This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/LRA.2022.3144511

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

User-Adaptive Variable Damping Control Using
Bayesian Optimization to Enhance Physical
Human-Robot Interaction

Fatemeh Zahedi, Dongjune Chang and Hyunglae Lee*, Member, IEEE

Abstract—This paper presents a user-adaptive variable
damping controller that enhances the overall performance of
coupled human-robot systems in terms of stability, agility, user
effort, and energy expenditure during physical human-robot
interaction. The controller accounts for impedance properties of
the human limbs and adaptively changes robotic damping from
negative to positive values based on user’s intent of motion while
minimizing energy of the coupled human-robot system. Bayesian
optimization is used to evaluate an unknown objective function
and optimize noisy performance, which builds on a Gaussian
process to account for the uncertainty of human behaviors and
noisy observations. To validate the effectiveness of the presented
approach and evaluate its potential applications in real-world
scenarios, we performed human experiments using a common
robotic arm manipulator. Experimental results from five pilot
subjects demonstrated that the controller does not require a long
parameter tuning process. Compared to variable damping
control without user-adaptive parameter changes, the presented
adaptive control strategy could reduce ~45% energy
expenditure and achieve average performance improvement of
~20% when several performance metrics of stability, agility, and
user effort are considered together.

Index Terms—Physical human-robot interaction, Assistive
robotics, impedance control, interaction control

I. INTRODUCTION

HE rise in popularity of physical human-robot interaction

field has presented several technical challenges, the most
impactful of which is how to maintain user safety during
physical interaction. This is most commonly addressed by
designing the control mechanism of the robot to prioritize
stability of the coupled system but at the expense of
performance. One such example is an impedance/admittance
controller which adds positive damping to the system to
properly dissipate energy and ensure stability [1, 2]. While this
approach can guarantee stability [3], it may reduce the user’s
agility and require additional user effort to overcome the
resistive behavior of the robot.

To improve overall performance in pHRI, stability, agility,
and user effort all need to be considered when designing
robotic controllers [4]. Many efforts have been made to
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improve the trade-off between stability and agility or to reduce
user effort, but not all together. Some task-dependent
approaches focused on reducing the user effort by tuning
impedance parameters based on demonstration of the desired
task by the user [5] or adapting the parameters by detecting
deviation from the nominal behavior of the admittance
controller [6]. Other less task-dependent approaches change
the impedance parameters using some metrics of user intent
such as velocity or force at the point of interaction [7] or by
minimizing their jerk profiles using reinforcement learning to
improve agility [8].

To overcome the limitations of these previous work, the
authors have developed a robotic controller to improve the
trade-off between stability and agility while reducing user
effort [9]. The controller modulated robotic damping from
negative to positive damping based on user’s intent of motion
and knowledge on inherent human limb impedance [10-12].
However, similar to other methods, this work requires a long
separate tuning process to determine several important
controller parameters. Furthermore, uncertainty of human
behavior and noisy observations have not been considered in
the tuning process. The controller was also designed based on
overall human biomechanics characteristics, and it was not
capable of adjusting its parameters in a user-specific manner.
However, complexity and redundancy of the human
neuromuscular system and individual differences can lead to
various responses for the same controller, and thus a control
strategy that performed well in one user may perform poorly
on another [13, 14]. These differences highlight the necessity
of user-specific strategies in pHRI.

Several methods have been developed that investigate each
user’s performance and find the optimal control parameters
through some curve fitting processes [15, 16]. However,
computational complexity of these methods increases
exponentially with the increase of parameter dimensions, and
the methods involve lengthy experiment and evaluation.
Human-in-the-loop (HIL) optimization is a promising
approach to overcome these challenges by adjusting control
parameters based on real-time measurements of
biomechanical signals without a lengthy tuning protocol. The
HIL optimization method using Bayesian Optimization (BO)
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has been developed to rapidly identify optimal control
parameters that minimize the metabolic cost of walking [14].
Another HIL optimization method, benefited from the
covariance matrix adaptation evolutionary strategy, identified
the best exoskeleton characteristics for each device type and
individual user to improve running performance [17].
Although these achievements are impressive, none of the
studies have directly addressed an important trade-off problem
between stability, agility, and user effort during pHRI.

