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Abstract. Recent decades have witnessed great advances of deep learn-
ing in tackling various problems such as classification and decision mak-
ing. The rapid development gave rise to a novel framework, Learning-to-
Learn (L2L), in which an automatic optimization algorithm (optimizer)
modeled by neural networks is expected to learn rules for updating the
target objective function (optimizee). Despite its advantages for specific
problems, L2L still cannot replace classic methods due to its instability.
Unlike hand-engineered algorithms, neural optimizers may su↵er from
the instability issue—under distinct but similar states, the same neural
optimizer can produce quite di↵erent updates. Motivated by the stabil-
ity property that should be satisfied by an ideal optimizer, we propose
a regularization term that can enforce the smoothness and stability of
the learned optimizers. Comprehensive experiments on the neural net-
work training tasks demonstrate that the proposed regularization con-
sistently improve the learned neural optimizers even when transferring
to tasks with di↵erent architectures and datasets. Furthermore, we show
that our smoothness-inducing regularizer can improve the performance
of neural optimizers on few-shot learning tasks. Code can be found at
https://github.com/xyh97/SmoothedOptimizer.
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1 Introduction

Optimization is always regarded as one of the most important foundations
for deep learning, and its development has pushed forward tremendous break-
throughs in various domains including computer vision and natural language
processing [3,16]. E↵ective algorithms such as SGD [22], Adam [12] and Ad-
aBound [15] have been proposed to work well on a variety of tasks. In parallel
to this line of hand-designed methods, Learning-to-Learn (L2L) [1,28,18,16,3],
a novel framework aimed at an automatic optimization algorithm (optimizer),
provides a new direction to performance improvement in updating a target func-
tion (optimizee). Typically, the optimizer, modeled as a neural network, takes as
input a certain state representation of the optimizee and outputs corresponding
updates for parameters. Then such a neural optimizer can be trained like any
other network based on specific objective functions.

Empirical results have demonstrated that these learned optimizers can per-
form better optimization in terms of the final loss and convergence rate than gen-
eral hand-engineered ones [1,28,18,16,3]. In addition, such advantages in faster
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training make the learned optimizer a great fit for few-shot learning (FSL) [20,11],
where only a limited number of labelled examples per class are available for gen-
eralizing a classifier to a new task.

However, instability concealed behind the algorithm impedes its develop-
ment significantly. There are some unsolved issues challenging the promotion of
neural optimizers such as gradient explosion in unrolled optimization [18] and
short-horizon bias [29]. One of the most essential problems is that contrary to
traditional optimizers, the learned ones modeled as neural networks cannot guar-
antee smoothness with respect to input data. Specifically, an ideal optimizer is
expected to conduct similar updates given similar states of the target optimizee.
For instance, SGD updates a parameter by a magnitude proportional to its orig-
inal gradient. However, current meta learners neglect this property and su↵er
from the issue that they would produce a quite di↵erent output while merely
adding a small perturbation to the input state.

Such a phenomenon has been widely observed in other machine learning
problems like image classification [7], where the perturbed image can fool the
classifier to make a wrong prediction. Inspired by the progress in adversarial
training [17] where the worst-case loss is minimized, we propose an algorithm
that takes the smoothness of the learned optimizer into account. Through pe-
nalizing the non-smoothness by a regularization term, the neural optimizer is
trained to capture a smooth update rule with better performance.

In summary, we are the first to consider the smoothness of neural optimizers,
and our main contributions include:

– A smoothness-inducing regularizer is proposed to improve the existing train-
ing of learned optimizers. This term, representing the maximal distance of
updates from the current state to the other in the neighborhood, is mini-
mized to narrow the output gap for similar states.

– We evaluate our proposed regularization term on various classification prob-
lems using neural networks and the learned optimizer outperforms hand-
engineered methods even if transferring to tasks with di↵erent architectures
and datasets.

– In addition to generic neural network training, we also conduct experiments
on few-shot learning based on a Meta-LSTM optimizer [20] and SIB [11].
Results show that our regularizer consistently improves the accuracy on FSL
benchmark datasets for 5-way few shot learning problems.

