
Signal Processing 196 (2022) 108506

Contents lists available at ScienceDirect

Signal Processing

journal homepage: www.elsevier.com/locate/sigpro

Distributed linear-quadratic control with graph neural networks

� , ��

Fernando Gama a , ∗, Somayeh Sojoudi b

a Department of Electrical and Computer Engineering, Rice University, Houston, TX, 77005 USA
b Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94709 USA

a r t i c l e i n f o

Article history:

Received 13 July 2021

Revised 29 December 2021

Accepted 11 February 2022

Available online 16 February 2022

Keywords:

Distributed control

Graph neural networks

Graph signal processing

a b s t r a c t

Controlling network systems has become a problem of paramount importance. In this paper, we con-

sider a distributed linear-quadratic problem and propose the use of graph neural networks (GNNs) to

parametrize and design a distributed controller for network systems. GNNs exhibit many desirable prop-

erties, such as being naturally distributed and scalable. We cast the distributed linear-quadratic problem

as a self-supervised learning problem, which is then used to train the GNN-based controllers. We also

obtain sufficient conditions for the resulting closed-loop system to be input-state stable, and derive an

upper bound on how much the trajectory deviates from the nominal value when the matrices that de-

scribe the system are not accurately known. We run extensive simulations to study the performance of

GNN-based distributed controllers and show that they are computationally efficient and scalable.

© 2022 Elsevier B.V. All rights reserved.

1

f

g

t

a

p

i

a

o

g

A

a

p

m

t

e

b

t

p

e

�

i

v

t

j

u

a

s

a

t

W

f

c

t

r

t

a

i

o

w

f

l

t

h

0

. Introduction

The use of linear models to describe dynamical systems has

ound widespread use in many areas of physics, mathematics, en-

ineering and economics [2] . Linear systems are mathematically

ractable and can thus be used to derive properties, draw insights,

nd improve on our ability to successfully control these systems. In

articular, designing optimal controllers that can steer the system

nto a desired state while minimizing some given cost has become

 problem of paramount importance [3] .

Obtaining an optimal controller that minimizes a quadratic cost

n the states and the actions, following a linear dynamic model,

ives rise to the well-studied linear-quadratic control problem [4] .

s it happens, the optimal linear-quadratic controller is linear and

cts on the knowledge of the system state at a given time to

roduce the optimal control action for that time instant. Further-

ore, when considering an infinite-time horizon for minimizing

he quadratic cost, the resulting optimal controller is not only lin-

ar but also static, meaning that the same linear mapping is used

etween state and control action for all time instants.

Network systems are one particular class of dynamical systems

hat has become increasingly relevant. These systems are com-

rised of a set of interconnected components that are capable of

xchanging information. They are further equipped with the abil-
� This work is supported by grants from ONR, NSF and AFOSR.
� Partial results have appeared in [1] .
∗ Corresponding author.

E-mail addresses: fgama@rice.edu (F. Gama), sojoudi@berkeley.edu (S. Sojoudi).

c

c

t

s

ttps://doi.org/10.1016/j.sigpro.2022.108506

165-1684/© 2022 Elsevier B.V. All rights reserved.
ty to autonomously decide on an action to take based on the indi-

idual state of each component and the information relied through

he communications with other neighboring components. The ob-

ective of controlling network systems is to coordinate the individ-

al actions of the components so that they are conducive to the

ccomplishment of some global task [5] .

The dynamics of some network systems can be effectively de-

cribed by a linear model. Thus, if such systems are coupled with

 quadratic cost, a corresponding linear-quadratic problem is ob-

ained. As such, the optimal control actions are readily available.

hile the optimal controllers are linear, they require information

rom the components in the network irrespective of their inter-

onnections. That is, to compute the optimal controller, an addi-

ional unit capable of accessing all components instantaneously is

equired. In the context of network systems, this is called a cen-

ralized approach.

Centralized controllers face limitations in terms of scalability

nd implementation. For increasingly large networks, the central-

zed unit requires more direct connections to all the components

f the system. Similarly, the computational cost increases directly

ith the size of the network, since a single unit is responsible

or computing the control actions of all the components. It is also

ess robust to changes in the network. A failed connection between

he centralized unit and any of the components would render that

omponent uncontrollable.

Network systems are characterized by the connections between

omponents, which naturally impose a distributed structure on

he flow of data. Fundamentally, it can be leveraged in the de-

ign of controllers. By doing so, one can overcome many of the

https://doi.org/10.1016/j.sigpro.2022.108506
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2022.108506&domain=pdf
mailto:fgama@rice.edu
mailto:sojoudi@berkeley.edu
https://doi.org/10.1016/j.sigpro.2022.108506

F. Gama and S. Sojoudi Signal Processing 196 (2022) 108506

l

i

c

c

s

t

W

a

l

t

t

s

e

p

q

e

o

n

(

fi

d

p

b

d

a

i

a

c

m

c

s

b

o

t

w

l

d

i

d

m

t

u

t

s

t

a

w

t

t

t

n

o

s

d

2

l

b

a

n

x

d

c

b

t

e

s

d

t

q

J

f

a

m

s

u

w

o

(

s

o

a

u

w

c

i

e

g

E

p

i

c

b

a

a

t

a

m

X
imitations of centralized controllers. Thus, we focus on leverag-

ng the data structure to obtain distributed controllers. These are

ontrol actions that depend only on local information provided by

omponents that share a connection and that can be computed

eparately by each component.

Imposing a distributed constraint on the linear-quadratic con-

rol problem renders it intractable in the most general case [6] .

hile there is a large class of distributed control problems that

dmit a convex formulation [7] , many of them lead to complex so-

utions that do not scale with the size of the network [8] . An al-

ernative approach is to adopt a linear parametrization of the con-

roller and find a surrogate of the original problem that admits a

calable solution. The resulting controller is thus a sub-optimal lin-

ar distributed controller, and stability and robustness analyses are

rovided [9–11] .

However, even in the context of linear network systems with a

uadratic cost, the optimal distributed controller may not be lin-

ar [6] . In this paper, we thus adopt a nonlinear parametrization

f the controller. More specifically, we focus on the use of graph

eural networks (GNNs) [12] . GNNs consist of a cascade of blocks

commonly known as layers) each of which applies a bank of graph

lters followed by a pointwise nonlinearity. GNNs exhibit several

esirable properties in the context of distributed control. Most im-

ortantly, they are naturally local and distributed, meaning that

y adopting a GNN as a mapping between states and actions, a

istributed controller is automatically obtained. Furthermore, they

re permutation equivariant and Lipschitz continuous to changes

n the network [13] . These two properties allow them to scale up

nd transfer [14] .

Distributed controllers leveraging neural network techniques

an be found in [1,15–23] . These controllers typically use a distinct

ulti-layer perceptron (MLP) to parametrize the controller at each

omponent [15–20] or rely on adaptive critic control [21,22] . As-

igning a separate MLP to each component implies that the num-

er of parameters to learn increases proportionally with the size

f the network system, becoming increasingly harder to train, and

hus this approach is not scalable. The use of GNNs imposes a

eight-sharing scheme that avoids scalability problems. These are

everaged in [23] in the context of specific robotics problems. The

istributed linear-quadratic problem using GNNs was investigated

n our conference paper [1] .

In this work, we focus on finding distributed controllers for the

istributed linear-quadratic problem. Our main contributions are:

(C1) We propose to parametrize the distributed controller with

a GNN, obtaining a naturally distributed architecture that is

capable of capturing nonlinear relationships between input

and output, as it was initially investigated in our preliminary

work [1] .

(C2) We obtain an improved sufficient condition for closed-loop

input-state stability of the controller.

(C3) We study the problem of systems whose linear description

is not accurately known. We analyze how the stability of the

system changes and obtain an upper bound on the deviation

of the trajectory from its nominal value.

(C4) We present new simulations that provide better insight into

GNN-based controllers for a distributed LQR problem.

The remainder of this paper is organized as follows. We for-

ulate the linear-quadratic problem in Section 2 and postulate

he use of graph neural networks in Section 3 as a practically

seful nonlinear parametrization of the unknown distributed con-

roller. We cast the distributed linear-quadratic problem as a self-

upervised learning problem, which can be efficiently solved by

raditional machine learning techniques. To study the effect of

dopting a GNN-based controller on the entire dynamical system,

e obtain a sufficient condition for the resulting closed-loop sys-
2
em to be input-state stable and derive an upper bound on the

rajectory deviation from its nominal value when the system ma-

rices are unknown and only estimates are available. We include

umerical simulations in Section 5 to investigate the performance

f GNN-based distributed controllers and their dependence on de-

ign hyperparameters, as well as their scalability. Conclusions are

rawn in Section 6 . Proofs are provided in the appendix.

. The linear-quadratic problem

The linear-quadratic problem is one of the fundamental prob-

ems in optimal control theory [3] . Consider a system described

y a state vector x (t) ∈ R
F and controlled by an action u (t) ∈ R

G

t time t ∈ { 0 , 1 , 2 , . . . } . The system evolves following a linear dy-

amic

 (t + 1) = Ā x (t) + B̄ u (t) (1)

etermined by Ā ∈ R
F ×F called the system matrix and B̄ ∈ R

F ×G

alled the control matrix . These two matrices are considered to

e known and given in the problem formulation. The objective is

o drive the system towards a desired, target state value. To this

nd, a controller Φ : R
F → R

G that maps the current state of the

ystem x (t) into an appropriate action u (t) = Φ(x (t)) is typically

esigned. In optimal control, it is desirable to find a controller

hat minimizes a given cost. In particular, the focus here is on the

uadratic cost given by

(
{ x (t) } , { u (t) }

)
=

∞ ∑

t=0

(
x (t) T Q̄ x (t) + u (t) T R̄ u (t)

)
(2)

or two known matrices Q̄ ∈ R
F ×F and R̄ ∈ R

G ×G such that Q̄ � 0

nd R̄ � 0 , given in the problem formulation.

The linear-quadratic problem can be formulated as

in
Φ∈ �

J

(
{ x (t) } , { u (t) }

)
(3a)

.t. x (t + 1) = Ā x (t) + B̄ u (t) , ∀ t ∈ { 0 , 1 , . . . } (3b)

 (t) = Φ(x (t)) , ∀ t ∈ { 0 , 1 , . . . } (3c)

here � is the space of all functions Φ : R
F → R

G , see [3] . The

bjective function (3a) is the quadratic cost (2) , the constraint

3b) imposes the linear dynamics of the system (1) and the con-

traint (3c) forces the solution to be a function Φ : R
F → R

G . The

ptimal controller obtained from solving (3) is formally known as

 linear-quadratic regulator (LQR) and is given by

� (t) = Φ�

(
x (t)

)
= K

� x (t) , (4)

ith K
� ∈ R

F ×G being a linear operator that depends on the matri-

es that describe the problem, namely Ā , ̄B , Q̄ , ̄R , and can be read-

ly computed [3, Sec. 2.4] . Notably, the LQR is a linear controller [3,

q. (2.4–8)] .

A network system can be conveniently described by means of a

raph G = (V, E) , where V = { v 1 , . . . , v N } is the set of N nodes and

 ⊆ V × V is the set of edges. The node v i represents the i th com-

onent of the system, while the existence of the edge (v i , v j) ∈ E
mplies that nodes v i and v j are interconnected and capable of ex-
hanging information. In a network system, each node is described

y a state x i (t) ∈ R
F and is capable of autonomously taking an

ction u i (t) ∈ R
G at time t . The states and actions of all nodes

re collected in two matrices X (t) ∈ R
N×F and U (t) ∈ R

N×G , respec-

ively, where each row corresponds to the state or action of each

gent.