The goal of this study is to address this trade-off issue and
develop a user-adaptive variable damping controller to adjust
its parameters based on real-time measurements of human
biomechanical signals such as limb kinematics, interaction
force, while minimizing energy of the coupled human-robot
system. The presented controller not only captures user
proficiency in pHRI but also addresses the challenges of the
lengthy protocol and tuning process. The controller builds
upon BO, which is an efficient global optimization strategy for
the evaluation of a noisy, unknown, and expensive objective
function [18]. Gaussian process is also used to model noisy
observations and uncertainty in human behavior [19, 20].

To evaluate performance of the presented controller and its
applicability in real-world scenarios, we performed human
experiments in which users interacted with a robotic arm
manipulator. Stability, agility, user effort, and energy
expendiure were quantified to demonstrate the overall
performance improvement of this approach compared to the
previous work [9].

II. METHODS

A. Problem Statement

Impedance control modulates a set of impedance
parameters, stiffness (K,.) and damping (B,.), at the interaction
port between the human and robot. The variable damping
control varies the damping component of the impedance. The
controller is described as (1):

F(x,x)=Bx+K.(x—x,)+g (1)

where x is the position, x, is the desired equilibrium position,
x is the velocity, g is the gravity compensation force, F is the
output controller force, and K, and B, are stiffness and
damping parameters.

The goal of variable damping control is to modulate
robotic damping to help the user perform with high stability
and agility, and with low effort and energy expenditure. If we
know the user’s intent of motion, we may modulate robotic
damping to maximize efficiency. One effective way to
identify user’s intent of motion is by collecting kinematic
information during pHRI. We define “intent of motion” as the
product of velocity and acceleration, x¥, which is a scaled
version of the change in kinetic energy of the system. Based
on the sign of this term, we can determine when to apply
positive or negative damping to the system. As long as the
magnitude of the negative robotic damping is less than the
magnitude of inherent damping of human user in the
extremity, the coupled system can remain passive and stable.
Therefore, if user’s intent of motion is positive, applying
negative robotic damping (injecting energy) can help the user
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to move faster and when the user’s intent of motion is
negative, positive robotic damping (energy dissipating) can
help the user to slow down and stabilize the limbs and joints.
For the smooth transition between positive and negative
damping, a piecewise logistic function was defined as (2):

2byrp
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where B, is the robotic damping applied to the system and
b, and by are the lower and upper bound of the damping
range. Tuning constants k,, and k,, are used as they specify
the logistic growth rate of the function, which determine how
quickly the transition between b; z and bz happens (3):
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where XX,,,, and XX,,;, are the maximum and minimum user
intent, respectively, and s is the sensitivity of the robotic
damping function. In this study, s = 0.95, which means that
the robotic damping becomes 0.95b, 5 at XX,,,,, and 0.95b,5
at XX,,;,. With this piecewise logistic function, positive and
negative damping regions can be defined independently.

Careful selection of the controller parameters b, g, byg,
k, and k, is critical to maximize the effectiveness of the
variable damping controller. In the previous study [9], fixed
values were selected for b,z and byp based on previous
studies of characterizing the inherent damping of the human
arm [10-12], which did not allow parameter adaptation for
different users. In that study, other user-specific parameters,
specifically k, and k,, were determined with a separate
lengthy tuning process before main experiments, and one set
of the selected parameters was used throughout the whole
experiments without any adjustment.

This method of selecting parameters was successful and
resulted in enhancing the trade-off between stability/agility
and reducing user effort, but consistent application of the
fixed upper and lower bounds of damping across different
users limited the efficiency of the controller. Additionally, the
tuning process to determine k,, and k,,, was time intensive
and did not consider the uncertainty of human behavior and
noise of observation such as limb kinematics and interaction
force, and user proficiency and adaptability.

