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a b s t r a c t 

Controlling network systems has become a problem of paramount importance. In this paper, we con- 

sider a distributed linear-quadratic problem and propose the use of graph neural networks (GNNs) to 

parametrize and design a distributed controller for network systems. GNNs exhibit many desirable prop- 

erties, such as being naturally distributed and scalable. We cast the distributed linear-quadratic problem 

as a self-supervised learning problem, which is then used to train the GNN-based controllers. We also 

obtain sufficient conditions for the resulting closed-loop system to be input-state stable, and derive an 

upper bound on how much the trajectory deviates from the nominal value when the matrices that de- 

scribe the system are not accurately known. We run extensive simulations to study the performance of 

GNN-based distributed controllers and show that they are computationally efficient and scalable. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

The use of linear models to describe dynamical systems has 

ound widespread use in many areas of physics, mathematics, en- 

ineering and economics [2] . Linear systems are mathematically 

ractable and can thus be used to derive properties, draw insights, 

nd improve on our ability to successfully control these systems. In 

articular, designing optimal controllers that can steer the system 

nto a desired state while minimizing some given cost has become 

 problem of paramount importance [3] . 

Obtaining an optimal controller that minimizes a quadratic cost 

n the states and the actions, following a linear dynamic model, 

ives rise to the well-studied linear-quadratic control problem [4] . 

s it happens, the optimal linear-quadratic controller is linear and 

cts on the knowledge of the system state at a given time to 

roduce the optimal control action for that time instant. Further- 

ore, when considering an infinite-time horizon for minimizing 

he quadratic cost, the resulting optimal controller is not only lin- 

ar but also static, meaning that the same linear mapping is used 

etween state and control action for all time instants. 

Network systems are one particular class of dynamical systems 

hat has become increasingly relevant. These systems are com- 

rised of a set of interconnected components that are capable of 

xchanging information. They are further equipped with the abil- 
� This work is supported by grants from ONR, NSF and AFOSR. 
� Partial results have appeared in [1] . 
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ty to autonomously decide on an action to take based on the indi- 

idual state of each component and the information relied through 

he communications with other neighboring components. The ob- 

ective of controlling network systems is to coordinate the individ- 

al actions of the components so that they are conducive to the 

ccomplishment of some global task [5] . 

The dynamics of some network systems can be effectively de- 

cribed by a linear model. Thus, if such systems are coupled with 

 quadratic cost, a corresponding linear-quadratic problem is ob- 

ained. As such, the optimal control actions are readily available. 

hile the optimal controllers are linear, they require information 

rom the components in the network irrespective of their inter- 

onnections. That is, to compute the optimal controller, an addi- 

ional unit capable of accessing all components instantaneously is 

equired. In the context of network systems, this is called a cen- 

ralized approach. 

Centralized controllers face limitations in terms of scalability 

nd implementation. For increasingly large networks, the central- 

zed unit requires more direct connections to all the components 

f the system. Similarly, the computational cost increases directly 

ith the size of the network, since a single unit is responsible 

or computing the control actions of all the components. It is also 

ess robust to changes in the network. A failed connection between 

he centralized unit and any of the components would render that 

omponent uncontrollable. 

Network systems are characterized by the connections between 

omponents, which naturally impose a distributed structure on 

he flow of data. Fundamentally, it can be leveraged in the de- 

ign of controllers. By doing so, one can overcome many of the 

https://doi.org/10.1016/j.sigpro.2022.108506
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2022.108506&domain=pdf
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imitations of centralized controllers. Thus, we focus on leverag- 

ng the data structure to obtain distributed controllers. These are 

ontrol actions that depend only on local information provided by 

omponents that share a connection and that can be computed 

eparately by each component. 

Imposing a distributed constraint on the linear-quadratic con- 

rol problem renders it intractable in the most general case [6] . 

hile there is a large class of distributed control problems that 

dmit a convex formulation [7] , many of them lead to complex so- 

utions that do not scale with the size of the network [8] . An al-

ernative approach is to adopt a linear parametrization of the con- 

roller and find a surrogate of the original problem that admits a 

calable solution. The resulting controller is thus a sub-optimal lin- 

ar distributed controller, and stability and robustness analyses are 

rovided [9–11] . 

However, even in the context of linear network systems with a 

uadratic cost, the optimal distributed controller may not be lin- 

ar [6] . In this paper, we thus adopt a nonlinear parametrization 

f the controller. More specifically, we focus on the use of graph 

eural networks (GNNs) [12] . GNNs consist of a cascade of blocks 

commonly known as layers) each of which applies a bank of graph 

lters followed by a pointwise nonlinearity. GNNs exhibit several 

esirable properties in the context of distributed control. Most im- 

ortantly, they are naturally local and distributed, meaning that 

y adopting a GNN as a mapping between states and actions, a 

istributed controller is automatically obtained. Furthermore, they 

re permutation equivariant and Lipschitz continuous to changes 

n the network [13] . These two properties allow them to scale up 

nd transfer [14] . 

Distributed controllers leveraging neural network techniques 

an be found in [1,15–23] . These controllers typically use a distinct 

ulti-layer perceptron (MLP) to parametrize the controller at each 

omponent [15–20] or rely on adaptive critic control [21,22] . As- 

igning a separate MLP to each component implies that the num- 

er of parameters to learn increases proportionally with the size 

f the network system, becoming increasingly harder to train, and 

hus this approach is not scalable. The use of GNNs imposes a 

eight-sharing scheme that avoids scalability problems. These are 

everaged in [23] in the context of specific robotics problems. The 

istributed linear-quadratic problem using GNNs was investigated 

n our conference paper [1] . 

In this work, we focus on finding distributed controllers for the 

istributed linear-quadratic problem. Our main contributions are: 

(C1) We propose to parametrize the distributed controller with 

a GNN, obtaining a naturally distributed architecture that is 

capable of capturing nonlinear relationships between input 

and output, as it was initially investigated in our preliminary 

work [1] . 

(C2) We obtain an improved sufficient condition for closed-loop 

input-state stability of the controller. 

(C3) We study the problem of systems whose linear description 

is not accurately known. We analyze how the stability of the 

system changes and obtain an upper bound on the deviation 

of the trajectory from its nominal value. 

(C4) We present new simulations that provide better insight into 

GNN-based controllers for a distributed LQR problem. 

The remainder of this paper is organized as follows. We for- 

ulate the linear-quadratic problem in Section 2 and postulate 

he use of graph neural networks in Section 3 as a practically 

seful nonlinear parametrization of the unknown distributed con- 

roller. We cast the distributed linear-quadratic problem as a self- 

upervised learning problem, which can be efficiently solved by 

raditional machine learning techniques. To study the effect of 

dopting a GNN-based controller on the entire dynamical system, 

e obtain a sufficient condition for the resulting closed-loop sys- 
2 
em to be input-state stable and derive an upper bound on the 

rajectory deviation from its nominal value when the system ma- 

rices are unknown and only estimates are available. We include 

umerical simulations in Section 5 to investigate the performance 

f GNN-based distributed controllers and their dependence on de- 

ign hyperparameters, as well as their scalability. Conclusions are 

rawn in Section 6 . Proofs are provided in the appendix. 

. The linear-quadratic problem 

The linear-quadratic problem is one of the fundamental prob- 

ems in optimal control theory [3] . Consider a system described 

y a state vector x (t) ∈ R 
F and controlled by an action u (t) ∈ R 

G 

t time t ∈ { 0 , 1 , 2 , . . . } . The system evolves following a linear dy-

amic 

 (t + 1) = Ā x (t) + B̄ u (t) (1) 

etermined by Ā ∈ R 
F ×F called the system matrix and B̄ ∈ R 

F ×G 

alled the control matrix . These two matrices are considered to 

e known and given in the problem formulation. The objective is 

o drive the system towards a desired, target state value. To this 

nd, a controller Φ : R 
F → R 

G that maps the current state of the 

ystem x (t) into an appropriate action u (t) = Φ(x (t)) is typically 

esigned. In optimal control, it is desirable to find a controller 

hat minimizes a given cost. In particular, the focus here is on the 

uadratic cost given by 

 

(
{ x (t) } , { u (t) } 

)
= 

∞ ∑ 

t=0 

(
x (t) T Q̄ x (t) + u (t) T R̄ u (t) 

)
(2)

or two known matrices Q̄ ∈ R 
F ×F and R̄ ∈ R 

G ×G such that Q̄ � 0 

nd R̄ � 0 , given in the problem formulation. 

The linear-quadratic problem can be formulated as 

in 
Φ∈ �

J 

(
{ x (t) } , { u (t) } 

)
(3a) 

.t. x (t + 1) = Ā x (t) + B̄ u (t) , ∀ t ∈ { 0 , 1 , . . . } (3b) 

 (t) = Φ(x (t)) , ∀ t ∈ { 0 , 1 , . . . } (3c) 

here � is the space of all functions Φ : R 
F → R 

G , see [3] . The

bjective function (3a) is the quadratic cost (2) , the constraint 

3b) imposes the linear dynamics of the system (1) and the con- 

traint (3c) forces the solution to be a function Φ : R 
F → R 

G . The

ptimal controller obtained from solving (3) is formally known as 

 linear-quadratic regulator (LQR) and is given by 

 
� (t) = Φ� 

(
x (t) 

)
= K 

� x (t) , (4) 

ith K 
� ∈ R 

F ×G being a linear operator that depends on the matri- 

es that describe the problem, namely Ā , ̄B , Q̄ , ̄R , and can be read-

ly computed [3, Sec. 2.4] . Notably, the LQR is a linear controller [3,

q. (2.4–8)] . 

A network system can be conveniently described by means of a 

raph G = (V, E ) , where V = { v 1 , . . . , v N } is the set of N nodes and

 ⊆ V × V is the set of edges. The node v i represents the i th com-

onent of the system, while the existence of the edge (v i , v j ) ∈ E
mplies that nodes v i and v j are interconnected and capable of ex- 
hanging information. In a network system, each node is described 

y a state x i (t) ∈ R 
F and is capable of autonomously taking an

ction u i (t) ∈ R 
G at time t . The states and actions of all nodes

re collected in two matrices X (t) ∈ R 
N×F and U (t) ∈ R 

N×G , respec-

ively, where each row corresponds to the state or action of each 

gent. 

