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Abstract—This paper presents a user-adaptive variable 
damping controller that enhances the overall performance of 
coupled human-robot systems in terms of stability, agility, user 
effort, and energy expenditure during physical human-robot 
interaction. The controller accounts for impedance properties of 
the human limbs and adaptively changes robotic damping from 
negative to positive values based on user’s intent of motion while 
minimizing energy of the coupled human-robot system. Bayesian 
optimization is used to evaluate an unknown objective function 
and optimize noisy performance, which builds on a Gaussian 
process to account for the uncertainty of human behaviors and 
noisy observations. To validate the effectiveness of the presented 
approach and evaluate its potential applications in real-world 
scenarios, we performed human experiments using a common 
robotic arm manipulator. Experimental results from five pilot 
subjects demonstrated that the controller does not require a long 
parameter tuning process. Compared to variable damping 
control without user-adaptive parameter changes, the presented 
adaptive control strategy could reduce ~45% energy 
expenditure and achieve average performance improvement of 
~20% when several performance metrics of stability, agility, and 
user effort are considered together.  
 
Index Terms—Physical human-robot interaction, Assistive 

robotics, impedance control, interaction control 
 

I. INTRODUCTION 

HE rise in popularity of physical human-robot interaction 
field has presented several technical challenges, the most 

impactful of which is how to maintain user safety during 
physical interaction. This is most commonly addressed by 
designing the control mechanism of the robot to prioritize 
stability of the coupled system but at the expense of 
performance. One such example is an impedance/admittance 
controller which adds positive damping to the system to 
properly dissipate energy and ensure stability [1, 2]. While this 
approach can guarantee stability [3], it may reduce the user’s 
agility and require additional user effort to overcome the 
resistive behavior of the robot.  
To improve overall performance in pHRI,  stability, agility, 

and user effort all need to be considered when designing 
robotic controllers [4]. Many efforts have been made to 
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improve the trade-off between stability and agility or to reduce 
user effort, but not all together. Some task-dependent 
approaches focused on reducing the user effort by tuning 
impedance parameters based on demonstration of the desired 
task by the user [5] or adapting the parameters by detecting 
deviation from the nominal behavior of the admittance 
controller [6]. Other less task-dependent approaches change 
the impedance parameters using some metrics of user intent 
such as velocity or force at the point of interaction [7] or by 
minimizing their jerk profiles using reinforcement learning to 
improve agility [8].  
To overcome the limitations of these previous work, the 

authors have developed a robotic controller to improve the 
trade-off between stability and agility while reducing user 
effort [9]. The controller modulated robotic damping from 
negative to positive damping based on user’s intent of motion 
and knowledge on inherent human limb impedance [10-12]. 
However, similar to other methods, this work requires a long 
separate tuning process to determine several important 
controller parameters. Furthermore, uncertainty of human 
behavior and noisy observations have not been considered in 
the tuning process. The controller was also designed based on 
overall human biomechanics characteristics, and it was not 
capable of adjusting its parameters in a user-specific manner. 
However, complexity and redundancy of the human 
neuromuscular system and individual differences can lead to 
various responses for the same controller, and thus a control 
strategy that performed well in one user may perform poorly 
on another [13, 14]. These differences highlight the necessity 
of user-specific strategies in pHRI. 
Several methods have been developed that investigate each 

user’s performance and find the optimal control parameters 
through some curve fitting processes [15, 16]. However, 
computational complexity of these methods increases 
exponentially with the increase of parameter dimensions, and 
the methods involve lengthy experiment and evaluation. 
Human-in-the-loop (HIL) optimization is a promising 
approach to overcome these challenges by adjusting control 
parameters based on real-time measurements of 
biomechanical signals without a lengthy tuning protocol. The 
HIL optimization method using Bayesian Optimization (BO) 
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has been developed to rapidly identify optimal control 
parameters that minimize the metabolic cost of walking [14]. 
Another HIL optimization method, benefited from the 
covariance matrix adaptation evolutionary strategy, identified 
the best exoskeleton characteristics for each device type and 
individual user to improve running performance [17]. 
Although these achievements are impressive, none of the 
studies have directly addressed an important trade-off problem 
between stability, agility, and user effort during pHRI. 
The goal of this study is to address this trade-off issue and 

develop a user-adaptive variable damping controller to adjust 
its parameters based on real-time measurements of human 
biomechanical signals such as limb kinematics, interaction 
force, while minimizing energy of the coupled human-robot 
system. The presented controller not only captures user 
proficiency in pHRI but also addresses the challenges of the 
lengthy protocol and tuning process. The controller builds 
upon BO, which is an efficient global optimization strategy for 
the evaluation of a noisy, unknown, and expensive objective 
function [18]. Gaussian process is also used to model noisy 
observations and uncertainty in human behavior [19, 20].  
To evaluate performance of the presented controller and its 

applicability in real-world scenarios, we performed human 
experiments in which users interacted with a robotic arm 
manipulator. Stability, agility, user effort, and energy 
expendiure were quantified to demonstrate the overall 
performance improvement of this approach compared to the 
previous work [9]. 