If we select each parameter based on the biomechanical
characteristics of each user and adjust them according to their
proficiency during pHRI, we expect more performance
improvement. Further, by leveraging real-time measurements
of human biomechanical signals such as limb kinematics,
interaction force, and energy of the coupled human-robot
system, we can eliminate the lengthy tuning process.

We formulate an optimization problem of finding the
controller parameters with a goal to enhance the overall
performance by improving the trade-off between stability,
agility and reducing user effort (4):

0™ € argmaxypa f(6) 4)

o )
XXmax

where f(+) is an objective function in respect to controller
parameters 8 € R%. As previously mentioned, the basic idea
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of variable damping control is to have the robot inject or
remove/dissipate energy in a way that the total energy of the
system will be passive. Thus, our goal is to decrease the total
energy (interaction energy) of the system to be slightly above
zero. With this concept, we define an objective function f to
minimize the squared energy (5):

f = _0'5(Einteraction)2 (5)

where Ejyteraction 1 fOTcCe * velocity * time.

The interaction energy (Ejteraction) Used to define the
objective function depends on user responses that are
inherently stochastic due to the uncertainty of human
behavior and noisy observations which makes the objective
function unknown. Optimizing this objective function
analytically is not feasible because there is no direct
relationship between the controller parameters and the
objective function. Thus, common optimization methods that
work based on the derivation of objective function do not
work in this problem. Furthermore, the stochasticity of our
problem necessitates the need for more robust methods to the
effect of errors. The number of local optima or the convexity
of the objective function is not determined, while we are
seeking the global maximum of the objective function. To
overcome these challenges and difficulties, we approach the
problem using Bayesian optimization (BO), which is a
numerical global optimization method that is particularly well
suited for optimizing unknown, black-box objective functions
that are expensive to evaluate [18].

B. Bayesian Optimization (BO) of variable damping control
using Gaussian Process (GP)

The BO method works using a response surface (i.e.,
surrogate model). Response surface-based optimization
methods iteratively create a data set of parameters and the
related evaluation function as D = {6, f(0)}. This data set is
used to map the parameters to corresponding evaluation
function through building a model (response surface), f(:
): 8 = f(0). Using this response surface, the optimization (4)
is replaced with a “virtual” optimization process as in (6),
where “virtual” is the indication that the optimization problem
only requires the evaluation of the learned model (f), not the
true objective function (f) (6):

0™ € argmaxy.pd O 6)

A Gaussian process (GP) is used as response surface [19].
This probabilistic model allows us to model uncertainty of
human behavior and noisy observations. Using probabilistic
model as response surface f(+) in (6) leads to multi-objective
optimization problem [19, 21]. Therefore, an acquisition
function a(*) is used for the virtual optimization of this
probabilistic model. This acquisition function allows us to
scalarize the response surface onto a single function that can
be optimized as in (7):

0" € argmax,ypa a(8) @)

The parameters to optimize using (4) are b;g, byg, k,
and k,,. Among these parameters, b,z and by are the most
important since they define the boundaries of transition
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between positive and negative damping which has a direct
impact on stability, agility, and user effort. Furthermore,
depending on the inherent impedance properties of each
human user, these parameters can vary significantly across
different users [11]. k,, and k,, determine the growth rate of
the transition between b,z and byg . While these are
important parameters, they have a much smaller effect on
performance and previous studies showed that these two
parameters do not vary significantly across different human
users [9].

This difference in parameter significance informed our
method to include a combination of BO and a real-time tuning
method so that b; 5z and by are found directly using the BO
and k, and k,, are found indirectly from the BO method. We
defined two data sets as 6 = [b, bygl, D = {6, f(0,B)}
and 8 = [ky, kn], D" = (B, £(6,8)}.

Based on the description of these data sets, the response
surface model of GP regression maps becomes f(6):6 —
f(8,B). A GP is a distribution over functions f~GP(mg, k)
defined by a prior mean m; and covariance function k. To
consider noisy observations, noisy function values are
assumed y = f(6,8) + €, where e~N(0, 02) is Gaussian
noise. As it is conventionally chosen, my = 0 as prior mean,
while the chosen covariance function k; is the squared
exponential described in (8):

ke (6,,8,) = oZ exp (—2(6, — 6,) A1(8, — 6,)) +
0¢byq ®)

where A = diag([[3, ..., [3]) and 626, is the representation
of the white noise kernel in which 2 is applied only when
p =q . l; are the characteristic length-scales, afz is the
variance of the latent function f(*) and o2 is the noise
variance.