Similar to (1) , consider a network system with linear dynamics 

odeled as 

 (t + 1) = AX (t ) ̄A + BU (t ) ̄B , (5)
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here A ∈ R 
N×N is called the network system matrix and B ∈ R 

N×N 

he network control matrix . The linear system in (5) is an exten- 

ion of (1) tailored to handle network data. In particular, it consid- 

rs that each node v i is described by an F -dimensional state x i (t) ,

ollected in the rows of the matrix X (t) . It also decouples the im-

act that the network topology has on the evolution of the sys- 

em (through matrices A and B ) from the impact that the individ- 

al states have (through Ā and B̄ ). To see this, note that matrices 

 ∈ R 
N×N and B ∈ R 

N×N act as linear combinations of state values

cross different nodes, and as such, these combinations are typ- 

cally restricted to follow the interconnection of the components 

although, technically, they need not be). It is thus noted that while 

he matrix A need not be the adjacency matrix of the graph, it is 

sually a function of it –for example, both matrices may share the 

ame eigenvectors. The matrices Ā ∈ R 
F ×F and B̄ ∈ R 

G ×F determine 

he evolution of the values of the state at each individual node and, 

hile they can be arbitrary, they force all individual state nodes to 

ollow the same evolution. Finally, it is noted that, while a more 

eneral linear description can be obtained by adopting a network 

tate of dimension NF and using (1) , doing so obscures the effect of

he topology of the network on the evolution of the system. Thus, 

5) is adopted from now on for mathematical simplicity –and it 

s observed that all the results derived from here onward hold for 

1) as well. 

To pose the linear-quadratic problem for a network system, the 

ollowing quadratic cost as a counterpart of (2) is adopted: 

 

(
{ X (t) } , { U (t) } 

)
= 

∞ ∑ 

t=0 

(
‖ X (t) ̄Q 

1 / 2 ‖ 
2 
F + ‖ U (t) ̄R 

1 / 2 ‖ 
2 
F 

)
, (6)

here Q̄ ∈ R 
F ×F and R̄ ∈ R 

G ×G are two given positive definite ma- 

rices, and where ‖ · ‖ F denotes the Frobenius matrix norm. The 

inear-quadratic control problem for a network system can then 

e posed in the form of (3) , by replacing the cost (3a) with (6) ,

he linear dynamics (3b) with (5) , and the controller (3c) with one 

uch that Φ : R 
N×F → R 

N×G . 

The controller solving the linear-quadratic problem for a net- 

ork system is also linear. However, in order to compute the op- 

imal control action, the system needs to access the state of arbi- 

rary components of the system, beyond those directly connected. 

his constitutes a centralized controller. In what follows, the focus 

s on finding a distributed controller. 

A distributed controller, which is denoted by Φ(X (t) ;G) to em- 

hasize its dependence on the topology of the network system G, 
hould satisfy the properties that the control actions U (t) rely only 

n local information provided by other components that share a 

irect connection, and that they can be computed separately at 

ach component. The use of a distributed controller overcomes 

ome of the issues that arise when considering a centralized one. 

amely, they are expected to scale better, since they do not require 

 single unit to compute the actions of all components in the sys- 

em, and they are easy to implement since they do not demand an 

nfrastructure capable of connecting all components to the single 

entralized unit. 

The distributed linear-quadratic problem can be written as 

in 
∈ �G 

J 

(
{ X (t) } , { U (t) } 

)
(7a) 

.t. X (t + 1) = AX (t ) ̄A +BU (t ) ̄B , ∀ t ∈{ 0 , 1 , . . . } (7b) 

 (t) = Φ
(
X (t) ;G 

)
, ∀ t ∈{ 0 , 1 , . . . } , (7c) 

here �G is the space of all functions Φ(·;G) : R 
N×F → R 

N×G that 

an be computed in a distributed manner (i.e. relying only on lo- 

al information and computed separately at each component). It is 
3 
oted that the constraint (7c) further restricts the feasible set, and 

s such, the optimal value J � G of solving (7) is lower bounded by 

he optimal value J � incurred when using the optimal centralized 

ontroller, i.e. J � G ≥ J � . 

Solving problem (7) requires solving an optimization problem 

ver the space of functions �G . This is mathematically intractable 

n the general case, and requires specific approaches involving vari- 

tional methods, dynamic programming or kernel-based functions 

24] . While there is a large class of distributed control problems 

hat admit a convex formulation [7] , many of them lead to com- 

lex solutions that do not scale with the size of the network [8] . 

Considering the inherent complexities of functional optimiza- 

ion, a popular approach is to adopt a specific model for the 

apping Φ, leading to a parametric family of controllers. Inspired 

y the linear nature of the optimal centralized solution and its 

athematical tractability, a distributed linear parametrization was 

dopted in [9,11] . Many properties of this parametric family of 

ontrollers have been studied, including stability, robustness and 

sub)optimality [9,11] . 

However, it is known that the linear system (5) may have a 

onlinear optimal controller if we force a distributed nature on 

ts solution [6] . This suggests that it would be more convenient 

o work with nonlinear parametrizations, rather than linear ones. 

n particular, this work focuses on graph neural networks (GNNs) 

12] . These are nonlinear mappings that exhibit several desirable 

roperties. Fundamentally, they are naturally computed in a dis- 

ributed manner relying only on local information provided by di- 

ectly connected components. This implies that any controller that 

s parametrized by means of a GNN respects the distributed nature 

f the system (as given by the graph G), naturally incorporating the 
istributed constraint (7c) into the chosen parametrization. 

. Graph neural networks 

Finding the optimal distributed controller by solving problem 

7) is intractable in its most general case. This is due to the 

onstraint (7c) that the solution satisfies a distributed computa- 

ion. In what follows, a parametric family of distributed controllers 

s adopted. More concretely, inspired by the fact that the opti- 

al controller is usually nonlinear, GNN-based controllers are con- 

idered. The basics of graph signal processing are introduced in 

ection 3.1 , which allows for the definition of GNNs in Section 3.2 .

 discussion on how to cast the resulting finite-dimensional opti- 

al control problem as an unsupervised learning problem follows 

n Section 3.3 . 

.1. Graph signal processing 

Graph signal processing (GSP) is a framework tailored to de- 

cribe, analyze, and understand distributed problems [25] . Given 

 graph G = (V, E ) that describes the structure of the data under 

tudy, a graph signal x : V → R is defined as a mapping from the

odes of the graph to a real number. By imposing an arbitrary or- 

er on the nodes, this graph signal can be conveniently described 

s a vector x ∈ R 
N whose i th element corresponds to the signal 

alue associated to node v i , denoted as [ x ] i = x (v i ) = x i ∈ R . Note

hat [ ·] i ( [ ·] i j ) denotes the value of the i th ( (i, j) th ) entry of a vec-
or (matrix). To be able to use the concept of graph signals to de- 

cribe the state X (t) ∈ R 
N×F and the control action U (t) ∈ R 

N×G 

n a network system, an extension to vector-valued mappings is 

eeded. Define the vector-valued graph signal as X : V → R 
F , where

 (v i ) = x i ∈ R 
F . It can then be described by means of a matrix

 ∈ R 
N×F , where each row corresponds to the signal value at each 
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 = 

⎡ 

⎣ 

X 
T (v 1 ) 
. . . 

X 
T (v N ) 

⎤ 

⎦ = 

⎡ 

⎣ 

x T 1 
. . . 
x T N 

⎤ 

⎦ = 

[
x 1 · · · x F 

]
. (8) 

n this equation, the vector-valued graph signal X is viewed as 

 collection of F traditional scalar-valued graph signals { x f } F 
f=1 

, 

laced in the columns of the matrix. Observe that x stands for the 

raph signal as a function, x i stands for the scalar value adopted 

y node v i , x for the vector collecting all these values; likewise, X 

tands for the vector-valued graph signal and X for the matrix col- 

ecting all the states at all nodes. All these quantities are related to 

he graph signal that is used to describe the state of the system. 

he size of the vector-valued graph signal is defined as 

 X ‖ = ‖ X ‖ 2 , 1 = 

F ∑ 

f=1 

‖ x f ‖ 2 . (9) 

he L 2 , 1 norm for matrices (9) is chosen as the size of the graph

ignal norm for both its robustness and its mathematical tractabil- 

ty. Note that if F = 1 , then ‖ X ‖ = ‖ x ‖ 2 as expected. Finally, note
hat, in what follows, the term “graph signal” is used indistinctly 

o refer to either vector-valued or scalar-valued ones. Note that the 

rajectories of system states { X (t) } and control actions { U (t) } can
ach be modeled as a sequence of graph signals, indexed by the 

ime parameter t —also known as graph processes [26] . 

Describing a graph signal in terms of a matrix is convenient 

ecause it allows for easy mathematical manipulation. However, 

his causes the loss of the information related to the underlying 

raph support. To recover this information, the graph is described 

n terms of a support matrix S ∈ R 
N×N that respects the sparsity 

f the graph, i.e. [ S ] i j = s i j can be nonzero if and only if i = j or

v j , v i ) ∈ E . Any matrix that satisfies this condition can be used as

 support matrix and thus it is a design choice. Typical choices 

nclude the adjacency matrix, the Laplacian matrix, the Markov 

atrix, and their normalized counterparts [25] . A linear mapping 

 : R 
N×F → R 

N×F between graph signals that relates the input to 

he underlying graph support Y = S (X ) = SX can be defined, such

hat the (i, f ) th entry y f 
i 
of the matrix Y (the value of the f th scalar

raph signal at node v i ) is computed as 

 

f 
i 

= [ Y ] i f = [ SX ] i f = 

N ∑ 

j=1 

[ S ] i j [ X ] j f = 

∑ 

j: v j ∈N i ∪{ v i } 
s i j x 

f 
j 
, (10)

here N i = { v j ∈ V : (v j , v i ) ∈ E} is the set of nodes that share an
dge with v i and [ X ] j f = [ x j ] f = [ x f ] j = x 

f 
j 
, see (8) . The last equal-

ty in (10) holds because of the sparsity pattern of the support ma- 

rix S and implies that the computation of the value of the output 

raph signal Y at node v i only requires information relied by its 

eighbors. In this respect, one can then think of the pair (X , S )

s the complete graph data containing all the relevant informa- 

ion; however, only X is regarded as the actionable variable (the 

ignal), while the support S is considered given and fixed and is 

etermined by the physical constraints of the network. 

The support matrix S can be thought of as a linear mapping 

etween graph signals that effectively relates the input to the un- 

erlying graph support. As such, the operation SX becomes the ba- 

ic building block of graph signal processing [25] . A finite-impulse 

esponse (FIR) graph filter H : R 
N×F → R 

N×G is a linear operation 

etween two graph signals, defined as a polynomial on S 

 = H (X ; S , H) = 

K ∑ 

k =0 

S k XH k , (11) 

here H = { H k ∈ R 
F ×G , k = 0 , . . . , K} is the set of filter taps H k that

haracterize the filter response. The filter (11) is linear in the input 
4 
 and is capable of mapping between vector-valued graph signals 

f different dimensions (but defined on the same graph given by 

 ). 

