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Controlling network systems has become a problem of paramount importance. In this paper, we con-
sider a distributed linear-quadratic problem and propose the use of graph neural networks (GNNs) to
parametrize and design a distributed controller for network systems. GNNs exhibit many desirable prop-
erties, such as being naturally distributed and scalable. We cast the distributed linear-quadratic problem
as a self-supervised learning problem, which is then used to train the GNN-based controllers. We also
obtain sufficient conditions for the resulting closed-loop system to be input-state stable, and derive an
upper bound on how much the trajectory deviates from the nominal value when the matrices that de-
scribe the system are not accurately known. We run extensive simulations to study the performance of
GNN-based distributed controllers and show that they are computationally efficient and scalable.
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1. Introduction

The use of linear models to describe dynamical systems has
found widespread use in many areas of physics, mathematics, en-
gineering and economics [2]. Linear systems are mathematically
tractable and can thus be used to derive properties, draw insights,
and improve on our ability to successfully control these systems. In
particular, designing optimal controllers that can steer the system
into a desired state while minimizing some given cost has become
a problem of paramount importance [3].

Obtaining an optimal controller that minimizes a quadratic cost
on the states and the actions, following a linear dynamic model,
gives rise to the well-studied linear-quadratic control problem [4].
As it happens, the optimal linear-quadratic controller is linear and
acts on the knowledge of the system state at a given time to
produce the optimal control action for that time instant. Further-
more, when considering an infinite-time horizon for minimizing
the quadratic cost, the resulting optimal controller is not only lin-
ear but also static, meaning that the same linear mapping is used
between state and control action for all time instants.

Network systems are one particular class of dynamical systems
that has become increasingly relevant. These systems are com-
prised of a set of interconnected components that are capable of
exchanging information. They are further equipped with the abil-
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ity to autonomously decide on an action to take based on the indi-
vidual state of each component and the information relied through
the communications with other neighboring components. The ob-
jective of controlling network systems is to coordinate the individ-
ual actions of the components so that they are conducive to the
accomplishment of some global task [5].

The dynamics of some network systems can be effectively de-
scribed by a linear model. Thus, if such systems are coupled with
a quadratic cost, a corresponding linear-quadratic problem is ob-
tained. As such, the optimal control actions are readily available.
While the optimal controllers are linear, they require information
from the components in the network irrespective of their inter-
connections. That is, to compute the optimal controller, an addi-
tional unit capable of accessing all components instantaneously is
required. In the context of network systems, this is called a cen-
tralized approach.

Centralized controllers face limitations in terms of scalability
and implementation. For increasingly large networks, the central-
ized unit requires more direct connections to all the components
of the system. Similarly, the computational cost increases directly
with the size of the network, since a single unit is responsible
for computing the control actions of all the components. It is also
less robust to changes in the network. A failed connection between
the centralized unit and any of the components would render that
component uncontrollable.

Network systems are characterized by the connections between
components, which naturally impose a distributed structure on
the flow of data. Fundamentally, it can be leveraged in the de-
sign of controllers. By doing so, one can overcome many of the
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limitations of centralized controllers. Thus, we focus on leverag-
ing the data structure to obtain distributed controllers. These are
control actions that depend only on local information provided by
components that share a connection and that can be computed
separately by each component.

Imposing a distributed constraint on the linear-quadratic con-
trol problem renders it intractable in the most general case [6].
While there is a large class of distributed control problems that
admit a convex formulation [7], many of them lead to complex so-
lutions that do not scale with the size of the network [8]. An al-
ternative approach is to adopt a linear parametrization of the con-
troller and find a surrogate of the original problem that admits a
scalable solution. The resulting controller is thus a sub-optimal lin-
ear distributed controller, and stability and robustness analyses are
provided [9-11].

However, even in the context of linear network systems with a
quadratic cost, the optimal distributed controller may not be lin-
ear [6]. In this paper, we thus adopt a nonlinear parametrization
of the controller. More specifically, we focus on the use of graph
neural networks (GNNs) [12]. GNNs consist of a cascade of blocks
(commonly known as layers) each of which applies a bank of graph
filters followed by a pointwise nonlinearity. GNNs exhibit several
desirable properties in the context of distributed control. Most im-
portantly, they are naturally local and distributed, meaning that
by adopting a GNN as a mapping between states and actions, a
distributed controller is automatically obtained. Furthermore, they
are permutation equivariant and Lipschitz continuous to changes
in the network [13]. These two properties allow them to scale up
and transfer [14].

Distributed controllers leveraging neural network techniques
can be found in [1,15-23]. These controllers typically use a distinct
multi-layer perceptron (MLP) to parametrize the controller at each
component [15-20] or rely on adaptive critic control [21,22]. As-
signing a separate MLP to each component implies that the num-
ber of parameters to learn increases proportionally with the size
of the network system, becoming increasingly harder to train, and
thus this approach is not scalable. The use of GNNs imposes a
weight-sharing scheme that avoids scalability problems. These are
leveraged in [23] in the context of specific robotics problems. The
distributed linear-quadratic problem using GNNs was investigated
in our conference paper [1].

In this work, we focus on finding distributed controllers for the
distributed linear-quadratic problem. Our main contributions are:

(C1) We propose to parametrize the distributed controller with
a GNN, obtaining a naturally distributed architecture that is
capable of capturing nonlinear relationships between input
and output, as it was initially investigated in our preliminary
work [1].

(C2) We obtain an improved sufficient condition for closed-loop
input-state stability of the controller.

(€C3) We study the problem of systems whose linear description
is not accurately known. We analyze how the stability of the
system changes and obtain an upper bound on the deviation
of the trajectory from its nominal value.

(C4) We present new simulations that provide better insight into
GNN-based controllers for a distributed LQR problem.

The remainder of this paper is organized as follows. We for-
mulate the linear-quadratic problem in Section 2 and postulate
the use of graph neural networks in Section 3 as a practically
useful nonlinear parametrization of the unknown distributed con-
troller. We cast the distributed linear-quadratic problem as a self-
supervised learning problem, which can be efficiently solved by
traditional machine learning techniques. To study the effect of
adopting a GNN-based controller on the entire dynamical system,
we obtain a sufficient condition for the resulting closed-loop sys-
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tem to be input-state stable and derive an upper bound on the
trajectory deviation from its nominal value when the system ma-
trices are unknown and only estimates are available. We include
numerical simulations in Section 5 to investigate the performance
of GNN-based distributed controllers and their dependence on de-
sign hyperparameters, as well as their scalability. Conclusions are
drawn in Section 6. Proofs are provided in the appendix.

2. The linear-quadratic problem

The linear-quadratic problem is one of the fundamental prob-
lems in optimal control theory [3]. Consider a system described
by a state vector x(t) € RF and controlled by an action u(t) € R®
at time t € {0, 1,2, ...}. The system evolves following a linear dy-
namic

x(t+1) = Ax(t) + Bu(t) (1)

determined by A e RF*F called the system matrix and B e RFxC

called the control matrix. These two matrices are considered to

be known and given in the problem formulation. The objective is

to drive the system towards a desired, target state value. To this

end, a controller & : RF — RS that maps the current state of the

system X(t) into an appropriate action u(t) = ®(x(t)) is typically

designed. In optimal control, it is desirable to find a controller

that minimizes a given cost. In particular, the focus here is on the

quadratic cost given by

(O} (w©O}) = 3 (xOTO + u(© Ru(o)) )
t=0

for two known matrices Q € RF*F and R € RS*C such that Q = 0

and R > 0, given in the problem formulation.

The linear-quadratic problem can be formulated as

min ({x(t)}, {u(t)}) (3a)

s.t.x(t+1) = Ax(t) + Bu(t), Vee{0,1,..} (3b)

u(t) = o(x(t)), Vte{0,1,...} (30)

where @ is the space of all functions ¢ : RF — RC, see [3]. The
objective function (3a) is the quadratic cost (2), the constraint
(3b) imposes the linear dynamics of the system (1) and the con-
straint (3c) forces the solution to be a function ¢ : RF — RC. The
optimal controller obtained from solving (3) is formally known as
a linear-quadratic regulator (LQR) and is given by

w(t) = o*(x(t)) = K*x(1), (4)

with K* € RF*C being a linear operator that depends on the matri-
ces that describe the problem, namely A, B, Q. R, and can be read-
ily computed [3, Sec. 2.4]. Notably, the LQR is a linear controller |3,
eq. (2.4-8)].