Given training input (prior samples) X = [0, ..., 6,,] and
the corresponding training outputs y = [y, ..., V], we can
define the GP predictive distribution with data set D = {X, y}
as in (9):

p(f(01D,0) = N(u(8), 0*(0)) &)
where the mean u(68) and the variance o2 (8) are (10):

u@ =kTKky, o%@) =k, —kTK'k,  (10)

respectively, and K is the matrix with K;; = k(HL-, Qj),k** =
k(6,0) and k, = k(X, 8). The selection of hyperparameters
of GP model including [;, sz and o2 is important and they are
selected by optimizing the marginal likelihood [19].
Expected improvement (EI) is used as acquisition
function because experimental results showed that this

function performed better on average than other functions [22,
23]. The EI acquisition function is (11-12):

a(09)
_ {(#(9) W =0¢@)+a@)p(Z2)  ifa(8) >0
0 if 5(8) =0
(1D
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Algorithm 1 Bayesian Optimization of Variable Damping
Control

1: D « if available: {0, f (6, 8)}

2: D’ « if available: {8, f (0, B)}

3: Prior « if available: Prior of the response surface
4: While optimize do

S: Train a response surface from D

6: Find 6" that maximizes the acquisition surface a(6)

7: Find B* corresponding to the specific portion of
maximum D

8: Evaluate f (0%, 8*) on the real system

9: Add {6*,f(6*,8")}to D
10: Add {B*,f(6*,B)}to D’
11: end While

2= (WO =K =010®) i@ >0 12

0 if 5(8) =0

¢(*) is the normal cumulative distribution function, ¢(*) is
the standard normal probability density function, and u* is
the best observed value we evaluated so far. { determines the
amount of exploration during optimization and higher ¢
values lead to more exploration than exploitation, which was
set to { = 0.25 in this study. With this acquisition function,
our optimization problem fits the form of (7). In order to
numerically find the parameters corresponding to the global
maximum of our acquisition function ( 8* ), L-BFGS
algorithm is used [24]. It is initialized with 50 different
random parameter sets and the maximum of the acquisition
function is calculated for each set. The maximum is then
determined from these 50 maxima.

The parameters k, and k, are calculated in real-time
according to (3) after each iteration of BO. To account for
high variability in human behavior, the update considers best
values of the evaluation function in the previous iterations.
Since the BO algorithm gradually converges, the percentage
of previous iterations to be considered is also determined to
gradually decrease with the number of iterations following
100 * (number of iteration)™** . k,, and k, for the next
iteration are updated by averaging the best values within the
selected iterations. With this method, the next 8 is calculated
as 8, then * and 6* are used to find corresponding f, and
they are added to D and D'.

The process of the whole algorithm is summarized in
Algorithm 1. As described, D and D" are composed as prior.
Then the response surface using the GP and the data set D is
built, then according to the built model, @(8) is determined.
Maximization of this function gives 6%, and then 8* is found
and then f(8%, ) is evaluated in the real system through
pHRI. Then, D and D' will be updated according to new data
along with the response surface. This process is repeated until
the global maximum is determined numerically. A stopping
criterion for our study is described in the next section.

The method is described for a single dimension of
movement, but it is worth to note that it can be easily extended
to multi-dimensional movement. This is important since
nearly all real-world tasks require multi-dimensional
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Fig. 1. Experimental setup. A: Side view of the human user interacting
with the end-effector of a 7-DOF robotic arm and visual feedback display
was provided in ~1m distance. B: Visual feedback display. Gray solid
circle shows the current target, gray hollow circle shows the previous
target. The dashed line represented the straightest path between the
previous target and the current. The red solid circle presented the current
hand position.
movement. For multi-dimensional movement, we can
decouple each direction of movement and implement the
same process for each direction while modulating the
damping value as described in (13):

(13)

where B;, Bj, By are the robotic damping value modulated in
each direction. The number of parameters will increase
proportionally to the dimensions considered. For example,
implementation of this method in 2 dimensions of movement
increases the total number of parameters to 8.