Similar to (1) , consider a network system with linear dynamics

odeled as

 (t + 1) = AX (t) ̄A + BU (t) ̄B , (5)

F. Gama and S. Sojoudi Signal Processing 196 (2022) 108506

w

t

s

e

c

p

t

u

A

a

i

(

t

u

s

t

w

f

g

s

t

(

i

(

f

J

w

t

l

b

t

s

w

t

t

T

i

p

s

o

d

e

s

N

a

t

i

c

m
Φ

s

U

w

c

c

n

a

t

c

o

i

a

[

t

p

t

m

b

m

a

c

(

n

i

t

I

[

p

t

r

i

o

d

3

(

c

t

i

m

s

S

A

m

i

3

s

a

s

n

d

a

v

t

t

s

i

n

X

X

here A ∈ R
N×N is called the network system matrix and B ∈ R

N×N

he network control matrix . The linear system in (5) is an exten-

ion of (1) tailored to handle network data. In particular, it consid-

rs that each node v i is described by an F -dimensional state x i (t) ,

ollected in the rows of the matrix X (t) . It also decouples the im-

act that the network topology has on the evolution of the sys-

em (through matrices A and B) from the impact that the individ-

al states have (through Ā and B̄). To see this, note that matrices

 ∈ R
N×N and B ∈ R

N×N act as linear combinations of state values

cross different nodes, and as such, these combinations are typ-

cally restricted to follow the interconnection of the components

although, technically, they need not be). It is thus noted that while

he matrix A need not be the adjacency matrix of the graph, it is

sually a function of it –for example, both matrices may share the

ame eigenvectors. The matrices Ā ∈ R
F ×F and B̄ ∈ R

G ×F determine

he evolution of the values of the state at each individual node and,

hile they can be arbitrary, they force all individual state nodes to

ollow the same evolution. Finally, it is noted that, while a more

eneral linear description can be obtained by adopting a network

tate of dimension NF and using (1) , doing so obscures the effect of

he topology of the network on the evolution of the system. Thus,

5) is adopted from now on for mathematical simplicity –and it

s observed that all the results derived from here onward hold for

1) as well.

To pose the linear-quadratic problem for a network system, the

ollowing quadratic cost as a counterpart of (2) is adopted:

(
{ X (t) } , { U (t) }

)
=

∞ ∑

t=0

(
‖ X (t) ̄Q

1 / 2 ‖
2
F + ‖ U (t) ̄R

1 / 2 ‖
2
F

)
, (6)

here Q̄ ∈ R
F ×F and R̄ ∈ R

G ×G are two given positive definite ma-

rices, and where ‖ · ‖ F denotes the Frobenius matrix norm. The

inear-quadratic control problem for a network system can then

e posed in the form of (3) , by replacing the cost (3a) with (6) ,

he linear dynamics (3b) with (5) , and the controller (3c) with one

uch that Φ : R
N×F → R

N×G .

The controller solving the linear-quadratic problem for a net-

ork system is also linear. However, in order to compute the op-

imal control action, the system needs to access the state of arbi-

rary components of the system, beyond those directly connected.

his constitutes a centralized controller. In what follows, the focus

s on finding a distributed controller.

A distributed controller, which is denoted by Φ(X (t) ;G) to em-

hasize its dependence on the topology of the network system G,
hould satisfy the properties that the control actions U (t) rely only

n local information provided by other components that share a

irect connection, and that they can be computed separately at

ach component. The use of a distributed controller overcomes

ome of the issues that arise when considering a centralized one.

amely, they are expected to scale better, since they do not require

 single unit to compute the actions of all components in the sys-

em, and they are easy to implement since they do not demand an

nfrastructure capable of connecting all components to the single

entralized unit.

The distributed linear-quadratic problem can be written as

in
∈ �G

J

(
{ X (t) } , { U (t) }

)
(7a)

.t. X (t + 1) = AX (t) ̄A +BU (t) ̄B , ∀ t ∈{ 0 , 1 , . . . } (7b)

 (t) = Φ
(
X (t) ;G

)
, ∀ t ∈{ 0 , 1 , . . . } , (7c)

here �G is the space of all functions Φ(·;G) : R
N×F → R

N×G that

an be computed in a distributed manner (i.e. relying only on lo-

al information and computed separately at each component). It is
3
oted that the constraint (7c) further restricts the feasible set, and

s such, the optimal value J � G of solving (7) is lower bounded by

he optimal value J � incurred when using the optimal centralized

ontroller, i.e. J � G ≥ J � .

Solving problem (7) requires solving an optimization problem

ver the space of functions �G . This is mathematically intractable

n the general case, and requires specific approaches involving vari-

tional methods, dynamic programming or kernel-based functions

24] . While there is a large class of distributed control problems

hat admit a convex formulation [7] , many of them lead to com-

lex solutions that do not scale with the size of the network [8] .

Considering the inherent complexities of functional optimiza-

ion, a popular approach is to adopt a specific model for the

apping Φ, leading to a parametric family of controllers. Inspired

y the linear nature of the optimal centralized solution and its

athematical tractability, a distributed linear parametrization was

dopted in [9,11] . Many properties of this parametric family of

ontrollers have been studied, including stability, robustness and

sub)optimality [9,11] .

However, it is known that the linear system (5) may have a

onlinear optimal controller if we force a distributed nature on

ts solution [6] . This suggests that it would be more convenient

o work with nonlinear parametrizations, rather than linear ones.

n particular, this work focuses on graph neural networks (GNNs)

12] . These are nonlinear mappings that exhibit several desirable

roperties. Fundamentally, they are naturally computed in a dis-

ributed manner relying only on local information provided by di-

ectly connected components. This implies that any controller that

s parametrized by means of a GNN respects the distributed nature

f the system (as given by the graph G), naturally incorporating the
istributed constraint (7c) into the chosen parametrization.

. Graph neural networks

Finding the optimal distributed controller by solving problem

7) is intractable in its most general case. This is due to the

onstraint (7c) that the solution satisfies a distributed computa-

ion. In what follows, a parametric family of distributed controllers

s adopted. More concretely, inspired by the fact that the opti-

al controller is usually nonlinear, GNN-based controllers are con-

idered. The basics of graph signal processing are introduced in

ection 3.1 , which allows for the definition of GNNs in Section 3.2 .

 discussion on how to cast the resulting finite-dimensional opti-

al control problem as an unsupervised learning problem follows

n Section 3.3 .

.1. Graph signal processing

Graph signal processing (GSP) is a framework tailored to de-

cribe, analyze, and understand distributed problems [25] . Given

 graph G = (V, E) that describes the structure of the data under

tudy, a graph signal x : V → R is defined as a mapping from the

odes of the graph to a real number. By imposing an arbitrary or-

er on the nodes, this graph signal can be conveniently described

s a vector x ∈ R
N whose i th element corresponds to the signal

alue associated to node v i , denoted as [x] i = x (v i) = x i ∈ R . Note

hat [·] i ([·] i j) denotes the value of the i th ((i, j) th) entry of a vec-
or (matrix). To be able to use the concept of graph signals to de-

cribe the state X (t) ∈ R
N×F and the control action U (t) ∈ R

N×G

n a network system, an extension to vector-valued mappings is

eeded. Define the vector-valued graph signal as X : V → R
F , where

 (v i) = x i ∈ R
F . It can then be described by means of a matrix

 ∈ R
N×F , where each row corresponds to the signal value at each

F. Gama and S. Sojoudi Signal Processing 196 (2022) 108506

n

X

I

a

p

g

b

s

l

t

T

‖

T

s

i

t

t

t

e

t

b

t

g

i

o

(

a

i

m

S

t

t

g

y

w

e

i

t

g

n

a

t

s

d

b

d

s

r

b

Y

w

c

X

o

S

t

e

b

X

e

t

T

k

i

n

r

u

u

u

(

t

t

o

t

t

t

b

o

{

T

u

m

i

o

s

s

s

a

C

I

g

t

|

f

T

�

w

i

(

3

o

o

d

c

ode

 =

⎡

⎣

X
T (v 1)
. . .

X
T (v N)

⎤

⎦ =

⎡

⎣

x T 1
. . .
x T N

⎤

⎦ =

[
x 1 · · · x F

]
. (8)

n this equation, the vector-valued graph signal X is viewed as

 collection of F traditional scalar-valued graph signals { x f } F
f=1

,

laced in the columns of the matrix. Observe that x stands for the

raph signal as a function, x i stands for the scalar value adopted

y node v i , x for the vector collecting all these values; likewise, X

tands for the vector-valued graph signal and X for the matrix col-

ecting all the states at all nodes. All these quantities are related to

he graph signal that is used to describe the state of the system.

he size of the vector-valued graph signal is defined as

 X ‖ = ‖ X ‖ 2 , 1 =

F ∑

f=1

‖ x f ‖ 2 . (9)

he L 2 , 1 norm for matrices (9) is chosen as the size of the graph

ignal norm for both its robustness and its mathematical tractabil-

ty. Note that if F = 1 , then ‖ X ‖ = ‖ x ‖ 2 as expected. Finally, note
hat, in what follows, the term “graph signal” is used indistinctly

o refer to either vector-valued or scalar-valued ones. Note that the

rajectories of system states { X (t) } and control actions { U (t) } can
ach be modeled as a sequence of graph signals, indexed by the

ime parameter t —also known as graph processes [26] .

Describing a graph signal in terms of a matrix is convenient

ecause it allows for easy mathematical manipulation. However,

his causes the loss of the information related to the underlying

raph support. To recover this information, the graph is described

n terms of a support matrix S ∈ R
N×N that respects the sparsity

f the graph, i.e. [S] i j = s i j can be nonzero if and only if i = j or

v j , v i) ∈ E . Any matrix that satisfies this condition can be used as

 support matrix and thus it is a design choice. Typical choices

nclude the adjacency matrix, the Laplacian matrix, the Markov

atrix, and their normalized counterparts [25] . A linear mapping

 : R
N×F → R

N×F between graph signals that relates the input to

he underlying graph support Y = S (X) = SX can be defined, such

hat the (i, f) th entry y f
i
of the matrix Y (the value of the f th scalar

raph signal at node v i) is computed as

f
i

= [Y] i f = [SX] i f =

N ∑

j=1

[S] i j [X] j f =

∑

j: v j ∈N i ∪{ v i }
s i j x

f
j
, (10)

here N i = { v j ∈ V : (v j , v i) ∈ E} is the set of nodes that share an
dge with v i and [X] j f = [x j] f = [x f] j = x

f
j
, see (8) . The last equal-

ty in (10) holds because of the sparsity pattern of the support ma-

rix S and implies that the computation of the value of the output

raph signal Y at node v i only requires information relied by its

eighbors. In this respect, one can then think of the pair (X , S)

s the complete graph data containing all the relevant informa-

ion; however, only X is regarded as the actionable variable (the

ignal), while the support S is considered given and fixed and is

etermined by the physical constraints of the network.

The support matrix S can be thought of as a linear mapping

etween graph signals that effectively relates the input to the un-

erlying graph support. As such, the operation SX becomes the ba-

ic building block of graph signal processing [25] . A finite-impulse

esponse (FIR) graph filter H : R
N×F → R

N×G is a linear operation

etween two graph signals, defined as a polynomial on S

 = H (X ; S , H) =

K ∑

k =0

S k XH k , (11)

here H = { H k ∈ R
F ×G , k = 0 , . . . , K} is the set of filter taps H k that

haracterize the filter response. The filter (11) is linear in the input
4
 and is capable of mapping between vector-valued graph signals

f different dimensions (but defined on the same graph given by

).

The graph filter is a naturally distributed operation, meaning

hat the output of filtering in (11) can be computed separately by

ach node relying only on information provided by one-hop neigh-

ors. To understand this, note that multiplications to the left of

 carry out a linear combination of signal values across differ-

nt nodes, and thus this matrix needs to respect the sparsity of

he graph so that only values at neighboring nodes are combined.

his is the case for S k = S k −1 S which amounts to communicating

 times with the one-hop neighbors. Therefore, an FIR graph filter

s a distributed linear operation since it requires only K commu-

ication exchanges with one-hop neighbors. Multiplications to the

ight of X , on the other hand, are linear combinations of signal val-

es located at the same node, and can thus be arbitrary. In partic-

lar, (11) imposes a weight-sharing scheme, where the signal val-

es at all nodes are combined in the same way. Finally, note that

11) is a compact notation for denoting the graph filtering opera-

ion but, in practice, the nodes do not need access to the full ma-

rix S . They only need access to the entries corresponding to their

ne-hop neighbors in order to compute the proper linear combina-

ion indicated in (10) . Thus, in practice, the nodes need not know

he entire graph topology.

The FIR graph filter (11) can be understood as a bank of F G fil-

ers acting on scalar-valued graph signals, see [12,27] . It can thus

e characterized by its frequency response given by the collection

f univariate polynomials

h f g (λ) =

K ∑

k =0

[H k] f g λ
k : λ ∈ [λl , λh] f = 1 , . . . , F g = 1 , . . . , G

}

.

(12)

he values of λl and λh are determined by the specific problem

nder study, and are typically set to be the minimum and maxi-

um eigenvalues of the given S . However, they may be different

f the problem requires the filters to be able to act on more than

ne graph, see Section 4.3 . In that case, it may be convenient to

elect the interval so that it contains all the eigenvalues of all the

upport matrices under consideration.