2 Related Work

Gradient-based optimization has drawn extensive attention due to its signifi-
cance to deep learning. There are various algorithms that have been proposed
to improve training of deep neural networks, including SGD [22], Adam [12],
RMSProp [10], and the like. On the other hand, a profound thought of updat-
ing the optimizee automatically rather than using hand-engineered algorithms
has broken the routine and shown great potentials in improving performance for
specific problems. Early attempts can be dated back to 1990s when [5] leveraged
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recurrent neural networks to model adaptive optimization algorithms. The idea
was further developed in [31] where neural optimizers were trained to tackle
fundamental convex optimization problems. Recently in the era of deep learn-
ing, a seminal work of [1] designed a learning-to-learn framework with an LSTM
optimizer, which obtained better performance than some traditional optimizers
for training neural networks. Follow-up work in [16] and [28] have improved the
generalization and scalability of learned optimizers. L2L framework is easier to
train and can adaptively determine the step size and update direction in the
meanwhile. L2L has also been extended to various applications such as few-shot
learning [20], zeroth-order optimization [23] and adversarial training [30].

This paper is the first to investigate the smoothness of neural optimizers.
It is related to the notion of adversarial robustness in classification models.
As observed in [7], neural network based models are vulnerable to malicious
perturbations. In particular, for image classification the classifier would be fooled
by adversarial examples to make a wrong prediction [7], while for reinforcement
learning the agent is likely to act di↵erently under perturbed states [25]. Our
learned optimizers might be a↵ected by this issue as well. In other domains some
algorithms have been proposed to mitigate the non-smooth property of neural
networks such as adversarial training [17], and SR2L [25]. In this paper, our
method utilizes the idea of minimizing the worst-case loss to regularize training
of neural optimizers towards smoothness. In contrast to previous algorithms
targeted at classification, we design a specific regularizer to neural optimizers.

3 Background on the L2L Framework
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Fig. 1. The framework of learning-to-learn. The dashed line shows the compu-
tation graph of the objective function Lopt for training the optimizer to learn a
general update rule while the horizontal full line is the one for few-shot learning.
Note that m is the neural optimizer parameterized by �, and st is the state of
the optimizee taking the form of st = (✓t, . . . , r✓`)T .

In this section, we present the framework of learning to learn with neural
optimizers for tackling problems of general optimization for classification and
few-shot learning.
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3.1 Optimization

As shown in Figure 1, like any traditional optimization methods, we can apply
the learned optimizer in following steps:
(a) At each time step t, feed a batch of training examples {(x, y)} from the

distribution D into the target classifier f parameterized by ✓, and the state
of the optimizee st can be described by several values. In the paper, we use
st = (✓t, r✓t`, µt, ⌫t). µt and ⌫t are first and second moment respectively.

(b) Given the current state st and the hidden state ht, the neural optimizer m
parameterized by � accordingly outputs the increment of the parameter and
the next hidden state by ut, ht+1 = m(st, ht).

(c) Then the optimizer just updates the parameter by ✓t+1 = ✓t + ut.
Note that all operations are coordinate-wise, which means the parameters

of the optimizee are updated by a shared neural optimizer independently and
maintain their individual hidden states.

The exploitation of the learned optimizer is straightforward but how can we
train it? Following [1], since parameters of the optimizee depend implicitly on
the optimizer, which can be written as ✓t(�), the quality of the optimizer can
be reflected by performance of the optimizee for some horizon T , leading to the
objective function below to evaluate the optimizer:

Lopt(�) = E(x,y)⇠D

"
TX

t=1

wt`(f(✓t(�); x), y)

#
. (1)

`(·, ·) represents cross-entropy and wt is the weight assigned for each time step.

3.2 Few-shot Learning

Apart from optimization, the superiority of learned optimizers is a natural fit for
few-shot learning. Generally, FSL is a type of machine learning problems with
only a limited number of labeled examples for a specific task [27]. In this paper,
we mainly focus on FSL targeted at image classification, specifically N -way-K-
shot classification. We deal with a group of meta-sets Dmeta in this task. Each
element in Dmeta is a meta-set D = (Dtrain, Dtest), where Dtrain is composed of
K images for each of the N classes (thus K · N images in total) and Dtest con-
tains a number of examples for evaluation. The goal is to find an optimization
strategy that trains a classifier leveraging Dtrain with only a few labeled exam-
ples to achieve good learning performance on Dtest. All meta-sets are further
divided into three separate sets: meta-training set Dmeta-train, meta-validation
set Dmeta-val, and meta-testing set Dmeta-test. More concretely, Dmeta-train is uti-
lized to learn an optimizer and Dmeta-val is for hyperparameter optimization.
After the optimizer is determined, we conduct evaluation on Dmeta-test: we first
update the classifier with the learned optimizer on the training-set in Dmeta-test;
then we use the average accuracy on the test set in Dmeta-test to evaluate the
performance of the optimizer.
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The N -way-K-shot classification problem can be simply incorporated into
the L2L framework, where the optimization strategy is modeled by the learned
optimizer. As we aim at training a classifier with high average performance
on the testing set, instead of harnessing the whole optimization trajectory, the
objective can be modified to attach attention only to the final testing loss:

LFSL = ED⇠DmetaE(x,y)⇠Dtest
[` (f(✓T (�); x), y)] , (2)

where ✓T is updated based on a procedure described in Section 3.1 under exam-
ples from Dtrain.

4 Method

4.1 Motivation

Despite great potentials of neural optimizers in improving traditional optimiza-
tion and few-shot learning, there exists a significant problem impeding the devel-
opment of L2L. In contrast to classical hand-engineered optimization methods,
those learned ones cannot guarantee a smooth update of parameters, i.e., pro-
ducing similar outputs for similar states, where by state we mean the gradient or
parameters of the optimizee. In Figure 2, we demonstrate the non-smoothness of
the learned optimizer explicitly. This is a typical phenomenon in various neural-
network-based algorithms such as image classification and reinforcement learn-
ing. [8] and [25] have pointed out advantages of smoothness of a function to
mitigate overfitting, improve sample e�ciency and stabilize the overall training
procedure. Thus, enforcing the smoothness of the learned optimier can be crucial
to improve its performance and stability.

s
s0

B(s, ✏) u(s0)

u(s)

usmooth(s0)
Regularization R = max

s02B(s,✏)
d(u(s), u(s0))

= max
s02B(s,✏)

ku(s) � u(s0)k2

State Space Update Space

Learned Optimizer

Smooth
Non-smooth

Fig. 2. An illustration of non-smoothness in the neural optimizer.

4.2 Smoothness Regularization

Some techniques, such as L2 regularization and gradient clipping, have been
developed and utilized in training neural optimizers to enforce smoothness but
they are shown insu�cient to reduce non-smoothness [1,16,18]. We propose to ro-
bustify the learned optimizer through a smoothness-inducing training procedure
where a regularization term is introduced to narrow the gap between outputs of
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two similar input states. It is also known as an e↵ective method to constrain the
Lipschitz constant of neural networks to boost smoothness.

To describe our method clearly, we first denote two states before updating
the optimizee at the time step t+1 by st and s0

t. Note that st and s0
t are distinct

but similar states, i.e., s0
t 2 B(st, ✏), where B(st, ✏) represents the neighborhood

of s within the ✏-radius ball in a certain norm and ✏ is perturbation strength.
In this paper, we just use `1 norm without loss of generality. Fix the hidden
state ht, then ut and u0

t, which are the corresponding parameter increments of
st and s0

t, can be written as functions of the state u(st) and u(s0
t) explicitly. An

ideal optimizer is expected to produce similar updates and thus to attain such
an optimizer, our goal is to minimize the discrepancy d(·, ·) between u(st) and
u(s0

t). Inspired by adversarial training [17], it is intuitive to find the gap under the
worst-case as the targeted di↵erence that takes the form of max d(u(st), u(s0

t))
and minimize this term directly. However, the optimizer that takes the state
of optimizee as input and the update as output, is di↵erent from the classifier
whose input is an image and output is a vector of softmax logits. There is no
classification for the optimizer so distance metrics such as cross-entropy and KL-
divergence are not applicable to our problem. Since the output is a scalar value,
we measure the distance with the squared di↵erence and the desired gap at the
time step t + 1 becomes

Rt+1(�) = max
s0
t2B(st,✏)

d(u(st), u(s0
t)) = max

s0
t2B(st,✏)

ku(st) � u(s0
t)k2. (3)

After the regularization term is determined, we can then add it to the original
objective function of L2L as a regularizer. For each time step, we have the
following training objective:

`t(�) = `(f(✓t(�); x), y) + �Rt(�), (4)

where � is the regularization coe�cient and the parameters � of the optimizer
is updated by

min
�

Lopt(�) = E(x,y)⇠D

"
TX

t=1

wt`t(�)

#
. (5)

For few-shot learning, we store regularization terms during the training proce-
dure with Dtrain and simply add the accumulation of them to Eq. 2, leading to
the training of the learned optimizer as

min
�

LFSL(�) =ED⇠Dmeta

"
E(x,y)⇠Dtest

` (f(✓T (�); x), y)

+ E(x,y)⇠Dtrain
�

TX

t=1

Rt(�)

#
.

(6)

It should be emphasized that our proposed regularizer can be applied to any
neural optimizer-based algorithms in meta-learning, such as methods in [1,16,11].