The graph filter is a naturally distributed operation, meaning 

hat the output of filtering in (11) can be computed separately by 

ach node relying only on information provided by one-hop neigh- 

ors. To understand this, note that multiplications to the left of 

 carry out a linear combination of signal values across differ- 

nt nodes, and thus this matrix needs to respect the sparsity of 

he graph so that only values at neighboring nodes are combined. 

his is the case for S k = S k −1 S which amounts to communicating 

 times with the one-hop neighbors. Therefore, an FIR graph filter 

s a distributed linear operation since it requires only K commu- 

ication exchanges with one-hop neighbors. Multiplications to the 

ight of X , on the other hand, are linear combinations of signal val- 

es located at the same node, and can thus be arbitrary. In partic- 

lar, (11) imposes a weight-sharing scheme, where the signal val- 

es at all nodes are combined in the same way. Finally, note that 

11) is a compact notation for denoting the graph filtering opera- 

ion but, in practice, the nodes do not need access to the full ma- 

rix S . They only need access to the entries corresponding to their 

ne-hop neighbors in order to compute the proper linear combina- 

ion indicated in (10) . Thus, in practice, the nodes need not know 

he entire graph topology. 

The FIR graph filter (11) can be understood as a bank of F G fil-

ers acting on scalar-valued graph signals, see [12,27] . It can thus 

e characterized by its frequency response given by the collection 

f univariate polynomials 

 

h f g (λ) = 

K ∑ 

k =0 

[ H k ] f g λ
k : λ ∈ [ λl , λh ] f = 1 , . . . , F g = 1 , . . . , G 

} 

. 

(12) 

he values of λl and λh are determined by the specific problem 

nder study, and are typically set to be the minimum and maxi- 

um eigenvalues of the given S . However, they may be different 

f the problem requires the filters to be able to act on more than 

ne graph, see Section 4.3 . In that case, it may be convenient to 

elect the interval so that it contains all the eigenvalues of all the 

upport matrices under consideration. 

The characterization of the filter in terms of the frequency re- 

ponse (12) allows for the definition of the size of the graph filter 

s 

 H = ‖ C H ‖ ∞ with C H ∈ R 
F ×G : [ C H ] f g = max 

λ∈ [ λl ,λh ] 
| h f g (λ) | . (13)

n what follows, the focus is further set on a particular class of 

raph filters, known as Lipschitz filters. The graph filter (11) is said 

o be a Lipschitz filter if its frequency response (12) satisfies that 

 h f g (λ1 ) − h f g (λ2 ) | ≤ γ f g | λ1 − λ2 | , ∀ λ1 , λ2 ∈ [ λl , λh ] , (14)

or some constant γ f g > 0 , for all f ∈ { 1 , . . . , F } and G ∈ { 1 , . . . , G } .
he Lipschitz constant �H of the filter is computed as 

H = ‖ �H ‖ ∞ with �H ∈ R 
F ×G : [ �H ] f g = γ f g , (15) 

hich is the infinity norm ‖ �H ‖ ∞ for a matrix �H ∈ R 
F ×G contain- 

ng the corresponding Lipschitz constants of each individual filter 

i.e. the maximum absolute row sum of the matrix). 

.2. Graph neural networks 

Graph filters are distributed, linear operations and, as such, are 

nly capable of capturing linear relationships between input and 

utput. However, the objective of this work is to learn nonlinear 

istributed controllers. Arguably, the most straightforward way of 

onverting a graph filter into a nonlinear processing unit without 
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ffecting its distributed nature is to include a pointwise nonlinear- 

ty 

 = σ
(
H (X ; S , H) 

)
, (16) 

here σ : R → R is a nonlinearity applied pointwise to the entries 

f the graph signal obtained from applying the graph filter, i.e. 

 σ (X )] i f = σ ([ X ] i f ) . The operation (16) is known as a graph per-

eptron [12] and, since the nonlinearity σ (·) is applied pointwise 

o the entries of the graph signal, it retains the distributed nature 

f the graph filter. 

The graph perceptron (16) is a nonlinear processing unit, but 

t has a limited representation power. To overcome this, a graph 

onvolutional neural network Φ(·; S ,H) : R 
N×F → R 

N×G is defined as 

 cascade of L graph perceptron units 

 � = σ
(
H � (X � −1 ; S ,H � ) 

)
, (17a) 

(X ; S ,H) = X L , (17b) 

ith H = ∪ 
L 
� =1 H � . The input to the first layer is the graph signal

 0 = X and the output is collected at the last layer. The space

f all possible representations obtained by using a GNN is char- 

cterized by the set of filter taps H, which contains the filter 

oefficients H � = { H �k ∈ R 
F � −1 ×F � k = 0 , 1 , . . . , K � } at each layer � ∈

 1 , . . . , L } . Note that F 0 = F and F L = G . The nonlinear function σ (·) ,
he number of layers L , the dimension of the graph signals at each 

ayer F � and the number of filter taps at each layer K � are design

hoices and are typically referred to as hyperparameters [28] . 

.3. Self-supervised learning 

The linear graph filter (11) and the nonlinear GNN (17) have 

een introduced as naturally distributed parametrizations. By 

hoosing to adopt one of these models for the to-be-learned con- 

roller, the focus is immediately set on a distributed mapping be- 

ween the state and the action, turning the functional optimization 

roblem (7) into the finite-dimensional optimization 

in 
H 

J 

(
{ X (t) } , { U (t) } 

)
(18a) 

. t. X (t + 1) = AX (t ) ̄A + BU (t ) ̄B , (18b) 

 (t) = Φ
(
X (t) ; S , H 

)
. (18c) 

The constraint (18c) replaces a generic distributed controller 

(X (t) ;G) in (7c) with a controller that admits a parametrization 

ased on either a graph filter or a GNN. The resulting controller 

(X (t) ; S ,H 
� ) with filter coefficients H 

� that solves (18) naturally 

atisfies the distributed constraint. 

Problem (18) is nonconvex when adopting a GNN-based con- 

roller (18c) . Thus, to approximately solve this problem, the em- 

irical risk minimization (ERM) approach that is typical in learn- 

ng theory [29] is leveraged. To do this, a training set T = 

 X 1 , 0 , . . . , X |T | , 0 } containing |T | samples X p, 0 drawn independently 

rom some distribution p is considered to be the different random 

nitializations of the system. Then, the ERM problem is given by 

in 
H 

|T | ∑ 

p=1 

J 

(
{ X p (t) } , { U p (t) } 

)
(19a) 

. t. X p (t + 1) = AX p (t) ̄A + BU p (t) ̄B , (19b) 
5 
 p (t) = Φ
(
X p (t) ; S , H 

)
, (19c) 

 p (0) = X p, 0 . (19d) 

Problem (19) can be solved by means of an algorithm based on 

tochastic gradient descent [30] , efficiently computing the gradi- 

nt of J (·, ·) with respect to the parameter H by means of the 

ack-propagation algorithm [31] . To estimate the performance of 

he learned controllers –i.e. those obtained by solving (19) – a new 

et of initial states is generated, called the test set, and the av- 

rage quadratic cost (6) is computed on the resulting trajectories. 

n essence, the optimization problem (18) is transformed into a 

elf-supervised ERM problem (19) that is solved through simulated 

ata. 

It is observed that, during the training phase, the optimiza- 

ion problem (19) has to be solved in a centralized manner due to 

he weight-sharing scheme imposed by the FIR graph filters (recall 

hat this weight-sharing scheme is necessary for scalability, keep- 

ng the number of learnable parameters independent of the size 

f the graph). However, this training phase can be carried out of- 

ine, prior to online execution. Once the GNN-based controllers are 

earned and the training phase is finished, they can be deployed 

n an entirely distributed manner for testing in the online phase. 

t is noted that there exist distributed optimization algorithms that 

everage consensus to arrive to the optimal set of filter taps H [32] . 

hese techniques, however, are outside the scope of the present 

ork and will be left as future research directions. 

. Properties of GNN controllers 

GNNs have many suitable properties that make them appropri- 

te choices for learning distributed controllers. As standalone pro- 

essing units, they are naturally distributed architectures and have 

he properties of permutation equivariance and Lipschitz continu- 

ty to changes in the underlying graph support. As part of a lin- 

ar dynamical system, GNN-based controllers can also be shown 

o stabilize the system. Furthermore, the deviation in the nominal 

rajectory due to unknown system matrices can be mitigated with 

roperly learned filters. These properties, which are studied in this 

ection, hold for any GNN controller of the form (17) that satisfy 

he corresponding hypotheses. 

.1. GNN Properties 

The main motivation for choosing GNNs as parametrizations for 

he controller is that they are naturally distributed architectures. 

NNs are built by using graph filters and pointwise nonlineari- 

ies. Graph filters are distributed operations, as discussed after (11) . 

he pointwise nonlinearity does not affect this, and thus GNNs are 

lso distributed. It is noted that asynchronous implementations of 

raph filtering are possible [33] . Additionally, GNNs are capable of 

earning nonlinear controllers, which is a key feature in the context 

f distributed control, as it is expected that optimal distributed 

ontrollers to be nonlinear [6] . 

GNNs exhibit the property of permutation equivariance, [13, 

rop. 2] , which means that a reordering of the nodes does not af- 

ect the output, since it will be correspondingly reordered. This fur- 

her implies that the GNNs are capable of leveraging any existing 

ymmetries in the underlying graph topology to improve training. 

ore specifically, learning how to process a given signal from the 

raining set means that the GNN learns how to process the same 

ignal anywhere in the graph with the same neighborhood topol- 

gy. In a manner akin to the data augmentation that happens nat- 

rally by the choice of the convolution operation in regular convo- 

utional neural networks (CNNs), permutation equivariance shows 
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recisely one way in which the GNN exploits the data structure to 

mprove training and generalization. 

GNNs are also Lipschitz continuous to changes in the underly- 

ng graph [13, Thm. 4] . This means that, if the underlying graph 

upport is perturbed, the output of the GNN changes linearly with 

he size of perturbation. This implies that a GNN trained on one 

raph but tested on another one will still work well as long as 

oth graphs are similar, see [14] . It also implies that if the graph is

ot known exactly but has to be estimated, then the GNN can still 

e trained as long as the graph support estimate is good enough. 

dditionally, it indicates that GNNs are suitable for time-varying 

cenarios where the changes to the graph support are slow [23] . 

.2. Closed-Loop stability 

GNNs have many suitable properties for learning distributed 

ontrollers. However, this does not necessarily guarantee that they 

re a good choice for a control system. In what follows, properties 

elating to GNN-based controllers within a linear dynamical system 

re studied. 