A network system can be conveniently described by means of a
graph G = (V, &), where V = {vy, ..., vy} is the set of N nodes and
£ CV xV is the set of edges. The node v; represents the ith com-
ponent of the system, while the existence of the edge (v;,v;) € €
implies that nodes v; and v; are interconnected and capable of ex-
changing information. In a network system, each node is described
by a state x;(t) e RF and is capable of autonomously taking an
action u;(t) € R at time t. The states and actions of all nodes
are collected in two matrices X(t) € RN*F and U(t) € RN*C, respec-
tively, where each row corresponds to the state or action of each
agent.

Similar to (1), consider a network system with linear dynamics
modeled as

X(t +1) = AX(t)A + BU(t)B, (5)
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where A e RNN s called the network system matrix and B € RN*N
the network control matrix. The linear system in (5) is an exten-
sion of (1) tailored to handle network data. In particular, it consid-
ers that each node v; is described by an F-dimensional state x;(t),
collected in the rows of the matrix X(t). It also decouples the im-
pact that the network topology has on the evolution of the sys-
tem (through matrices A and B) from the impact that the individ-
ual states have (through A and B). To see this, note that matrices
A ¢ RN*N and B € RN*N act as linear combinations of state values
across different nodes, and as such, these combinations are typ-
ically restricted to follow the interconnection of the components
(although, technically, they need not be). It is thus noted that while
the matrix A need not be the adjacency matrix of the graph, it is
usually a function of it -for example, both matrices may share the
same eigenvectors. The matrices A ¢ RF>*F and B € R&F determine
the evolution of the values of the state at each individual node and,
while they can be arbitrary, they force all individual state nodes to
follow the same evolution. Finally, it is noted that, while a more
general linear description can be obtained by adopting a network
state of dimension NF and using (1), doing so obscures the effect of
the topology of the network on the evolution of the system. Thus,
(5) is adopted from now on for mathematical simplicity -and it
is observed that all the results derived from here onward hold for
(1) as well.

To pose the linear-quadratic problem for a network system, the
following quadratic cost as a counterpart of (2) is adopted:

o0

3(xo) oY) =X (IKOY2E +IVORE).  ©)

t=0

where Q € RF*F and R € R¢*C are two given positive definite ma-
trices, and where || - || denotes the Frobenius matrix norm. The
linear-quadratic control problem for a network system can then
be posed in the form of (3), by replacing the cost (3a) with (6),
the linear dynamics (3b) with (5), and the controller (3c) with one
such that ¢ : RN*F 5 RNxG,

The controller solving the linear-quadratic problem for a net-
work system is also linear. However, in order to compute the op-
timal control action, the system needs to access the state of arbi-
trary components of the system, beyond those directly connected.
This constitutes a centralized controller. In what follows, the focus
is on finding a distributed controller.

A distributed controller, which is denoted by ¢ (X(t); G) to em-
phasize its dependence on the topology of the network system G,
should satisfy the properties that the control actions U(t) rely only
on local information provided by other components that share a
direct connection, and that they can be computed separately at
each component. The use of a distributed controller overcomes
some of the issues that arise when considering a centralized one.
Namely, they are expected to scale better, since they do not require
a single unit to compute the actions of all components in the sys-
tem, and they are easy to implement since they do not demand an
infrastructure capable of connecting all components to the single
centralized unit.

The distributed linear-quadratic problem can be written as

g;g;J({X(t)}, {um}) (7a)

s.t.X(t +1)=AX(t)A+BU(t)B, Vte{0,1,..} (7b)

U(t):¢(X(t);g), Vte{0,1,...}, (7c)

where ®; is the space of all functions &(-; G) : RN*F — RNXC that
can be computed in a distributed manner (i.e. relying only on lo-
cal information and computed separately at each component). It is
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noted that the constraint (7c) further restricts the feasible set, and
as such, the optimal value J; of solving (7) is lower bounded by
the optimal value J* incurred when using the optimal centralized
controller, i.e. Jg > J*.

Solving problem (7) requires solving an optimization problem
over the space of functions ®¢. This is mathematically intractable
in the general case, and requires specific approaches involving vari-
ational methods, dynamic programming or kernel-based functions
[24]. While there is a large class of distributed control problems
that admit a convex formulation [7], many of them lead to com-
plex solutions that do not scale with the size of the network [8].

Considering the inherent complexities of functional optimiza-
tion, a popular approach is to adopt a specific model for the
mapping ¢, leading to a parametric family of controllers. Inspired
by the linear nature of the optimal centralized solution and its
mathematical tractability, a distributed linear parametrization was
adopted in [9,11]. Many properties of this parametric family of
controllers have been studied, including stability, robustness and
(sub)optimality [9,11].

However, it is known that the linear system (5) may have a
nonlinear optimal controller if we force a distributed nature on
its solution [6]. This suggests that it would be more convenient
to work with nonlinear parametrizations, rather than linear ones.
In particular, this work focuses on graph neural networks (GNNs)
[12]. These are nonlinear mappings that exhibit several desirable
properties. Fundamentally, they are naturally computed in a dis-
tributed manner relying only on local information provided by di-
rectly connected components. This implies that any controller that
is parametrized by means of a GNN respects the distributed nature
of the system (as given by the graph G), naturally incorporating the
distributed constraint (7c) into the chosen parametrization.

3. Graph neural networks

Finding the optimal distributed controller by solving problem
(7) is intractable in its most general case. This is due to the
constraint (7c) that the solution satisfies a distributed computa-
tion. In what follows, a parametric family of distributed controllers
is adopted. More concretely, inspired by the fact that the opti-
mal controller is usually nonlinear, GNN-based controllers are con-
sidered. The basics of graph signal processing are introduced in
Section 3.1, which allows for the definition of GNNs in Section 3.2.
A discussion on how to cast the resulting finite-dimensional opti-
mal control problem as an unsupervised learning problem follows
in Section 3.3.

3.1. Graph signal processing

Graph signal processing (GSP) is a framework tailored to de-
scribe, analyze, and understand distributed problems [25]. Given
a graph G = (V, &) that describes the structure of the data under
study, a graph signal x: V — R is defined as a mapping from the
nodes of the graph to a real number. By imposing an arbitrary or-
der on the nodes, this graph signal can be conveniently described
as a vector x € RY whose it" element corresponds to the signal
value associated to node v;, denoted as [X]; = x(v;) = x; € R. Note
that [-]; ([-];j) denotes the value of the i ((i, j)™") entry of a vec-
tor (matrix). To be able to use the concept of graph signals to de-
scribe the state X(t) € R¥N*F and the control action U(t) € RNxC
in a network system, an extension to vector-valued mappings is
needed. Define the vector-valued graph signal as X : V — RF, where
X(v;) = x; € RF. It can then be described by means of a matrix
X e RN*F where each row corresponds to the signal value at each
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node
XT(vy) X]
X=| + |=|i]|=[" - X] (8)
XT(vy) Xy
In this equation, the vector-valued graph signal X is viewed as
a collection of F traditional scalar-valued graph signals {Xf};:r
placed in the columns of the matrix. Observe that x stands for the
graph signal as a function, x; stands for the scalar value adopted
by node v;, X for the vector collecting all these values; likewise, X
stands for the vector-valued graph signal and X for the matrix col-
lecting all the states at all nodes. All these quantities are related to

the graph signal that is used to describe the state of the system.
The size of the vector-valued graph signal is defined as

F
X1 = 1Xll20 =" [1x 2. 9)
f=1
The L, 1 norm for matrices (9) is chosen as the size of the graph
signal norm for both its robustness and its mathematical tractabil-
ity. Note that if F =1, then ||X]|| = ||X||, as expected. Finally, note
that, in what follows, the term “graph signal” is used indistinctly
to refer to either vector-valued or scalar-valued ones. Note that the
trajectories of system states {X(t)} and control actions {U(t)} can
each be modeled as a sequence of graph signals, indexed by the
time parameter t —also known as graph processes [26].
Describing a graph signal in terms of a matrix is convenient
because it allows for easy mathematical manipulation. However,
this causes the loss of the information related to the underlying
graph support. To recover this information, the graph is described
in terms of a support matrix S € RN*N that respects the sparsity
of the graph, ie. [S];j =s;; can be nonzero if and only if i=j or
(vj,v;) € €. Any matrix that satisfies this condition can be used as
a support matrix and thus it is a design choice. Typical choices
include the adjacency matrix, the Laplacian matrix, the Markov
matriX, and their normalized counterparts [25]. A linear mapping
S : RNxF _, RN>F between graph signals that relates the input to
the underlying graph support Y = S(X) = SX can be defined, such
that the (i, f)™ entry yif of the matrix Y (the value of the ft scalar
graph signal at node v;) is computed as

N

vl =Yl = [SX]iy = YISIiXlir = >

j=1 jivjeNu{y}

S,'ij, (10)

where N; ={vj e V: (v}, 1;) € £} is the set of nodes that share an
edge with v; and [X]j; = [x;]; = [xf]j :x}(. see (8). The last equal-
ity in (10) holds because of the sparsity pattern of the support ma-
trix S and implies that the computation of the value of the output
graph signal Y at node v; only requires information relied by its
neighbors. In this respect, one can then think of the pair (X,S)
as the complete graph data containing all the relevant informa-
tion; however, only X is regarded as the actionable variable (the
signal), while the support S is considered given and fixed and is
determined by the physical constraints of the network.