Learning to Learn with Smooth Regularization 7

4.3 Training the Optimizer

The key component for training the optimizer is the calculation of the regulariza-
tion term in Eq. 3. As stated in [25], in practice we can e↵ectively approximate
the solution of the inner maximization by a fixed number of Projected Gradient
Descent (PGD) steps:

s0 = ⇧B(s,✏)(⌘ sign(rs0d(u(s), u(s0))) + s0), (7)

where ⇧ is the projection operator to control the state located within the
given radius of the neighborhood. Note that we use truncated Backpropaga-
tion Through Time (BPTT) to update our RNN optimizer in case of a too long
horizon. For the predefined weight in Eq. 5, to make best use of the optimization
trajectory and concentrate more on the loss of the last step at the same time [3],
we adopt a linearly-increasing schedule that wt = t mod (T + 1) where T is the
number of step in each truncation. We present the whole training procedure in
Algorithm 1 below.

Algorithm 1 Learning-to-Learn with Smooth-inducing regularization

1: Input: training data {(x, y)}, step sizes ⌘1 and ⌘2, inner steps K, total steps Ttotal,
truncated steps T , classifier parameterized by ✓, optimizer parameterized by �

2: repeat
3: Initialize ✓ randomly, reset RNN hidden state
4: L 0
5: for t = 0, . . . , Ttotal � 1 do
6: Sample a batch of data (x, y), feed it to the classifier, obtain state st
7: Update ✓ as demonstrated in Section 3.1
8: s0t  st + 0.05 ⇤N (0, I)
9: for k = 1, . . . ,K do . Find the perturbed state
10: s0t  ⇧B(st,✏)(⌘1 sign(rs0

t
d(u(st), u(s

0
t))) + s0t)

11: end for
12: Rt+1  ku(st)� u(s0t)k2 . Regularization term
13: L L+ wt+1`t+1 . `t+1 is computed by Eq. 4
14: if t mod T � 1 == 0 then
15: Update � by L using Adam with ⌘2
16: L 0
17: end if
18: end for
19: until converged

Specifically, since our aim is to find a perturbed state in the neighborhood
of the original state, we can obtain it as follows: a) Starting from the original
state s, we add an imperceptible noise to initialize s0; b) Compute the cur-
rent value of d(u(s), u(s0)), backpropagate the gradient back to s0 to calculate
rs0d(u(s), u(s0)), and then adjust the desired state by a small step ⌘ in the di-
rection, i.e., sign(rs0d(u(s), u(s0))), that maximizes the di↵erence; (c) Run K
steps in Eq. 7 to approximate the regularization term in Eq. 3.



8 Y. Xiong and C. Hsieh

5 Experimental Results

We are implementing comprehensive experiments for evaluation of our proposed
regularizer. Detailed results are presented in Section 5.1 for neural network train-
ing and Section 5.2 for few-shot learning. All algorithms are implemented in
PyTorch-1.2.0 with one NVIDIA 1080Ti GPU.

5.1 L2L for neural network training

In this part, we evaluate our method through the task of learning the general
update rule for training neural networks. The performance of di↵erent optimiza-
tion algorithms is primarily displayed in learning curves of both training and
testing loss, as suggested in previous studies [1,16,18,4]. As loss and accuracy do
not necessarily correlate, we also report accuracy curves for thoroughness.

Experiment settings We consider image classification on two popular datasets,
MNIST [14] and CIFAR10 [13]. Our learned optimizer with regularization is com-
pared with hand-designed methods including SGD, SGD with momentum (SGDM),
Adam, AMSGrad, and RMSProp, as well as neural optimizers including DMOp-
timizer [1] and SimpleOptimizer [3]. For hand-designed optimizers, we tune the
learning rate with grid search over a logarithmically spaced range [10�4, 1] and
report the performance with the best hyperparameters. As to baseline neural op-
timizers, we use recommended hyperparameters, optimizer structures, and state
definitions in [1] and [3] respectively. We have tried di↵erent hyperparameters for
baselines and found that recommended ones are the best in our experiments. Our
smoothed optimizers adopt original settings, except for two extra hyperpareme-
ters for training, the perturbation strength ✏ and the regularization coe�cient
�. In particular, ✏ and � in our method are also determined by a logarithmic
grid search with the range ✏ 2 [10�2, 10] and � 2 [10�1, 102]. Neural optimizers
are learned with Adam of the learning rate 10�4 with the number of total steps
Ttotal = 200 and truncated steps T = 20. Note that for all neural optimizers we
only tune the hyperparameters during training and directly apply them to a new
optimization problem, while for hand-engineered algorithms, the learning rate is
always tuned for the specific task. Experiments for each task are conducted five
times with di↵erent seeds and the batch size used for following problems is 128.
More implementation details are presented in Appendix C.