A network system with the linear dynamics (5) is character- 

zed by the set of matrices D = { S , A , ̄A , B , ̄B } , where S ∈ R 
N×N is

he graph support matrix, A ∈ R 
N×N and Ā ∈ R 

F ×F are the system 

atrices, and B ∈ R 
N×N and B̄ ∈ R 

G ×F are the control matrices. The 

rajectory of the system { X (t) } depends on these matrices. GNNs 

re capable of stabilizing the closed-loop dynamics of a distributed 

inear system D. More specifically, drawing from [34] , the notion of 

nput-state stability is defined as follows. 

efinition 1 (Input-state stability) . Consider a linear dynami- 

al system as in (5) controlled by U (t) = Φ(X (t)) + E (t) where

 (t) is a disturbance term or exploratory signal. The system is 

nput-state stable if, for all sequences { X (t) } and { E (t) } such
hat 

∑ ∞ 

t=0 ‖ X (t) ‖ < ∞ and 
∑ ∞ 

t=0 ‖ E (t) ‖ < ∞ , there exist constants

0 , β1 ≥ 0 such that 

∞ 
 

t=0 

‖ X (t) ‖ ≤ β0 + β1 

∞ ∑ 

t=0 

‖ E (t) ‖ . (20) 

This definition of input-state stability is widely used [34] . Given 

 trained GNN-based controller, a sufficient condition for the re- 

ulting system to be stable can be determined. 

heorem 1 (Sufficient condition for input-state stability) . Consider 

 distributed linear system D. Assume that the system is controlled 

ith a GNN (17) consisting of L layers of filters H � (·; S , H) with F � 
eatures and K � taps each. Let the nonlinearity σ (·) be such that 
 σ (x ) | ≤ | x | . Then, the closed-loop system is input-state stable if it

olds that 

(D, H) < 1 , (21) 

here 

(D, H) = ‖ A ‖ 2 ‖ ̄A ‖ ∞ + C Φ‖ B ‖ 2 ‖ ̄B ‖ ∞ (22)

s the stability constant, with C Φ = 

∏ L 
� =1 C H � for C H � the size of the � 

th 

lter, see (13) . 

roof. See Appendix B . �

Theorem 1 is a sufficient condition for the closed-loop system 

o be input-state stable. The learned filters affect the constant C Φ
uch that the smaller the filters C H � the smaller C Φ and thus ξ . 
herefore, a penalty on the size of the filters, see (13) , can be

dded to the objective function of (19) to obtain GNNs with a 

ontrolled value of C Φ and therefore with a smaller stability con- 

tant ξ . The condition on the nonlinearity is mild and is satisfied 

y the most popular nonlinearities ( ReLU , tanh , sigmoid , etc.). It 

s observed that the sufficient condition requires ‖ A ‖ ‖ ̄A ‖ ∞ < 1 ,
2 

6 
hich implies that the system is open-loop stable. In many physi- 

al systems such as power networks, it is possible to design stabi- 

izing controllers. This implies that once the system has been sta- 

ilized a GNN-based controller can then be learned to minimize 

he quadratic cost. 

.3. Trajectory deviation 

It often happens that one does not have direct access to the 

atrices D that characterize the distributed linear system and 

hus they should be estimated. Alternatively, sometimes the sys- 

em description may change slightly from the training to the test- 

ng phase. Therefore, it is essential to study the impact of the in- 

ccurate knowledge of these matrices on the trajectory. 

Consider a network system on a graph G with the linear dy- 

amics (5) and described by the set of matrices D. Assume that 

hese matrices are unknown and, instead, access to estimates of 

hese matrices is provided. These estimates are denoted by ˆ D = 

 ̂ S , ̂  A , ̂  A , ̂  B , ̂  B } where ˆ S ∈ R 
N×N is the estimate of the support matrix

i.e. the exact graph support is unknown), ˆ A ∈ R 
N×N and ˆ A ∈ R 

F ×F 

re the estimates of the system matrices, and B̄ ∈ R 
N×N and ˆ B ∈ 

 
G ×F are the estimates of the control matrices. It is evident that 

he trajectory { ̂  X (t) } on the linear dynamical network ˆ D could be 

oticeably different from { X (t) } , the one obtained from the system 

escribed by D. 

The goal is to characterize how the difference in the systems D
nd ˆ D impacts their respective trajectories { X (t) } and { ̂  X (t) } . To-
ards this end, a notion of distance between the system matrices 

s first defined. 

efinition 2 (Distance between systems) . Given the system matri- 

es D and ˆ D , the distance between system descriptions is defined as 

 (D, ˆ D ) = ε, (23) 

here ε > 0 is the smallest number such that 

 S − ˆ S ‖ 2 ≤ ε ‖ A − ˆ A ‖ 2 ≤ ε ‖ ̄A − ˆ A ‖ ∞ ≤ ε, 

‖ B − ˆ B ‖ 2 ≤ ε ‖ ̄B − ˆ B ‖ ∞ ≤ ε. 
(24) 

In other words, Definition 2 determines the distance between 

wo system descriptions as the maximum norm difference in the 

onstitutive matrix norms, with matrices on the graph domain be- 

ng determined by the spectral norm ‖ · ‖ 2 , and matrices on the 

eature domain being determined by the infinity norm ‖ · ‖ ∞ . 

First, a result on how the input-state stability of the closed-loop 

ystem is affected by the distance between D and ˆ D is obtained. 

roposition 2 (Change in input-state stability) . Consider two sys- 

ems described by the sets of matrices D and ˆ D . Let these systems 

e controlled by a GNN (17) consisting of L layers of filters H � (·; ·, H)

ith F � features and K � filter taps each. Let the nonlinearity σ (·) be 
uch that | σ (a ) − σ (b) | ≤ | a − b| and σ (0) = 0 . Then, it holds that 

ξ − ˆ ξ
∣∣ ≤ ˆ C ξ d (D, ˆ D ) , (25) 

here ξ = ξ (D, H) and ˆ ξ = ξ ( ̂  D , H) are the stability constants of the

ystem D and ˆ D , respectively, and where 

ˆ 
 ξ = ‖ A ‖ 2 + ‖ ̂

 A ‖ ∞ + C Φ
(‖ B ‖ 2 + ‖ ̂  B ‖ ∞ 

)
, (26)

ith C Φ = 

∏ L 
� =1 C H � for C H � the size of the � 

th filter, see (13) . 

roof. See Appendix B . �

Proposition 2 states that the difference in the stability constants 

etween the system D and its estimate ˆ D depends on the distance 

 (D, ˆ D ) between them, on the system matrices of both D and ˆ D , 

nd on the learned filters through C Φ. If the matrix description of 

is inaccessible, then Def. 2 can be leveraged to replace ‖ A ‖ 
2 
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nd ‖ B ‖ 2 in (26) by the upper bounds ‖ A ‖ 2 ≤ ‖ ̂  A ‖ 2 + d (D, ˆ D ) and

 B ‖ 2 ≤ ‖ ̂  B ‖ 2 + d (D, ˆ D ) , respectively. The same holds if ˆ D is not

nown but D is. It is also noted that, for the case when F = G = 1 ,

t follows from the proof that ˆ C ξ = 1 + C Φ and the bound is propor-

ional to the distance d (D, ˆ D ) ; see Appendix B . 

Next, the goal is to characterize the deviation in the trajectories, 

amely ‖ X (t) − ˆ X (t) ‖ , as a function of how different the systems

and ˆ D are. In this context, a controller Φ is acceptable if the re- 

ulting closed-loop trajectories of two different systems are similar 

s long as the systems themselves are similar. This is the case for 

NN-based distributed controllers as shown next. 

heorem 3 (Bound on trajectory deviation) . Consider two systems 

escribed by the sets of matrices D and ˆ D . Let these systems be con- 

rolled by a GNN (17) consisting of L layers of filters H � (·; ·, H) with

 � features and K � filter taps each. Let the nonlinearity σ (·) be such 
hat | σ (a ) − σ (b) | ≤ | a − b| and σ (0) = 0 . Then, it holds that 

X (t) − ˆ X (t) 
∥∥ ≤ ˆ C Φ ˆ C t ‖ X (0) ‖ d (D, ˆ D ) , (27) 

ith ˆ C Φ = ˆ C ξ + C Φ�Φ‖ ̂  B ‖ 2 ‖ ̂  B ‖ ∞ (1 + 8 
√ 

N ) for ˆ C ξ as in (26) , C Φ =
 L 
� =1 C H � and �Φ = 

∑ L 
� =1 (�H � /C H � ) for C H � and �H � the size and Lip- 

chitz constant of the � th filter, respectively, see (13) and (15) ; and 

ith ˆ C t such that ˆ C 0 = 0 and 

ˆ 
 t = t max { ξ , ˆ ξ} t−1 (28) 

or t ≥ 1 , where ξ and ˆ ξ are the stability constants of the systems D
nd ˆ D , respectively, as in (22) . 

roof. See Appendix C . �

Theorem 3 states that, for a linear dynamical network system 

nder a GNN-based distributed controller, the change in trajectory 

etween the system D and its estimated description ˆ D depends on 

he value of ˆ C Φ that is independent of time, on the value of ˆ C t that 

s time-varying, and on their distance d (D, ˆ D ) . The value of ˆ C Φ is

ffected by the given system (through matrices in the estimated 

ystem ˆ D and the number of nodes N) and the resulting trained 

lters in the GNN (through C Φ and �Φ). The value of ˆ C t is deter- 

ined by the stability constants ξ and ˆ ξ , and becomes larger as 

ime passes if max { ξ , ˆ ξ} ≥ 1 , but otherwise decreases for large t .

ecall that ξ can be estimated from 
ˆ ξ by leveraging Proposition 2 . 

t is noted that the constants ˆ C Φ and ˆ C t can be affected by judi- 

ious training. For example, by penalizing the size of the filters C H � 
nd their Lipschitz constant �H � during training, the learned GNN- 

ased controller can be forced to be more stable, see Section 5 for 

oncrete examples. 

For the particular case when the closed-loop system and its es- 

imate are guaranteed to be input-state stable, the following corol- 

ary can be stated. 

orollary 4 (Bound on trajectory deviation for stable sys- 

ems) . Consider a system D and its estimate ˆ D such that both satisfy 

heorem 1 . Then, it holds that 

X (t) − ˆ X (t) 
∥∥ ≤ ˆ C ‖ X (0) ‖ d (D, ˆ D ) , (29) 

here ˆ C = −e −1 ̂  C Φ/ ( max { ξ , ˆ ξ} × log ( max { ξ , ˆ ξ} )) and ˆ C Φ is given in

heorem 3 . Furthermore, it holds that 

lim 

→∞ 

∥∥X (t) − ˆ X (t) 
∥∥ = 0 . (30) 

roof. See Appendix C . �

It follows from Corollary 4 that if a system and its estimate are 

uaranteed to be input-state stable, then the trajectory deviation 

etween both systems is bounded by a constant that is propor- 

ional to the distance between them and is independent of time 

. Furthermore, this deviation is guaranteed to go to zero as t in- 

reases. 
7 
. Numerical experiments 

In this section, numerical simulations illustrate the performance 

f GNN-based controllers in a distributed linear-quadratic problem. 

n particular, problem (7) is solved with F = G = 1 so that Ā and B̄

ecome scalars that are subsumed into matrices A and B , respec- 

ively. 

