from the destination in the xz-plane but not within the
2cm threshold in the xz-plane mentioned in Section 3.1.

Wrong Destination: We considered that a Wrong Destination
error was made if a participant deposited the object within Scm from
another object’s destination in the xz-plane.

Table 4 shows the average number of errors per trial that partici-
pants made. To determine whether the differences were significant,
we ran chi-square tests on each of these error types among different
approaches. For Failed Grab and Grab Destination errors, there
is no significant difference between any pair of approaches. The
participants seldom made Grab Destination errors. The number
was between 0.017 and 0.028 times in a trial. This suggests that
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Table 4: Errors. Each entry shows the average number of errors made
in atrial.

S H H-L E E-L

Failed Grab 0.144  0.147  0.108  0.156  0.131
Grab Destination 0.028  0.028 0.019 0017 0.017
Failed Deposit 0339 0342 0419 0411 0319
Wrong Destination ~ 0.117 ~ 0.050  0.108  0.092  0.136

Table 5: Hand data. For each trial in a condition, left and right empty
distance are the average distance a participant’'s hands moved without
carrying an object, while left and right full distance are the average
distance a participant’s hands moved when carrying an object. Biman-
ual time percentage is the average percentage of time during a trial
that a participant was simultaneously holding objects with both hands.

S H H-L E E-L

Left empty distance (m) 3.43 3.36 3.23 3.05 2.93
Right empty distance (m) 3.59 341 3.26 3.05 3.06
Left full distance (m)  2.81 289 290 298 2.96
Right full distance (m) 3.25 3.23 3.16 3.21 3.16
Bimanual time percentage 16% 15% 15% 20% 22%

although the task objects and the corresponding semitransparent
replicas shared the same shape, the visual differences between the
replicas and objects helped participants distinguish between them.
For Failed Deposit errors, participants made more errors in H-L and
in E than in E-L. This may be because in E-L, the cues often fell in
a participant’s field of view while locking prevented the participant
from being distracted. For Wrong Destination errors, the participants
made fewer errors in E than in any other approach. Using locking or
eye gaze both increased the error rate. This suggests that there was
a speed—accuracy trade-off.

4.4.3 Hand Data Analysis

We examined participant hand-controller data (Table 5) to check if
the data reflected relative performance between conditions. We first
looked at left-hand and right-hand moving distances, finding that
participants’ left hands moved shorter distances. This is expected,
since most of our participants are right-handed. Using eye gaze and
locking reduced moving distances for both hands. We also examined
how much time (proportional to a task) participants held two objects
simultaneously. Participants used two hands simultaneously more
often in E and E-L but not in H and H-L than in S.

We also calculated the speed at which participants moved their
hands. When empty, the average speed for the left hand is 0.550m/s
and for the right hand is 0.582m/s. When full, the average speed
for the left hand is 0.703m/s and for the right hand is 0.738m/s.
Participants’ right hands moved faster. We believe this is because
most of our participants were right-handed. In addition, hands
moved faster when they were full. This may be because when a
participant’s hands were empty, they were deciding what to pick up,
so reaction time dominated.

5 DISCUSSION
5.1 Number of Cues for Cue-Set-Updating Approaches

For H, H-L, and E, participants performed fastest with three cues
and slowest with two or four cues. For S, however, participants
performed best with four cues and worst with two cues. One possible
explanation is that since participants were unable to change the set
of displayed cues in S during a task, displaying more cues allowed
more flexibility to pick the steps on which to work. In a pilot
study in which the authors participated, one of them performed
better with the help of eight cues among all static cues conditions
since they could pick their preferred pair of cues on which to work,
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Figure 7: (a) Average number of direction changes in a trial and (b)
average number of dequeues in a trial.

though still performing worse than with the best performing hand-
proximity and eye-gaze conditions. Further, as shown in Table 3,
participants in the formal study generally did not perform better with
the Static mechanism than with the Hand-Proximity and Eye-Gaze
mechanisms.