 

II. METHODS 

A. Problem Statement 
Impedance control modulates a set of impedance 

parameters, stiffness (𝐾!) and damping (𝐵!), at the interaction 
port between the human and robot. The variable damping 
control varies the damping component of the impedance. The 
controller is described as (1): 

 

																	𝐹(𝑥, 𝑥̇) = 𝐵!𝑥̇ + 𝐾!(𝑥 − 𝑥") + 𝑔     (1) 
 

where 𝑥 is the position, 𝑥" is the desired equilibrium position, 
𝑥̇ is the velocity, 𝑔 is the gravity compensation force, 𝐹 is the 
output controller force, and 𝐾!  and 𝐵!  are stiffness and 
damping parameters. 
The goal of variable damping control is to modulate 

robotic damping to help the user perform with high stability 
and agility, and with low effort and energy expenditure. If we 
know the user’s intent of motion, we may modulate robotic 
damping to maximize efficiency. One effective way to 
identify user’s intent of motion is by collecting kinematic 
information during pHRI. We define “intent of motion” as the 
product of velocity and acceleration, 𝑥̇𝑥̈, which is a scaled 
version of the change in kinetic energy of the system. Based 
on the sign of this term, we can determine when to apply 
positive or negative damping to the system. As long as the 
magnitude of the negative robotic damping is less than the 
magnitude of inherent damping of human user in the 
extremity, the coupled system can remain passive and stable. 
Therefore, if user’s intent of motion is positive, applying 
negative robotic damping (injecting energy) can help the user 

to move faster and when the user’s intent of motion is 
negative, positive robotic damping (energy dissipating) can 
help the user to slow down and stabilize the limbs and joints.  
For the smooth transition between positive and negative 

damping, a piecewise logistic function was defined as (2): 
 

𝐵!(𝑥̇𝑥̈) = 		 /
#$!"

%&"#$%&̇&̈
− 𝑏'( ,					𝑥̇𝑥̈ ≥ 0	

− #$)"
%&"#$*&̇&̈

+ 𝑏)( ,			𝑥̇𝑥̈ < 0				
	   (2) 

 

where 𝐵!  is the robotic damping applied to the system and 
𝑏'( and 𝑏)( are the lower and upper bound of the damping 
range. Tuning constants 𝑘* and 𝑘+ are used as they specify 
the logistic growth rate of the function, which determine how 
quickly the transition between 𝑏'( and 𝑏)( happens (3): 
	

																					𝑘* =
-. +/+#,+-,0

1̇1̈./&
, 												𝑘+ =

-. +/+-,+#,0

1̇1̈.0*
	 	 	 	 			(3)	

	

where	𝑥̇𝑥̈451 and 𝑥̇𝑥̈46+ are the maximum and minimum user 
intent, respectively, and 𝑠  is the sensitivity of the robotic 
damping function. In this study, 𝑠 = 0.95, which means that 
the robotic damping becomes 0.95𝑏'( at 𝑥̇𝑥̈451 and 0.95𝑏)( 
at 𝑥̇𝑥̈46+. With this piecewise logistic function, positive and 
negative damping regions can be defined independently. 
Careful selection of the controller parameters 𝑏'( , 𝑏)( , 

𝑘*  and 𝑘+  is critical to maximize the effectiveness of the 
variable damping controller. In the previous study [9], fixed 
values were selected for 𝑏'(  and 𝑏)(  based on previous 
studies of characterizing the inherent damping of the human 
arm [10-12], which did not allow parameter adaptation for 
different users. In that study, other user-specific parameters, 
specifically 𝑘*  and 𝑘+ , were determined with a separate 
lengthy tuning process before main experiments, and one set 
of the selected parameters was used throughout the whole 
experiments without any adjustment.  
This method of selecting parameters was successful and 

resulted in enhancing the trade-off between stability/agility 
and reducing user effort, but consistent application of the 
fixed upper and lower bounds of damping across different 
users limited the efficiency of the controller. Additionally, the 
tuning process to determine 𝑘*  and 𝑘+ , was time intensive 
and did not consider the uncertainty of human behavior and 
noise of observation such as limb kinematics and interaction 
force, and user proficiency and adaptability. 
If we select each parameter based on the biomechanical 

characteristics of each user and adjust them according to their 
proficiency during pHRI, we expect more performance 
improvement. Further, by leveraging real-time measurements 
of human biomechanical signals such as limb kinematics, 
interaction force, and energy of the coupled human-robot 
system, we can eliminate the lengthy tuning process.  
We formulate an optimization problem of finding the 

controller parameters with a goal to enhance the overall 
performance by improving the trade-off between stability, 
agility and reducing user effort (4): 

 