Problem setup. The system has N nodes placed uniformly at 

andom on the [0 , 1] × [0 , 1] plane. Edges are drawn between the

-nearest neighbors of each node. The support matrix S is consid- 

red to be the adjacency matrix, normalized by the largest eigen- 

alue so that ‖ S ‖ 2 = 1 . The network system matrix A and network

ontrol matrix B share the same eigenvectors with S and the diago- 

al elements are chosen randomly with a standard Gaussian distri- 

ution and are normalized so that ‖ A ‖ 2 = 0 . 995 and ‖ B ‖ 2 = 1 . The

ost matrices are set to Q = R = I . Trajectories of length T = 50 are

imulated. Unless otherwise specified, the networks have N = 50 

odes. 

Controllers. Five controllers are studied. (i: Optim) The optimal 

entralized controller is used as a baseline [3, eq. (2.4–8)] . (ii: MLP) 

 centralized controller can be learned by using a multi-layer per- 

eptron (MLP) with NF MLP units in the hidden layer, and N units 

n the readout layer [15] . (iii: D-MLP) As a comparative method, 

he learnable, distributed controller proposed in [16] is used; re- 

all that this method learns a separate MLP for each node, partic- 

larly a hidden layer with F D-MLP units and a single output unit 

o estimate the control action of the node. (iv: GNN) A two-layer 

NN (17) with F 1 features and K 1 -order polynomials for the first 

ayer and F 2 = 1 and K 2 = 0 for the second layer. (v: GF) A K 1 -order

olynomial graph filter with F 1 features (11) , followed by a readout 

ayer which is another graph filter with F 2 = 1 output features and 

 2 = 0 filter taps, see [11] . For the nonlinear methods (ii)-(iv), the 

unction tanh is applied pointwise between the first and the sec- 

nd layers. 

Training and evaluation. The controllers (ii)-(v) are trained by 

olving the equivalent ERM problem (19) over a generated train- 

ng set consisting of |T | = 500 initial states. The ADAM algorithm 

30] with the learning rate μ and forgetting factors 0.9 and 0.999 is 

sed to update the gradients over batches of 20 trajectories. A val- 

dation stage leveraging a set of 50 new, independent initial states 

s computed every 5 training updates. After 30 epochs of training, 

he parameters that exhibited the best performance during the val- 

dation stage are retained. The controllers are evaluated by com- 

uting the quadratic cost over trajectories obtained from a set of 

0 new, independent initial states. For ease of exposition, the re- 

ulting cost is normalized by the lower bound for the distributed 

inear-quadratic problem obtained in [9] . The training and evalua- 

ion process is repeated for 100 different realizations of the system 

atrices D. Median and standard deviation values of the normal- 

zed cost are reported. 

Experiment 1: Design hyperparameters. The first experiment 

tudies the performance of the controllers (iv: GNN) and (v: GF) as 

 function of the number of features at the output of the first layer 

 ∈ { 16 , 32 , 64 } , and the order of the polynomial K ∈ { 2 , 3 , 4 } . The
earning rate is chosen from the set μ ∈ { 0 . 005 , 0 . 01 , 0 . 05 } and the
ne yielding the best performance for each architecture is shown 

n Table 1 . In general, the performance does not vary significantly 

s a function of the hyperparameters, with a difference of 3.8 per- 

entage points for (iv: GNN) and 5.4 for (v: GF). From now on, the 

yperparameter values are set to F 1 = 16 , K 1 = 4 and μ = 0 . 01 for

iv: GNN), and F 1 = 64 , K 1 = 4 and μ = 0 . 005 for (v: GF). The fact

hat K 1 = 4 exhibits the best performance for both controllers ev- 

dences the importance of repeated communication with one-hop 

eighbors for collecting information farther away. 

Experiment 2: Comparison. For the second experiment, the 

erformance of the controllers (iv: GNN) and (v: GF) is compared 
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Fig. 1. Comparison with the open-loop system, showing the norm of the evolution of the state norm ‖ X (t) ‖ as a function of time t . (a) This is the case when the system is 

open-loop stable, i.e. ‖ A ‖ 2 = 0 . 995 . It is observed that, while the trajectory is going to zero even in the absence of a controller (open-loop), the use of a GNN-based controller 

drives the state faster to zero. (b) Consider now an unstable open-loop system given by ‖ A ‖ 2 = 1 . 01 . It is observed that the state does not go to zero in the absence of a 

controller, and that the GNN-based controller successfully drives the state to 0. 

Table 1 

Normalized cost of the distributed controllers. (a) Distributed controller (iv: 

GNN) for μ = 0 . 01 . (b) Distributed controller (v: GF) for μ = 0 . 005 . Lower 

bound: 65(±2) . 

F / K 2 3 4 

16 1 . 1396(±0 . 0379) 1 . 1311(±0 . 0338) 1 . 1052 (±0 . 0295 ) 

32 1 . 1440(±0 . 0348) 1 . 1286(±0 . 0275) 1 . 1354(±0 . 0255) 

64 1 . 1409(±0 . 0356) 1 . 1300(±0 . 0272) 1 . 1196(±0 . 0323) 

(a) GNN (iv: GNN) 

F/K 2 3 4 

16 1 . 1716(±0 . 0319) 1 . 1449(±0 . 0331) 1 . 1295(±0 . 0289) 

32 1 . 1609(±0 . 0291) 1 . 1385(±0 . 0358) 1 . 1233(±0 . 0285) 

64 1 . 1466(±0 . 0361) 1 . 1248(±0 . 0313) 1 . 1175 (±0 . 0251 ) 

(b) Graph Filter (v: GF) 
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a  
o that of the centralized baselines (i: Optim) and (ii: MLP), and 

hat of the distributed method (iii: D-MLP). The hyperparame- 

ers of (ii: MLP) and (iii: D-MLP) are set to (F MLP , μ) = (16 , 0 . 005)

nd (F D-MLP , μ) = (16 , 0 . 01) , respectively, chosen for yielding the

est performance from the set { 16 , 32 , 64 } for the features and
 0 . 005 , 0 . 01 , 0 . 05 } for the learning rate. The controller (ii: MLP)

earns 80,0 0 0 parameters and the controller (iii: D-MLP) learns 

,200, while (iv: GNN) learns 80 parameters and (v: GF) learns 

20. The centralized controllers (i: Optim) and (ii: MLP) exhibit a 

ormalized cost of 0 . 9961(±0 . 0 0 01) and 0 . 9969(±0 . 0 0 03) , respec-

ively. This shows that these two controllers are better than any 

ossible distributed one. The distributed method (iii: D-MLP) yields 

 cost of 1 . 0999(±0 . 0167) , 0.5 percentage points better than (iv:

NN) which shows a cost of 1 . 1052(±0 . 0295) and 1.7 percentage

oints better than (v: GF) which shows a cost of 1 . 1175(±0 . 0251) .

verall, as expected, the centralized controllers perform better 

han the distributed ones. The performance of the controller (iii: 

-MLP) is slightly better than (iv: D-MLP), possibly due to the fact 

hat (iii: D-MLP) exhibits a larger representation space that can 

e successfully navigated given the rich training setting available 

n this simulation. It is observed in experiments 3 and 4, how- 

ver, that this controller is not robust to changes in the underlying 

opology nor scales well, precisely due to the large number of pa- 

ameters. Finally, it is observed that the nonlinear distributed con- 

rollers (iii) and (iv) outperform the linear one (v: GF). 

Experiment 3: Comparison with open-loop systems. In the 

hird experiment, a comparison with an open-loop system is car- 

ied out. It is noted that, from choosing ‖ A ‖ 2 = 0 . 995 , the result-

ng system is open-loop stable and, thus, the state will be driven 

o zero even in the absence of a controller. In this context, the ef- 

ect of the distributed controller should be such that it drives the 
8 
tates to zero faster than the open-loop case. The results shown 

n Fig. 1 a indicate that the use of a GNN controller drives the 

tate to zero faster than the open-loop, uncontrolled, system. This 

llustrates that the GNN controller is better than using no con- 

roller, also in the case where the open-loop system is already sta- 

le. This is also shown in the resulting cost, which for the open- 

oop system is 1 . 5961(±0 . 0837) while for the GNN controller is 

 . 1104(±0 . 0334) . 

Alternatively, the case of a system that is open-loop unstable 

s also considered. In this case, the norm of the system matrix is 

 A ‖ 2 = 1 . 01 . It is immediately observed in Fig. 1 b that while the

pen-loop system tends to be unstable (the norm of ‖ X (t) ‖ grows 

s t grows), the GNN controller effectively drives the state to zero. 

More generally, an experiment of the normalized cost as a func- 

ion of ‖ A ‖ 2 is run. This experiment helps visualize the transition 

etween systems that are open-loop stable and systems that are 

ot. The norm of the system matrix ‖ A ‖ 2 varies from 0.95 to 1.01.

esults are shown in Fig. 2 . It is evident that as ‖ A ‖ 2 grows, the

ost increases, showing that the system is increasingly harder to 

ontrol. But, while the open-loop system cost seems to exponen- 

ially grow, the GNN controller manages to keep the cost low and, 

s seen in Fig. 1 b it effectively drives the state to zero. 

Experiment 4: Unknown system matrices. In the fourth ex- 

eriment, the impact of an unknown system on both the stabil- 

ty ( Prop. 2 ) and the trajectory deviation ( Thm. 3 ) is studied. The

ontrollers are trained on a system D, and then tested on an- 

ther system ˆ D that is a random Gaussian noise perturbation such 

hat d (D, ˆ D ) = ε for some predefined value of ε. It is observed
n (25) that the change in stability is controlled by C Φ = C H 1 C H 2 ,

hile (27) shows that the trajectory deviation can be controlled 

y lowering the value of the Lipschitz constants { �H 1 
, �H 2 

} and of 
he size { C H 1 , C H 2 } of the filters involved. Therefore, the controller 
iv: GNN) is trained with three different penalties: a penalty on 

he size C Φ, i.e. the objective function is J ({ X (t) } , { U (t) } ) + C Φ, a

enalty on the Lipschitz constants, i.e. J ({ X (t) } , { U (t) } ) + (�H 1 
+

H 2 
) , or a penalty on both the filter size and the Lipschitz con- 

tant, i.e. J ({ X (t) } , { U (t) } ) + 0 . 5(�H 1 
+ �H 2 

+ C Φ) . This is indicated

y the legend ‘GNN w/ size’, ‘GNN w/ Lipschitz’, and ‘GNN w/ both’, 

espectively. The GCNN is also trained without penalties, for com- 

arison, and labeled ‘GNN’. 

The results are shown on Fig. 3 . First, the effects of the un- 

nown system on the stability are analyzed, see Prop. 2 . Fig. 3 a

hows that when training the GNN with a size penalty, the con- 

roller leads to a stable closed-loop system 100% of the time for 

 < 0 . 05 , fails to control only 0 . 5% of the trajectories for ε = 0 . 0562

nd 10% of the trajectories for ε = 0 . 1 . When training with both
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Fig. 2. Normalized cost as a function of the norm of ‖ A ‖ 2 . It is observed that the cost for the uncontrolled, open-loop system, grows exponentially with the norm of ‖ A ‖ 2 
as expected. The cost of the GNN-controller, however, grows only slightly with increasing values of ‖ A ‖ 2 . 