The E approach also has a different trend: participants performed
best with two cues. We suspect this may be because after partici-
pants decided on a set of steps on which to work, they would look
at additional objects to obtain information to plan the next step.
However, when a participant’s gaze glides over objects on the way
to the intended destination, an improper dequeue from the cue set
may be triggered, causing the disappearance of a displayed cue the
participant intends to follow. As the size of the cue set increases, a
dequeue of a step that the participant intends to follow immediately
is less likely to occur.

To verify this, we calculate the number of abrupt changes in
direction and the number of times actionable steps are dequeued for
each of these changes and show the results in Figure 7. We define
a change in direction as an instance where there is a greater than
120° change in angle in the direction of motion a controller makes
in a 0.2s window. We do not consider time intervals during which
the controller finishes a task and will generally change its direction
of motion. Dequeue Count is defined as the number of times a
cued task gets dequeued due to hand/eye-gaze movements whenever
a change of direction occurs. It can be seen that the number of
direction changes is roughly positively correlated to task completion
time, meaning that tasks completed with fewer abrupt changes in
direction not caused by completing a step generally resulted in a
shorter task completion time. This implies that participants were
more confident and assertive in their actions for trials that were
completed faster. Looking at the data for E in Figure 7, it can be
seen that more direction changes happened with three cues, followed
by four cues, supporting our speculation.

5.2 Interaction Between Locking and Eye-Gaze/Hand-

Proximity Mechanisms

To examine this interaction, we remove S and use cue-set—updating
mechanism and locking as the fixed-effect variables in another lin-
ear mixed-effects model (see the supplementary material). The
model shows that the effect of locking on task completion time
is —0.29674s (p =.006), and it does not interact with the cue-set—
updating mechanism (another model with the interaction term does
not have a significant p-value). This can be observed in Table 3. The
benefit of adding locking is about —0.3s for both the Hand-Proximity
and Eye-Gaze cue-set—updating mechanisms.

5.3 Better Paths for the Static Condition

In S, we use randomly generated sequences, which might cause the
participant to move their hands over a longer distance and perform
more slowly than necessary by following a sub-optimal path. The
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participant might perform better if an “optimal” path were provided
in the S condition. To estimate whether the adaptive approaches (H,
H-L, E, and E-L) would still outperform the S condition in such a
case, we tried to estimate upper and lower bounds on the time to
follow optimal paths that could feasibly be executed bimanually by
a participant in the S condition. More specifically, we calculated the
upper bound, S, perbound> assuming no parallelism, and the lower
bound, Sj,yerbound, assuming complete parallelism. In addition, we
computed S f/ipanq> assuming the same level of parallelism as for
each trial’s full-hand movement. For details of our approach and
calculations, please see the supplementary material.

Estimated average task completion times are S, perpound (11.145),
S futinana (10.489), and Sy,yerpouna (9-052), in comparison to times
reported in Figure 4(b): S (10.974), H (10.938), H-L (10.631),
E (10.206), E-L (9.881). Sypperbouna performs worse than H-L,
E, E-L (p < .01), Siowerbouna performs better than H, H-L, E, E-L.
(p <.001), and S fyypana performs better than H (p < .01) and worse
than E-L (p < .001). This suggests that all adaptive approaches ex-
cept for H outperform the estimated upper bound of the optimal
Static solution when assuming no parallelism for empty-hand move-
ment (Sypperbounad)- Meanwhile, assuming complete parallelism
(Siowerbound)» our estimated lower bound of the optimal Static solu-
tion outperforms all adaptive approaches. Finally, E-L outperforms
S fulihana> Which is estimated based on the amount of parallelism
demonstrated in the full-hand moves in our study. Additional work
will be needed to find optimal feasible solutions.

5.4 Design Guidelines for Cueing Non-Sequential Tasks

Through our user study, we learned that using eye gaze to update the
cue set can reduce task completion time, and using locking further
improves completion time. In addition, giving three cues for the
best performing approach (E-L) yielded the best result. Therefore,
we believe that when designing adaptive visual cues for concurrent
manual tasks in VR, one could use eye gaze to infer the user’s
intention and give higher priority to steps the user looks at. When
doing so, one should also consider implementing mechanisms that
prevent the steps on which the user is working from being dequeued
improperly by a user’s rapid eye and hand movements. Though this
can be implemented in many different ways and is dependent on the
cue-set—updating mechanism, one should consider that the user’s
eyes can scan surrounding areas or look ahead towards potential sets
of future steps and may therefore look in a different direction than
the hands move. Regarding the number of cues shown at any given
time, one can consider the maximum possible number of cues on
which the user can work at the same time and provide one to two
more cues to help the user plan.