B, = Bi + Bjj+ Bk + -

C. Experiments

We performed a human experiment to validate the
effectiveness of the presented control approach and
investigate its potential applications in real-world scenarios.
A 7 degree-of-freedom (DOF) robotic arm (LBR iiwa R820,
KUKA, Germany) with a 6-axis load cell (Delta IP60, ATI
Industrial Automation, NC) was used as the robotic interface.
Both kinematic and force data were recorded at 1 kHz and
low-pass filtered using a 4" order Butterworth filter with a
cutoff frequency of 20 Hz.

Human users were instructed to perform a target reaching
task in the transverse plane while they interacted with the end-
effector of robotic arm in a seated position with their trunk
securely strapped to a rigid chair to eliminate any effects of
the confounding factors due to trunk movement during
reaching movement (Fig. 1A) [25, 26]. A visual feedback
display was provided at ~1 m to help users in completing
target reaching movement tasks (Fig. 1B). The trial started
when the new target was shown to the subject and lasted until
2 seconds after the subject first came within 0.5 cm of the
target. Once a trial concluded, a new trial started at a
randomized interval between 0.5-1.5 seconds. These
experiments required movement in both the anterior-posterior
(AP) and medial-lateral (ML) directions. The stiffness of the
end effector was set to 0 N/m in these directions, and 10 N/m
in the perpendicular direction to limit the movement of the
robot to the transverse plane and prevent the movement in the
direction of gravity. The simulated inertia was set to 10 kg. A
virtual wall of 36 X 36 cm? was implemented around the
workspace to ensure the safety of the subjects.

There were multiple blocks of 12 trials. The experiment
was divided into blocks to provide subjects a rest period
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Fig. 2. Bayesian optimization process during the maximization of objective function f for a representative subject. There are 2D view of three sample
iterations for both the AP and ML directions A: Initial iteration (first row), B: Second iteration (second row), C: Last iteration (third row) of the Bayesian
optimization process including the mean posterior of the model prediction, sample posterior points (black dots), expected improvement function
(acquisition function). The location of the next parameter to be evaluated (+) and the best selected parameters up to that iteration (yellow *) are shown.
Samples are distributed more on the promising areas that are more probable to have the maximum points (red areas). There are some samples out of
those promising areas as well (blue or yellow areas), because the acquisition function handles the trade-off between exploration and exploitation in the

BO process to search for the global optimum point.

between them to prevent potential fatigue. Each iteration for
BO included 4 target reaching trials and the parameters in
each iteration remained constant. Therefore, the evaluation of
the objective function was done in each iteration based on the
average of the 4 trials in that iteration. For these 4 trials, 4
targets were randomly generated in the traverse plane
(20 x 20 cm?) with a constraint that the total path length in
each of the ML and AP (+i, —i, +j, and —j) was 20 cm and
the minimum length of each path in each direction was 5 cm.

The ranges of parameters bf¥ , bjE, bMl and bifL
considered in BO were [—50,—5], [10,100], [-30,-5],
[10,100] Ns/m, respectively, which were selected based on
our previous studies [10, 11]. Thirteen prior samples were
evaluated at the beginning of the optimization process. These
13 samples were chosen randomly from a grid made from the
ranges of parameters. While kp®, kjP, k}'* and k}/" can be
initialized with any value, they were all initialized with 25
according to approximate average values across different
subjects from the previous study [9].

The stopping criterion for the optimization process was
when the best parameters did not change for 10 iterations of
BO consecutively. Since by, bk, bME, and bllL were the
parameters found directly based on BO, they were used for
the stopping criterion. We might see changes in k;“’ , kAP,
ky'*, and k}* parameters even in the last iterations of the
algorithm, because they were updated at every iteration.
Therefore, convergence was only expected for bf, biE, bME
and b}/ parameters that were directly determined from BO.