The characterization of the filter in terms of the frequency re-

ponse (12) allows for the definition of the size of the graph filter

s

 H = ‖ C H ‖ ∞ with C H ∈ R
F ×G : [C H] f g = max

λ∈ [λl ,λh]
| h f g (λ) | . (13)

n what follows, the focus is further set on a particular class of

raph filters, known as Lipschitz filters. The graph filter (11) is said

o be a Lipschitz filter if its frequency response (12) satisfies that

 h f g (λ1) − h f g (λ2) | ≤ γ f g | λ1 − λ2 | , ∀ λ1 , λ2 ∈ [λl , λh] , (14)

or some constant γ f g > 0 , for all f ∈ { 1 , . . . , F } and G ∈ { 1 , . . . , G } .
he Lipschitz constant �H of the filter is computed as

H = ‖ �H ‖ ∞ with �H ∈ R
F ×G : [�H] f g = γ f g , (15)

hich is the infinity norm ‖ �H ‖ ∞ for a matrix �H ∈ R
F ×G contain-

ng the corresponding Lipschitz constants of each individual filter

i.e. the maximum absolute row sum of the matrix).

.2. Graph neural networks

Graph filters are distributed, linear operations and, as such, are

nly capable of capturing linear relationships between input and

utput. However, the objective of this work is to learn nonlinear

istributed controllers. Arguably, the most straightforward way of

onverting a graph filter into a nonlinear processing unit without

F. Gama and S. Sojoudi Signal Processing 196 (2022) 108506

a

i

Y

w

o

[

c

t

o

i

c

a

X

Φ

w

X

o

a

c

{

t

l

c

3

b

c

t

t

p

m

s

U

Φ

b

Φ

s

t

p

i

{
f

i

m

s

U

X

s

e

b

t

s

e

I

s

d

t

t

t

i

o

fl

l

i

I

l

T

w

4

a

c

t

i

e

t

t

p

s

t

4

t

G

t

T

a

g

l

o

c

P

f

t

s

M

t

s

o

u

l

ffecting its distributed nature is to include a pointwise nonlinear-

ty

 = σ
(
H (X ; S , H)

)
, (16)

here σ : R → R is a nonlinearity applied pointwise to the entries

f the graph signal obtained from applying the graph filter, i.e.

 σ (X)] i f = σ ([X] i f) . The operation (16) is known as a graph per-

eptron [12] and, since the nonlinearity σ (·) is applied pointwise

o the entries of the graph signal, it retains the distributed nature

f the graph filter.

The graph perceptron (16) is a nonlinear processing unit, but

t has a limited representation power. To overcome this, a graph

onvolutional neural network Φ(·; S ,H) : R
N×F → R

N×G is defined as

 cascade of L graph perceptron units

 � = σ
(
H � (X � −1 ; S ,H �)

)
, (17a)

(X ; S ,H) = X L , (17b)

ith H = ∪
L
� =1 H � . The input to the first layer is the graph signal

 0 = X and the output is collected at the last layer. The space

f all possible representations obtained by using a GNN is char-

cterized by the set of filter taps H, which contains the filter

oefficients H � = { H �k ∈ R
F � −1 ×F � k = 0 , 1 , . . . , K � } at each layer � ∈

 1 , . . . , L } . Note that F 0 = F and F L = G . The nonlinear function σ (·) ,
he number of layers L , the dimension of the graph signals at each

ayer F � and the number of filter taps at each layer K � are design

hoices and are typically referred to as hyperparameters [28] .

.3. Self-supervised learning

The linear graph filter (11) and the nonlinear GNN (17) have

een introduced as naturally distributed parametrizations. By

hoosing to adopt one of these models for the to-be-learned con-

roller, the focus is immediately set on a distributed mapping be-

ween the state and the action, turning the functional optimization

roblem (7) into the finite-dimensional optimization

in
H

J

(
{ X (t) } , { U (t) }

)
(18a)

. t. X (t + 1) = AX (t) ̄A + BU (t) ̄B , (18b)

 (t) = Φ
(
X (t) ; S , H

)
. (18c)

The constraint (18c) replaces a generic distributed controller

(X (t) ;G) in (7c) with a controller that admits a parametrization

ased on either a graph filter or a GNN. The resulting controller

(X (t) ; S ,H
�) with filter coefficients H

� that solves (18) naturally

atisfies the distributed constraint.

Problem (18) is nonconvex when adopting a GNN-based con-

roller (18c) . Thus, to approximately solve this problem, the em-

irical risk minimization (ERM) approach that is typical in learn-

ng theory [29] is leveraged. To do this, a training set T =

 X 1 , 0 , . . . , X |T | , 0 } containing |T | samples X p, 0 drawn independently

rom some distribution p is considered to be the different random

nitializations of the system. Then, the ERM problem is given by

in
H

|T | ∑

p=1

J

(
{ X p (t) } , { U p (t) }

)
(19a)

. t. X p (t + 1) = AX p (t) ̄A + BU p (t) ̄B , (19b)
5
 p (t) = Φ
(
X p (t) ; S , H

)
, (19c)

 p (0) = X p, 0 . (19d)

Problem (19) can be solved by means of an algorithm based on

tochastic gradient descent [30] , efficiently computing the gradi-

nt of J (·, ·) with respect to the parameter H by means of the

ack-propagation algorithm [31] . To estimate the performance of

he learned controllers –i.e. those obtained by solving (19) – a new

et of initial states is generated, called the test set, and the av-

rage quadratic cost (6) is computed on the resulting trajectories.

n essence, the optimization problem (18) is transformed into a

elf-supervised ERM problem (19) that is solved through simulated

ata.

It is observed that, during the training phase, the optimiza-

ion problem (19) has to be solved in a centralized manner due to

he weight-sharing scheme imposed by the FIR graph filters (recall

hat this weight-sharing scheme is necessary for scalability, keep-

ng the number of learnable parameters independent of the size

f the graph). However, this training phase can be carried out of-

ine, prior to online execution. Once the GNN-based controllers are

earned and the training phase is finished, they can be deployed

n an entirely distributed manner for testing in the online phase.

t is noted that there exist distributed optimization algorithms that

everage consensus to arrive to the optimal set of filter taps H [32] .

hese techniques, however, are outside the scope of the present

ork and will be left as future research directions.

. Properties of GNN controllers

GNNs have many suitable properties that make them appropri-

te choices for learning distributed controllers. As standalone pro-

essing units, they are naturally distributed architectures and have

he properties of permutation equivariance and Lipschitz continu-

ty to changes in the underlying graph support. As part of a lin-

ar dynamical system, GNN-based controllers can also be shown

o stabilize the system. Furthermore, the deviation in the nominal

rajectory due to unknown system matrices can be mitigated with

roperly learned filters. These properties, which are studied in this

ection, hold for any GNN controller of the form (17) that satisfy

he corresponding hypotheses.

.1. GNN Properties

The main motivation for choosing GNNs as parametrizations for

he controller is that they are naturally distributed architectures.

NNs are built by using graph filters and pointwise nonlineari-

ies. Graph filters are distributed operations, as discussed after (11) .

he pointwise nonlinearity does not affect this, and thus GNNs are

lso distributed. It is noted that asynchronous implementations of

raph filtering are possible [33] . Additionally, GNNs are capable of

earning nonlinear controllers, which is a key feature in the context

f distributed control, as it is expected that optimal distributed

ontrollers to be nonlinear [6] .

GNNs exhibit the property of permutation equivariance, [13,

rop. 2] , which means that a reordering of the nodes does not af-

ect the output, since it will be correspondingly reordered. This fur-

her implies that the GNNs are capable of leveraging any existing

ymmetries in the underlying graph topology to improve training.

ore specifically, learning how to process a given signal from the

raining set means that the GNN learns how to process the same

ignal anywhere in the graph with the same neighborhood topol-

gy. In a manner akin to the data augmentation that happens nat-

rally by the choice of the convolution operation in regular convo-

utional neural networks (CNNs), permutation equivariance shows

F. Gama and S. Sojoudi Signal Processing 196 (2022) 108506

p

i

i

s

t

g

b

n

b

A

s

4

c

a

r

a

i

t

m

t

a

l

i

D

c

E

i

t

β

∑

a

s

T

a

w

f

|

h

ξ

w

ξ

i

fi

P

t

s

T

a

c

s

b

i

w

c

l

b

t

4

m

t

t

i

a

n

t

t

{

(

a

R

t

n

d

a

w

i

D

c

d

w

‖

t

c

i

f

s

P

t

b

w

s∣∣
w

s

C

w

P

b

d

a

D

recisely one way in which the GNN exploits the data structure to

mprove training and generalization.

GNNs are also Lipschitz continuous to changes in the underly-

ng graph [13, Thm. 4] . This means that, if the underlying graph

upport is perturbed, the output of the GNN changes linearly with

he size of perturbation. This implies that a GNN trained on one

raph but tested on another one will still work well as long as

oth graphs are similar, see [14] . It also implies that if the graph is

ot known exactly but has to be estimated, then the GNN can still

e trained as long as the graph support estimate is good enough.

dditionally, it indicates that GNNs are suitable for time-varying

cenarios where the changes to the graph support are slow [23] .

.2. Closed-Loop stability

GNNs have many suitable properties for learning distributed

ontrollers. However, this does not necessarily guarantee that they

re a good choice for a control system. In what follows, properties

elating to GNN-based controllers within a linear dynamical system

re studied.

A network system with the linear dynamics (5) is character-

zed by the set of matrices D = { S , A , ̄A , B , ̄B } , where S ∈ R
N×N is

he graph support matrix, A ∈ R
N×N and Ā ∈ R

F ×F are the system

atrices, and B ∈ R
N×N and B̄ ∈ R

G ×F are the control matrices. The

rajectory of the system { X (t) } depends on these matrices. GNNs

re capable of stabilizing the closed-loop dynamics of a distributed

inear system D. More specifically, drawing from [34] , the notion of

nput-state stability is defined as follows.

efinition 1 (Input-state stability) . Consider a linear dynami-

al system as in (5) controlled by U (t) = Φ(X (t)) + E (t) where

 (t) is a disturbance term or exploratory signal. The system is

nput-state stable if, for all sequences { X (t) } and { E (t) } such
hat

∑ ∞

t=0 ‖ X (t) ‖ < ∞ and
∑ ∞

t=0 ‖ E (t) ‖ < ∞ , there exist constants

0 , β1 ≥ 0 such that

∞

t=0

‖ X (t) ‖ ≤ β0 + β1

∞ ∑

t=0

‖ E (t) ‖ . (20)

This definition of input-state stability is widely used [34] . Given

 trained GNN-based controller, a sufficient condition for the re-

ulting system to be stable can be determined.

heorem 1 (Sufficient condition for input-state stability) . Consider

 distributed linear system D. Assume that the system is controlled

ith a GNN (17) consisting of L layers of filters H � (·; S , H) with F �
eatures and K � taps each. Let the nonlinearity σ (·) be such that
 σ (x) | ≤ | x | . Then, the closed-loop system is input-state stable if it

olds that

(D, H) < 1 , (21)

here

(D, H) = ‖ A ‖ 2 ‖ ̄A ‖ ∞ + C Φ‖ B ‖ 2 ‖ ̄B ‖ ∞ (22)

s the stability constant, with C Φ =

∏ L
� =1 C H � for C H � the size of the �

th

lter, see (13) .

roof. See Appendix B . �

Theorem 1 is a sufficient condition for the closed-loop system

o be input-state stable. The learned filters affect the constant C Φ
uch that the smaller the filters C H � the smaller C Φ and thus ξ .
herefore, a penalty on the size of the filters, see (13) , can be

dded to the objective function of (19) to obtain GNNs with a

ontrolled value of C Φ and therefore with a smaller stability con-

tant ξ . The condition on the nonlinearity is mild and is satisfied

y the most popular nonlinearities (ReLU , tanh , sigmoid , etc.). It

s observed that the sufficient condition requires ‖ A ‖ ‖ ̄A ‖ ∞ < 1 ,
2

6
hich implies that the system is open-loop stable. In many physi-

al systems such as power networks, it is possible to design stabi-

izing controllers. This implies that once the system has been sta-

ilized a GNN-based controller can then be learned to minimize

he quadratic cost.

.3. Trajectory deviation

It often happens that one does not have direct access to the

atrices D that characterize the distributed linear system and

hus they should be estimated. Alternatively, sometimes the sys-

em description may change slightly from the training to the test-

ng phase. Therefore, it is essential to study the impact of the in-

ccurate knowledge of these matrices on the trajectory.