Compatibility of the proposed regularizer First of all, we conduct an ex-
periment to demonstrate that the proposed regularization term can be combined
with various L2L structures. We demonstrate the performance of learned opti-
mizers including training loss and testing loss for training a 2-layer MLP on
MNIST. As can be seen in Figure 3a and 3d, two L2L architectures, DMOp-
timizer [1] and SimpleOptimizer [3], are compared. With the regularizer, the
smoothed version of both optimizers make an improvement in the final train-
ing and testing loss, and obtain a faster convergence rate at the same time. In
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addition, since SimpleOptimizer performs better than DMOptimizer, which is
consistent with the observation in [3], we will apply it as our base optimizer in
the later experiments.
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Fig. 3. Learning curves of classification on MNIST. Training loss is shown in the
first row and testing loss in the second row. (a) and (d) are results of two neural
optimizer structures to show the compatibility of our proposed regularizer; (b)
and (e) demonstrate performance of di↵erent optimizers for training LeNet of
200 steps, while (c) and (f) extend the optimization to 1000 steps.

Training on MNIST In this experiment, we conduct experiments to train the
neural optimizers for a 200-step optimization of LeNet on MNIST. We observe
its performance under two scenarios:

(a) Training LeNet with di↵erent initializations. As the learned op-
timizer is originally trained to update parameters of LeNet, we directly apply
it to optimize networks with the same architecture but distinct initializations.
Performances of various optimizers in training and testing loss are presented
in Figure 3b and 3e. We can see that our proposed smoothed optimizer out-
performs all other baselines including hand-designed methods and the original
SimpleOptimizer.

(b) Generalization to longer steps. Following [1], we also make an eval-
uation on optimization for more steps. Although the neural optimizer is only
trained within 200 steps, it is capable of updating the optimizee until 1000 steps
with faster convergence rate and better final loss consistently, as shown in Fig-
ure 3c and 3f.

Training on CIFAR-10 It is insu�cient to merely test di↵erent optimizers
on MNIST, whose size is relatively small. Therefore, we add to the di�culty of



10 Y. Xiong and C. Hsieh

the targeted task and focus on image classification on CIFAR-10. The classifier
of interest is a 3-layer convolutional neural network with 32 units per layer and
the learned optimizer is employed to update the optimizee for 10000 steps. It
should be pointed out that the neural optimizer is still trained within 200 steps
and the optimization step for evaluation is 50 times larger than what it has
explored during training. Figure 4a and 4b demonstrate its great generalization
ability: the smooth version of the learned optimizer can converge faster and
better than hand-engineered algorithms such as SGD and Adam, even though
it only observes the optimization trajectory in the limited steps at the very
beginning. Our smoothed variant also outperforms the original learned optimizer.
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Fig. 4. Performance of training a 3-layer CNN for 10000 steps on CIFAR10.

Transferrablity to di↵erent settings After obtaining a neural optimizer
trained on CIFAR-10 with a 3-layer CNN, we evaluate its transferrability in
multiple aspects. Specifically, we first transfer the optimizer to training another
network structure, ResNet-18 [9] for 10000 steps. In Figure 5a and 5d, Smoothed-
Simple without finetuning can still beat all hand-designed methods. Besides, it
should be emphasized that SimpleOptimizer oscillates violently at the end of
training and loses its advantages over traditional methods for this transferring
task, while the performance of our Smoothed-Simple is consistent and robust.