Five young, healthy subjects (age: 21-34, height: 163—
183 cm, weight: 50-78 kg, sex: 4 males and 1 female)
participated in this study, which was approved by the
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Institutional Review Board of Arizona State University
(STUDY 00010123). Subjects provided informed, written
consent prior to participation. All experimental procedures
were performed in accordance with the relevant guidelines
and regulations. No subject was informed of the hypotheses
of this study.

D. Data Analysis

Several performance metrics representing stability,
agility, and user effort were selected to compare the
presented controller with the previous variable damping
controller without user-adaptive parameter changes [9].

1) Stability: Stability was evaluated in both spatial and
time domains. In the spatial domain, overshoot was
evaluated by calculating the maximum distance past the
target position. In the time domain, stability time was
defined as the time between the first time the subject hit the
target and when the subject was able to hold the position
within the target (£5 mm) for 0.5 s continuously.

2) Agility: Agility was evaluated using the maximum and
mean speed of the subject’s movement. The mean speed was
calculated as the average speed from the initiation time, the
first time when the subject started moving (move > 5 mm),
to the first time to hit the target (within &5 mm of the center
of the target). The maximum speed was the largest
magnitude of speed that the subject had during the trial.

3) User Effort: User effort was evaluated using force at
the interaction point. The mean root-mean-squared (RMS)
and maximum RMS interaction forces were used to quantify
the user effort. The mean RMS interaction force was
calculated from the initiation time to the stability time, while
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Fig. 3. The Maximum objective function value up to the current iteration
and the best selected parameters over iterations in both the AP and ML
directions. A: Maximum value of the objective function, B: Best selected
b,g and by, C: Best selected k,, and k,, with respect to iterations.

the maximum RMS force was defined as the highest value
of interaction force during the trial.

All these performance metrics were calculated in trials
with the optimized parameters found from our presented
controller and with the fixed parameters used in the previous
variable damping controller. The percentages of
improvement for each metric were calculated as shown in
(14), except for agility which was the negative of (14),
because we aimed to increase agility.

0% i (metrics! ¥ —metrics?Ptimized

% tmprovement = mean(metricslfix,metricsfptimi”d)
(14)
where mean(metricsif x metrics; ptimizedy qenotes the

average of metrics; in the fixed parameter condition and in
the parameter condition with BO.

III. RESULTS

Results of human experiments demonstrate how fast and
successful the presented BO algorithm was in finding the
optimal parameters of the variable damping controller
despite unknown objective function, uncertainty of human
behavior, and noisy observations. Quantitative results of one
representative subject and detailed results of all subjects are
described in this section.

The representative subject’s response surface model and
acquisition function in both the AP and ML directions in the
initial, second, and last iterations of the BO process are
shown (Fig. 2) to demonstrate how the response surface
evolved by the addition of new samples from the acquisition
function. In the initial iteration (Fig. 2A), the response
surface was built based on the available prior samples. The
corresponding acquisition function of this model was
calculated, and its maximum value provided the information
for the next parameters to be evaluated (as denoted with (+)
in Fig. 2). The next parameters selected from the acquisition
function in the initial iteration was added to the data set for
the next iteration (second iteration) and the response surface
was updated accordingly (Fig. 2B). Based on the added new
samples, the response surface was updated iteratively until
the optimization process converged. The last iteration (Fig.
2C) shows the updated response surface with all posterior
samples. The value of acquisition function with respect to
all parameters was similar (similar color) in the last iteration
of the optimization algorithm.

The evolution of the maximum value of the objective
function and the best corresponding parameters are shown
in Fig. 3. The best parameters for this representative subject
were found in 29 iterations (13 prior iterations and 16 BO
iterations), demonstrating the fast convergence of the
presented optimization process. It also shows how the best
parameter values evolved over the course of the
optimization process. The timings for changes of b,z and
by matched those of the objective function as they were
directly found from the objective function. On the contrary,
k,, and k,, showed a different pattern of evolution since they
were updated every iteration.