The support matrix S can be thought of as a linear mapping
between graph signals that effectively relates the input to the un-
derlying graph support. As such, the operation SX becomes the ba-
sic building block of graph signal processing [25]. A finite-impulse
response (FIR) graph filter H : RN<F — RNxC is 3 linear operation
between two graph signals, defined as a polynomial on S

K
Y =H(X:S, %) =) S'XH, (11)
k=0

where H = {H, e RFXC k=0, ..., K} is the set of filter taps Hj, that
characterize the filter response. The filter (11) is linear in the input
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X and is capable of mapping between vector-valued graph signals
of different dimensions (but defined on the same graph given by
S).

The graph filter is a naturally distributed operation, meaning
that the output of filtering in (11) can be computed separately by
each node relying only on information provided by one-hop neigh-
bors. To understand this, note that multiplications to the left of
X carry out a linear combination of signal values across differ-
ent nodes, and thus this matrix needs to respect the sparsity of
the graph so that only values at neighboring nodes are combined.
This is the case for S¥ = $¥~1S which amounts to communicating
k times with the one-hop neighbors. Therefore, an FIR graph filter
is a distributed linear operation since it requires only K commu-
nication exchanges with one-hop neighbors. Multiplications to the
right of X, on the other hand, are linear combinations of signal val-
ues located at the same node, and can thus be arbitrary. In partic-
ular, (11) imposes a weight-sharing scheme, where the signal val-
ues at all nodes are combined in the same way. Finally, note that
(11) is a compact notation for denoting the graph filtering opera-
tion but, in practice, the nodes do not need access to the full ma-
trix S. They only need access to the entries corresponding to their
one-hop neighbors in order to compute the proper linear combina-
tion indicated in (10). Thus, in practice, the nodes need not know
the entire graph topology.

The FIR graph filter (11) can be understood as a bank of FG fil-
ters acting on scalar-valued graph signals, see [12,27]. It can thus
be characterized by its frequency response given by the collection
of univariate polynomials

K
[hfg(x) =S Hh s he ] f=1.....F g= 1,..,,0}.

k=0

(12)

The values of A; and A;, are determined by the specific problem
under study, and are typically set to be the minimum and maxi-
mum eigenvalues of the given S. However, they may be different
if the problem requires the filters to be able to act on more than
one graph, see Section 4.3. In that case, it may be convenient to
select the interval so that it contains all the eigenvalues of all the
support matrices under consideration.

The characterization of the filter in terms of the frequency re-
sponse (12) allows for the definition of the size of the graph filter
as

CH = ”CH“oo with CH € RFXG . [CH]fg = Aeﬂ[}\ﬂ)}f | |hfg()")| (13)
1:/h

In what follows, the focus is further set on a particular class of
graph filters, known as Lipschitz filters. The graph filter (11) is said
to be a Lipschitz filter if its frequency response (12) satisfies that

[hrg(A1) = hpg(A2)| < Vrgldr — A2l, VA1, Az € [Ag, Ay, (14)

for some constant yy, >0, for all fe{1,...,F} and Ge{1,...,G}.
The Lipschitz constant I'y of the filter is computed as

Tv=ITulle with Ty eR™:[Tulg =y, (15)

which is the infinity norm |||l for a matrix T'y € RF*C contain-
ing the corresponding Lipschitz constants of each individual filter
(i.e. the maximum absolute row sum of the matrix).

3.2. Graph neural networks

Graph filters are distributed, linear operations and, as such, are
only capable of capturing linear relationships between input and
output. However, the objective of this work is to learn nonlinear
distributed controllers. Arguably, the most straightforward way of
converting a graph filter into a nonlinear processing unit without
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affecting its distributed nature is to include a pointwise nonlinear-
ity

Y =0 (H(X;S. H)). (16)

where o : R — R is a nonlinearity applied pointwise to the entries
of the graph signal obtained from applying the graph filter, i.e.
[0 (X)]if = o ([X]if). The operation (16) is known as a graph per-
ceptron [12] and, since the nonlinearity o (-) is applied pointwise
to the entries of the graph signal, it retains the distributed nature
of the graph filter.

The graph perceptron (16) is a nonlinear processing unit, but
it has a limited representation power. To overcome this, a graph
convolutional neural network ®(-;S, H) : RN<F — RNxC is defined as
a cascade of L graph perceptron units

X = U(Hz (Xe-1: S, Hz)), (17a)

d(X; S, H) =X, (17b)

with H = U%zﬂu. The input to the first layer is the graph signal
Xo =X and the output is collected at the last layer. The space
of all possible representations obtained by using a GNN is char-
acterized by the set of filter taps #, which contains the filter
coefficients #, = {Hy, e Rf-1*f k=0,1,...,K,} at each layer ¢ ¢
{1,..., L}. Note that Fy = F and F;, = G. The nonlinear function o (-),
the number of layers L, the dimension of the graph signals at each
layer F, and the number of filter taps at each layer K, are design
choices and are typically referred to as hyperparameters [28].

3.3. Self-supervised learning

The linear graph filter (11) and the nonlinear GNN (17) have
been introduced as naturally distributed parametrizations. By
choosing to adopt one of these models for the to-be-learned con-
troller, the focus is immediately set on a distributed mapping be-
tween the state and the action, turning the functional optimization
problem (7) into the finite-dimensional optimization

minJ({X(©)}. (U©)}) (18a)
s. t.X(t+ 1) = AX(t)A + BU(t)B, (18b)
U(t) = o(X(t); S, H). (18c)

The constraint (18c) replaces a generic distributed controller
& (X(t); G) in (7c) with a controller that admits a parametrization
based on either a graph filter or a GNN. The resulting controller
d(X(t); S, H*) with filter coefficients #* that solves (18) naturally
satisfies the distributed constraint.

Problem (18) is nonconvex when adopting a GNN-based con-
troller (18c). Thus, to approximately solve this problem, the em-
pirical risk minimization (ERM) approach that is typical in learn-
ing theory [29] is leveraged. To do this, a training set T =
{X1,0, ..., X7),0} containing |7| samples X, o drawn independently
from some distribution p is considered to be the different random
initializations of the system. Then, the ERM problem is given by

|71

min Y 3(1X,(0)). (U,(©)}) (192)
p=1

s. t. Xp(t+1) = AX,(t)A + BU,(t)B, (19b)
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Uy (t) = &(Xp(t); S, 1), (19¢)

Xp(0) = Xp0. (19d)

Problem (19) can be solved by means of an algorithm based on
stochastic gradient descent [30], efficiently computing the gradi-
ent of J(-,-) with respect to the parameter H# by means of the
back-propagation algorithm [31]. To estimate the performance of
the learned controllers -i.e. those obtained by solving (19)- a new
set of initial states is generated, called the test set, and the av-
erage quadratic cost (6) is computed on the resulting trajectories.
In essence, the optimization problem (18) is transformed into a
self-supervised ERM problem (19) that is solved through simulated
data.

It is observed that, during the training phase, the optimiza-
tion problem (19) has to be solved in a centralized manner due to
the weight-sharing scheme imposed by the FIR graph filters (recall
that this weight-sharing scheme is necessary for scalability, keep-
ing the number of learnable parameters independent of the size
of the graph). However, this training phase can be carried out of-
fline, prior to online execution. Once the GNN-based controllers are
learned and the training phase is finished, they can be deployed
in an entirely distributed manner for testing in the online phase.
It is noted that there exist distributed optimization algorithms that
leverage consensus to arrive to the optimal set of filter taps # [32].
These techniques, however, are outside the scope of the present
work and will be left as future research directions.