Moreover, since we have shown that our neural optimizer can generalize to
longer training horizon and di↵erent network architectures on optimizees with
the same dataset, this naturally leads to the following question: can our neural
optimizer learn the intrinsic update rule so that it can generalize to unseen
data? To answer this question, we modify the experimental setting to evaluate
our proposed optimizer on unseen data. We split the original CIFAR-10 dataset
into three di↵erent sets: a training set containing 6 classes, a validation set and
a testing set with 2 classes respectively. When training the optimizer, we sample
2 classes from training set and minimize the objective function for a binary
classification problem. Images in the validation set are exploited to select the
optimizer which achieves best final testing loss in the 200-step optimization. A
comparison of learning curves among our smoothed optimizer, SimpleOptimizer,
and the rest hand-designed methods for updating the classifier on two unseen
classes is shown in Figure 5b and 5e. We can observe that the smoothed optimizer
learns more quickly and better than other algorithms.
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Finally, we test the performance of our optimizer in the most di�cult setting:
training a ResNet-18 on CIFAR-100, where both the network structure and the
dataset are modified. It can be observed in Figure 5c and 5f that Smoothed-
Simple has comparable performance with fine-tuned hand-engineered optimizers
in terms of testing loss. On the contrary, SimpleOptimizer is incapable of dealing
with this scenario with a large dataset and a complicated network.
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Fig. 5. Performance under transferred settings. (a) and (d) are results of 10000-
step optimization of ResNet-18. Results of a designed binary classification are
reported in (b) and (e). (c) and (f) are results of a transferring task to train a
ResNet-18 on CIFAR100.

Comparison with other regularization methods. As the proposed method
serves as a novel regularization term, for the completeness of experiments, we
compare our adversarial regularization with three representative techniques: `2
regularization [24], orthogonal regularization [2], and spectral normalization [19].
In detail, we train a 3-layer CNN on CIFAR-10 for 10000 steps, following the set-
ting in Section 5.1. Results of training and testing loss can be found in Figure 6,
and we also report the test accuracy for reference in Table 1. It can be observed
that orthogonal regularization even worsens the learned optimizer, which can-
not provide meaningful updates and only leads to a random-guess classifier with
10.00% on test accuracy. While `2 regularization and spectral normalization can
improve the SimpleOptimizer to 69.69% and 69.35% respectively, our proposed
Smoothed-Simple still outperforms them significantly with 72.50%. This exper-
iment shows that the smoothness-inducing regularization obtained by PGD can
achieve performance gain against other popular regularization techniques and is
more suitable in training a neural optimizer.
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Fig. 6. Performance of neural optimizers with di↵erent regularization methods.

Table 1. Test accuracy of di↵erent regularizers.

Regularizer Test accuracy

SimpleOptimizer 69.02 ± 0.58%
Simple-Smoothed 72.50 ± 0.49%
`2 Regularization 69.69 ± 0.56%

Orthogonal Regularization 10.00 ± 0.04%
Spectral Normalization 69.35 ± 1.23%

Smoothness with Perturbation In this section, we analyze the optimizer’s
smoothness property with perturbation. Detailedly, we sample 1000 points from
N (0, 0.1) to form a set of perturbed states around 0. Then these states are fed
into the simple and smoothed optimizer respectively, and corresponding outputs
are shown in Figure 7 (x-axis in (a) is the state number while (b) sorts the
specific state values.) Around the zero state with zero gradient, the update with
a small magnitude is expected for an ideal optimizer. We can see that the smooth
version can produce much more stable updates around zero state, while Simple-
Optimizer su↵ers from non-smoothness.
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Fig. 7. A comparison of smoothness between simple and smoothed optimizer.

Additional Evaluation Besides the metric of loss, we explore classification
accuracy which is another important performance indicator, to show advantages
of our smoothed neural optimizer. In Figure 8, we present curves of training
and testing accuracy, for MNIST with LeNet and CIFAR10 with the 3-layer
CNN. We can observe that the relative ranks of all optimizers do not change if
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the evaluation metric is switched to accuracy, and our smoothed optimizer still
outperforms other algorithms with best final training and testing accuracy as
well as convergence rate. Furthermore, we conduct experiments on a compar-
atively large-scale dataset, tiny-ImageNet in Appendix D. Similar performance
on this dataset shows the e↵ectiveness of our proposed method. We also include
preliminary experimental results on a sentiment analysis task in Appendix D.
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Fig. 8. Performance of di↵erent optimizers in training and testing accuracy. (a)-
(b) for MNIST with LeNet and (c)-(d) for CIFAR-10 with a 3-layer CNN.

Furthermore, we conduct experiments on a comparatively large-scale dataset,
tiny-ImageNet in Appendix D.3. Similar performance on this dataset shows the
e↵ectiveness of our proposed method.