																					𝜃∗∗ ∈ argmax8∈ℝ1 𝑓(𝜃)        (4) 
 

where 𝑓(∙) is an objective function in respect to controller 
parameters 𝜃 ∈ ℝ;. As previously mentioned, the basic idea 
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of variable damping control is to have the robot inject or 
remove/dissipate energy in a way that the total energy of the 
system will be passive. Thus, our goal is to decrease the total 
energy (interaction energy) of the system to be slightly above 
zero. With this concept, we define an objective function 𝑓 to 
minimize the squared energy (5): 
 

																									𝑓 = −0.5(𝐸6+<"!5=<6>+)#       (5) 
 

where 𝐸6+<"!5=<6>+ is 𝑓𝑜𝑟𝑐𝑒 ∗ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ∗ 𝑡𝑖𝑚𝑒.  
The interaction energy (𝐸6+<"!5=<6>+ ) used to define the 

objective function depends on user responses that are 
inherently stochastic due to the uncertainty of human 
behavior and noisy observations which makes the objective 
function unknown. Optimizing this objective function 
analytically is not feasible because there is no direct 
relationship between the controller parameters and the 
objective function. Thus, common optimization methods that 
work based on the derivation of objective function do not 
work in this problem. Furthermore, the stochasticity of our 
problem necessitates the need for more robust methods to the 
effect of errors. The number of local optima or the convexity 
of the objective function is not determined, while we are 
seeking the global maximum of the objective function. To 
overcome these challenges and difficulties, we approach the 
problem using Bayesian optimization (BO), which is a 
numerical global optimization method that is particularly well 
suited for optimizing unknown, black-box objective functions 
that are expensive to evaluate [18]. 

B. Bayesian Optimization (BO) of variable damping control 
using Gaussian Process (GP) 
The BO method works using a response surface (i.e., 

surrogate model). Response surface-based optimization 
methods iteratively create a data set of parameters and the 
related evaluation function as 𝐷 = {𝜃, 𝑓(𝜃)}. This data set is 
used to map the parameters to corresponding evaluation 
function through building a model (response surface), 𝑓S(∙
): 𝜃 → 𝑓(𝜃). Using this response surface, the optimization (4) 
is replaced with a “virtual” optimization process as in (6), 
where “virtual” is the indication that the optimization problem 
only requires the evaluation of the learned model (𝑓S), not the 
true objective function (𝑓) (6):  

 

																					𝜃∗∗ ∈ argmax8∈ℝ1 𝑓S(𝜃)        (6) 
 

A Gaussian process (GP) is used as response surface [19]. 
This probabilistic model allows us to model uncertainty of 
human behavior and noisy observations. Using probabilistic 
model as response surface 𝑓S(∙) in (6) leads to multi-objective 
optimization problem [19, 21]. Therefore, an acquisition 
function 𝛼(∙)  is used for the virtual optimization of this 
probabilistic model. This acquisition function allows us to 
scalarize the response surface onto a single function that can 
be optimized as in (7):  

 

																					𝜃∗ ∈ argmax8∈ℝ1 𝛼(𝜃)        (7) 
 

The parameters to optimize using (4) are  𝑏'( , 𝑏)( , 𝑘* 
and 𝑘+. Among these parameters, 𝑏'(  and 𝑏)(  are the most 
important since they define the boundaries of transition 

between positive and negative damping which has a direct 
impact on stability, agility, and user effort. Furthermore, 
depending on the inherent impedance properties of each 
human user, these parameters can vary significantly across 
different users [11]. 𝑘* and 𝑘+  determine the growth rate of 
the transition between 𝑏'(  and 𝑏)( . While these are 
important parameters, they have a much smaller effect on 
performance and previous studies showed that these two 
parameters do not vary significantly across different human 
users [9]. 
This difference in parameter significance informed our 

method to include a combination of BO and a real-time tuning 
method so that 𝑏'( and 𝑏)( are found directly using the BO 
and  𝑘* and 𝑘+ are found indirectly from the BO method. We 
defined two data sets as 𝜃 = [𝑏'( , 𝑏)(], 	𝐷 = {𝜃, 	𝑓(𝜃, 𝛽)} 
and 𝛽 = Z𝑘*, 𝑘+[, 𝐷′ = {𝛽, 	𝑓(𝜃, 𝛽)}.  
Based on the description of these data sets, the response 

surface model of GP regression maps becomes 𝑓S(𝜃): 𝜃 →
𝑓(𝜃, 𝛽). A GP is a distribution over functions 𝑓~𝐺𝑃(𝑚? , 𝑘?) 
defined by a prior mean 𝑚? and covariance function 𝑘?. To 
consider noisy observations, noisy function values are 
assumed 𝑦	 = 	𝑓(𝜃, 𝛽) + 𝜖 , where 𝜖~𝛮(0, 𝜎@#) is Gaussian 
noise. As it is conventionally chosen, 𝑚? ≡ 0 as prior mean, 
while the chosen covariance function 𝑘?  is the squared 
exponential described in (8): 

 

𝑘?d𝜃*, 𝜃Ae = 𝜎?# exp h−
%
#
d𝜃* − 𝜃Ae

BΛ-%(𝜃* − 𝜃A)j +
𝜎@#𝛿*A                     (8) 