4. Properties of GNN controllers

GNNs have many suitable properties that make them appropri-
ate choices for learning distributed controllers. As standalone pro-
cessing units, they are naturally distributed architectures and have
the properties of permutation equivariance and Lipschitz continu-
ity to changes in the underlying graph support. As part of a lin-
ear dynamical system, GNN-based controllers can also be shown
to stabilize the system. Furthermore, the deviation in the nominal
trajectory due to unknown system matrices can be mitigated with
properly learned filters. These properties, which are studied in this
section, hold for any GNN controller of the form (17) that satisfy
the corresponding hypotheses.

4.1. GNN Properties

The main motivation for choosing GNNs as parametrizations for
the controller is that they are naturally distributed architectures.
GNNs are built by using graph filters and pointwise nonlineari-
ties. Graph filters are distributed operations, as discussed after (11).
The pointwise nonlinearity does not affect this, and thus GNNs are
also distributed. It is noted that asynchronous implementations of
graph filtering are possible [33]. Additionally, GNNs are capable of
learning nonlinear controllers, which is a key feature in the context
of distributed control, as it is expected that optimal distributed
controllers to be nonlinear [6].

GNNs exhibit the property of permutation equivariance, [13,
Prop. 2], which means that a reordering of the nodes does not af-
fect the output, since it will be correspondingly reordered. This fur-
ther implies that the GNNs are capable of leveraging any existing
symmetries in the underlying graph topology to improve training.
More specifically, learning how to process a given signal from the
training set means that the GNN learns how to process the same
signal anywhere in the graph with the same neighborhood topol-
ogy. In a manner akin to the data augmentation that happens nat-
urally by the choice of the convolution operation in regular convo-
lutional neural networks (CNNs), permutation equivariance shows
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precisely one way in which the GNN exploits the data structure to
improve training and generalization.

GNNs are also Lipschitz continuous to changes in the underly-
ing graph [13, Thm. 4|. This means that, if the underlying graph
support is perturbed, the output of the GNN changes linearly with
the size of perturbation. This implies that a GNN trained on one
graph but tested on another one will still work well as long as
both graphs are similar, see [14]. It also implies that if the graph is
not known exactly but has to be estimated, then the GNN can still
be trained as long as the graph support estimate is good enough.
Additionally, it indicates that GNNs are suitable for time-varying
scenarios where the changes to the graph support are slow [23].

4.2. Closed-Loop stability

GNNs have many suitable properties for learning distributed
controllers. However, this does not necessarily guarantee that they
are a good choice for a control system. In what follows, properties
relating to GNN-based controllers within a linear dynamical system
are studied.

A network system with the linear dynamics (5) is character-
ized by the set of matrices D = {S,A, A, B, B}, where S ¢ RNV is
the graph support matrix, A € R¥*N and A € RF*F are the system
matrices, and B € RN*N and B € RS*F are the control matrices. The
trajectory of the system {X(t)} depends on these matrices. GNNs
are capable of stabilizing the closed-loop dynamics of a distributed
linear system D. More specifically, drawing from [34], the notion of
input-state stability is defined as follows.

Definition 1 (Input-state stability). Consider a linear dynami-
cal system as in (5) controlled by U(t) = ®(X(t)) + E(t) where
E(t) is a disturbance term or exploratory signal. The system is
input-state stable if, for all sequences {X(t)} and {E(t)} such
that 372, [IX(t)]| < oo and Y72 [|E(t)|| < oo, there exist constants
Bo, B1 = 0 such that

YOIXOI < Bo+Bi Y IED. (20)
t=0

t=0

This definition of input-state stability is widely used [34]. Given
a trained GNN-based controller, a sufficient condition for the re-
sulting system to be stable can be determined.

Theorem 1 (Sufficient condition for input-state stability). Consider
a distributed linear system D. Assume that the system is controlled
with a GNN (17) consisting of L layers of filters H,(:; S, H) with F,
features and K, taps each. Let the nonlinearity o (-) be such that
|o(x)| < |x|. Then, the closed-loop system is input-state stable if it
holds that

EMD,H) <1, (21)
where
E(D.H) = ||All2[|All + ColBl12]1Bll (22)

is the stability constant, with Cy = ]‘[Ll Cy, for Gy, the size of the oth
filter, see (13).

Proof. See Appendix B. O

Theorem 1 is a sufficient condition for the closed-loop system
to be input-state stable. The learned filters affect the constant Cg
such that the smaller the filters Cy, the smaller Cy and thus &.
Therefore, a penalty on the size of the filters, see (13), can be
added to the objective function of (19) to obtain GNNs with a
controlled value of Cy and therefore with a smaller stability con-
stant £. The condition on the nonlinearity is mild and is satisfied
by the most popular nonlinearities (ReLU, tanh, sigmoid, etc.). It
is observed that the sufficient condition requires ||A|;||Allc <1,
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which implies that the system is open-loop stable. In many physi-
cal systems such as power networks, it is possible to design stabi-
lizing controllers. This implies that once the system has been sta-
bilized a GNN-based controller can then be learned to minimize
the quadratic cost.

4.3. Trajectory deviation

It often happens that one does not have direct access to the
matrices D that characterize the distributed linear system and
thus they should be estimated. Alternatively, sometimes the sys-
tem description may change slightly from the training to the test-
ing phase. Therefore, it is essential to study the impact of the in-
accurate knowledge of these matrices on the trajectory.

Consider a network system on a graph G with the linear dy-
namics (5) and described by the set of matrices D. Assume that
these matrices are unknown and, instead, access to estimates of
tlzeﬁe AmgtrAices is provided. These estimates are denoted by D =
(i.e. the exact graph support is unknown), A € RN*N and A e RF*F
are the estimates of the system matrices, and B € RV*N and B e
RS*F are the estimates of the control matrices. It is evident that
the trajectory {X(t)} on the linear dynamical network D could be
noticeably different from {X(t)}, the one obtained from the system
described by D.

The goal is to characterize how the difference in the systems D
and D impacts their respective trajectories {X(t)} and {X(t)}. To-
wards this end, a notion of distance between the system matrices
is first defined.

Definition 2 (Distance between systems). Given the system matri-
ces D and D, the distance between system descriptions is defined as

d(D,D) =&, (23)
where ¢ > 0 is the smallest number such that

S-Sl <e |A-Al;<e |[A-Al <,

N = . 24
IB-Bl,<e ||B- B <e. (24)

In other words, Definition 2 determines the distance between
two system descriptions as the maximum norm difference in the
constitutive matrix norms, with matrices on the graph domain be-
ing determined by the spectral norm || - ||, and matrices on the
feature domain being determined by the infinity norm || - || .

First, a result on how the input-state stability of the closed-loop
system is affected by the distance between D and D is obtained.

Proposition 2 (Change in input-state stability). Consider two sys-
tems described by the sets of matrices D and D. Let these systems
be controlled by a GNN (17) consisting of L layers of filters Hy(-; -, H)
with F, features and K, filter taps each. Let the nonlinearity o (-) be
such that |o (a) — o (b)| < |a—b| and o (0) = 0. Then, it holds that

& —€| <G d(D. D). (25)

where & = £(D, H) and é = £(D, 1) are the stability constants of the
system D and D, respectively, and where

G = IAllz + 1Al + Co(IIBl2 + 1Bll.c). (26)
with Cy = ]‘[ﬁ=1 Ch, for Cy, the size of the ¢t filter, see (13).
Proof. See Appendix B. O

Proposition 2 states that the difference in the stability constants
between the system D and its estimate D depends on the distance
d(D, D) between them, on the system matrices of both D and D,
and on the learned filters through Cs. If the matrix description of
D is inaccessible, then Def. 2 can be leveraged to replace |A];



E Gama and S. Sojoudi

and ||BJ|, in (26) by the upper bounds ||A]l, < ||A]l, + d(D, D) and
IBll2 < |IB|l; + d(D, D), respectively. The same holds if D is not
known but D is. It is also noted that, for the case when F =G =1,
it follows from the proof that C} =1+ Cs and the bound is propor-
tional to the distance d(D, D); see Appendix B.

Next, the goal is to characterize the deviation in the trajectories,
namely ||X(t) — X(t)||, as a function of how different the systems
D and D are. In this context, a controller ¢ is acceptable if the re-
sulting closed-loop trajectories of two different systems are similar
as long as the systems themselves are similar. This is the case for
GNN-based distributed controllers as shown next.