Consider a network system on a graph G with the linear dy-

amics (5) and described by the set of matrices D. Assume that

hese matrices are unknown and, instead, access to estimates of

hese matrices is provided. These estimates are denoted by ˆ D =

 ̂ S , ̂ A , ̂ A , ̂ B , ̂ B } where ˆ S ∈ R
N×N is the estimate of the support matrix

i.e. the exact graph support is unknown), ˆ A ∈ R
N×N and ˆ A ∈ R

F ×F

re the estimates of the system matrices, and B̄ ∈ R
N×N and ˆ B ∈

G ×F are the estimates of the control matrices. It is evident that

he trajectory { ̂ X (t) } on the linear dynamical network ˆ D could be

oticeably different from { X (t) } , the one obtained from the system

escribed by D.

The goal is to characterize how the difference in the systems D
nd ˆ D impacts their respective trajectories { X (t) } and { ̂ X (t) } . To-
ards this end, a notion of distance between the system matrices

s first defined.

efinition 2 (Distance between systems) . Given the system matri-

es D and ˆ D , the distance between system descriptions is defined as

 (D, ˆ D) = ε, (23)

here ε > 0 is the smallest number such that

 S − ˆ S ‖ 2 ≤ ε ‖ A − ˆ A ‖ 2 ≤ ε ‖ ̄A − ˆ A ‖ ∞ ≤ ε,

‖ B − ˆ B ‖ 2 ≤ ε ‖ ̄B − ˆ B ‖ ∞ ≤ ε.
(24)

In other words, Definition 2 determines the distance between

wo system descriptions as the maximum norm difference in the

onstitutive matrix norms, with matrices on the graph domain be-

ng determined by the spectral norm ‖ · ‖ 2 , and matrices on the

eature domain being determined by the infinity norm ‖ · ‖ ∞ .

First, a result on how the input-state stability of the closed-loop

ystem is affected by the distance between D and ˆ D is obtained.

roposition 2 (Change in input-state stability) . Consider two sys-

ems described by the sets of matrices D and ˆ D . Let these systems

e controlled by a GNN (17) consisting of L layers of filters H � (·; ·, H)

ith F � features and K � filter taps each. Let the nonlinearity σ (·) be
uch that | σ (a) − σ (b) | ≤ | a − b| and σ (0) = 0 . Then, it holds that

ξ − ˆ ξ
∣∣ ≤ ˆ C ξ d (D, ˆ D) , (25)

here ξ = ξ (D, H) and ˆ ξ = ξ (̂ D , H) are the stability constants of the

ystem D and ˆ D , respectively, and where

ˆ
 ξ = ‖ A ‖ 2 + ‖ ̂

 A ‖ ∞ + C Φ
(‖ B ‖ 2 + ‖ ̂ B ‖ ∞

)
, (26)

ith C Φ =

∏ L
� =1 C H � for C H � the size of the �

th filter, see (13) .

roof. See Appendix B . �

Proposition 2 states that the difference in the stability constants

etween the system D and its estimate ˆ D depends on the distance

 (D, ˆ D) between them, on the system matrices of both D and ˆ D ,

nd on the learned filters through C Φ. If the matrix description of

is inaccessible, then Def. 2 can be leveraged to replace ‖ A ‖
2

F. Gama and S. Sojoudi Signal Processing 196 (2022) 108506

a

‖

k

i

t

n

D
s

a

G

T

d

t

F

t∥∥
w ∏
s

w

C

f

a

P

u

b

t

i

a

s

fi

m

t

R

I

c

a

b

c

t

l

C

t

T∥∥
w

T

t

P

g

b

t

t

c

5

o

I

b

t

r

5

e

v

c

n

b

c

s

n

c

A

c

i

t

c

u

t

G

l

p

l

K

f

o

s

i

[

u

i

i

t

i

p

5

s

l

t

m

i

s

a

F

l

o

i

a

c

h

(

t

i

n

p

nd ‖ B ‖ 2 in (26) by the upper bounds ‖ A ‖ 2 ≤ ‖ ̂ A ‖ 2 + d (D, ˆ D) and

 B ‖ 2 ≤ ‖ ̂ B ‖ 2 + d (D, ˆ D) , respectively. The same holds if ˆ D is not

nown but D is. It is also noted that, for the case when F = G = 1 ,

t follows from the proof that ˆ C ξ = 1 + C Φ and the bound is propor-

ional to the distance d (D, ˆ D) ; see Appendix B .

Next, the goal is to characterize the deviation in the trajectories,

amely ‖ X (t) − ˆ X (t) ‖ , as a function of how different the systems

and ˆ D are. In this context, a controller Φ is acceptable if the re-

ulting closed-loop trajectories of two different systems are similar

s long as the systems themselves are similar. This is the case for

NN-based distributed controllers as shown next.

heorem 3 (Bound on trajectory deviation) . Consider two systems

escribed by the sets of matrices D and ˆ D . Let these systems be con-

rolled by a GNN (17) consisting of L layers of filters H � (·; ·, H) with

 � features and K � filter taps each. Let the nonlinearity σ (·) be such
hat | σ (a) − σ (b) | ≤ | a − b| and σ (0) = 0 . Then, it holds that

X (t) − ˆ X (t)
∥∥ ≤ ˆ C Φ ˆ C t ‖ X (0) ‖ d (D, ˆ D) , (27)

ith ˆ C Φ = ˆ C ξ + C Φ�Φ‖ ̂ B ‖ 2 ‖ ̂ B ‖ ∞ (1 + 8
√

N) for ˆ C ξ as in (26) , C Φ =
 L
� =1 C H � and �Φ =

∑ L
� =1 (�H � /C H �) for C H � and �H � the size and Lip-

chitz constant of the � th filter, respectively, see (13) and (15) ; and

ith ˆ C t such that ˆ C 0 = 0 and

ˆ
 t = t max { ξ , ˆ ξ} t−1 (28)

or t ≥ 1 , where ξ and ˆ ξ are the stability constants of the systems D
nd ˆ D , respectively, as in (22) .

roof. See Appendix C . �

Theorem 3 states that, for a linear dynamical network system

nder a GNN-based distributed controller, the change in trajectory

etween the system D and its estimated description ˆ D depends on

he value of ˆ C Φ that is independent of time, on the value of ˆ C t that

s time-varying, and on their distance d (D, ˆ D) . The value of ˆ C Φ is

ffected by the given system (through matrices in the estimated

ystem ˆ D and the number of nodes N) and the resulting trained

lters in the GNN (through C Φ and �Φ). The value of ˆ C t is deter-

ined by the stability constants ξ and ˆ ξ , and becomes larger as

ime passes if max { ξ , ˆ ξ} ≥ 1 , but otherwise decreases for large t .

ecall that ξ can be estimated from
ˆ ξ by leveraging Proposition 2 .

t is noted that the constants ˆ C Φ and ˆ C t can be affected by judi-

ious training. For example, by penalizing the size of the filters C H �
nd their Lipschitz constant �H � during training, the learned GNN-

ased controller can be forced to be more stable, see Section 5 for

oncrete examples.

For the particular case when the closed-loop system and its es-

imate are guaranteed to be input-state stable, the following corol-

ary can be stated.

orollary 4 (Bound on trajectory deviation for stable sys-

ems) . Consider a system D and its estimate ˆ D such that both satisfy

heorem 1 . Then, it holds that

X (t) − ˆ X (t)
∥∥ ≤ ˆ C ‖ X (0) ‖ d (D, ˆ D) , (29)

here ˆ C = −e −1 ̂ C Φ/ (max { ξ , ˆ ξ} × log (max { ξ , ˆ ξ})) and ˆ C Φ is given in

heorem 3 . Furthermore, it holds that

lim

→∞

∥∥X (t) − ˆ X (t)
∥∥ = 0 . (30)

roof. See Appendix C . �

It follows from Corollary 4 that if a system and its estimate are

uaranteed to be input-state stable, then the trajectory deviation

etween both systems is bounded by a constant that is propor-

ional to the distance between them and is independent of time

. Furthermore, this deviation is guaranteed to go to zero as t in-

reases.
7
. Numerical experiments

In this section, numerical simulations illustrate the performance

f GNN-based controllers in a distributed linear-quadratic problem.

n particular, problem (7) is solved with F = G = 1 so that Ā and B̄

ecome scalars that are subsumed into matrices A and B , respec-

ively.

Problem setup. The system has N nodes placed uniformly at

andom on the [0 , 1] × [0 , 1] plane. Edges are drawn between the

-nearest neighbors of each node. The support matrix S is consid-

red to be the adjacency matrix, normalized by the largest eigen-

alue so that ‖ S ‖ 2 = 1 . The network system matrix A and network

ontrol matrix B share the same eigenvectors with S and the diago-

al elements are chosen randomly with a standard Gaussian distri-

ution and are normalized so that ‖ A ‖ 2 = 0 . 995 and ‖ B ‖ 2 = 1 . The

ost matrices are set to Q = R = I . Trajectories of length T = 50 are

imulated. Unless otherwise specified, the networks have N = 50

odes.

Controllers. Five controllers are studied. (i: Optim) The optimal

entralized controller is used as a baseline [3, eq. (2.4–8)] . (ii: MLP)

 centralized controller can be learned by using a multi-layer per-

eptron (MLP) with NF MLP units in the hidden layer, and N units

n the readout layer [15] . (iii: D-MLP) As a comparative method,

he learnable, distributed controller proposed in [16] is used; re-

all that this method learns a separate MLP for each node, partic-

larly a hidden layer with F D-MLP units and a single output unit

o estimate the control action of the node. (iv: GNN) A two-layer

NN (17) with F 1 features and K 1 -order polynomials for the first

ayer and F 2 = 1 and K 2 = 0 for the second layer. (v: GF) A K 1 -order

olynomial graph filter with F 1 features (11) , followed by a readout

ayer which is another graph filter with F 2 = 1 output features and

 2 = 0 filter taps, see [11] . For the nonlinear methods (ii)-(iv), the

unction tanh is applied pointwise between the first and the sec-

nd layers.

Training and evaluation. The controllers (ii)-(v) are trained by

olving the equivalent ERM problem (19) over a generated train-

ng set consisting of |T | = 500 initial states. The ADAM algorithm

30] with the learning rate μ and forgetting factors 0.9 and 0.999 is

sed to update the gradients over batches of 20 trajectories. A val-

dation stage leveraging a set of 50 new, independent initial states

s computed every 5 training updates. After 30 epochs of training,

he parameters that exhibited the best performance during the val-

dation stage are retained. The controllers are evaluated by com-

uting the quadratic cost over trajectories obtained from a set of

0 new, independent initial states. For ease of exposition, the re-

ulting cost is normalized by the lower bound for the distributed

inear-quadratic problem obtained in [9] . The training and evalua-

ion process is repeated for 100 different realizations of the system

atrices D. Median and standard deviation values of the normal-

zed cost are reported.

Experiment 1: Design hyperparameters. The first experiment

tudies the performance of the controllers (iv: GNN) and (v: GF) as

 function of the number of features at the output of the first layer

 ∈ { 16 , 32 , 64 } , and the order of the polynomial K ∈ { 2 , 3 , 4 } . The
earning rate is chosen from the set μ ∈ { 0 . 005 , 0 . 01 , 0 . 05 } and the
ne yielding the best performance for each architecture is shown

n Table 1 . In general, the performance does not vary significantly

s a function of the hyperparameters, with a difference of 3.8 per-

entage points for (iv: GNN) and 5.4 for (v: GF). From now on, the

yperparameter values are set to F 1 = 16 , K 1 = 4 and μ = 0 . 01 for

iv: GNN), and F 1 = 64 , K 1 = 4 and μ = 0 . 005 for (v: GF). The fact

hat K 1 = 4 exhibits the best performance for both controllers ev-

dences the importance of repeated communication with one-hop

eighbors for collecting information farther away.

Experiment 2: Comparison. For the second experiment, the

erformance of the controllers (iv: GNN) and (v: GF) is compared

F. Gama and S. Sojoudi Signal Processing 196 (2022) 108506

Fig. 1. Comparison with the open-loop system, showing the norm of the evolution of the state norm ‖ X (t) ‖ as a function of time t . (a) This is the case when the system is

open-loop stable, i.e. ‖ A ‖ 2 = 0 . 995 . It is observed that, while the trajectory is going to zero even in the absence of a controller (open-loop), the use of a GNN-based controller

drives the state faster to zero. (b) Consider now an unstable open-loop system given by ‖ A ‖ 2 = 1 . 01 . It is observed that the state does not go to zero in the absence of a

controller, and that the GNN-based controller successfully drives the state to 0.