 

where Λ = diag([𝑙%#, … , 𝑙C# ]) and 𝜎@#𝛿*A  is the representation 
of the white noise kernel in which 𝜎@# is applied only when 
𝑝 = 𝑞 . 𝑙6  are the characteristic length-scales, 𝜎?#  is the 
variance of the latent function 𝑓(∙)  and 𝜎@#  is the noise 
variance.  
Given training input (prior samples) 𝑋 = [𝜃%, … , 𝜃+] and 

the corresponding training outputs 𝑦 = [𝑦%, … , 𝑦+], we can 
define the GP predictive distribution with data set 𝐷 = {𝑋, 	𝑦} 
as in (9): 
 

  𝑝(𝑓(𝜃|𝐷, 𝜃) = 𝛮(𝜇(𝜃), 𝜎#(𝜃))         (9) 
 

where the mean 𝜇(𝜃) and the variance 𝜎#(𝜃) are (10):  
 

  𝜇(𝜃) = 𝑘∗B𝐾-%𝑦,								𝜎#(𝜃) = 𝑘∗∗ − 𝑘∗B𝐾-%𝑘∗    (10) 
 

respectively, and 𝐾 is the matrix with 𝐾6D = 𝑘d𝜃6 , 𝜃De, 𝑘∗∗ =
𝑘(𝜃, 𝜃) and 𝑘∗ = 𝑘(𝑋, 𝜃). The selection of hyperparameters 
of GP model including 𝑙6, 𝜎?# and 𝜎@# is important and they are 
selected by optimizing the marginal likelihood [19]. 
Expected improvement (EI) is used as acquisition 

function because experimental results showed that this 
function performed better on average than other functions [22, 
23]. The EI acquisition function is (11-12): 

 

𝛼(𝜃)

= 	 t
(𝜇(𝜃) − 𝜇& − 𝜁)𝜙(𝑍) + 𝜎(𝜃)𝜑(𝑍)									𝑖𝑓	𝜎(𝜃) > 0
0																																																																							𝑖𝑓	𝜎(𝜃) = 0  

 (11) 
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𝑍 = t(𝜇
(𝜃) − 𝜇& − 𝜁)/𝜎(𝜃)							𝑖𝑓	𝜎(𝜃) > 0								
0																																							𝑖𝑓	𝜎(𝜃) = 0    (12) 

 

𝜙(∙) is the normal cumulative distribution function, 𝜑(∙) is 
the standard normal probability density function, and 𝜇&  is 
the best observed value we evaluated so far. 𝜁 determines the 
amount of exploration during optimization and higher 𝜁 
values lead to more exploration than exploitation, which was 
set to 𝜁 = 0.25 in this study. With this acquisition function, 
our optimization problem fits the form of (7). In order to 
numerically find the parameters corresponding to the global 
maximum of our acquisition function ( 𝜃∗ ), L-BFGS 
algorithm is used [24]. It is initialized with 50 different 
random parameter sets and the maximum of the acquisition 
function is calculated for each set. The maximum is then 
determined from these 50 maxima. 
The parameters 𝑘*  and 𝑘+  are calculated in real-time 

according to (3) after each iteration of BO. To account for 
high variability in human behavior, the update considers best 
values of the evaluation function in the previous iterations. 
Since the BO algorithm gradually converges, the percentage 
of previous iterations to be considered is also determined to 
gradually decrease with the number of iterations following 
100 ∗ (number	of	iteration)-E.G . 𝑘*  and 𝑘+  for the next 
iteration are updated by averaging the best values within the 
selected iterations. With this method, the next 𝛽 is calculated 
as 𝛽∗, then 𝛽∗ and 𝜃∗ are used to find corresponding 	𝑓, and 
they are added to 𝐷 and 𝐷′. 
The process of the whole algorithm is summarized in 

Algorithm 1. As described, 𝐷 and 𝐷′ are composed as prior. 
Then the response surface using the GP and the data set 𝐷 is 
built, then according to the built model, 𝛼(𝜃) is determined. 
Maximization of this function gives 𝜃∗, and then 𝛽∗ is found 
and then 𝑓(𝜃∗, 𝛽∗) is evaluated in the real system through 
pHRI. Then, 𝐷 and 𝐷′ will be updated according to new data 
along with the response surface. This process is repeated until 
the global maximum is determined numerically. A stopping 
criterion for our study is described in the next section. 
The method is described for a single dimension of 

movement, but it is worth to note that it can be easily extended 
to multi-dimensional movement. This is important since 
nearly all real-world tasks require multi-dimensional 

movement. For multi-dimensional movement, we can 
decouple each direction of movement and implement the 
same process for each direction while modulating the 
damping value as described in (13):  

 

𝑩𝒓 = 	𝐵6 Ñ̂ 	+ 	𝐵D Ü̂ + 	𝐵I𝒌à +⋯		         (13) 
 

where 	𝐵6 , 	𝐵D , 	𝐵I are the robotic damping value modulated in 
each direction. The number of parameters will increase 
proportionally to the dimensions considered. For example, 
implementation of this method in 2 dimensions of movement 
increases the total number of parameters to 8.  