Theorem 3 (Bound on trajectory deviation). Consider two systems
described by the sets of matrices D and D. Let these systems be con-
trolled by a GNN (17) consisting of L layers of filters H,(-; -, H) with
F, features and K, filter taps each. Let the nonlinearity o (-) be such
that |o (a) — o (b)| < |a—b| and o (0) = 0. Then, it holds that

1X(®) = X(0) | < CoClIX(0)]| d(D, D), (27)

with Co =G +CoTo[IB2 1Bl (1 +8vN) for G as in (26), Co =
[T5_1Cn, and Ty = 351 (T, /Cu,) for Cu, and Ty, the size and Lip-
schitz constant of the ¢t filter, respectively, see (13) and (15); and
with & such that CO =0 and

G =t max{g, €)1 (28)

for t > 1, where & and £ are the stability constants of the systems D
and D, respectively, as in (22).

Proof. See Appendix C. O

Theorem 3 states that, for a linear dynamical network system
under a GNN-based distributed controller, the change in trajectory
between the system D and its estimated description D depends on
the value of C¢ that is independent of time, on the value of ¢ that
is time-varying, and on their distance d(D, D). The value of Cp is
affected by the given system (through matrices in the estimated
system D and the number of nodes N) and the resulting trained
filters in the GNN (through C, and I's). The value of & is deter-
mined by the stability constants £ and 5 and becomes larger as
time passes if max{&, £} > 1, but otherwise decreases for large t.
Recall that £ can be estimated from ff by leveraging Proposition 2.
It is noted that the constants C» and ¢ can be affected by judi-
cious training. For example, by penalizing the size of the filters Cy,
and their Lipschitz constant I'y, during training, the learned GNN-
based controller can be forced to be more stable, see Section 5 for
concrete examples.

For the particular case when the closed-loop system and its es-
timate are guaranteed to be input-state stable, the following corol-
lary can be stated.

Corollary 4 (Bound on trajectory deviation for stable sys-
tems). Consider a system D and its estimate D such that both satisfy
Theorem 1. Then, it holds that

1X(@®) = X(®) || < CIX(0)]| d(D. D). (29)

where € = —e=1C,/(max{&, é} x log(max{&, ff})) and C, is given in
Theorem 3. Furthermore, it holds that

lim RGEGIE (30)

Proof. See Appendix C. O

It follows from Corollary 4 that if a system and its estimate are
guaranteed to be input-state stable, then the trajectory deviation
between both systems is bounded by a constant that is propor-
tional to the distance between them and is independent of time
t. Furthermore, this deviation is guaranteed to go to zero as t in-
creases.
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5. Numerical experiments

In this section, numerical simulations illustrate the performance
of GNN-based controllers in a distributed linear-quadratic problem.
In particular, problem (7) is solved with F = G =1 so that A and B
become scalars that are subsumed into matrices A and B, respec-
tively.

Problem setup. The system has N nodes placed uniformly at
random on the [0, 1] x [0, 1] plane. Edges are drawn between the
5-nearest neighbors of each node. The support matrix S is consid-
ered to be the adjacency matrix, normalized by the largest eigen-
value so that ||S||; = 1. The network system matrix A and network
control matrix B share the same eigenvectors with S and the diago-
nal elements are chosen randomly with a standard Gaussian distri-
bution and are normalized so that ||A||; = 0.995 and ||B||, = 1. The
cost matrices are set to Q = R = L. Trajectories of length T = 50 are
simulated. Unless otherwise specified, the networks have N = 50
nodes.

Controllers. Five controllers are studied. (i: Optim) The optimal
centralized controller is used as a baseline [3, eq. (2.4-8)]. (ii: MLP)
A centralized controller can be learned by using a multi-layer per-
ceptron (MLP) with NFyp units in the hidden layer, and N units
in the readout layer [15]. (iii: D-MLP) As a comparative method,
the learnable, distributed controller proposed in [16] is used; re-
call that this method learns a separate MLP for each node, partic-
ularly a hidden layer with Fyp units and a single output unit
to estimate the control action of the node. (iv: GNN) A two-layer
GNN (17) with F features and Kj-order polynomials for the first
layer and F, = 1 and K, = 0 for the second layer. (v: GF) A K;-order
polynomial graph filter with F; features (11), followed by a readout
layer which is another graph filter with F, = 1 output features and
K, = 0 filter taps, see [11]. For the nonlinear methods (ii)-(iv), the
function tanh is applied pointwise between the first and the sec-
ond layers.

Training and evaluation. The controllers (ii)-(v) are trained by
solving the equivalent ERM problem (19) over a generated train-
ing set consisting of |7| = 500 initial states. The ADAM algorithm
[30] with the learning rate x4 and forgetting factors 0.9 and 0.999 is
used to update the gradients over batches of 20 trajectories. A val-
idation stage leveraging a set of 50 new, independent initial states
is computed every 5 training updates. After 30 epochs of training,
the parameters that exhibited the best performance during the val-
idation stage are retained. The controllers are evaluated by com-
puting the quadratic cost over trajectories obtained from a set of
50 new, independent initial states. For ease of exposition, the re-
sulting cost is normalized by the lower bound for the distributed
linear-quadratic problem obtained in [9]. The training and evalua-
tion process is repeated for 100 different realizations of the system
matrices D. Median and standard deviation values of the normal-
ized cost are reported.

Experiment 1: Design hyperparameters. The first experiment
studies the performance of the controllers (iv: GNN) and (v: GF) as
a function of the number of features at the output of the first layer
F € {16, 32,64}, and the order of the polynomial K € {2, 3, 4}. The
learning rate is chosen from the set € {0.005,0.01, 0.05} and the
one yielding the best performance for each architecture is shown
in Table 1. In general, the performance does not vary significantly
as a function of the hyperparameters, with a difference of 3.8 per-
centage points for (iv: GNN) and 5.4 for (v: GF). From now on, the
hyperparameter values are set to F; = 16, K; =4 and u = 0.01 for
(iv: GNN), and F; = 64, K; =4 and wn = 0.005 for (v: GF). The fact
that K; = 4 exhibits the best performance for both controllers ev-
idences the importance of repeated communication with one-hop
neighbors for collecting information farther away.

Experiment 2: Comparison. For the second experiment, the
performance of the controllers (iv: GNN) and (v: GF) is compared
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Fig. 1. Comparison with the open-loop system, showing the norm of the evolution of the state norm || X(t)| as a function of time t. (a) This is the case when the system is
open-loop stable, i.e. ||Al|; = 0.995. It is observed that, while the trajectory is going to zero even in the absence of a controller (open-loop), the use of a GNN-based controller
drives the state faster to zero. (b) Consider now an unstable open-loop system given by ||A||; = 1.01. It is observed that the state does not go to zero in the absence of a

controller, and that the GNN-based controller successfully drives the state to 0.

Table 1

Normalized cost of the distributed controllers. (a) Distributed controller (iv:
GNN) for w =0.01. (b) Distributed controller (v: GF) for p = 0.005. Lower
bound: 65(+2).

FIK 2 3 4
16 1.1396(£0.0379) 1.1311(£0.0338) 1.1052(+0.0295)
32 1.1440(£0.0348) 1.1286(£0.0275) 1.1354(£0.0255)
64 1.1409(+0.0356) 1.1300(£0.0272) 1.1196(+0.0323)
(a) GNN (iv: GNN)
F/K 2 3 4
16 1.1716(£0.0319) 1.1449(+0.0331) 1.1295(+0.0289)
32 1.1609(£0.0291) 1.1385(£0.0358) 1.1233(£0.0285)
64 1.1466(£0.0361) 1.1248(£0.0313) 1.1175(+0.0251)