Fig. 3. Simulation results for a network with unknown system matrices as a function of the distance ε between the systems, see (23) . (a) Ratio of stable trajectories as a 

function of ε; it is observed that when training with a penalty on the size C Φ of the GNN, the resulting trajectories are stable for larger values of ε. (b) Cost difference of 

the controlled trajectories relative to the cost on the perfectly known system; it is observed that when training with a penalty on the size C Φ of the GNN, the resulting 

controller achieves the lowest relative cost difference. The distributed controller (iii: D-MLP) and the centralized controller (ii: MLP) are not shown since they exhibit relative 

cost differences of approximately 7.5 and 1400, respectively, thus being out of scale; this is likely to their failure to control trajectories. 
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enalties, the controller is able to lead to stable systems 100% of 

he time for ε = 0 . 01 , but then decays rapidly in its ability to sta-

ilize the system as ε grows. Training with Lipschitz penalty only 

eads to a controller that can stabilize about 92% of the trajecto- 

ies for ε = 0 . 01 and then falls to stabilizing about 80% of the tra-

ectories for ε = 0 . 1 . This shows that training with a penalty on

he size C Φ of the GNN has the most impact on the ability of the

earned distributed controller to stabilize the system, as predicted 

y Prop. 2 Finally, note that when training the GNN without penal- 

ies, the resulting controller stabilizes only 55% of the trajectories 

n an unknown system. 

It is observed in Fig. 3 b the relative difference between the 

ost obtained when testing on the system D and that obtained 

hen testing on system ˆ D for different values of system distance 

among stable trajectories. First, it is noted that training with a 

enalty on the size of the GNN leads to a controller that is un- 

ffected by changes in the system, exhibiting a relative cost dif- 

erence of 0.25 for all values of ε under study. The other three 

ontrollers seem to improve in their relative difference as ε grows, 
9 
nd this can be explained because the cost is being computed only 

mong stable trajectories. This implies that, while ε grows and less 

rajectories are being stabilized, the ones that remain do achieve 

ood relative cost difference. Finally, it is noted that the distributed 

ontroller (iii: D-MLP) and the centralized learnable controller (ii: 

LP) were also considered in this simulation. These controllers ex- 

ibited relative differences of approximately 7.5 and 1400, respec- 

ively, thus falling out of scale and not being shown in the figures. 

his results show that neither the (iii: D-MLP) nor the (ii: MLP) 

ontrollers are robust to changes in the system dynamics. 

Experiment 5: Scalability. In the last experiment, scalability of 

he distributed controllers (iii)-(v) is compared. These methods are 

rained on a system with N = 50 nodes, and then at test time, are

sed on increasingly larger systems N ∈ { 50 , 63 , 75 , 87 , 100 } . The
esulting costs of the stable trajectories are shown in Fig. 4 . It is

bserved that, while the D-MLP performs better when tested on 

he same system as it was trained (see experiment 2), it does not 

ransfer as well to larger systems. This is likely to be because it 

ssigns a different fully connected neural network controller to 
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Fig. 4. Normalized cost for the stable trajectories of a GNN-based controller trained on 50 nodes and tested on a larger network system. It is observed that training with 

penalties on both the Lipschitz constant and the size of the filters lead to best scalability results. 
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ach component, so that, when tested on larger systems, it has to 

eplicate this controller on other nodes and that may have a sub- 

tantially different topological neighborhood. Controllers (iv: GNN) 

nd (v: GF), on the other hand, successfully adapt to larger sys- 

ems, even when trained on small ones. In particular, training with 

enalties on both the Lipschitz constant and the size of the filters 

eads to the best scalability results. It is noted that the centralized 

ontroller (ii: MLP) cannot transfer to systems with different num- 

er of nodes since the number of learned parameters depends on 

he number of nodes. 

. Conclusion 

This paper proposes to address the issue of the intractability 

f distributed optimal controllers by leveraging a nonlinear GNN- 

ased parametrization. While the resulting controller is subopti- 

al, it exhibits several desirable properties such as distributed 

omputation, efficiency and scalability. These controllers are ap- 

lied to the distributed linear-quadratic problem, which can be 

ast as a self-supervised empirical risk minimization problem, and 

hen solved by means of machine learning techniques. A sufficient 

ondition for the resulting closed-loop system to be input-state 

table is derived in terms of the filter taps of the GNN-based con- 

roller. Additionally, the trajectory deviation due to mismatch of 

he system descriptions is shown to also be controlled by the filter 

aps. Extensive simulations illustrate the satisfactory performance 

xhibited by GNN-based controllers as well as the ability to be 

rained to exhibit certain desirable characteristics such as an im- 

roved closed-loop stability or a smaller trajectory deviation under 

odel mismatch. The resulting controller is also shown to scale 

o larger systems. Future research on the topic may involve the 

tudy of equilibrium points of a GNN-controlled system and their 

yapunov stability, the use of distributed optimization techniques 

o solve the self-supervised learning problem, and the adoption of 

ther non-convolutional GNN-based architectures. 
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ppendix A. Auxiliary Results 

In this appendix four Lemmas that are useful for 

roving the theorems and propositions of Sections Ap- 

endix B and Appendix C are included. The first two Lem- 

as establish an upper bound on the output of a graph filter 

 Lemma 5 ) and a GNN ( Lemma 6 ) as a function of the size of the

lters involved. The following two lemmas determine the Lipschitz 

ontinuity with respect to the support matrix S of the graph filter 

 Lemma 7 ) and the GNN ( Lemma 8 ) as a function of the filter

izes and the Lipschitz constants. 

emma 5 (Bound on Graph Filter Output) . Let H : R 
N×F → R 

N×G be

 graph filter (11) defined over a support matrix S ∈ R 
N×N . Let X ∈

 
N×F be any graph signal such that ‖ X ‖ < ∞ . Then, 

H (X ; S , H) 
∥∥ ≤ C H 

∥∥X 

∥∥, (A.1) 

ith C H being the size of the filter bank, see (13) . 

roof. Recall that the norm associated to the graph signal space is 

iven by the L 2 , 1 entrywise matrix norm, see (9) . Then, the graph 

ignal size of the output Y = H (X ; S , H) can be computed as 

 Y ‖ = 

G ∑ 

g=1 

‖ y g ‖ 2 = 

G ∑ 

g=1 

∥∥∥ F ∑ 

f=1 

H f g (S ) x 
f 

∥∥∥
2 
, (A.2)

here H f g (S ) = 

∑ K 
k =0 [ H k ] f g S 

k , see (13) , and where ‖ x ‖ 2 represents
he Euclidean norm on vectors. One can apply the triangular in- 

quality to (A.2) to obtain: 

 Y ‖ ≤
G ∑ 

g=1 

F ∑ 

f=1 

∥∥H f g (S ) x 
f 
∥∥
2 

(A.3) 

nd noticing that the summation is comprised of Euclidean vector 

orms, the submultiplicativity of the corresponding matrix spectral 
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orm can be used to arrive at 

 Y ‖ ≤
G ∑ 

g=1 

F ∑ 

f=1 

∥∥H f g (S ) 
∥∥
2 

∥∥x f ∥∥
2 
, (A.4) 

hich, noting that the sum over g only affects ‖ H f g (S ) ‖ 2 , can be
earranged as 

 Y ‖ ≤
F ∑ 

f=1 

∥∥x f ∥∥
2 

G ∑ 

g=1 

∥∥H f g (S ) 
∥∥
2 
. (A.5) 

ext, note that 
∑ G 

g=1 ‖ H f g (S ) ‖ 2 is the sum of all the spectral

orms of the filters along the g dimension, thus the result is a 

calar that depends on f and is denoted with C f in this proof, 

.e. 
∑ G 

g=1 ‖ H f g (S ) ‖ 2 = C f . For each value of f , there is a differ-

nt C f , and it holds true that C f ≤ sup f=1 , ... ,F . This implies that 
 G 
g=1 ‖ H f g (S ) ‖ 2 ≤ sup f=1 , ... ,F 

∑ G 
g=1 ‖ H f g (S ) ‖ 2 . 

From (13) , note that each element of the matrix C H ∈ 

 
F ×G is given by max λ∈ [ λl ,λh ] 

| h f g (λ) | for some chosen values 

f [ λl , λh ] . Then, if λl and λh are the minimum and maxi- 

um eigenvalues of S as is usually the case, then it follows 

hat sup f=1 , ... ,F 

∑ G 
g=1 ‖ H f g (S ) ‖ 2 ≤ ‖ C H ‖ ∞ = C H , see (13) . Recall that

 A ‖ ∞ is the infinity norm of matrices (i.e. maximum absolute row 

um). Finally, (A.5) can be upper bounded as 

 Y ‖ ≤ C H 

F ∑ 

f=1 

‖ x f ‖ 2 . (A.6) 

oting that 
∑ F 

f=1 ‖ x f ‖ 2 = ‖ X ‖ completes the proof. �

emma 6 (Bound on GNN Output) . Let Φ(·; S , H) : R 
N×F → R 

N×G be

 GNN (17) with L layers defined over a support matrix S ∈ R 
N×N . Let

he nonlinearity σ (·) be such that | σ (x ) | ≤ C σ | x | for all x ∈ R , for

ome C σ > 0 . Then, for every graph signal X ∈ R 
N×F with ‖ X ‖ < ∞ ,

t holds that 

Φ(X ; S , H) 
∥∥ ≤ C L σC Φ

∥∥X 

∥∥, (A.7) 

here C Φ = 

∏ L 
� =1 C H � for C H � the size of the � 

th filter, see (13) . 

roof. Consider the computation of layer � 

 � = σ
(
H � 

(
X � −1 ; S , H � 

))
, (A.8) 

hose norm is given by (9) , 

 X � ‖ = 

F � ∑ 

g=1 

‖ x g � ‖ 2 , (A.9) 

ith 

 

g 
� = σ

( F � −1 ∑ 

f=1 

H � f g (S ) x 
f 
� −1 

)
, (A.10) 

here H � f g (S ) = 

∑ K � 
k =0 

[ H �k ] f g S 
k denotes the scalar-valued graph fil-

er. 