C. Experiments 
 We performed a human experiment to validate the 

effectiveness of the presented control approach and 
investigate its potential applications in real-world scenarios. 
A 7 degree-of-freedom (DOF) robotic arm (LBR iiwa R820, 
KUKA, Germany) with a 6-axis load cell (Delta IP60, ATI 
Industrial Automation, NC) was used as the robotic interface. 
Both kinematic and force data were recorded at 1 kHz and 
low-pass filtered using a 4th order Butterworth filter with a 
cutoff frequency of 20 Hz.  
Human users were instructed to perform a target reaching 

task in the transverse plane while they interacted with the end-
effector of robotic arm in a seated position with their trunk 
securely strapped to a rigid chair to eliminate any effects of 
the confounding factors due to trunk movement during 
reaching movement (Fig. 1A) [25, 26]. A visual feedback 
display was provided at ~1 m to help users in completing 
target reaching movement tasks (Fig. 1B). The trial started 
when the new target was shown to the subject and lasted until 
2 seconds after the subject first came within 0.5 cm of the 
target. Once a trial concluded, a new trial started at a 
randomized interval between 0.5-1.5 seconds. These 
experiments required movement in both the anterior-posterior 
(AP) and medial-lateral (ML) directions. The stiffness of the 
end effector was set to 0 N/m in these directions, and 106 N/m 
in the perpendicular direction to limit the movement of the 
robot to the transverse plane and prevent the movement in the 
direction of gravity. The simulated inertia was set to 10 kg. A 
virtual wall of 36 × 36	𝑐𝑚#  was implemented around the 
workspace to ensure the safety of the subjects. 
There were multiple blocks of 12 trials. The experiment 

was divided into blocks to provide subjects a rest period 

 

Algorithm 1 Bayesian Optimization of Variable Damping 

Control 

1: 𝐷 ← if available: {𝜃, 𝑓(𝜃, 𝛽)} 
2: 𝐷’ ← if available: {𝛽, 𝑓(𝜃, 𝛽)} 
3: Prior ← if available: Prior of the response surface 
4: While optimize do 
5:          Train a response surface from D 
6:          Find 𝜃∗ that maximizes the acquisition surface 𝛼(𝜃) 
7:          Find 𝛽∗ corresponding to the specific portion of   
             maximum 𝐷 
8:          Evaluate 𝑓(𝜃∗, 𝛽∗) on the real system  
9:          Add {𝜃∗, 𝑓(𝜃∗, 𝛽∗)} to 𝐷 
10:        Add {𝛽∗, 𝑓(𝜃∗, 𝛽∗)} to 𝐷’ 
11: end While 

 

 
 

 

 

Fig. 1. Experimental setup. A: Side view of the human user interacting 
with the end-effector of a 7-DOF robotic arm and visual feedback display 
was provided in ~1m distance. B: Visual feedback display. Gray solid 
circle shows the current target, gray hollow circle shows the previous 
target. The dashed line represented the straightest path between the 
previous target and the current. The red solid circle presented the current 
hand position. 
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between them to prevent potential fatigue. Each iteration for 
BO included 4 target reaching trials and the parameters in 
each iteration remained constant. Therefore, the evaluation of 
the objective function was done in each iteration based on the 
average of the 4 trials in that iteration. For these 4 trials, 4 
targets were randomly generated in the traverse plane 
(20 × 20	𝑐𝑚#) with a constraint that the total path length in 
each of the ML and AP (+Ñ̂, −Ñ̂, +Ü̂, and −Ü̂) was 20 cm and 
the minimum length of each path in each direction was 5 cm.  
The ranges of parameters 𝑏'(JK , 𝑏)(JK, 𝑏'(L'  and 𝑏)(L' 

considered in BO were [−50,−5], [10, 100], [−30,−5],
[10, 100] Ns/m, respectively, which were selected based on 
our previous studies [10, 11]. Thirteen prior samples were 
evaluated at the beginning of the optimization process. These 
13 samples were chosen randomly from a grid made from the 
ranges of parameters. While 𝑘*JK, 𝑘+JK, 𝑘*L' and 𝑘+L' can be 
initialized with any value, they were all initialized with 25 
according to approximate average values across different 
subjects from the previous study [9].  
The stopping criterion for the optimization process was 

when the best parameters did not change for 10 iterations of 
BO consecutively. Since 𝑏'(JK, 𝑏)(JK, 𝑏'(L' , and 𝑏)(L'  were the 
parameters found directly based on BO, they were used for 
the stopping criterion. We might see changes in 𝑘*JK, 𝑘+JK,
𝑘*L' ,  and 𝑘+L'  parameters even in the last iterations of the 
algorithm, because they were updated at every iteration. 
Therefore, convergence was only expected for 𝑏'(JK, 𝑏)(JK, 𝑏'(L' 
and 𝑏)(L' parameters that were directly determined from BO. 
Five young, healthy subjects (age: 21–34, height: 163–

183 cm, weight: 50–78 kg, sex: 4 males and 1 female) 
participated in this study, which was approved by the 

Institutional Review Board of Arizona State University 
(STUDY 00010123). Subjects provided informed, written 
consent prior to participation. All experimental procedures 
were performed in accordance with the relevant guidelines 
and regulations. No subject was informed of the hypotheses 
of this study. 