(b) Graph Filter (v: GF)

to that of the centralized baselines (i: Optim) and (ii: MLP), and
that of the distributed method (iii: D-MLP). The hyperparame-
ters of (ii: MLP) and (iii: D-MLP) are set to (Fyp, ) = (16, 0.005)
and (Fo_mip, M) = (16,0.01), respectively, chosen for yielding the
best performance from the set {16, 32,64} for the features and
{0.005,0.01,0.05} for the learning rate. The controller (ii: MLP)
learns 80,000 parameters and the controller (iii: D-MLP) learns
3,200, while (iv: GNN) learns 80 parameters and (v: GF) learns
320. The centralized controllers (i: Optim) and (ii: MLP) exhibit a
normalized cost of 0.9961(+0.0001) and 0.9969(+0.0003), respec-
tively. This shows that these two controllers are better than any
possible distributed one. The distributed method (iii: D-MLP) yields
a cost of 1.0999(40.0167), 0.5 percentage points better than (iv:
GNN) which shows a cost of 1.1052(40.0295) and 1.7 percentage
points better than (v: GF) which shows a cost of 1.1175(+0.0251).
Overall, as expected, the centralized controllers perform better
than the distributed ones. The performance of the controller (iii:
D-MLP) is slightly better than (iv: D-MLP), possibly due to the fact
that (iii: D-MLP) exhibits a larger representation space that can
be successfully navigated given the rich training setting available
in this simulation. It is observed in experiments 3 and 4, how-
ever, that this controller is not robust to changes in the underlying
topology nor scales well, precisely due to the large number of pa-
rameters. Finally, it is observed that the nonlinear distributed con-
trollers (iii) and (iv) outperform the linear one (v: GF).
Experiment 3: Comparison with open-loop systems. In the
third experiment, a comparison with an open-loop system is car-
ried out. It is noted that, from choosing ||A||; = 0.995, the result-
ing system is open-loop stable and, thus, the state will be driven
to zero even in the absence of a controller. In this context, the ef-
fect of the distributed controller should be such that it drives the

states to zero faster than the open-loop case. The results shown
in Fig. 1a indicate that the use of a GNN controller drives the
state to zero faster than the open-loop, uncontrolled, system. This
illustrates that the GNN controller is better than using no con-
troller, also in the case where the open-loop system is already sta-
ble. This is also shown in the resulting cost, which for the open-
loop system is 1.5961(+0.0837) while for the GNN controller is
1.1104(4-0.0334).

Alternatively, the case of a system that is open-loop unstable
is also considered. In this case, the norm of the system matrix is
|All; = 1.01. It is immediately observed in Fig. 1b that while the
open-loop system tends to be unstable (the norm of ||X(t)|| grows
as t grows), the GNN controller effectively drives the state to zero.

More generally, an experiment of the normalized cost as a func-
tion of ||Al|, is run. This experiment helps visualize the transition
between systems that are open-loop stable and systems that are
not. The norm of the system matrix ||A||, varies from 0.95 to 1.01.
Results are shown in Fig. 2. It is evident that as ||Al||, grows, the
cost increases, showing that the system is increasingly harder to
control. But, while the open-loop system cost seems to exponen-
tially grow, the GNN controller manages to keep the cost low and,
as seen in Fig. 1b it effectively drives the state to zero.

Experiment 4: Unknown system matrices. In the fourth ex-
periment, the impact of an unknown system on both the stabil-
ity (Prop. 2) and the trajectory deviation (Thm. 3) is studied. The
controllers are trained on a system D, and then tested on an-
other system D that is a random Gaussian noise perturbation such
that d(D, D) = ¢ for some predefined value of . It is observed
in (25) that the change in stability is controlled by Ce = Cy,Ch,,
while (27) shows that the trajectory deviation can be controlled
by lowering the value of the Lipschitz constants {I'y,, 'y, } and of
the size {Cy,.Cn,} of the filters involved. Therefore, the controller
(iv: GNN) is trained with three different penalties: a penalty on
the size Cy, i.e. the objective function is J({X(t)}, {U(t)}) +Co, a
penalty on the Lipschitz constants, i.e. J({X(t)}, {U(®)}) + (Ty, +
I'y,), or a penalty on both the filter size and the Lipschitz con-
stant, i.e. J{X()}. {U(0)}) +0.5(T'y, + I'n, + Co). This is indicated
by the legend ‘GNN w/ size’, ‘GNN w/ Lipschitz’, and ‘GNN w/ both’,
respectively. The GCNN is also trained without penalties, for com-
parison, and labeled ‘GNN’.

The results are shown on Fig. 3. First, the effects of the un-
known system on the stability are analyzed, see Prop. 2. Fig. 3a
shows that when training the GNN with a size penalty, the con-
troller leads to a stable closed-loop system 100% of the time for
& < 0.05, fails to control only 0.5% of the trajectories for ¢ = 0.0562
and 10% of the trajectories for € = 0.1. When training with both
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Fig. 2. Normalized cost as a function of the norm of ||Al|,. It is observed that the cost for the uncontrolled, open-loop system, grows exponentially with the norm of ||A]|»
as expected. The cost of the GNN-controller, however, grows only slightly with increasing values of [|A[|,.
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Fig. 3. Simulation results for a network with unknown system matrices as a function of the distance & between the systems, see (23). (a) Ratio of stable trajectories as a
function of ¢; it is observed that when training with a penalty on the size Cy of the GNN, the resulting trajectories are stable for larger values of . (b) Cost difference of
the controlled trajectories relative to the cost on the perfectly known system; it is observed that when training with a penalty on the size Cy of the GNN, the resulting
controller achieves the lowest relative cost difference. The distributed controller (iii: D-MLP) and the centralized controller (ii: MLP) are not shown since they exhibit relative
cost differences of approximately 7.5 and 1400, respectively, thus being out of scale; this is likely to their failure to control trajectories.

penalties, the controller is able to lead to stable systems 100% of
the time for & = 0.01, but then decays rapidly in its ability to sta-
bilize the system as € grows. Training with Lipschitz penalty only
leads to a controller that can stabilize about 92% of the trajecto-
ries for £ = 0.01 and then falls to stabilizing about 80% of the tra-
jectories for &€ =0.1. This shows that training with a penalty on
the size Cy of the GNN has the most impact on the ability of the
learned distributed controller to stabilize the system, as predicted
by Prop. 2 Finally, note that when training the GNN without penal-
ties, the resulting controller stabilizes only 55% of the trajectories
on an unknown system.

It is observed in Fig. 3b the relative difference between the
cost obtained when testing on the system D and that obtained
when testing on system D for different values of system distance
& among stable trajectories. First, it is noted that training with a
penalty on the size of the GNN leads to a controller that is un-
affected by changes in the system, exhibiting a relative cost dif-
ference of 0.25 for all values of & under study. The other three
controllers seem to improve in their relative difference as ¢ grows,

and this can be explained because the cost is being computed only
among stable trajectories. This implies that, while & grows and less
trajectories are being stabilized, the ones that remain do achieve
good relative cost difference. Finally, it is noted that the distributed
controller (iii: D-MLP) and the centralized learnable controller (ii:
MLP) were also considered in this simulation. These controllers ex-
hibited relative differences of approximately 7.5 and 1400, respec-
tively, thus falling out of scale and not being shown in the figures.
This results show that neither the (iii: D-MLP) nor the (ii: MLP)
controllers are robust to changes in the system dynamics.
Experiment 5: Scalability. In the last experiment, scalability of
the distributed controllers (iii)-(v) is compared. These methods are
trained on a system with N = 50 nodes, and then at test time, are
used on increasingly larger systems N e {50, 63, 75, 87, 100}. The
resulting costs of the stable trajectories are shown in Fig. 4. It is
observed that, while the D-MLP performs better when tested on
the same system as it was trained (see experiment 2), it does not
transfer as well to larger systems. This is likely to be because it
assigns a different fully connected neural network controller to
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Fig. 4. Normalized cost for the stable trajectories of a GNN-based controller trained on 50 nodes and tested on a larger network system. It is observed that training with
penalties on both the Lipschitz constant and the size of the filters lead to best scalability results.

each component, so that, when tested on larger systems, it has to
replicate this controller on other nodes and that may have a sub-
stantially different topological neighborhood. Controllers (iv: GNN)
and (v: GF), on the other hand, successfully adapt to larger sys-
tems, even when trained on small ones. In particular, training with
penalties on both the Lipschitz constant and the size of the filters
leads to the best scalability results. It is noted that the centralized
controller (ii: MLP) cannot transfer to systems with different num-
ber of nodes since the number of learned parameters depends on
the number of nodes.

6. Conclusion

This paper proposes to address the issue of the intractability
of distributed optimal controllers by leveraging a nonlinear GNN-
based parametrization. While the resulting controller is subopti-
mal, it exhibits several desirable properties such as distributed
computation, efficiency and scalability. These controllers are ap-
plied to the distributed linear-quadratic problem, which can be
cast as a self-supervised empirical risk minimization problem, and
then solved by means of machine learning techniques. A sufficient
condition for the resulting closed-loop system to be input-state
stable is derived in terms of the filter taps of the GNN-based con-
troller. Additionally, the trajectory deviation due to mismatch of
the system descriptions is shown to also be controlled by the filter
taps. Extensive simulations illustrate the satisfactory performance
exhibited by GNN-based controllers as well as the ability to be
trained to exhibit certain desirable characteristics such as an im-
proved closed-loop stability or a smaller trajectory deviation under
model mismatch. The resulting controller is also shown to scale
to larger systems. Future research on the topic may involve the
study of equilibrium points of a GNN-controlled system and their
Lyapunov stability, the use of distributed optimization techniques
to solve the self-supervised learning problem, and the adoption of
other non-convolutional GNN-based architectures.
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Appendix A. Auxiliary Results

In this appendix four Lemmas that are useful for
proving the theorems and propositions of Sections Ap-
pendix B and Appendix C are included. The first two Lem-
mas establish an upper bound on the output of a graph filter
(Lemma 5) and a GNN (Lemma 6) as a function of the size of the
filters involved. The following two lemmas determine the Lipschitz
continuity with respect to the support matrix S of the graph filter
(Lemma 7) and the GNN (Lemma 8) as a function of the filter
sizes and the Lipschitz constants.