Table 1

Normalized cost of the distributed controllers. (a) Distributed controller (iv:

GNN) for μ = 0 . 01 . (b) Distributed controller (v: GF) for μ = 0 . 005 . Lower

bound: 65(±2) .

F / K 2 3 4

16 1 . 1396(±0 . 0379) 1 . 1311(±0 . 0338) 1 . 1052 (±0 . 0295)

32 1 . 1440(±0 . 0348) 1 . 1286(±0 . 0275) 1 . 1354(±0 . 0255)

64 1 . 1409(±0 . 0356) 1 . 1300(±0 . 0272) 1 . 1196(±0 . 0323)

(a) GNN (iv: GNN)

F/K 2 3 4

16 1 . 1716(±0 . 0319) 1 . 1449(±0 . 0331) 1 . 1295(±0 . 0289)

32 1 . 1609(±0 . 0291) 1 . 1385(±0 . 0358) 1 . 1233(±0 . 0285)

64 1 . 1466(±0 . 0361) 1 . 1248(±0 . 0313) 1 . 1175 (±0 . 0251)

(b) Graph Filter (v: GF)

t

t

t

a

b

{

l

3

3

n

t

p

a

G

p

O

t

D

t

b

i

e

t

r

t

t

r

i

t

f

s

i

s

i

t

b

l

1

i

‖

o

a

t

b

n

R

c

c

t

a

p

i

c

o

t

i

w

b

t

(

t

p

�

s

b

r

p

k

s

t

ε

a
o that of the centralized baselines (i: Optim) and (ii: MLP), and

hat of the distributed method (iii: D-MLP). The hyperparame-

ers of (ii: MLP) and (iii: D-MLP) are set to (F MLP , μ) = (16 , 0 . 005)

nd (F D-MLP , μ) = (16 , 0 . 01) , respectively, chosen for yielding the

est performance from the set { 16 , 32 , 64 } for the features and
 0 . 005 , 0 . 01 , 0 . 05 } for the learning rate. The controller (ii: MLP)

earns 80,0 0 0 parameters and the controller (iii: D-MLP) learns

,200, while (iv: GNN) learns 80 parameters and (v: GF) learns

20. The centralized controllers (i: Optim) and (ii: MLP) exhibit a

ormalized cost of 0 . 9961(±0 . 0 0 01) and 0 . 9969(±0 . 0 0 03) , respec-

ively. This shows that these two controllers are better than any

ossible distributed one. The distributed method (iii: D-MLP) yields

 cost of 1 . 0999(±0 . 0167) , 0.5 percentage points better than (iv:

NN) which shows a cost of 1 . 1052(±0 . 0295) and 1.7 percentage

oints better than (v: GF) which shows a cost of 1 . 1175(±0 . 0251) .

verall, as expected, the centralized controllers perform better

han the distributed ones. The performance of the controller (iii:

-MLP) is slightly better than (iv: D-MLP), possibly due to the fact

hat (iii: D-MLP) exhibits a larger representation space that can

e successfully navigated given the rich training setting available

n this simulation. It is observed in experiments 3 and 4, how-

ver, that this controller is not robust to changes in the underlying

opology nor scales well, precisely due to the large number of pa-

ameters. Finally, it is observed that the nonlinear distributed con-

rollers (iii) and (iv) outperform the linear one (v: GF).

Experiment 3: Comparison with open-loop systems. In the

hird experiment, a comparison with an open-loop system is car-

ied out. It is noted that, from choosing ‖ A ‖ 2 = 0 . 995 , the result-

ng system is open-loop stable and, thus, the state will be driven

o zero even in the absence of a controller. In this context, the ef-

ect of the distributed controller should be such that it drives the
8
tates to zero faster than the open-loop case. The results shown

n Fig. 1 a indicate that the use of a GNN controller drives the

tate to zero faster than the open-loop, uncontrolled, system. This

llustrates that the GNN controller is better than using no con-

roller, also in the case where the open-loop system is already sta-

le. This is also shown in the resulting cost, which for the open-

oop system is 1 . 5961(±0 . 0837) while for the GNN controller is

 . 1104(±0 . 0334) .

Alternatively, the case of a system that is open-loop unstable

s also considered. In this case, the norm of the system matrix is

 A ‖ 2 = 1 . 01 . It is immediately observed in Fig. 1 b that while the

pen-loop system tends to be unstable (the norm of ‖ X (t) ‖ grows

s t grows), the GNN controller effectively drives the state to zero.

More generally, an experiment of the normalized cost as a func-

ion of ‖ A ‖ 2 is run. This experiment helps visualize the transition

etween systems that are open-loop stable and systems that are

ot. The norm of the system matrix ‖ A ‖ 2 varies from 0.95 to 1.01.

esults are shown in Fig. 2 . It is evident that as ‖ A ‖ 2 grows, the

ost increases, showing that the system is increasingly harder to

ontrol. But, while the open-loop system cost seems to exponen-

ially grow, the GNN controller manages to keep the cost low and,

s seen in Fig. 1 b it effectively drives the state to zero.

Experiment 4: Unknown system matrices. In the fourth ex-

eriment, the impact of an unknown system on both the stabil-

ty (Prop. 2) and the trajectory deviation (Thm. 3) is studied. The

ontrollers are trained on a system D, and then tested on an-

ther system ˆ D that is a random Gaussian noise perturbation such

hat d (D, ˆ D) = ε for some predefined value of ε. It is observed
n (25) that the change in stability is controlled by C Φ = C H 1 C H 2 ,

hile (27) shows that the trajectory deviation can be controlled

y lowering the value of the Lipschitz constants { �H 1
, �H 2

} and of
he size { C H 1 , C H 2 } of the filters involved. Therefore, the controller
iv: GNN) is trained with three different penalties: a penalty on

he size C Φ, i.e. the objective function is J ({ X (t) } , { U (t) }) + C Φ, a

enalty on the Lipschitz constants, i.e. J ({ X (t) } , { U (t) }) + (�H 1
+

H 2
) , or a penalty on both the filter size and the Lipschitz con-

tant, i.e. J ({ X (t) } , { U (t) }) + 0 . 5(�H 1
+ �H 2

+ C Φ) . This is indicated

y the legend ‘GNN w/ size’, ‘GNN w/ Lipschitz’, and ‘GNN w/ both’,

espectively. The GCNN is also trained without penalties, for com-

arison, and labeled ‘GNN’.

The results are shown on Fig. 3 . First, the effects of the un-

nown system on the stability are analyzed, see Prop. 2 . Fig. 3 a

hows that when training the GNN with a size penalty, the con-

roller leads to a stable closed-loop system 100% of the time for

 < 0 . 05 , fails to control only 0 . 5% of the trajectories for ε = 0 . 0562

nd 10% of the trajectories for ε = 0 . 1 . When training with both

F. Gama and S. Sojoudi Signal Processing 196 (2022) 108506

Fig. 2. Normalized cost as a function of the norm of ‖ A ‖ 2 . It is observed that the cost for the uncontrolled, open-loop system, grows exponentially with the norm of ‖ A ‖ 2
as expected. The cost of the GNN-controller, however, grows only slightly with increasing values of ‖ A ‖ 2 .

Fig. 3. Simulation results for a network with unknown system matrices as a function of the distance ε between the systems, see (23) . (a) Ratio of stable trajectories as a

function of ε; it is observed that when training with a penalty on the size C Φ of the GNN, the resulting trajectories are stable for larger values of ε. (b) Cost difference of

the controlled trajectories relative to the cost on the perfectly known system; it is observed that when training with a penalty on the size C Φ of the GNN, the resulting

controller achieves the lowest relative cost difference. The distributed controller (iii: D-MLP) and the centralized controller (ii: MLP) are not shown since they exhibit relative

cost differences of approximately 7.5 and 1400, respectively, thus being out of scale; this is likely to their failure to control trajectories.

p

t

b

l

r

j

t

l

b

t

o

c

w

ε
p

a

f

c

a

a

t

g

c

M

h

t

T

c

t

t

u

r

o

t

t

a

enalties, the controller is able to lead to stable systems 100% of

he time for ε = 0 . 01 , but then decays rapidly in its ability to sta-

ilize the system as ε grows. Training with Lipschitz penalty only

eads to a controller that can stabilize about 92% of the trajecto-

ies for ε = 0 . 01 and then falls to stabilizing about 80% of the tra-

ectories for ε = 0 . 1 . This shows that training with a penalty on

he size C Φ of the GNN has the most impact on the ability of the

earned distributed controller to stabilize the system, as predicted

y Prop. 2 Finally, note that when training the GNN without penal-

ies, the resulting controller stabilizes only 55% of the trajectories

n an unknown system.

It is observed in Fig. 3 b the relative difference between the

ost obtained when testing on the system D and that obtained

hen testing on system ˆ D for different values of system distance

among stable trajectories. First, it is noted that training with a

enalty on the size of the GNN leads to a controller that is un-

ffected by changes in the system, exhibiting a relative cost dif-

erence of 0.25 for all values of ε under study. The other three

ontrollers seem to improve in their relative difference as ε grows,
9
nd this can be explained because the cost is being computed only

mong stable trajectories. This implies that, while ε grows and less

rajectories are being stabilized, the ones that remain do achieve

ood relative cost difference. Finally, it is noted that the distributed

ontroller (iii: D-MLP) and the centralized learnable controller (ii:

LP) were also considered in this simulation. These controllers ex-

ibited relative differences of approximately 7.5 and 1400, respec-

ively, thus falling out of scale and not being shown in the figures.

his results show that neither the (iii: D-MLP) nor the (ii: MLP)

ontrollers are robust to changes in the system dynamics.

Experiment 5: Scalability. In the last experiment, scalability of

he distributed controllers (iii)-(v) is compared. These methods are

rained on a system with N = 50 nodes, and then at test time, are

sed on increasingly larger systems N ∈ { 50 , 63 , 75 , 87 , 100 } . The
esulting costs of the stable trajectories are shown in Fig. 4 . It is

bserved that, while the D-MLP performs better when tested on

he same system as it was trained (see experiment 2), it does not

ransfer as well to larger systems. This is likely to be because it

ssigns a different fully connected neural network controller to

F. Gama and S. Sojoudi Signal Processing 196 (2022) 108506

Fig. 4. Normalized cost for the stable trajectories of a GNN-based controller trained on 50 nodes and tested on a larger network system. It is observed that training with

penalties on both the Lipschitz constant and the size of the filters lead to best scalability results.

e

r

s

a

t

p

l

c

b

t

6

o

b

m

c

p

c

t

c

s

t

t

t

e

t

p

m

t

s

L

t

o

D

r

t

E

I

N

A

p

p

m

(

fi

c

(

s

L

a

R∥∥
w

P

g

s

‖

w

t

e

‖

a

n

ach component, so that, when tested on larger systems, it has to

eplicate this controller on other nodes and that may have a sub-

tantially different topological neighborhood. Controllers (iv: GNN)

nd (v: GF), on the other hand, successfully adapt to larger sys-

ems, even when trained on small ones. In particular, training with

enalties on both the Lipschitz constant and the size of the filters

eads to the best scalability results. It is noted that the centralized

ontroller (ii: MLP) cannot transfer to systems with different num-

er of nodes since the number of learned parameters depends on

he number of nodes.