5.2 Few-Shot Learning with LSTM

Apart from improving the training procedures, L2L can be applied to few-shot
learning as well. Therefore, in this part we primarily explore the e↵ectiveness of
our smoothed neural optimizer in FSL, in particular, N -way-K-shot learning. We
consider 5-way-1-shot and 5-way-5-shot problems on two benchmark datasets,
miniImageNet [26] and tieredImageNet [21]. The base structure we utilize is
Meta-LSTM, proposed in [20] to train an LSTM-based meta learner to learn
the optimization rule in the few-shot regime. We compare it with our smoothed
version. We keep all hyperparameters the same as reported in [20] and only tune
✏ and � in a manner introduced in Section 5.1. Statistical results of 5 experiments
with di↵erent random seeds are reported in Table 2. Our smoothed Meta-LSTM
attains 2% percents improvement over all scenarios against the baseline. It should
be emphasized that the performance boost is purely credited to the regularizer
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since we apply our regularization term to the exactly same structure as Meta-
LSTM. Since the o�cial code for Meta-LSTM is written in lua and is out-of-date,
we use the latest PyTorch implementation in [6]. Thus, our results might lead
to inconsistency with the original paper but do not a↵ect the conclusion.

Table 2. Average accuracy of 5-way few shot learning on miniImageNet and
tieredIamgeNet.

Model
miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot

Meta-LSTM 38.20± 0.73% 56.56± 0.65% 36.43± 0.65% 53.45± 0.61%
Smoothed Meta-LSTM 40.42± 0.68% 58.90± 0.61% 36.74± 0.76% 55.14± 0.60%

In addition, we integrate our proposed regularizer into one of the most recent
methods involving a neural optimizer, SIB [11] on miniImageNet and CIFAR-
FS. Results are presented in Table 3 and with regularization, SIB performs
consistently better especially for 5-shot tasks.

Table 3. Average accuracy of 5-way few shot learning problems on miniIma-
geNet and CIFAR-FS.

Model Backbone
miniImageNet CIFAR-FS

1-shot 5-shot 1-shot 5-shot

SIB(⌘ = 1e�3, K = 3) WRN-28-10 69.6± 0.6% 78.9± 0.4% 78.4± 0.6% 85.3± 0.4%
Smoothed SIB WRN-28-10 70.0± 0.5% 80.8± 0.3% 79.2± 0.4% 86.1± 0.4%

6 Conclusion and Discussion

This paper first investigates the smoothness of learned optimizers and leverage
it to achieve performance improvement. Specifically, we propose a regularization
term for neural optimizers to enforce similar parameter updates given similar
input states. Extensive experiments show that the regularizer can be combined
with di↵erent L2L structures involving neural optimizers, and verify its e↵ec-
tiveness of consistently improving current algorithms for various tasks in classi-
fication and few-shot learning. Despite promising results, currently the learned
optimizer is constrained to a group of problems with a moderate number of op-
timization steps and cannot replace hand-crafted ones in such settings. Training
a powerful optimizer that can generalize to longer horizon still remains a chal-
lenge and can be a potential future direction. Besides, how to design a neural
optimizer to deal with language tasks with RNNs or even more complex models
like Transformers is also an interesting problem to be explored.

Acknowledgements. This work is supported by NSF IIS-2008173, IIS-2048280
and Google.



Learning to Learn with Smooth Regularization 15

References

1. Andrychowicz, M., Denil, M., Gomez, S., Ho↵man, M.W., Pfau, D., Schaul, T.,
Shillingford, B., De Freitas, N.: Learning to learn by gradient descent by gradient
descent. In: Advances in neural information processing systems. pp. 3981–3989
(2016)

2. Bansal, N., Chen, X., Wang, Z.: Can we gain more from orthogonality regulariza-
tions in training deep cnns? arXiv preprint arXiv:1810.09102 (2018)

3. Chen, P.H., Reddi, S., Kumar, S., Hsieh, C.J.: Learning to learn with better con-
vergence (2020), https://openreview.net/forum?id=S1xGCAVKvr

4. Chen, T., Zhang, W., Jingyang, Z., Chang, S., Liu, S., Amini, L., Wang, Z.: Train-
ing stronger baselines for learning to optimize. Advances in Neural Information
Processing Systems 33 (2020)

5. Cotter, N.E., Conwell, P.R.: Fixed-weight networks can learn. In: 1990 IJCNN
International Joint Conference on Neural Networks. pp. 553–559. IEEE (1990)