Substituting (A.10) into (A.9) and using the hypothesis on the 

onlinearity that | σ (x ) | ≤ C σ | x | for all x , the following upper

ound on the norm of the output signal at layer � is obtained: 

 X � ‖ ≤ C σ

F � ∑ 

g=1 

∥∥∥ F � −1 ∑ 

f=1 

H � f g (S ) x 
f 
� −1 

∥∥∥
2 
, (A.11) 

hich is simply 

 X � ‖ ≤ C σ
∥∥H � (X � −1 ; S , H � ) 

∥∥. (A.12) 

ow, using Lemma 5 on (A.12) yields 

 X � ‖ ≤ C σC H � ‖ X � −1 ‖ . (A.13) 
11 
Repeating (A.13) for all consecutive layers until reaching � = 1 

eads to 

 X � ‖ ≤ C � σ

� ∏ 

� ′ =1 

C H � ′ ‖ X 0 ‖ . (A.14) 

y substituting � = L into (A.14) and recalling that X 0 = X ,

(X ; S , H) = X L and C Φ = 

∏ L 
� =1 C H � , the proof is completed. �

In what follows, we state two Lemmas regarding the Lipschitz 

ontinuity of graph filters and GNNs with respect to the support 

atrix S . These results have already been correspondingly proved, 

nd are just rewritten here to unify notation. 

emma 7 (Lipschitz continuity of graph filter with respect to. S ) 

et H : R 
N×F → R 

N×G be a graph filter (11) . Let S ∈ R 
N×N and ˆ S ∈

 
N×N be two support matrices, such that ‖ S − ˆ S ‖ 2 ≤ ε. Then, for any 
raph signal X ∈ R 

N×F such that ‖ X ‖ < ∞ , it holds that 

H (X ; ˆ S , H) − H (X ; S , H) 
∥∥ ≤ ε(1 + 8 

√ 

N )�H ‖ X ‖ + O (ε 2 ) , (A.15)

ith �H being the Lipschitz constant filter bank, see (14) . 

roof. See [13, Thm. 1] . �

emma 8 (Lipschitz continuity of the GNN with respect to. S ) 

et Φ(·; ·, H) : R 
N×F → R 

N×G be a GNN (17) with L layers. Let σ (·) be
uch that | σ (x ) − σ (y ) | ≤ �σ | x − y | for all x, y ∈ R for some �σ > 0 ,

nd σ (0) = 0 . Let S ∈ R 
N×N and ˆ S ∈ R 

N×N be two support matrices

uch that ‖ S − ˆ S ‖ 2 ≤ ε. Then, for every graph signal X ∈ R 
N×F with

 X ‖ < ∞ , it holds that 

Φ(X ; ˆ S , H) − Φ(X ; S , H) 
∥∥ ≤ ε(1 + 8 

√ 

N )�L 
σC Φ

L ∑ 

� =1 

�H � 

C H � 
‖ X ‖ + O (ε 2 ) , 

(A.16) 

here C Φ = 

∏ L 
� =1 C H � for C H � the size of � 

th filter, see (13) , and where

H � is the corresponding Lipschitz constant, see (15) . 

roof. See [13, Thm. 4] . �

ppendix B. Proof of Closed-Loop Stability 

In this appendix, we first prove Theorem 1 that gives a suf- 

cient condition for the GNN-controlled system D to be stable. 

e then prove Proposition 2 stating how the stability constant ξ
hanges from system D to system ˆ D . 

roof of Theorem 1.. The system dynamics with a GNN-based, ex- 

loratory controller given by U (t) = Φ(X (t) ; S , H) + E (t) are 

 (t) = AX (t − 1) ̄A + B Φ(X (t − 1)) ̄B + BE (t − 1) ̄B . (B.1)

he graph signal norm of the trajectory can be bounded by apply- 

ng the triangular inequality as follows: 

 X (t) ‖ ≤ ‖ A ‖ 2 ‖ ̄A ‖ ∞ ‖ X (t − 1) ‖ (B.2) 

+ ‖ B ‖ 2 ‖ ̄B ‖ ∞ ‖ Φ(X (t − 1)) ‖ + ‖ B ‖ 2 ‖ ̄B ‖ ∞ ‖ E (t − 1) ‖ . 

he term ‖ Φ(X (t) ; S ,H) ‖ can be bounded by leveraging 

emma 6 on the bound of the output of a GNN as 

 U (t) ‖ = 

∥∥Φ
(
X (t) ; S , H 

)∥∥ ≤ C Φ‖ X (t) ‖ , (B.3)

ith C σ = 1 . This result is used in (B.2) , to yield 

 t ≤ ξx t−1 + βe t−1 , (B.4) 

here x t = ‖ X (t) ‖ , ξ = ‖ A ‖ 2 ‖ ̄A ‖ ∞ + C Φ‖ B ‖ 2 ‖ ̄B ‖ ∞ is given in (22) ,

= ‖ B ‖ 2 ‖ ̄B ‖ ∞ and e t = ‖ E (t) ‖ . By repeatedly applying (B.4) , the
ollowing inequality is obtained: 

 t ≤ ξ t x 0 + β
t−1 ∑ 

τ=0 

ξ τ e t−τ−1 . (B.5) 
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Now, considering the summation series that defines the stabil- 

ty as in (20) , one obtains: 

∞ 
 

t=0 

x t ≤ x 0 

∞ ∑ 

t=0 

ξ t + β
∞ ∑ 

t=0 

t−1 ∑ 

τ=0 

ξ τ e t−τ−1 . (B.6) 

everaging the assumptions that ξ < 1 and 
∑ ∞ 

t=0 e t < ∞ , the above 

nequality yields 

∞ 
 

t=0 

x t ≤ x 0 
1 − ξ

+ 

β

1 − ξ

∞ ∑ 

t=0 

e t , (B.7) 

here the fact that, under these assumptions, it holds that 
 ∞ 

t=0 

∑ t−1 
τ=0 ξ

τ e t−τ−1 ≤ ( 
∑ ∞ 

t=0 e t )( 
∑ ∞ 

t=0 ξ
t ) was used. The proof is 

omplete by replacing the definitions of x t , e t and β in (B.7) . Thus,

he system is input-state stable with constants β0 = ‖ X (0) ‖ / (1 −
) and β1 = ‖ B ‖ 2 ‖ ̄B ‖ ∞ / (1 − ξ ) . �

Next, we prove the change in the stability constant when 

 (D, ˆ D ) = ε. 

roof of Proposition 2.. Start by writing the stability constant ˆ ξ = 

( ̂  D , H) as given by (22) to obtain 

ˆ = 
ˆ ξ ( ̂  D , H) = ‖ ̂

 A ‖ 2 ‖ ̂
 A ‖ ∞ + C Φ‖ ̂  B ‖ 2 ‖ ̂  B ‖ ∞ . (B.8)

his equation is equivalent to 

ˆ = ‖ ̂
 A ‖ 2 ‖ ̂

 A ‖ ∞ − ‖ A ‖ 2 ‖ ̂
 A ‖ ∞ 

+ C Φ

(
‖ ̂  B ‖ 2 ‖ ̂  B ‖ ∞ − ‖ B ‖ 2 ‖ ̄B ‖ ∞ 

)
+ ξ . 

(B.9) 

he first term can be rewritten as 

 ̂
 A ‖ 2 ‖ ̂

 A ‖ ∞ − ‖ A ‖ 2 ‖ ̄A ‖ ∞ (B.10) 

= 

(‖ ̂
 A ‖ 2 − ‖ A ‖ 2 

)‖ ̂
 A ‖ ∞ + ‖ A ‖ 2 

(‖ ̂
 A ‖ ∞ − ‖ ̄A ‖ ∞ 

)
. 

rom the definition of the distance d (D, ˆ D ) = ε it is known 

hat −ε ≤ ‖ ̂  A ‖ 2 − ‖ A ‖ 2 ≤ ε, and analogously for ‖ ̄A ‖ ∞ , so that

B.10) can be bounded by 

 ̂
 A ‖ 2 ‖ ̂

 A ‖ ∞ − ‖ A ‖ 2 ‖ ̂
 A ‖ ∞ ≤ ε 

(‖ A ‖ 2 + ‖ ̂
 A ‖ ∞ 

)
. (B.11)

ollowing the same reasoning for the control matrices, one ob- 

ains: 

 ̂  B ‖ 2 ‖ ̂  B ‖ ∞ − ‖ B ‖ 2 ‖ ̂  B ‖ ∞ ≤ ε 
(‖ B ‖ 2 + ‖ ̂  B ‖ ∞ 

)
. (B.12)

y substituting (B.11) and (B.12) into (B.9) and defining ˆ C ξ = 

 A ‖ 2 + ‖ ̂  A ‖ ∞ + C Φ(‖ B ‖ 2 + ‖ ̂  B ‖ ∞ ) , the proof is complete. �

ppendix C. Proof of Trajectory Deviations 

In this appendix, Theorem 3 bounding the trajectory deviation 

etween systems D and ˆ D is proved. Then, Corollary 4 that con- 

iders the special case when both D and ˆ D are input-state stable 

s also proved. 

roof of Theorem 3.. The dynamic of the error graph signal X (t) −
ˆ  (t) is given by 

 (t) − ˆ X (t) = AX (t − 1) ̄A − ˆ A ̂  X (t − 1) ̂  A 

+ BU (t − 1) ̄B − ˆ B ̂  U (t − 1) ̂  B . 
(C.1) 

he evolution of X (t) and ˆ X (t) and that of U (t) and ˆ U (t) are stud-

ed separately. 

To study the first part of the right-hand side of (C.1) , one can

rite: 

X (t − 1) ̄A − ˆ A ̂  X (t − 1) ̂  A = AX (t − 1) 
(
Ā − ˆ A 

)
(C.2) 

+ 

(
A − ˆ A 

)
X (t − 1) ̂  A + 

ˆ A 

(
X (t − 1) − ˆ X (t − 1) 

)
ˆ A . 

bserve that (C.2) consists of three terms containing each of the 

rrors between system matrices and states. Computing the size of 
12 
he graph signal in (C.2) , see (9) , and applying the triangular in-

quality for each of the three terms, one obtains: 

AX (t − 1) ̄A − ˆ A ̂  X (t − 1) ̂  A 

∥∥
≤ ‖ A ‖ 2 

F ∑ 

f=1 

∥∥x f (t − 1) 
∥∥
2 

F ∑ 

g=1 

∣∣[ ̄A ] f g − [ ̂  A ] f g 
∣∣

+ 

∥∥A − ˆ A 

∥∥
2 

F ∑ 

f=1 

∥∥x f (t − 1) 
∥∥
2 

F ∑ 

g=1 

∣∣[ ̂  A ] f g 
∣∣

+ ‖ ̂
 A ‖ 2 

F ∑ 

f=1 

∥∥∥x f (t − 1) − ˆ x f (t − 1) 

∥∥∥
2 

F ∑ 

g=1 

∣∣[ ̂  A ] f g 
∣∣. 

(C.3) 

ow, using the bound 
∑ F 

g=1 | [ ̂  A ] f g | ≤ max f 
∑ F 

g=1 | [ ̂  A ] f g | = ‖ ̂  A ‖ ∞ ,

nd analogously for ( ̄A − ˆ A ) , one can write: 

AX (t − 1) ̄A − ˆ A ̂  X (t − 1) ̂  A 

∥∥
≤

(
‖ A ‖ 2 ‖ ̄A − ˆ A ‖ ∞ + ‖ A − ˆ A ‖ 2 ‖ ̂

 A ‖ ∞ 

)
‖ X (t − 1) ‖ 

+ ‖ ̂
 A ‖ 2 ‖ ̂

 A ‖ ∞ ‖ X (t − 1) − ˆ X (t − 1) ‖ , (C.4) 

here the resulting sum over f has been replaced for the corre- 

ponding size of the graph signal, see (9) . 