. Conclusion

This paper proposes to address the issue of the intractability

f distributed optimal controllers by leveraging a nonlinear GNN-

ased parametrization. While the resulting controller is subopti-

al, it exhibits several desirable properties such as distributed

omputation, efficiency and scalability. These controllers are ap-

lied to the distributed linear-quadratic problem, which can be

ast as a self-supervised empirical risk minimization problem, and

hen solved by means of machine learning techniques. A sufficient

ondition for the resulting closed-loop system to be input-state

table is derived in terms of the filter taps of the GNN-based con-

roller. Additionally, the trajectory deviation due to mismatch of

he system descriptions is shown to also be controlled by the filter

aps. Extensive simulations illustrate the satisfactory performance

xhibited by GNN-based controllers as well as the ability to be

rained to exhibit certain desirable characteristics such as an im-

roved closed-loop stability or a smaller trajectory deviation under

odel mismatch. The resulting controller is also shown to scale

o larger systems. Future research on the topic may involve the

tudy of equilibrium points of a GNN-controlled system and their

yapunov stability, the use of distributed optimization techniques

o solve the self-supervised learning problem, and the adoption of

ther non-convolutional GNN-based architectures.

eclaration of Competing Interest

The authors declare the following financial interests/personal

elationships which may be considered as potential competing in-

erests:
10
Institutions: University of California, Berkeley

Co-authors in previous works: Santiago Segarra, Geert Leus,

lvin Isufi, Joan Bruna, Giorgos Giannakis, Weiyu Huang, Vassilis

oannidis, Aryan Mokhtari, Luiz Chamon, Alec Koppel, Javad Lavaei,

ikolai Matni.

ppendix A. Auxiliary Results

In this appendix four Lemmas that are useful for

roving the theorems and propositions of Sections Ap-

endix B and Appendix C are included. The first two Lem-

as establish an upper bound on the output of a graph filter

 Lemma 5) and a GNN (Lemma 6) as a function of the size of the

lters involved. The following two lemmas determine the Lipschitz

ontinuity with respect to the support matrix S of the graph filter

 Lemma 7) and the GNN (Lemma 8) as a function of the filter

izes and the Lipschitz constants.

emma 5 (Bound on Graph Filter Output) . Let H : R
N×F → R

N×G be

 graph filter (11) defined over a support matrix S ∈ R
N×N . Let X ∈

N×F be any graph signal such that ‖ X ‖ < ∞ . Then,

H (X ; S , H)
∥∥ ≤ C H

∥∥X

∥∥, (A.1)

ith C H being the size of the filter bank, see (13) .

roof. Recall that the norm associated to the graph signal space is

iven by the L 2 , 1 entrywise matrix norm, see (9) . Then, the graph

ignal size of the output Y = H (X ; S , H) can be computed as

 Y ‖ =

G ∑

g=1

‖ y g ‖ 2 =

G ∑

g=1

∥∥∥ F ∑

f=1

H f g (S) x
f

∥∥∥
2
, (A.2)

here H f g (S) =

∑ K
k =0 [H k] f g S

k , see (13) , and where ‖ x ‖ 2 represents
he Euclidean norm on vectors. One can apply the triangular in-

quality to (A.2) to obtain:

 Y ‖ ≤
G ∑

g=1

F ∑

f=1

∥∥H f g (S) x
f
∥∥
2

(A.3)

nd noticing that the summation is comprised of Euclidean vector

orms, the submultiplicativity of the corresponding matrix spectral

F. Gama and S. Sojoudi Signal Processing 196 (2022) 108506

n

‖

w

r

‖

N

n

s

i

e∑
R

o

m

t

‖
s

‖

N

L

a

t

s

i∥∥
w

P

X

w

‖

w

x

w

t

n

b

‖

w

‖
N

‖

l

‖

B

Φ

c

m

a

L

L

R

g∥∥

w

P

L

L

s

a

s

‖
∥∥

w

�

P

A

fi

W

c

P

p

X

T

i

‖

T

L

‖

w

x

w

β

f

x

orm can be used to arrive at

 Y ‖ ≤
G ∑

g=1

F ∑

f=1

∥∥H f g (S)
∥∥
2

∥∥x f ∥∥
2
, (A.4)

hich, noting that the sum over g only affects ‖ H f g (S) ‖ 2 , can be
earranged as

 Y ‖ ≤
F ∑

f=1

∥∥x f ∥∥
2

G ∑

g=1

∥∥H f g (S)
∥∥
2
. (A.5)

ext, note that
∑ G

g=1 ‖ H f g (S) ‖ 2 is the sum of all the spectral

orms of the filters along the g dimension, thus the result is a

calar that depends on f and is denoted with C f in this proof,

.e.
∑ G

g=1 ‖ H f g (S) ‖ 2 = C f . For each value of f , there is a differ-

nt C f , and it holds true that C f ≤ sup f=1 , ... ,F . This implies that
 G
g=1 ‖ H f g (S) ‖ 2 ≤ sup f=1 , ... ,F

∑ G
g=1 ‖ H f g (S) ‖ 2 .

From (13) , note that each element of the matrix C H ∈

F ×G is given by max λ∈ [λl ,λh]

| h f g (λ) | for some chosen values

f [λl , λh] . Then, if λl and λh are the minimum and maxi-

um eigenvalues of S as is usually the case, then it follows

hat sup f=1 , ... ,F

∑ G
g=1 ‖ H f g (S) ‖ 2 ≤ ‖ C H ‖ ∞ = C H , see (13) . Recall that

 A ‖ ∞ is the infinity norm of matrices (i.e. maximum absolute row

um). Finally, (A.5) can be upper bounded as

 Y ‖ ≤ C H

F ∑

f=1

‖ x f ‖ 2 . (A.6)

oting that
∑ F

f=1 ‖ x f ‖ 2 = ‖ X ‖ completes the proof. �

emma 6 (Bound on GNN Output) . Let Φ(·; S , H) : R
N×F → R

N×G be

 GNN (17) with L layers defined over a support matrix S ∈ R
N×N . Let

he nonlinearity σ (·) be such that | σ (x) | ≤ C σ | x | for all x ∈ R , for

ome C σ > 0 . Then, for every graph signal X ∈ R
N×F with ‖ X ‖ < ∞ ,

t holds that

Φ(X ; S , H)
∥∥ ≤ C L σC Φ

∥∥X

∥∥, (A.7)

here C Φ =

∏ L
� =1 C H � for C H � the size of the �

th filter, see (13) .

roof. Consider the computation of layer �

 � = σ
(
H �

(
X � −1 ; S , H �

))
, (A.8)

hose norm is given by (9) ,

 X � ‖ =

F � ∑

g=1

‖ x g � ‖ 2 , (A.9)

ith

g
� = σ

(F � −1 ∑

f=1

H � f g (S) x
f
� −1

)
, (A.10)

here H � f g (S) =

∑ K �
k =0

[H �k] f g S
k denotes the scalar-valued graph fil-

er.

Substituting (A.10) into (A.9) and using the hypothesis on the

onlinearity that | σ (x) | ≤ C σ | x | for all x , the following upper

ound on the norm of the output signal at layer � is obtained:

 X � ‖ ≤ C σ

F � ∑

g=1

∥∥∥ F � −1 ∑

f=1

H � f g (S) x
f
� −1

∥∥∥
2
, (A.11)

hich is simply

 X � ‖ ≤ C σ
∥∥H � (X � −1 ; S , H �)

∥∥. (A.12)

ow, using Lemma 5 on (A.12) yields

 X � ‖ ≤ C σC H � ‖ X � −1 ‖ . (A.13)
11
Repeating (A.13) for all consecutive layers until reaching � = 1

eads to

 X � ‖ ≤ C � σ

� ∏

� ′ =1

C H � ′ ‖ X 0 ‖ . (A.14)

y substituting � = L into (A.14) and recalling that X 0 = X ,

(X ; S , H) = X L and C Φ =

∏ L
� =1 C H � , the proof is completed. �

In what follows, we state two Lemmas regarding the Lipschitz

ontinuity of graph filters and GNNs with respect to the support

atrix S . These results have already been correspondingly proved,

nd are just rewritten here to unify notation.

emma 7 (Lipschitz continuity of graph filter with respect to. S)

et H : R
N×F → R

N×G be a graph filter (11) . Let S ∈ R
N×N and ˆ S ∈

N×N be two support matrices, such that ‖ S − ˆ S ‖ 2 ≤ ε. Then, for any
raph signal X ∈ R

N×F such that ‖ X ‖ < ∞ , it holds that

H (X ; ˆ S , H) − H (X ; S , H)
∥∥ ≤ ε(1 + 8

√

N)�H ‖ X ‖ + O (ε 2) , (A.15)

ith �H being the Lipschitz constant filter bank, see (14) .

roof. See [13, Thm. 1] . �

emma 8 (Lipschitz continuity of the GNN with respect to. S)

et Φ(·; ·, H) : R
N×F → R

N×G be a GNN (17) with L layers. Let σ (·) be
uch that | σ (x) − σ (y) | ≤ �σ | x − y | for all x, y ∈ R for some �σ > 0 ,

nd σ (0) = 0 . Let S ∈ R
N×N and ˆ S ∈ R

N×N be two support matrices

uch that ‖ S − ˆ S ‖ 2 ≤ ε. Then, for every graph signal X ∈ R
N×F with

 X ‖ < ∞ , it holds that

Φ(X ; ˆ S , H) − Φ(X ; S , H)
∥∥ ≤ ε(1 + 8

√

N)�L
σC Φ

L ∑

� =1

�H �

C H �
‖ X ‖ + O (ε 2) ,

(A.16)

here C Φ =

∏ L
� =1 C H � for C H � the size of �

th filter, see (13) , and where

H � is the corresponding Lipschitz constant, see (15) .

roof. See [13, Thm. 4] . �

ppendix B. Proof of Closed-Loop Stability

In this appendix, we first prove Theorem 1 that gives a suf-

cient condition for the GNN-controlled system D to be stable.

e then prove Proposition 2 stating how the stability constant ξ
hanges from system D to system ˆ D .

roof of Theorem 1.. The system dynamics with a GNN-based, ex-

loratory controller given by U (t) = Φ(X (t) ; S , H) + E (t) are

 (t) = AX (t − 1) ̄A + B Φ(X (t − 1)) ̄B + BE (t − 1) ̄B . (B.1)

he graph signal norm of the trajectory can be bounded by apply-

ng the triangular inequality as follows:

 X (t) ‖ ≤ ‖ A ‖ 2 ‖ ̄A ‖ ∞ ‖ X (t − 1) ‖ (B.2)

+ ‖ B ‖ 2 ‖ ̄B ‖ ∞ ‖ Φ(X (t − 1)) ‖ + ‖ B ‖ 2 ‖ ̄B ‖ ∞ ‖ E (t − 1) ‖ .

he term ‖ Φ(X (t) ; S ,H) ‖ can be bounded by leveraging

emma 6 on the bound of the output of a GNN as

 U (t) ‖ =

∥∥Φ
(
X (t) ; S , H

)∥∥ ≤ C Φ‖ X (t) ‖ , (B.3)

ith C σ = 1 . This result is used in (B.2) , to yield

 t ≤ ξx t−1 + βe t−1 , (B.4)

here x t = ‖ X (t) ‖ , ξ = ‖ A ‖ 2 ‖ ̄A ‖ ∞ + C Φ‖ B ‖ 2 ‖ ̄B ‖ ∞ is given in (22) ,

= ‖ B ‖ 2 ‖ ̄B ‖ ∞ and e t = ‖ E (t) ‖ . By repeatedly applying (B.4) , the
ollowing inequality is obtained:

 t ≤ ξ t x 0 + β
t−1 ∑

τ=0

ξ τ e t−τ−1 . (B.5)

F. Gama and S. Sojoudi Signal Processing 196 (2022) 108506

i

∑

L

i

∑
w∑
c

t

ξ

d

P

ξ

ξ

T

ξ

T

‖

F

t

(

‖

F

t

‖

B

‖
A

b

s

i

P

X

X

T

i

w

A

O

e

t

e∥∥

N

a∥∥

w

s

s∥∥

T

b

‖

o∥∥

w

(∥∥

w

a

C

b

i∥∥

U

(∥∥
w

u

o∥∥
R

Now, considering the summation series that defines the stabil-

ty as in (20) , one obtains:

∞

t=0

x t ≤ x 0

∞ ∑

t=0

ξ t + β
∞ ∑

t=0

t−1 ∑

τ=0

ξ τ e t−τ−1 . (B.6)

everaging the assumptions that ξ < 1 and
∑ ∞

t=0 e t < ∞ , the above

nequality yields

∞

t=0

x t ≤ x 0
1 − ξ

+

β

1 − ξ

∞ ∑

t=0

e t , (B.7)

here the fact that, under these assumptions, it holds that
 ∞

t=0

∑ t−1
τ=0 ξ

τ e t−τ−1 ≤ (
∑ ∞

t=0 e t)(
∑ ∞

t=0 ξ
t) was used. The proof is

omplete by replacing the definitions of x t , e t and β in (B.7) . Thus,

he system is input-state stable with constants β0 = ‖ X (0) ‖ / (1 −
) and β1 = ‖ B ‖ 2 ‖ ̄B ‖ ∞ / (1 − ξ) . �

Next, we prove the change in the stability constant when

 (D, ˆ D) = ε.

roof of Proposition 2.. Start by writing the stability constant ˆ ξ =

(̂ D , H) as given by (22) to obtain

ˆ =
ˆ ξ (̂ D , H) = ‖ ̂

 A ‖ 2 ‖ ̂
 A ‖ ∞ + C Φ‖ ̂ B ‖ 2 ‖ ̂ B ‖ ∞ . (B.8)

his equation is equivalent to

ˆ = ‖ ̂
 A ‖ 2 ‖ ̂

 A ‖ ∞ − ‖ A ‖ 2 ‖ ̂
 A ‖ ∞

+ C Φ

(
‖ ̂ B ‖ 2 ‖ ̂ B ‖ ∞ − ‖ B ‖ 2 ‖ ̄B ‖ ∞

)
+ ξ .