Lemma 5 (Bound on Graph Filter Output). Let H : RN<F — RN*G pe
a graph filter (11) defined over a support matrix S € RNN, Let X e
RN*F be any graph signal such that ||X|| < oc. Then,

[HX:s, 7) | < cu|X|. (A1)
with Cy being the size of the filter bank, see (13).

Proof. Recall that the norm associated to the graph signal space is
given by the L, ; entrywise matrix norm, see (9). Then, the graph
signal size of the output Y = H(X;S, #) can be computed as

F

G

2

g=1

(A2)

G
Y=yl =
g=1

where Hp,(S) = Yi_o[Hy],S¥, see (13), and where ||| represents
the Euclidean norm on vectors. One can apply the triangular in-
equality to (A.2) to obtain:

G F
1Y <D [H )X

g=1 f=1

(A3)

and noticing that the summation is comprised of Euclidean vector
norms, the submultiplicativity of the corresponding matrix spectral
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norm can be used to arrive at

G F
Yl < 33" eS|, %],

g=1 f=1

which, noting that the sum over g only affects |[Hg,(S)||2, can be
rearranged as

F G
Y1 <3 1%, > [Hp(S) ],
f=1 g=1

Next, note that ch=1 [[Hf(S)ll2 is the sum of all the spectral
norms of the filters along the g dimension, thus the result is a
scalar that depends on f and is denoted with C; in this proof,
ie. Z§:1 [Hgg(S)l2 = Cy. For each value of f, there is a differ-
ent Cy, and it holds true that C; <supy_; _p. This implies that
Ye1 IHggOll2 < supp_y_r3g_y IHg(S)]l2-

From (13), note that each element of the matrix Cy e
RFXC is given by max;;, ) Ihrg(2)| for some chosen values
of [A;, Ap]l. Then, if A; and A, are the minimum and maxi-
mum eigenvalues of S as is usually the case, then it follows

(A4)

(A.5)

|A|l is the infinity norm of matrices (i.e. maximum absolute row
sum). Finally, (A.5) can be upper bounded as

F
YN <G Y I1% 2.
f=1

(A.6)

Noting that Z?:] Ixf ||, = IX|| completes the proof. O

Lemma 6 (Bound on GNN Output). Let ®(-; S, H) : RN<F — RNxG pe
a GNN (17) with L layers defined over a support matrix S € RN*N, Let
the nonlinearity o (-) be such that |o (x)| < Cs|x| for all x e R, for
some C, > 0. Then, for every graph signal X € RN*F with ||X|| < oo,
it holds that

[eX:s.1)| =< C-Co|X]|. (A7)
where Cy = ]‘[ézl Ch, for Cy, the size of the ¢t filter, see (13).
Proof. Consider the computation of layer ¢
X =0 (H[(quz s, m)), (AS)
whose norm is given by (9),
F
Xl = M1l (A.9)
g=1
with
Fiq
X5 — a(ZlLZ fg(S)x};]), (A10)
f=1

where H,,(S) = ZfLO[Hlk]fgSk denotes the scalar-valued graph fil-
ter.

Substituting (A.10) into (A.9) and using the hypothesis on the
nonlinearity that |o(x)| <Cs|x| for all x, the following upper
bound on the norm of the output signal at layer ¢ is obtained:

FE o Fa

Xl =G > | B, | (A11)
g=1" f=1 2

which is simply

Xell < Co ” He(Xe-1: S, Hl)” (A12)

Now, using Lemma 5 on (A.12) yields

IXell < CoG, 11 Xenll. (A13)

1
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Repeating (A.13) for all consecutive layers until reaching ¢ =1
leads to

14
IXell < 5 T Go, 1Xoll-
=1

By substituting ¢=L into (A.14) and recalling that X=X,
®(X;S,H) =X, and Cp = ]'[é=] Cy,, the proof is completed. O

(A14)

In what follows, we state two Lemmas regarding the Lipschitz
continuity of graph filters and GNNs with respect to the support
matrix S. These results have already been correspondingly proved,
and are just rewritten here to unify notation.

Lemma 7 (Lipschitz continuity of graph filter with respect to. S)
Let H: RNXF _ RNxC pe q graph filter (11). Let Se RN*N and §
RN*N be two support matrices, such that ||S — S|, < e. Then, for any
graph signal X e RN*F such that ||X|| < oo, it holds that

[HX:S. 1) — HX: S, H) | < e(1+8VN)TW|X] +0(e?). (A15)
with I'y being the Lipschitz constant filter bank, see (14).
Proof. See [13, Thm. 1]. O

Lemma 8 (Lipschitz continuity of the GNN with respect to. S)
Let ®(;-,H) : RN<F . RN*G pe q GNN (17) with L layers. Let o (-) be
such that |o(x) —o (y)| < Ts|x—y| for all x,y € R for some I'; > 0,
and o (0) =0. Let S € RN*N and § e RN*N be two support matrices
such that ||S —S||, < &. Then, for every graph signal X e RN*F with
IIX]| < oo, it holds that

Ty,
X+ 0(e2),
Ch,

L
|oX:8,7) — (X 8. 1) | < e(1+8VN)I[GCo Y
=1

(A.16)

where Co = Hﬁzl Ch, for Cy, the size of ¢t filter, see (13), and where
Iy, is the corresponding Lipschitz constant, see (15).

Proof. See [13, Thm. 4]. O
Appendix B. Proof of Closed-Loop Stability

In this appendix, we first prove Theorem 1 that gives a suf-
ficient condition for the GNN-controlled system D to be stable.
We then prove Proposition 2 stating how the stability constant &
changes from system D to system D.

Proof of Theorem 1.. The system dynamics with a GNN-based, ex-
ploratory controller given by U(t) = ®(X(t); S, H) + E(t) are

X(t) = AX(t — 1)A+Bo(X(t — 1))B + BE(t — 1)B. (B.1)

The graph signal norm of the trajectory can be bounded by apply-
ing the triangular inequality as follows:

X1 < Al Al IX(E = 1) (B.2)
+ [IBI2 1Bl | (X (t = 1)) + [IBIl2 1Bl (¢ — D).

The term |®(X(t);S,#H)|| can be bounded by leveraging

Lemma 6 on the bound of the output of a GNN as

U = || (X(t):S. H) | < CollX@)]. (B.3)

with C,; = 1. This result is used in (B.2), to yield

Xt < EX_1+ Ber_1, (B4)

where x; = [|X()[l, & = [|All2[|All + CollBl2 Bl is given in (22),
B =|B|l21IBlls and e; = ||[E(t)||. By repeatedly applying (B.4), the
following inequality is obtained:

t-1
X <E%+BY ETe 1. (B.5)
=0



E Gama and S. Sojoudi

Now, considering the summation series that defines the stabil-
ity as in (20), one obtains:

oo oo
Yxsx0) E'+p
t=0 t=0

Leveraging the assumptions that £ <1 and > 7% e; < oo, the above
inequality yields

Xx<—=+-"=Ye,
;f 1-¢ 1—s§t

where the fact that, under these assumptions, it holds that
Yo ETe < (XRger) (X0 &") was used. The proof is
complete by replacing the definitions of x;, e; and § in (B.7). Thus,
the system is input-state stable with constants By = || X(0)||/(1 —

&) and B = [IB2lIBllc/(1 - €). O

Next, we prove the change in the stability constant when
d(D,D) =e.

oo t-1

Z Zéret—r—r

t=0 7=0

(B.6)

(B.7)

Proof of Proposition 2.. Start by writing the stability constant é =
£(D,H) as given by (22) to obtain

§ =6, 1) = IAI2lIAll + Col|BI|2 1Bl - (B3)
This equation is equivalent to
£ =|AlLlAll - A2l
S _ (B.9)
+Co Bl 1Bl ~ B2 1Bl ) + .
The first term can be rewritten as
A2 /1Al — 1Al 1Al (B.10)

= (1Al = A1) 1Al + 1Al (JAll. — [All)-

From the definition of the distance d(D,D)=¢ it is known
that —e < ||A|l; — ||A|l> < &, and analogously for ||A|l~, so that
(B.10) can be bounded by

IAl2lIAll — 1Al 1Al < &(IAll2 + 1A]l). (B.11)

Following the same reasoning for the control matrices, one ob-
tains:

IBII2IBlloc — IBII2lIBllc < &(IBll2 + IBll)-

By substituting (B.11) and (B.12) into (B.9) and defining C} =
IAll2 + IAlloo + Co (I[Bll2 + IBlloo), the proof is complete. [

(B12)

Appendix C. Proof of Trajectory Deviations

In this appendix, Theorem 3 bounding the trajectory deviation
between systems D and D is proved. Then, Corollary 4 that con-
siders the special case when both D and D are input-state stable
is also proved.