The optimal parameters and the number of iterations
until convergence for all subjects are summarized in Table
I. The optimal value for bif and b}{* ranged -20.5 to -5.0
Ns/m and -10.0 to -5.0 Ns/m, respectively, and that for b/F
and bMF ranged 39.9 to 100.0 Ns/m and 60 to 90 Ns/m,
respectively. In addition, the optimal value for k;* and k"
varied across different subjects from 22.8 to 55.7 and from
24.0 to 57.9, respectively, and that for kAP and kM! changed
from 12.5 to 42.2 and from 13.7 to 46.1, respectively. A
clear difference in the optimal parameters across different
subjects emphasizes the importance of designing the
variable damping controller in a user-specific manner by
considering user proficiency and biomechanical
characteristics during pHRI. While the optimal parameters

TABLE L OPTIMAL PARAMETERS AND THE NUMBER OF ITERATIONS UNTIL CONVERGENCE
Optimal Number of
Parl;me ters bif bar biit bML kP kAP Ky KML | Iterations until
Convergence
Subjectl -10.0 70.0 -5.0 90.0 36.1 19.8 39.0 22.6 15
Subject2 -5.0 100.0 -5.0 73.5 22.8 12.5 24.0 13.7 16
Subject3 -20.5 100.0 -10.0 60.0 33.4 20.6 30.2 16.4 13
Subject4 -9.7 39.9 -10.0 90.0 55.7 42.2 579 46.1 16
Subject5 -8.2 72.0 -10.0 90.0 453 28.0 47.3 34.8 12
Mean (std.) -10.7 76.4 -8.0 80.7 38.7 24.6 39.7 26.6 14
: (52 (224 (24 (122 (L) (10.) (1200  (12.0) 2
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TABLE II. PERCENTAGE IMPROVEMENT OF THE PRESENTED USER-ADAPTIVE CONTROLLER WITH RESPECT TO THE PREVIOUS
VARIABLE DAMPING CONTROLLER WITH FIXED PARAMETERS [9]

Percentage Stability Mean Max Mean Max Overall
Overshoot . . Energy
Improvement time speed speed force force improvement

Subjectl 100.8 -15.7 -11.8 -24.1 35.6 43.7 214 68.1

Subject2 86.1 43.4 -18.2 -21.7 31.2 32.6 25.6 57.1

Subject3 73.2 61.6 -10.9 -1.7 11.7 4.8 23.1 23.6

Subject4 55.2 12.9 -13.8 -20.9 12.7 4.6 8.4 43.9

Subject5 80.6 25.8 0.8 -9.0 5.1 12.5 19.3 31.6

Mean 79.2 25.6 -10.8 -15.5 19.2 19.6 19.6 44.9
(std.) (15.0) (26.4) (6.3) (8.6) (11.9) (15.8) (5.9) (16.3)

were highly variable across different subjects, the number of
iterations until the algorithm converged showed much
smaller variation with a range of 12 to 16. This demonstrates
the consistent speed of our algorithm in determining the
optimal parameters for different users.

The presented user-adaptive damping controller showed
considerable overall performance improvement compared to
the previous variable damping controller without user-
adaptive parameter changes. Percentage improvement for
different performance metrics (stability, agility, and user
effort) for all subjects are summarized in Table II. Stability
through both metrics (overshoot and stability time)
considerably improved in most of the subjects. When
averaged across all subjects, the improvement was 79.2%
and 25.6% in overshoot and stability time, respectively.
User effort also improved consistently in all subjects
according to both mean RMS force and max RMS force
metrics. There were average of 19.2% and 19.6%
improvements across subjects for mean RMS force and max
RMS force, respectively. An average reduction in the agility
was observed compared to the previous variable damping
controller: -10.8% and -15.5% for mean and max speed,
respectively. This reduction is mainly because the presented
user-adaptive controller determined the optimal parameters
by considering all performance metrics simultaneously
although indirectly via the energy function. The overall
performance, calculated by averaging results of all three
performance metrics, showed consistent improvement in all
subjects. When averaged across all subjects, the overall
performance improvement was 19.6%.