(B.9)

he first term can be rewritten as

 ̂
 A ‖ 2 ‖ ̂

 A ‖ ∞ − ‖ A ‖ 2 ‖ ̄A ‖ ∞ (B.10)

=

(‖ ̂
 A ‖ 2 − ‖ A ‖ 2

)‖ ̂
 A ‖ ∞ + ‖ A ‖ 2

(‖ ̂
 A ‖ ∞ − ‖ ̄A ‖ ∞

)
.

rom the definition of the distance d (D, ˆ D) = ε it is known

hat −ε ≤ ‖ ̂ A ‖ 2 − ‖ A ‖ 2 ≤ ε, and analogously for ‖ ̄A ‖ ∞ , so that

B.10) can be bounded by

 ̂
 A ‖ 2 ‖ ̂

 A ‖ ∞ − ‖ A ‖ 2 ‖ ̂
 A ‖ ∞ ≤ ε

(‖ A ‖ 2 + ‖ ̂
 A ‖ ∞

)
. (B.11)

ollowing the same reasoning for the control matrices, one ob-

ains:

 ̂ B ‖ 2 ‖ ̂ B ‖ ∞ − ‖ B ‖ 2 ‖ ̂ B ‖ ∞ ≤ ε
(‖ B ‖ 2 + ‖ ̂ B ‖ ∞

)
. (B.12)

y substituting (B.11) and (B.12) into (B.9) and defining ˆ C ξ =

 A ‖ 2 + ‖ ̂ A ‖ ∞ + C Φ(‖ B ‖ 2 + ‖ ̂ B ‖ ∞) , the proof is complete. �

ppendix C. Proof of Trajectory Deviations

In this appendix, Theorem 3 bounding the trajectory deviation

etween systems D and ˆ D is proved. Then, Corollary 4 that con-

iders the special case when both D and ˆ D are input-state stable

s also proved.

roof of Theorem 3.. The dynamic of the error graph signal X (t) −
ˆ (t) is given by

 (t) − ˆ X (t) = AX (t − 1) ̄A − ˆ A ̂ X (t − 1) ̂ A

+ BU (t − 1) ̄B − ˆ B ̂ U (t − 1) ̂ B .
(C.1)

he evolution of X (t) and ˆ X (t) and that of U (t) and ˆ U (t) are stud-

ed separately.

To study the first part of the right-hand side of (C.1) , one can

rite:

X (t − 1) ̄A − ˆ A ̂ X (t − 1) ̂ A = AX (t − 1)
(
Ā − ˆ A

)
(C.2)

+

(
A − ˆ A

)
X (t − 1) ̂ A +

ˆ A

(
X (t − 1) − ˆ X (t − 1)

)
ˆ A .

bserve that (C.2) consists of three terms containing each of the

rrors between system matrices and states. Computing the size of
12
he graph signal in (C.2) , see (9) , and applying the triangular in-

quality for each of the three terms, one obtains:

AX (t − 1) ̄A − ˆ A ̂ X (t − 1) ̂ A

∥∥
≤ ‖ A ‖ 2

F ∑

f=1

∥∥x f (t − 1)
∥∥
2

F ∑

g=1

∣∣[̄A] f g − [̂ A] f g
∣∣

+

∥∥A − ˆ A

∥∥
2

F ∑

f=1

∥∥x f (t − 1)
∥∥
2

F ∑

g=1

∣∣[̂ A] f g
∣∣

+ ‖ ̂
 A ‖ 2

F ∑

f=1

∥∥∥x f (t − 1) − ˆ x f (t − 1)

∥∥∥
2

F ∑

g=1

∣∣[̂ A] f g
∣∣.

(C.3)

ow, using the bound
∑ F

g=1 | [̂ A] f g | ≤ max f
∑ F

g=1 | [̂ A] f g | = ‖ ̂ A ‖ ∞ ,

nd analogously for (̄A − ˆ A) , one can write:

AX (t − 1) ̄A − ˆ A ̂ X (t − 1) ̂ A

∥∥
≤

(
‖ A ‖ 2 ‖ ̄A − ˆ A ‖ ∞ + ‖ A − ˆ A ‖ 2 ‖ ̂

 A ‖ ∞

)
‖ X (t − 1) ‖

+ ‖ ̂
 A ‖ 2 ‖ ̂

 A ‖ ∞ ‖ X (t − 1) − ˆ X (t − 1) ‖ , (C.4)

here the resulting sum over f has been replaced for the corre-

ponding size of the graph signal, see (9) .

Proceed analogously to (C.4) , the second term in the right-hand

ide of (C.1) can be bounded as

BU (t − 1) ̄B − ˆ B ̂ U (t − 1) ̂ B

∥∥
≤

(
‖ B ‖ 2 ‖ ̄B − ˆ B ‖ ∞ + ‖ B − ˆ B ‖ 2 ‖ ̂ B ‖ ∞

)
‖ U (t − 1) ‖

+ ‖ ̂ B ‖ 2 ‖ ̂ B ‖ ∞ ‖ U (t − 1) − ˆ U (t − 1) ‖ . (C.5)

he control term ‖ U (t) ‖ is a GNN with input X (t) and can thus be

ounded by leveraging Lemma 6 , i.e. ‖ U (t) ‖ ≤ C Φ‖ X (t) ‖ . To bound
 U (t) − ˆ U (t) ‖ , Φ(X (t) ; ˆ S , H) is added and subtracted, and the size

f the graph signal computed, to obtain

U (t) − ˆ U (t)
∥∥ =

∥∥Φ
(
X (t) ; S , H

)
− Φ

(
ˆ X (t) ; ˆ S , H

)∥∥
≤

∥∥Φ
(
X (t) ; S , H

)
− Φ

(
X (t) ; ˆ S , H

)∥∥ (C.6)

+

∥∥Φ
(
X (t) ; ˆ S , H

)
− Φ

(
ˆ X (t) ; ˆ S , H

)∥∥,

here the triangular inequality was used. For the first term in

C.6) , it follows from Lemma 8 that:

Φ(X (t) ; S ,H) − Φ(X (t) ; ˆ S , H)
∥∥ ≤ �(ε)�Φ‖ X (t) ‖ , (C.7)

here �(ε) = (1 + 8
√

N) ε with ε = d (D, ˆ D) depends on the char-

cteristics of the support matrices S and ˆ S , and where �Φ =

 Φ
∑ L

� =1 �H � /C H � depends on the learned filters H � (·; ·, H) . To

ound the second term in (C.6) , recall that the output of a GNN

s its value at the last layer

Φ
(
X (t) ; ˆ S , H

)
−Φ

(
ˆ X (t) ; ˆ S , H

)∥∥ =

∥∥X L − X L

∥∥
=

∥∥σ
(
H L (X L −1 ; ˆ S , H)

)
− σ

(
H L (̂ X L −1 ; ˆ S , H)

)∥∥.

(C.8)

sing the assumption that | σ (x) − σ (y) | ≤ | x − y | for all x, y ∈ R ,

C.8) can be upper bounded by

Φ
(
X (t) ; ˆ S , H

)
− Φ

(
ˆ X (t) ; ˆ S , H

)∥∥ ≤
∥∥H L (X L −1 − ˆ X L −1 ; ˆ S , H)

∥∥.

(C.9)

here the linearity of the filter with respect to the input X L −1 was

sed. Leveraging Lemma 5 on the upper bound of a graph filter,

ne obtains:

H � (X L −1 − ˆ X L −1 ; ˆ S , H)
∥∥ ≤ C H L

∥∥X L −1 − ˆ X L −1

∥∥. (C.10)

epeatedly applying (C.9) and (C.10) , the following upper bound on

F. Gama and S. Sojoudi Signal Processing 196 (2022) 108506

t

w

X∥∥
T∥∥

t

t∥∥

R

f

a

‖

R

‖

b

‖
U

w

e

w

e

ξ

ξ

b

w

t

e

S

m

(

e

N

c

e

w

s

P

t

T

t

−
l

l

s

l

C

v

V

R

[

he second term of (C.6) is obtained: ∥∥Φ
(
X (t) ; ˆ S , H

)
− Φ

(
ˆ X (t) ; ˆ S , H

)∥∥
≤

(L ∏

� =1

C H �

)∥∥X 0 − ˆ X 0

∥∥ = C Φ
∥∥X (t) − ˆ X (t)

∥∥, (C.11)

here the fact that the input to the GNN is the state at time t , i.e.

 0 = X (t) . Finally, using (C.7) and (C.11) in (C.6) , one obtains:

U (t) − ˆ U (t)
∥∥ ≤ �(ε)�Φ

∥∥X (t)
∥∥ + C Φ‖ X (t) − ˆ X (t) ‖ .

his simplifies (C.5) as

BU (t − 1) ̄B − ˆ B ̂ U (t − 1) ̂ B

∥∥ (C.12)

≤
(
‖ B ‖ 2 ‖ ̄B − ˆ B ‖ ∞ + ‖ B − ˆ B ‖ 2 ‖ ̂ B ‖ ∞

)
C Φ‖ X (t − 1) ‖

+ ‖ ̂ B ‖ 2 ‖ ̂ B ‖ ∞ �(ε)�Φ

∥∥X (t − 1)
∥∥

+ ‖ ̂ B ‖ 2 ‖ ̂ B ‖ ∞ C Φ‖ X (t − 1) − ˆ X (t − 1) ‖ .

Now, computing the size of the error signal in (C.1) and using

he triangular inequality, together with (C.4) and (C.12) , one ob-

ains:

X (t) − ˆ X (t)
∥∥ ≤

(
‖ ̂ A ‖ 2 ‖ ̂ A ‖ ∞ + ‖ ̂ B ‖ 2 ‖ ̂ B ‖ ∞ C Φ

)
‖ X (t − 1) − ˆ X (t − 1) ‖

+

((‖ A ‖ 2 ‖ ̄A − ˆ A ‖ ∞ + ‖ A − ˆ A ‖ 2 ‖ ̂ A ‖ ∞

)
(C.13)

+ C Φ
(‖ B ‖ 2 ‖ ̄B − ˆ B ‖ ∞ + ‖ B − ˆ B ‖ 2 ‖ ̂ B ‖ ∞

))‖ X (t − 1) ‖
+ ‖ ̂ B ‖ 2 ‖ ̂ B ‖ ∞ �(ε)�Φ

∥∥X (t − 1)
∥∥.

ecall that ˆ ξ = ‖ ̂ A ‖ 2 ‖ ̂ A ‖ ∞ + C Φ‖ ̂ B ‖ 2 ‖ ̂ B ‖ ∞ and note that (‖ A ‖ 2 ‖ ̄A − ˆ A ‖ ∞ + ‖ A − ˆ A ‖ 2 ‖ ̂
 A ‖ ∞

)
+ C Φ

(‖ B ‖ 2 ‖ ̄B − ˆ B ‖ ∞ + ‖ B − ˆ B ‖ 2 ‖ ̂ B ‖ ∞

)
≤ ˆ C ξ ε (C.14)

or ˆ C ξ as in (26) . The value of ‖ X (t − 1) ‖ can be further bounded
s

 X (t − 1) ‖ ≤
(‖ A ‖ 2 ‖ ̄A ‖ ∞ + C Φ‖ B ‖ 2 ‖ ̄B ‖ ∞

)‖ X (t − 2) ‖ . (C.15)

epeatedly applying this inequality, and noting that ξ =

 A ‖ 2 ‖ ̄A ‖ ∞ + C Φ‖ B ‖ 2 ‖ ̄B ‖ ∞ , see (22) , the bound on ‖ X (t − 1) ‖
ecomes

 X (t − 1) ‖ ≤ ξ t−1 ‖ X (0) ‖ . (C.16)

sing (C.14) and (C.16) back in (C.13) , one obtains: ∥∥X (t) − ˆ X (t)
∥∥ ≤ ˆ ξ ‖ X (t − 1) − ˆ X (t − 1) ‖ +