6. Dong, M.: Pytorch implementation of optimization as a model for few-shot learn-
ing. https://github.com/markdtw/meta-learning-lstm-pytorch (2019)

7. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572 (2014)

8. Hampel, F.R.: The influence curve and its role in robust estimation. Journal of the
american statistical association 69(346), 383–393 (1974)

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

10. Hinton, G., Srivastava, N., Swersky, K.: Neural networks for machine learning
lecture 6a overview of mini-batch gradient descent (2012)

11. Hu, S.X., Moreno, P.G., Xiao, Y., Shen, X., Obozinski, G., Lawrence, N.D., Dami-
anou, A.: Empirical bayes transductive meta-learning with synthetic gradients.
arXiv preprint arXiv:2004.12696 (2020)

12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

13. Krizhevsky, A., Nair, V., Hinton, G.: The cifar-10 dataset. online: http://www. cs.
toronto. edu/kriz/cifar. html 55 (2014)

14. LeCun, Y.: The mnist database of handwritten digits. http://yann. lecun.
com/exdb/mnist/ (1998)

15. Luo, L., Xiong, Y., Liu, Y., Sun, X.: Adaptive gradient methods with dynamic
bound of learning rate. arXiv preprint arXiv:1902.09843 (2019)

16. Lv, K., Jiang, S., Li, J.: Learning gradient descent: Better generalization and
longer horizons. In: Proceedings of the 34th International Conference on Machine
Learning-Volume 70. pp. 2247–2255. JMLR. org (2017)

17. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

18. Metz, L., Maheswaranathan, N., Nixon, J., Freeman, C.D., Sohl-Dickstein, J.: Un-
derstanding and correcting pathologies in the training of learned optimizers. arXiv
preprint arXiv:1810.10180 (2018)

19. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for
generative adversarial networks. In: International Conference on Learning Repre-
sentations (2018)

20. Ravi, S., Larochelle, H.: Optimization as a model for few-shot learning. In: ICLR
(2017)

https://openreview.net/forum?id=S1xGCAVKvr
https://github.com/markdtw/meta-learning-lstm-pytorch


16 Y. Xiong and C. Hsieh

21. Ren, M., Triantafillou, E., Ravi, S., Snell, J., Swersky, K., Tenenbaum, J.B.,
Larochelle, H., Zemel, R.S.: Meta-learning for semi-supervised few-shot classifi-
cation. arXiv preprint arXiv:1803.00676 (2018)

22. Robbins, H., Monro, S.: A stochastic approximation method. The annals of math-
ematical statistics pp. 400–407 (1951)

23. Ruan, Y., Xiong, Y., Reddi, S., Kumar, S., Hsieh, C.J.: Learning to learn by zeroth-
order oracle. arXiv preprint arXiv:1910.09464 (2019)

24. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural networks
61, 85–117 (2015)

25. Shen, Q., Li, Y., Jiang, H., Wang, Z., Zhao, T.: Deep reinforcement learning with
smooth policy. arXiv preprint arXiv:2003.09534 (2020)

26. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks
for one shot learning. In: Advances in neural information processing systems. pp.
3630–3638 (2016)

27. Wang, Y., Yao, Q., Kwok, J., Ni, L.M.: Generalizing from a few examples: A survey
on few-shot learning. arXiv preprint arXiv: 1904.05046 (2019)

28. Wichrowska, O., Maheswaranathan, N., Ho↵man, M.W., Colmenarejo, S.G., Denil,
M., de Freitas, N., Sohl-Dickstein, J.: Learned optimizers that scale and generalize.
In: Proceedings of the 34th International Conference on Machine Learning-Volume
70. pp. 3751–3760. JMLR. org (2017)

29. Wu, Y., Ren, M., Liao, R., Grosse, R.: Understanding short-horizon bias in stochas-
tic meta-optimization. arXiv preprint arXiv:1803.02021 (2018)

30. Xiong, Y., Hsieh, C.J.: Improved adversarial training via learned optimizer. arXiv
preprint arXiv:2004.12227 (2020)

31. Younger, A.S., Hochreiter, S., Conwell, P.R.: Meta-learning with backpropagation.
In: IJCNN’01. International Joint Conference on Neural Networks. Proceedings
(Cat. No. 01CH37222). vol. 3. IEEE (2001)


	Learning to Learn with Smooth Regularization