As expected from the use of energy in the objective
function (Eq. (4)), the presented controller reduced energy
of the coupled system considerably. On average, an energy
reduction of 44.9% was observed compared to the previous
controller. It is important to note that while we did not
directly use performance metrics (stability, agility, and user
effort) in the optimization process, targeting the reduction of
interaction energy in the optimization process led to
substantial overall performance improvement in pHRI.

IV. DIScUSSION
This paper presented a user-adaptive variable damping

controller that can be applied in a diverse set of applications
to enhance the overall performance of coupled human-robot
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systems. Based on the framework of BO with GP, the
presented controller minimizes the energy of the coupled
human-robot system without violating the passivity
constraint. The algorithm incorporates the inherent
impedance properties of each human user’s limbs to initiate
the optimization procedure and adaptively changes the
controller parameters according to the user’s proficiency in
physical interaction measured by human biomechanical
signals including limb kinematics, interaction force and
energy.

The presented approach overcomes many drawbacks and
limitations of previous approaches, by effectively avoiding
local optima via the acquisition function that addresses the
trade-off between exploration of the search space and
exploitation of promising areas, explicitly modeling noisy
observations and uncertainties of the human user response,
and efficiently and effectively selecting parameters without
a need of long experiments and tuning sessions. This
approach could successfully determine the controller
parameters on an individual basis. With an optimal set of
controller parameters that minimizes interaction energy, the
controller could substantially enhance the overall
performance in pHRI by improving the trade-off between
stability and agility and reducing user effort.

Experimental results from 5 pilot subjects interacting
with a popular robotic arm manipulator confirmed the
effectiveness of the presented user-adaptive controller in
enhancing the overall performance of coupled human-robot
systems beyond that of the previous variable damping
controller with fixed controller parameters [9].

Compared to the previous controller, the presented
adaptive control strategy reduced about 45% energy
expenditure and achieve average performance improvement
of about 20% when several performance metrics of stability,
agility, and user effort are considered together. All subjects
participated in this pilot experiments consistently showed a
clear prioritization on stability and user effort over agility to
enhance the overall performance during interaction with the
robotic arm. Specifically, all subjects showed notable
improvements in terms of stability and user effort: when
averaged across subjects, stability and user effort metrics
showed improvements of 52.4% and 19.4%, respectively.
However, arm movements were consistently slowed down
and agility metrics showed about 10% and 15% of reduction
in mean and max speeds, respectively.
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These results are somewhat expected as performance
metrics were not directly used in the optimization process, but
energy expenditure was used. In fact, since there exist clear
trade-offs between these performance metrics (stability,
agility, and user effort), using them in the optimization
process would not lead to an improvement in every
performance metric.

It is worth to note that the presented controller can still
improve agility compared to popular positive damping
controllers. According to the previous study [9], the variable
damping controller without user-adaptive parameter
changes improved the mean and max speeds by 19.4% and
56.1%, respectively. Thus, the presented controller in this
paper is still expected to achieve a better agility performance
than the positively damped controllers.

The previous controller included two separate lengthy
tuning sessions before the main experiments (one with 126
trials (~15 sec for each trial) to determine b,z and bz and
the other with 60 trials (~15 sec for each trial) to determine
k, and k,,), while the uncertainty of human behavior and
noise of observation such as limb kinematics and interaction
force, and user proficiency and adaptability were not
considered in the tuning process. The current adaptive
control strategy, on the contrary to the previous one,
eliminated these extra tuning processes and the controller
parameters were adaptively determined throughout the main
experiments based on user proficiency. The whole
experimental protocol took on average of 14 iterations of BO
that includes 56 trials without any extra tuning process.

Although the human experiments with 5 pilot subjects in
this study used simple 2D arm reaching tasks to validate the
effectiveness of the presented controller, an additional study
with a larger set of subjects are warranted in more
complicated task conditions (e.g., 3D arm movement,
irregular movement, and obstacle avoidance) to fully
evaluate its potential applicability in real-world scenarios. In
addition, other future work will incorporate variable
stiffness into the existing controller framework to fully
implement a user-adaptive variable impedance controller,
which we expect to further improve the performance in
pHRI beyond the variable damping controller.
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