D. Data Analysis 
Several performance metrics representing stability, 

agility, and user effort were selected to compare the 
presented controller with the previous variable damping 
controller without user-adaptive parameter changes [9]. 
1) Stability: Stability was evaluated in both spatial and 

time domains. In the spatial domain, overshoot was 
evaluated by calculating the maximum distance past the 
target position. In the time domain, stability time was 
defined as the time between the first time the subject hit the 
target and when the subject was able to hold the position 
within the target (±5	𝑚𝑚) for 0.5 s continuously.  
2) Agility: Agility was evaluated using the maximum and 

mean speed of the subject’s movement. The mean speed was 
calculated as the average speed from the initiation time, the 
first time when the subject started moving (move > 5	𝑚𝑚), 
to the first time to hit the target (within ±5	𝑚𝑚 of the center 
of the target). The maximum speed was the largest 
magnitude of speed that the subject had during the trial. 
3) User Effort: User effort was evaluated using force at 

the interaction point. The mean root-mean-squared (RMS) 
and maximum RMS interaction forces were used to quantify 
the user effort. The mean RMS interaction force was 
calculated from the initiation time to the stability time, while 

 
 
Fig. 3. The Maximum objective function value up to the current iteration 
and the best selected parameters over iterations in both the AP and ML 
directions. A: Maximum value of the objective function, B: Best selected 
𝑏!" and 𝑏#", C: Best selected 𝑘$ and 𝑘% with respect to iterations. 

 
 

Fig. 2. Bayesian optimization process during the maximization of objective function f for a representative subject. There are 2D view of three sample 
iterations for both the AP and ML directions A: Initial iteration (first row), B: Second iteration (second row), C: Last iteration (third row) of the Bayesian 
optimization process including the mean posterior of the model prediction, sample posterior points (black dots), expected improvement function 
(acquisition function). The location of the next parameter to be evaluated (+) and the best selected parameters up to that iteration (yellow *) are shown. 
Samples are distributed more on the promising areas that are more probable to have the maximum points (red areas). There are some samples out of 
those promising areas as well (blue or yellow areas), because the acquisition function handles the trade-off between exploration and exploitation in the 
BO process to search for the global optimum point. 
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the maximum RMS force was defined as the highest value 
of interaction force during the trial. 
All these performance metrics were calculated in trials 

with the optimized parameters found from our presented 
controller and with the fixed parameters used in the previous 
variable damping controller. The percentages of 
improvement for each metric were calculated as shown in 
(14), except for agility which was the negative of (14), 
because we aimed to increase agility. 

 

%	𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 	 (4"<!6=N0
20&-4"<!6=N0

3%40.0561)

4"5+(4"<!6=N0
20&,4"<!6=N0

3%40.0561)

 (14) 
where 𝑚𝑒𝑎𝑛(𝑚𝑒𝑡𝑟𝑖𝑐𝑠6

?61 , 𝑚𝑒𝑡𝑟𝑖𝑐𝑠6
>*<646Q";)  denotes the 

average of 𝑚𝑒𝑡𝑟𝑖𝑐𝑠6 in the fixed parameter condition and in 
the parameter condition with BO. 
 

III. RESULTS 

Results of human experiments demonstrate how fast and 
successful the presented BO algorithm was in finding the 
optimal parameters of the variable damping controller 
despite unknown objective function, uncertainty of human 
behavior, and noisy observations. Quantitative results of one 
representative subject and detailed results of all subjects are 
described in this section. 

The representative subject’s response surface model and 
acquisition function in both the AP and ML directions in the 
initial, second, and last iterations of the BO process are 
shown (Fig. 2) to demonstrate how the response surface 
evolved by the addition of new samples from the acquisition 
function. In the initial iteration (Fig. 2A), the response 
surface was built based on the available prior samples. The 
corresponding acquisition function of this model was 
calculated, and its maximum value provided the information 
for the next parameters to be evaluated (as denoted with (+) 
in Fig. 2). The next parameters selected from the acquisition 
function in the initial iteration was added to the data set for 
the next iteration (second iteration) and the response surface 
was updated accordingly (Fig. 2B). Based on the added new 
samples, the response surface was updated iteratively until 
the optimization process converged. The last iteration (Fig. 
2C) shows the updated response surface with all posterior 
samples. The value of acquisition function with respect to 
all parameters was similar (similar color) in the last iteration 
of the optimization algorithm.  
The evolution of the maximum value of the objective 