Proceed analogously to (C.4) , the second term in the right-hand 

ide of (C.1) can be bounded as 

BU (t − 1) ̄B − ˆ B ̂  U (t − 1) ̂  B 

∥∥
≤

(
‖ B ‖ 2 ‖ ̄B − ˆ B ‖ ∞ + ‖ B − ˆ B ‖ 2 ‖ ̂  B ‖ ∞ 

)
‖ U (t − 1) ‖ 

+ ‖ ̂  B ‖ 2 ‖ ̂  B ‖ ∞ ‖ U (t − 1) − ˆ U (t − 1) ‖ . (C.5) 

he control term ‖ U (t) ‖ is a GNN with input X (t) and can thus be

ounded by leveraging Lemma 6 , i.e. ‖ U (t) ‖ ≤ C Φ‖ X (t) ‖ . To bound
 U (t) − ˆ U (t ) ‖ , Φ(X (t ) ; ˆ S , H) is added and subtracted, and the size

f the graph signal computed, to obtain 

U (t) − ˆ U (t) 
∥∥ = 

∥∥Φ
(
X (t) ; S , H 

)
− Φ

(
ˆ X (t) ; ˆ S , H 

)∥∥
≤

∥∥Φ
(
X (t) ; S , H 

)
− Φ

(
X (t) ; ˆ S , H 

)∥∥ (C.6) 

+ 

∥∥Φ
(
X (t) ; ˆ S , H 

)
− Φ

(
ˆ X (t) ; ˆ S , H 

)∥∥, 

here the triangular inequality was used. For the first term in 

C.6) , it follows from Lemma 8 that: 

Φ(X (t) ; S ,H) − Φ(X (t ) ; ˆ S , H) 
∥∥ ≤ �(ε)�Φ‖ X (t ) ‖ , (C.7)

here �(ε) = (1 + 8 
√ 

N ) ε with ε = d (D, ˆ D ) depends on the char-

cteristics of the support matrices S and ˆ S , and where �Φ = 

 Φ
∑ L 

� =1 �H � /C H � depends on the learned filters H � (·; ·, H) . To 

ound the second term in (C.6) , recall that the output of a GNN 

s its value at the last layer 

Φ
(
X (t) ; ˆ S , H 

)
−Φ

(
ˆ X (t) ; ˆ S , H 

)∥∥ = 

∥∥X L − X L 

∥∥
= 

∥∥σ
(
H L (X L −1 ; ˆ S , H) 

)
− σ

(
H L ( ̂  X L −1 ; ˆ S , H) 

)∥∥. 

(C.8) 

sing the assumption that | σ (x ) − σ (y ) | ≤ | x − y | for all x, y ∈ R ,

C.8) can be upper bounded by 

Φ
(
X (t) ; ˆ S , H 

)
− Φ

(
ˆ X (t) ; ˆ S , H 

)∥∥ ≤
∥∥H L (X L −1 − ˆ X L −1 ; ˆ S , H) 

∥∥. 

(C.9) 

here the linearity of the filter with respect to the input X L −1 was 

sed. Leveraging Lemma 5 on the upper bound of a graph filter, 

ne obtains: 

H � (X L −1 − ˆ X L −1 ; ˆ S , H) 
∥∥ ≤ C H L 

∥∥X L −1 − ˆ X L −1 

∥∥. (C.10) 

epeatedly applying (C.9) and (C.10) , the following upper bound on 
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he second term of (C.6) is obtained: ∥∥Φ
(
X (t) ; ˆ S , H 

)
− Φ

(
ˆ X (t) ; ˆ S , H 

)∥∥
≤

( L ∏ 

� =1 

C H � 

)∥∥X 0 − ˆ X 0 

∥∥ = C Φ
∥∥X (t) − ˆ X (t) 

∥∥, (C.11) 

here the fact that the input to the GNN is the state at time t , i.e.

 0 = X (t) . Finally, using (C.7) and (C.11) in (C.6) , one obtains: 

U (t) − ˆ U (t ) 
∥∥ ≤ �(ε)�Φ

∥∥X (t ) 
∥∥ + C Φ‖ X (t ) − ˆ X (t) ‖ . 

his simplifies (C.5) as 

BU (t − 1) ̄B − ˆ B ̂  U (t − 1) ̂  B 

∥∥ (C.12) 

≤
(
‖ B ‖ 2 ‖ ̄B − ˆ B ‖ ∞ + ‖ B − ˆ B ‖ 2 ‖ ̂  B ‖ ∞ 

)
C Φ‖ X (t − 1) ‖ 

+ ‖ ̂  B ‖ 2 ‖ ̂  B ‖ ∞ �(ε)�Φ

∥∥X (t − 1) 
∥∥

+ ‖ ̂  B ‖ 2 ‖ ̂  B ‖ ∞ C Φ‖ X (t − 1) − ˆ X (t − 1) ‖ . 

Now, computing the size of the error signal in (C.1) and using 

he triangular inequality, together with (C.4) and (C.12) , one ob- 

ains: 

X (t) − ˆ X (t) 
∥∥ ≤

(
‖ ̂  A ‖ 2 ‖ ̂  A ‖ ∞ + ‖ ̂  B ‖ 2 ‖ ̂  B ‖ ∞ C Φ

)
‖ X (t − 1) − ˆ X (t − 1) ‖

+ 

((‖ A ‖ 2 ‖ ̄A − ˆ A ‖ ∞ + ‖ A − ˆ A ‖ 2 ‖ ̂  A ‖ ∞ 

)
(C.13) 

+ C Φ
(‖ B ‖ 2 ‖ ̄B − ˆ B ‖ ∞ + ‖ B − ˆ B ‖ 2 ‖ ̂  B ‖ ∞ 

))‖ X (t − 1) ‖ 
+ ‖ ̂  B ‖ 2 ‖ ̂  B ‖ ∞ �(ε)�Φ

∥∥X (t − 1) 
∥∥. 

ecall that ˆ ξ = ‖ ̂  A ‖ 2 ‖ ̂  A ‖ ∞ + C Φ‖ ̂  B ‖ 2 ‖ ̂  B ‖ ∞ and note that (‖ A ‖ 2 ‖ ̄A − ˆ A ‖ ∞ + ‖ A − ˆ A ‖ 2 ‖ ̂
 A ‖ ∞ 

)
+ C Φ

(‖ B ‖ 2 ‖ ̄B − ˆ B ‖ ∞ + ‖ B − ˆ B ‖ 2 ‖ ̂  B ‖ ∞ 

)
≤ ˆ C ξ ε (C.14) 

or ˆ C ξ as in (26) . The value of ‖ X (t − 1) ‖ can be further bounded
s 

 X (t − 1) ‖ ≤
(‖ A ‖ 2 ‖ ̄A ‖ ∞ + C Φ‖ B ‖ 2 ‖ ̄B ‖ ∞ 

)‖ X (t − 2) ‖ . (C.15)

epeatedly applying this inequality, and noting that ξ = 

 A ‖ 2 ‖ ̄A ‖ ∞ + C Φ‖ B ‖ 2 ‖ ̄B ‖ ∞ , see (22) , the bound on ‖ X (t − 1) ‖
ecomes 

 X (t − 1) ‖ ≤ ξ t−1 ‖ X (0) ‖ . (C.16) 

sing (C.14) and (C.16) back in (C.13) , one obtains: ∥∥X (t) − ˆ X (t) 
∥∥ ≤ ˆ ξ ‖ X (t − 1) − ˆ X (t − 1) ‖ + 

(
ˆ C ξ ε 

+ C Φ‖ ̂  B ‖ 2 ‖ ̂  B ‖ ∞ �(ε)�Φ

)‖ X (0) ‖ ξ t−1 , (C.17) 

hich can be conveniently rewritten as 

 t ≤ ˆ ξe t−1 + bεξ t−1 , (C.18) 

ith 

 t = ‖ X (t) − ˆ X (t) ‖ , (C.19a) 

ˆ = ‖ ̂
 A ‖ 2 ‖ ̂

 A ‖ ∞ + C L Φ‖ ̂  B ‖ 2 ‖ ̂  B ‖ ∞ , (C.19b) 

= ‖ A ‖ 2 ‖ ̄A ‖ ∞ + C L Φ‖ B ‖ 2 ‖ ̄B ‖ ∞ , (C.19c) 

 = 

(
ˆ C ξ + C Φ‖ ̂  B ‖ 2 ‖ ̂  B ‖ ∞ (1 + 8 

√ 

N )�Φ

)‖ X (0) ‖ , (C.19d) 

here the definition of �(ε) = (1 + 8 
√ 

N ) ε was used to highlight

he linearity with ε. By repeatedly applying (C.18) , one arrives at: 

 t ≤ bε 
t−1 ∑ 

τ=0 

ξ t−τ−1 ̂  ξ τ + ξ t e 0 . (C.20) 
13 
ince the initial state of both the true system and the esti- 

ated one is the same, it holds that e 0 = ‖ X (0) − ˆ X (0) ‖ = 0 . Then,

C.20) becomes 

 t ≤ bε 
t−1 ∑ 

τ=0 

ξ t−τ−1 ̂  ξ τ = 

{ 

b ξ
t − ˆ ξ t 

ξ− ˆ ξ
if ξ � = 

ˆ ξ

btξ t−1 if ξ = 
ˆ ξ
. (C.21) 

ow, recall that | ξ t − ˆ ξ t | ≤ t max { ξ , ˆ ξ} t | ξ − ˆ ξ | so that (C.21) be-
omes e t ≤ bt max { ξ , ˆ ξ} t−1 ε. Finally, substituting the definitions of 
 t as in (C.19a) , ˆ ξ as in (C.19b) , ξ as in (C.19c) , and b as in (C.19d) ,

e complete the proof. �

Now we prove Corollary 4 for the particular case when both 

ystems D and ˆ D are input-state stable. 

roof of Corollary 4.. From (28) in Theorem 3 it holds that ˆ C t = 

 max { ξ , ˆ ξ} t−1 . By assumption, it is known that ξ < 1 and ˆ ξ < 1 .

herefore, the function t max { ξ , ˆ ξ} t−1 has a global maximum for 

 ≥ 0 . As a function of continuous t ∈ R , this maximum is at t =
1 / log ( max { ξ , ˆ ξ} ) and gives the optimal value −e −1 / ( max { ξ , ˆ ξ} ×
og ( max { ξ , ˆ ξ} )) . Thus, it holds that ˆ C t ≤ −e −1 ̂  C Φ/ ( max { ξ , ˆ ξ} ×
og ( max { ξ , ˆ ξ} )) , completing the first part of the proof. For the

econd part, note that, since ξ < 1 and ˆ ξ < 1 , then it holds that

im t→∞ t max { ξ , ˆ ξ} t−1 = 0 . �
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