(
ˆ C ξ ε

+ C Φ‖ ̂ B ‖ 2 ‖ ̂ B ‖ ∞ �(ε)�Φ

)‖ X (0) ‖ ξ t−1 , (C.17)

hich can be conveniently rewritten as

 t ≤ ˆ ξe t−1 + bεξ t−1 , (C.18)

ith

 t = ‖ X (t) − ˆ X (t) ‖ , (C.19a)

ˆ = ‖ ̂
 A ‖ 2 ‖ ̂

 A ‖ ∞ + C L Φ‖ ̂ B ‖ 2 ‖ ̂ B ‖ ∞ , (C.19b)

= ‖ A ‖ 2 ‖ ̄A ‖ ∞ + C L Φ‖ B ‖ 2 ‖ ̄B ‖ ∞ , (C.19c)

 =

(
ˆ C ξ + C Φ‖ ̂ B ‖ 2 ‖ ̂ B ‖ ∞ (1 + 8

√

N)�Φ

)‖ X (0) ‖ , (C.19d)

here the definition of �(ε) = (1 + 8
√

N) ε was used to highlight

he linearity with ε. By repeatedly applying (C.18) , one arrives at:

 t ≤ bε
t−1 ∑

τ=0

ξ t−τ−1 ̂ ξ τ + ξ t e 0 . (C.20)
13
ince the initial state of both the true system and the esti-

ated one is the same, it holds that e 0 = ‖ X (0) − ˆ X (0) ‖ = 0 . Then,

C.20) becomes

 t ≤ bε
t−1 ∑

τ=0

ξ t−τ−1 ̂ ξ τ =

{

b ξ
t − ˆ ξ t

ξ− ˆ ξ
if ξ � =

ˆ ξ

btξ t−1 if ξ =
ˆ ξ
. (C.21)

ow, recall that | ξ t − ˆ ξ t | ≤ t max { ξ , ˆ ξ} t | ξ − ˆ ξ | so that (C.21) be-
omes e t ≤ bt max { ξ , ˆ ξ} t−1 ε. Finally, substituting the definitions of
 t as in (C.19a) , ˆ ξ as in (C.19b) , ξ as in (C.19c) , and b as in (C.19d) ,

e complete the proof. �

Now we prove Corollary 4 for the particular case when both

ystems D and ˆ D are input-state stable.

roof of Corollary 4.. From (28) in Theorem 3 it holds that ˆ C t =

 max { ξ , ˆ ξ} t−1 . By assumption, it is known that ξ < 1 and ˆ ξ < 1 .

herefore, the function t max { ξ , ˆ ξ} t−1 has a global maximum for

 ≥ 0 . As a function of continuous t ∈ R , this maximum is at t =
1 / log (max { ξ , ˆ ξ}) and gives the optimal value −e −1 / (max { ξ , ˆ ξ} ×
og (max { ξ , ˆ ξ})) . Thus, it holds that ˆ C t ≤ −e −1 ̂ C Φ/ (max { ξ , ˆ ξ} ×
og (max { ξ , ˆ ξ})) , completing the first part of the proof. For the

econd part, note that, since ξ < 1 and ˆ ξ < 1 , then it holds that

im t→∞ t max { ξ , ˆ ξ} t−1 = 0 . �

RediT authorship contribution statement

Fernando Gama: Conceptualization, Writing – original draft, In-

estigation. Somayeh Sojoudi: Project administration, Validation,

isualization.

eferences

[1] F. Gama , S. Sojoudi , Graph neural networks for distributed linear-quadratic
control, in: 3rd Annu. Conf. Learning Dynamics Control, Proc. Mach. Learning

Res., Zürich, Switzerland, 2021 .

[2] T. Kailath , Linear systems, Ser. Inform. Syst, Sci., Prentice-Hall, Englewood
Cliffs, NJ, 1980 .

[3] B.D.O. Anderson , J.B. Moore , Optimal Control: Linear Quadratic Methods, Ser.
Inform. Syst, Sci., Prentice-Hall, Englewood Cliffs, NJ, 1989 .

[4] S. Dean , H. Mania , N. Matni , B. Recht , S. Tu , On the sample complexity of the
linear quadratic regulator, Found. Comput. Math. 20 (2020) 633–679 .

[5] S. Fattahi , N. Matni , S. Sojoudi , Learning sparse dynamical systems from a sin-

gle sample trajectory, in: 58th IEEE Conf. Decision, Control, IEEE, Nice, France,
2019, pp. 26 83–26 89 .

[6] H.S. Witsenhausen , A counterexample in stochastic optimum control, SIAM J.
Control 6 (1) (1968) 131–147 .

[7] M. Rotkowitz , S. Lall , A characterization of convex problems in decentralized
control, IEEE Trans. Autom. Control 51 (2) (2006) 274–286 .

[8] S. Fattahi , G. Fazelnia , J. Lavaei , M. Arcak , Transformation of optimal centralized

controllers into near-globally optimal static distributed controllers, IEEE Trans.
Autom. Control 64 (1) (2019) 66–80 .

[9] G. Fazelnia , R. Madani , A. Kalbat , J. Lavaei , Convex relaxation for optimal dis-
tributed control problems, IEEE Trans. Autom. Control 62 (1) (2017) 206–221 .

[10] Y.-S. Wang , N. Matni , J.C. Doyle , A system-level approach to controller synthe-
sis, IEEE Trans. Autom. Control 64 (10) (2019) 4079–4093 .

[11] S. Fattahi , N. Matni , S. Sojoudi , Efficient learning of distributed linear-quadratic

control policies, SIAM J. Control Optim. 58 (5) (2020) 2927–2951 .
12] F. Gama , E. Isufi, G. Leus , A. Ribeiro , Graphs, convolutions, and neural net-

works: from graph filters to graph neural networks, IEEE Signal Process. Mag.
37 (6) (2020) 128–138 .

[13] F. Gama , J. Bruna , A. Ribeiro , Stability properties of graph neural networks, IEEE
Trans. Signal Process. 68 (2020) 5680–5695 .

[14] L. Ruiz , L.F.O. Chamon , A. Ribeiro , Graphon neural networks and the transfer-

ability of graph neural networks, in: 34th Conf. Neural Inform. Process. Syst.,
Neural Inform. Process. Syst. Foundation, Vancouver, BC, 2020, pp. 1702–1712 .

[15] J.V. Capella , A. Bonastre , R. Ors , An advanced and distributed control architec-
ture based on intelligent agents and neural networks, in: IEEE Int. Workshop

Intell. Data Acquisition Advanced Computing Syst.: Technol. Appl., IEEE, Lviv,
Ukraine, 2003, pp. 278–283 .

[16] S.N. Huang , K.K. Tan , T.H. Lee , Decentralized control of a class of large-s-
cale nonlinear systems using neural networks, Automatica 41 (9) (2005)

1645–1649 .

[17] M.C. Choy , D. Srinivasan , R.L. Cheu , Neural networks for continuous online con-
trol, IEEE Trans. Neural Netw. 17 (6) (2006) 1511–1531 .

[18] S.-Y. Chen , F.-J. Lin , Decentralized PID neural network control for five de-
gree-of-freedom active magnetic bearing, Eng. Appl. Artific. Intell. 26 (3) (2013)

962–973 .

http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0001
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0001
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0001
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0002
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0002
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0003
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0003
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0003
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0004
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0004
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0004
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0004
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0004
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0004
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0005
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0005
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0005
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0005
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0006
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0006
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0007
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0007
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0007
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0008
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0008
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0008
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0008
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0008
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0009
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0009
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0009
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0009
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0009
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0010
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0010
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0010
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0010
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0011
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0011
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0011
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0011
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0012
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0012
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0012
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0012
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0012
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0013
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0013
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0013
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0013
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0014
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0014
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0014
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0014
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0015
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0015
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0015
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0015
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0016
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0016
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0016
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0016
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0017
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0017
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0017
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0017
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0018
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0018
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0018

F. Gama and S. Sojoudi Signal Processing 196 (2022) 108506

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[19] D. Liu , C. Li , H. Li , D. Wang , H. Ma , Neural-network-based decentralized control
of continuous-time nonlinear interconnected systems with unknown dynam-

ics, Neurocomputing 165 (2015) 90–98 .
20] S. Yang , Y. Cao , Z. Peng , G. Wen , K. Guo , Distributed formation control of non-

holonomic autonomous vehicle via RBF neural network, Mech. Syst. Signal Pro-
cess. 87 (B) (2017) 81–95 .

21] D. Wang, J. Qiao, L. Cheng, An approximate neuro-optimal solution of dis-
counted guaranteed cost control design, IEEE Trans. Cybern. (2020), doi: 10.

1109/TCYB.2020.2977318 . Early access

22] D. Wang , M. Ha , J. Qiao , Data-driven iterative adaptive critic control toward
an urban wastewater treatment plant, IEEE Trans. Ind. Electron. 68 (8) (2020)

7362–7369 .
23] F. Gama, Q. Li, E. Tolstaya, A. Prorok, A. Ribeiro, Decentralized control with

graph neural networks, arXiv:2012.14906v3 [cs.LG] (2021) arXiv:2012.14906 .
24] J. Jahn , Introduction ot the Theory of Nonlinear Optimization, 3rd,

Springer-Verlag, Berlin, Germany, 2007 .

25] A. Ortega , P. Frossard , J. Kova ̌cevi ́c , J.M.F. Moura , P. Vandergheynst , Graph signal
processing: overview, challenges and applications, Proc. IEEE 106 (5) (2018)

808–828 .
26] F. Gama , A. Ribeiro , Ergodicity in stationary graph processes: a weak law of

large numbers, IEEE Trans. Signal Process. 67 (10) (2019) 2761–2774 .
14
27] S. Segarra , A. G. Marques , A. Ribeiro , Optimal graph-filter design and appli-
cations to distributed linear network operators, IEEE Trans. Signal Process. 65

(15) (2017) 4117–4131 .
28] J. Bergstra , R. Bardenet , Y. Bengio , B. Kégl , Algorithms for hyper-parameter op-

timization, in: 25th Conf. Neural Inform. Process. Syst., Neural Inform. Process.
Syst. Foundation, Granada, Spain, 2011, pp. 2546–2554 .

29] V.N. Vapnik , The nature of statistical learning theory, Ser. Statist. Eng. Inform.
Sci., 2nd, Springer-Verlag, New York, NY, 20 0 0 .

30] D.P. Kingma , J.L. Ba , ADAM: a method for stochastic optimization, in: 3rd Int.

Conf. Learning Representations, San Diego, CA, 2015, pp. 1–15 .
31] D.E. Rumelhart , G.E. Hinton , R.J. Williams , Learning representations by back-

-propagating errors, Nature 323 (6088) (1986) 533–536 .
32] A. Nedi ́c , Distributed gradient methods for convex machine learning problems

in networks: distributed optimization, IEEE Signal Process. Mag. 37 (3) (2020)
92–101 .

33] O. Teke , P.P. Vaidyanathan , Random node-asynchronous updates on graphs,

IEEE Trans. Signal Process. 67 (11) (2019) 2794–2809 .
34] M. Jin , J. Lavaei , Stability-certified reinforcement learning: acontrol-theoretic

perspective, IEEE Access 8 (2020) 229086–229100 .

http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0019
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0019
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0019
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0019
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0019
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0019
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0020
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0020
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0020
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0020
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0020
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0020
https://doi.org/10.1109/TCYB.2020.2977318
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0022
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0022
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0022
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0022
http://arxiv.org/abs/2012.14906
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0024
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0024
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0025
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0025
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0025
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0025
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0025
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0025
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0026
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0026
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0026
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0027
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0027
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0027
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0027
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0028
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0028
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0028
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0028
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0028
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0029
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0029
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0030
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0030
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0030
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0031
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0031
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0031
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0031
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0032
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0032
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0033
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0033
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0033
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0034
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0034
http://refhub.elsevier.com/S0165-1684(22)00053-6/sbref0034

	Distributed linear-quadratic control with graph neural networks
	1 Introduction
	2 The linear-quadratic problem
	3 Graph neural networks
	3.1 Graph signal processing
	3.2 Graph neural networks
	3.3 Self-supervised learning

	4 Properties of GNN controllers
	4.1 GNN Properties
	4.2 Closed-Loop stability
	4.3 Trajectory deviation

	5 Numerical experiments
	6 Conclusion
	Declaration of Competing Interest
	Appendix A Auxiliary Results
	Appendix B Proof of Closed-Loop Stability
	Appendix C Proof of Trajectory Deviations
	CRediT authorship contribution statement
	References