function and the best corresponding parameters are shown 
in Fig. 3. The best parameters for this representative subject 
were found in 29 iterations (13 prior iterations and 16 BO 
iterations), demonstrating the fast convergence of the 
presented optimization process. It also shows how the best 
parameter values evolved over the course of the 
optimization process. The timings for changes of 𝑏'(  and 
𝑏)(  matched those of the objective function as they were 
directly found from the objective function. On the contrary, 
𝑘* and 𝑘+ showed a different pattern of evolution since they 
were updated every iteration. 
The optimal parameters and the number of iterations 

until convergence for all subjects are summarized in Table 
I. The optimal value for 𝑏.$JK and 𝑏.$L' ranged -20.5 to -5.0 
Ns/m and -10.0 to -5.0 Ns/m, respectively, and that for 𝑏R$JK 
and 𝑏R$L'  ranged 39.9	to	100.0  Ns/m and 60	to	90  Ns/m, 
respectively. In addition, the optimal value for 𝑘*JK and 𝑘*L' 
varied across different subjects from 22.8 to 55.7 and from 
24.0 to 57.9, respectively, and that for 𝑘+JK and 𝑘+L' changed 
from 12.5 to 42.2 and from 13.7 to 46.1, respectively. A 
clear difference in the optimal parameters across different 
subjects emphasizes the importance of designing the 
variable damping controller in a user-specific manner by 
considering user proficiency and biomechanical 
characteristics during pHRI. While the optimal parameters 

 
 
Fig. 3. The Maximum objective function value up to the current iteration 
and the best selected parameters over iterations in both the AP and ML 
directions. A: Maximum value of the objective function, B: Best selected 
𝑏!" and 𝑏#", C: Best selected 𝑘$ and 𝑘% with respect to iterations. 

TABLE I.  OPTIMAL PARAMETERS AND THE NUMBER OF ITERATIONS UNTIL CONVERGENCE  

Optimal 
Parameters 𝒃𝒍𝒃𝑨𝑷 𝒃𝒖𝒃𝑨𝑷 𝒃𝒍𝒃𝑴𝑳 𝒃𝒖𝒃𝑴𝑳 𝒌𝒑𝑨𝑷 𝒌𝒏𝑨𝑷 𝒌𝒑𝑴𝑳 𝒌𝒏𝑴𝑳 

Number of 
Iterations until 
Convergence 

Subject1 -10.0 70.0 -5.0 90.0 36.1 19.8 39.0 22.6 15 

Subject2 -5.0 100.0 -5.0 73.5 22.8 12.5 24.0 13.7 16 

Subject3 -20.5 100.0 -10.0 60.0 33.4 20.6 30.2 16.4 13 

Subject4 -9.7 39.9 -10.0 90.0 55.7 42.2 57.9 46.1 16 

Subject5 -8.2 72.0 -10.0 90.0 45.3 28.0 47.3 34.8 12 

Mean (std.) -10.7 
(5.2) 

76.4 
(22.4) 

-8.0 
(2.4) 

80.7 
(12.2) 

38.7 
(11.1) 

24.6 
(10.1) 

39.7 
(12.0) 

26.6 
(12.0) 

14 
(2) 
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were highly variable across different subjects, the number of 
iterations until the algorithm converged showed much 
smaller variation with a range of 12 to 16. This demonstrates 
the consistent speed of our algorithm in determining the 
optimal parameters for different users.  
The presented user-adaptive damping controller showed 

considerable overall performance improvement compared to 
the previous variable damping controller without user-
adaptive parameter changes. Percentage improvement for 
different performance metrics (stability, agility, and user 
effort) for all subjects are summarized in Table II. Stability 
through both metrics (overshoot and stability time) 
considerably improved in most of the subjects. When 
averaged across all subjects, the improvement was 79.2% 
and 25.6% in overshoot and stability time, respectively. 
User effort also improved consistently in all subjects 
according to both mean RMS force and max RMS force 
metrics. There were average of 19.2% and 19.6% 
improvements across subjects for mean RMS force and max 
RMS force, respectively. An average reduction in the agility 
was observed compared to the previous variable damping 
controller: -10.8% and -15.5% for mean and max speed, 
respectively. This reduction is mainly because the presented 
user-adaptive controller determined the optimal parameters 
by considering all performance metrics simultaneously 
although indirectly via the energy function. The overall 
performance, calculated by averaging results of all three 
performance metrics, showed consistent improvement in all 
subjects. When averaged across all subjects, the overall 
performance improvement was 19.6%.  
As expected from the use of energy in the objective 

function (Eq. (4)), the presented controller reduced energy 
of the coupled system considerably. On average, an energy 
reduction of 44.9% was observed compared to the previous 
controller. It is important to note that while we did not 
directly use performance metrics (stability, agility, and user 
effort) in the optimization process, targeting the reduction of 
interaction energy in the optimization process led to 
substantial overall performance improvement in pHRI.  