Proof of Theorem 3.. The dynamic of the error graph signal X(t) —
X(t) is given by

X(t) - X(t) = AX(t—-1)A-AX(t-1A

+BU(t — 1)B - BO(t — 1)B. (C1)

The evolution of X(t) and X(t) and that of U(t) and O(t) are stud-
ied separately.

To study the first part of the right-hand side of (C.1), one can
write:

AX(t —1)A—AX(t - 1)A = AX(t — 1)(A - A)
+(A-A)X(t - DA+A(X(t - 1) - X(t - 1))A.

Observe that (C.2) consists of three terms containing each of the
errors between system matrices and states. Computing the size of

(C2)
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the graph signal in (C.2), see (9), and applying the triangular in-
equality for each of the three terms, one obtains:

| AX(t-1)A-AX(t- DA
F F - .
<Al X % = 1), X |[Alsg - [Alg
f=1 g=1

a F Fooa
A=Al X [¥/@- D, X |IAlg]

. F
+lAll2 X
f=1

xXf(t-1)-%(t - 1)”2 il |[A]fg|'
g=

Now, using the bound YF_, |[Aly| < max; XF_; |[Al gl = Al

and analogously for (A — A), one can write:

|AX(t - 1)A - AX(t — DA

< (1Al 1A~ All + 1A - All 1A]L. ) 1X(¢ - D)
+ Al Al X (£ - 1) =Xt = DI, (C4)

where the resulting sum over f has been replaced for the corre-
sponding size of the graph signal, see (9).

Proceed analogously to (C.4), the second term in the right-hand
side of (C.1) can be bounded as

[BU(t —1)B-BU(t - 1)B||
< (||B||2||B—B||w + ||B—ﬁ||2||3||w)||U<r -
+ IBll2 Bl [UE — 1) =0t — D). (C5)

The control term ||U(t)|| is a GNN with input X(t) and can thus be
bounded by leveraging Lemma 6, i.e. ||U(t)|| < Co||X(t)||. To bound
lu@) —=0()]|, ®(X(t);S,H) is added and subtracted, and the size
of the graph signal computed, to obtain

[u®) -0 | = [o(X(t):S. #) - o(X(©): 5. %)
< || o (X(©);S, 1) — o(X(0): 8. 1) |
+ | ®(X(0): 8. %) — o(X(t): 5. %)

where the triangular inequality was used. For the first term in
(C.6), it follows from Lemma 8 that:

[*X(©): S, H) — oX(£): S, 7) || = T()TolIX(®)II,

(C.6)

)

(C.7)

where T'(¢) = (1+ 8v/N)e with ¢ = d(D, D) depends on the char-
acteristics of the support matrices S and S, and where 'y =
Co Zﬁ:] I'y,/Cy, depends on the learned filters H,(;-, %). To
bound the second term in (C.6), recall that the output of a GNN
is its value at the last layer

[o(X(©):8.%) —o(X(t):S. H)\L: X0 =X | o
= “O—(HL(XL—N S, H)) - O(HL(XL—li S, H)) ”
(C.8)
Using the assumption that |0 (x) —o (y)| < |x—y| for all x,y e R,
(C.8) can be upper bounded by
||¢(X(t), g, 7‘[) - ¢()A((t); §, H) || < || HL(XL,] - )A(L,]; §, H) H .
(C9)

where the linearity of the filter with respect to the input X;_; was
used. Leveraging Lemma 5 on the upper bound of a graph filter,

one obtains:
H HeXo1 — X138, H) H <Cy, HXLA -X H (C.10)

Repeatedly applying (C.9) and (C.10), the following upper bound on
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the second term of (C.6) is obtained:
|o(X(t): 8. %) — o(X(1): 5. ) |

L
= (16 ) [%0 = o = Co X0 - X (c1n)
=1

where the fact that the input to the GNN is the state at time ¢, i.e.
Xo = X(t). Finally, using (C.7) and (C.11) in (C.6), one obtains:
@) - 0@®)| <T@ |XO)| +ColIX(t) - X(®)].
This simplifies (C.5) as

|BU(t — 1)B - BU(t — 1B

< (IBI 1B - Bl + B~ Bl Bl )Co Xt ~ 1]
+ [BII2[IBllT" ()T | X (¢ — 1) |
+ [IBI2 1Bl Co X (£ — 1) = X(t = D).

Now, computing the size of the error signal in (C.1) and using
the triangular inequality, together with (C.4) and (C.12), one ob-
tains:

OGEGIE (||i\||z||A||oo + ||1‘3||2||B||ooc¢)||xa - =-Xe-D

(C12)

+ <(||A||2||A—A||oo+ IA - All2lIA]l ) (C13)

+Co(IIBll2|IB— Bl + [|B - I§||2||B||OO)>||X(t =Dl
+ B2 1IBl T ()T | X(t — 1) .
Recall that € = ||A||2||Alle + Co|IBll2|IBlls and note that
(IA]1211A - All + [|1A - All2[|A]| )
+Co(IIBl12]IB =Bl + [B—B2[Bll~) < e (C14)

for CS as in (26). The value of ||X(t — 1)|| can be further bounded
as
1X(t =Dl < (IAll2lIAll + ColIBll2[Bll) IX(t = 2)[|.  (C15)

Repeatedly applying_this inequality, and noting that & =
lIAll21|Allcc +ColIBll2[IBllwo, see (22), the bound on |IX(¢ - D)

becomes
Xt — Dl < &X(0)]. (C16)
Using (C.14) and (C.16) back in (C.13), one obtains:
|X(6) =X <& 1X(t = 1) =Kt = V)| + (e

+CoBll2 Bl T ()T ) [IX(0) €. (C17)
which can be conveniently rewritten as
e < Eey +beg, (C18)
with
ec = [1X(t) = X©). (C19a)
£ = A2 /1Al + Ch 1Bl 1Bl (C.19b)
£ = [|All2[|Allo + C511Bl12 1Bl . (C19¢)
b= (G + CollBll2|IBll (1 + 8VN)T'6) [IX(0) . (C.19d)

where the definition of I'(¢) = (1 + 8+/N)e was used to highlight
the linearity with ¢. By repeatedly applying (C.18), one arrives at:

t-1
e <be) ETIET 4 Eleg. (C.20)
7=0
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Since the initial state of both the true system and the esti-
mated one is the same, it holds that ey = || X(0) — X(0)|| = 0. Then,
(C.20) becomes

t-1 R ﬁ . A~
e <bg) ETTIET = b £-¢ if g # ‘i; (C.21)
=0 btgt=1 if & =¢

Now, recall that |&t — £f] <t max{&, £}t|& — €| so that (C.21) be-
comes e; < bt max{§, £)t-1¢. Finally, substituting the definitions of
e; as in (C.19a), é;‘ as in (C.19b), £ as in (C.19¢), and b as in (C.19d),
we complete the proof. O

Now we prove Corollary 4 for the particular case when both
systems D and D are input-state stable.

Proof of Corollary 4.. From (28) in Theorem 3 it holds that G =

t max{&, £}t-1. By assumption, it is known that & <1 and & < 1.
Therefore, the function t max{&,£}~1 has a global maximum for
t > 0. As a function of continuous t € R, this maximum is at t =
—1/log(max{§, £}) and gives the optimal value —e~ 1/(max{&, S} x
log(max{&, S})) Thus, it holds that G < —e~1Cy/(max{§, £} x
log(max{&, “g‘})) completing the first part of the proof. For the
second part, note that, since & <1 and & < 1, then it holds that
lim;_ o t max{€, £}-1=0. O
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