6 FUTURE WORK
6.1 Cueing for More Complex Tasks

Although our 3D task uses start and end positions on a 2D plane,
as do many real-world tabletop tasks, the user’s hands, head, and
body move in 3D to avoid hand collisions, and to better view and
reach objects. Building on this, future work should consider tasks in
which start and end positions do not lie on a plane.

While sequential tasks investigated in previous work on cueing
[19,29-31, 49, 50] required users to complete steps in a specific
order, our task allowed participants to perform cued steps in any
order. However, many real-world tasks are partially sequential: some
steps can be done in any order, while others must be performed in a
specific order. Further, tasks could have additional constraints, such
as time limits, orientations, and trajectories [3, 17,52]. Real-world
environments can also include objects that move independently of
the user. A key extension of our work will be to investigate how users
can leverage adaptive visual cues for these tasks and environments.

With this in mind, we believe that visual guidance systems for
such tasks should take into account the dependency structure of
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steps. More specifically, tasks should be formulated such that any
actionable step could be cued, as opposed to following a strictly
sequential order that prohibits all bimanual concurrent actions. A
related issue is how we can generate dependency structures either
manually or automatically to allow for bimanual movements from
one user and even collaboration between multiple users. While
existing work has tackled automatically inferring parts segmenta-
tion [54], computing step-by-step assembly sequences from goal
configurations [26,27,52], and creating datasets with complex task
hierarchies [3, 17,34,52], more investigation into generating depen-
dency structures for partially sequential tasks is needed to enable
better bimanual task performance. When designing these systems,
one can also consider cognitive load, similar in motivation to work
by Funk et al., [14], Lindlbauer et al. [28], and Huang et al. [22].

6.2 Expert—Novice Collaboration

Allowing bimanual and concurrent step performance guided by eye
gaze and hand proximity also opens up new possibilities for how
we can assist expert—novice collaboration. While existing work has
addressed creating sequential guidance through techniques such as
recording demonstrations and authoring textual descriptions and
graphical annotations [1,11, 15, 18,22, 36,44], we hope to inspire
future research to leverage the partially sequential or completely un-
ordered nature of different task domains and allow multiple relevant
tasks to be prompted and made available to novices. With this in
mind, we believe that future visual guidance systems should allow
for both experts and novices to work at their own preferred pace, ei-
ther synchronously or asynchronously, with the experts encouraged
to assign potentially concurrent steps to novices and the novices
comfortably taking advantage of their spatial context to perform sets
of actionable steps concurrently.

6.3 Accuracy

We asked participants to work as fast as possible, as in previous
precueing work [19,29,49,50], only requiring that object destinations
lie within an acceptance threshold. Asking participants to pursue
both speed and accuracy could be confusing and might confound
the results, as some participants might prioritize speed and others
accuracy. Instead, we deemed a step to be completed when an object
was within a threshold distance of its goal position and analyzed
accuracy by measuring the errors described in Section 4.4.2. Future
studies could focus on accuracy.

7 CONCLUSIONS

We explored how adaptive visual cues that are updated based on
a user’s hand proximity or eye gaze can be used to guide users in
a bimanual unordered pick-and-place task in VR. We developed a
VR testbed for a task in which the user moves multiple objects to
their destinations, up to two at a time, guided by different numbers
of displayed cues. A formal user study showed that participants
performed better after a third cue was added. In addition, using
hand proximity to update the set of displayed cues reduces task
completion time, while using eye gaze reduces it further. Using
the distances between task objects and hand positions to predict the
objects on which the user intends to work and locking their cues can
improve task performance even more. Our work extends research
on task cueing in VR and AR to bimanual concurrent unordered
tasks. The results could be applied to various real-world tasks,
including organizing or categorizing items, in which the user can
decide the order in which to perform steps and work on multiple
steps in parallel.
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