 

IV. DISCUSSION 

This paper presented a user-adaptive variable damping 
controller that can be applied in a diverse set of applications 
to enhance the overall performance of coupled human-robot 

systems. Based on the framework of BO with GP, the 
presented controller minimizes the energy of the coupled 
human-robot system without violating the passivity 
constraint. The algorithm incorporates the inherent 
impedance properties of each human user’s limbs to initiate 
the optimization procedure and adaptively changes the 
controller parameters according to the user’s proficiency in 
physical interaction measured by human biomechanical 
signals including limb kinematics, interaction force and 
energy.  
The presented approach overcomes many drawbacks and 

limitations of previous approaches, by effectively avoiding 
local optima via the acquisition function that addresses the 
trade-off between exploration of the search space and 
exploitation of promising areas, explicitly modeling noisy 
observations and uncertainties of the human user response, 
and efficiently and effectively selecting parameters without 
a need of long experiments and tuning sessions. This 
approach could successfully determine the controller 
parameters on an individual basis. With an optimal set of 
controller parameters that minimizes interaction energy, the 
controller could substantially enhance the overall 
performance in pHRI by improving the trade-off between 
stability and agility and reducing user effort. 
Experimental results from 5 pilot subjects interacting 

with a popular robotic arm manipulator confirmed the 
effectiveness of the presented user-adaptive controller in 
enhancing the overall performance of coupled human-robot 
systems beyond that of the previous variable damping 
controller with fixed controller parameters [9].  
Compared to the previous controller, the presented 

adaptive control strategy reduced about 45% energy 
expenditure and achieve average performance improvement 
of about 20% when several performance metrics of stability, 
agility, and user effort are considered together. All subjects 
participated in this pilot experiments consistently showed a 
clear prioritization on stability and user effort over agility to 
enhance the overall performance during interaction with the 
robotic arm. Specifically, all subjects showed notable 
improvements in terms of stability and user effort: when 
averaged across subjects, stability and user effort metrics 
showed improvements of 52.4% and 19.4%, respectively. 
However, arm movements were consistently slowed down 
and agility metrics showed about 10% and 15% of reduction 
in mean and max speeds, respectively.  

TABLE II.  PERCENTAGE IMPROVEMENT OF THE PRESENTED USER-ADAPTIVE CONTROLLER WITH RESPECT TO THE PREVIOUS 
VARIABLE DAMPING CONTROLLER WITH FIXED PARAMETERS [9] 

Percentage 
Improvement Overshoot Stability 

time 
Mean 
speed 

Max 
speed 

Mean 
force 

Max 
force 

Overall 
improvement Energy 

Subject1 100.8 -15.7 -11.8 -24.1 35.6 43.7 21.4 68.1 

Subject2 86.1 43.4 -18.2 -21.7 31.2 32.6 25.6 57.1 

Subject3 73.2 61.6 -10.9 -1.7 11.7 4.8 23.1 23.6 

Subject4 55.2 12.9 -13.8 -20.9 12.7 4.6 8.4 43.9 

Subject5 80.6 25.8 0.8 -9.0 5.1 12.5 19.3 31.6 
Mean  
(std.) 

79.2  
(15.0) 

25.6 
(26.4) 

-10.8 
(6.3) 

-15.5 
(8.6) 

19.2 
(11.9) 

19.6 
(15.8) 

19.6  
(5.9) 

44.9 
(16.3) 
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These results are somewhat expected as performance 
metrics were not directly used in the optimization process, but 
energy expenditure was used. In fact, since there exist clear 
trade-offs between these performance metrics (stability, 
agility, and user effort), using them in the optimization 
process would not lead to an improvement in every 
performance metric.  
It is worth to note that the presented controller can still 

improve agility compared to popular positive damping 
controllers. According to the previous study [9], the variable 
damping controller without user-adaptive parameter 
changes improved the mean and max speeds by 19.4% and 
56.1%, respectively. Thus, the presented controller in this 
paper is still expected to achieve a better agility performance 
than the positively damped controllers. 
The previous controller included two separate lengthy 

tuning sessions before the main experiments (one with 126 
trials (~15 sec for each trial) to determine 𝑏'( and 𝑏)( and 
the other with 60 trials (~15 sec for each trial) to determine 
𝑘*  and 𝑘+), while the uncertainty of human behavior and 
noise of observation such as limb kinematics and interaction 
force, and user proficiency and adaptability were not 
considered in the tuning process. The current adaptive 
control strategy, on the contrary to the previous one, 
eliminated these extra tuning processes and the controller 
parameters were adaptively determined throughout the main 
experiments based on user proficiency. The whole 
experimental protocol took on average of 14 iterations of BO 
that includes 56 trials without any extra tuning process. 
Although the human experiments with 5 pilot subjects in 

this study used simple 2D arm reaching tasks to validate the 
effectiveness of the presented controller, an additional study 
with a larger set of subjects are warranted in more 
complicated task conditions (e.g., 3D arm movement, 
irregular movement, and obstacle avoidance) to fully 
evaluate its potential applicability in real-world scenarios. In 
addition, other future work will incorporate variable 
stiffness into the existing controller framework to fully 
implement a user-adaptive variable impedance controller, 
which we expect to further improve the performance in 
pHRI beyond the variable damping controller.  
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