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ABSTRACT

Graph neural networks (GNN5s) have been successfully employed in
a myriad of applications involving graph signals. Theoretical find-
ings establish that GNNs use nonlinear activation functions to create
low-eigenvalue frequency content that can be processed in a stable
manner by subsequent graph convolutional filters. However, the ex-
act shape of the frequency content created by nonlinear functions is
not known and cannot be learned. In this work, we use node-variant
graph filters (NVGFs) —which are linear filters capable of creating
frequencies— as a means of investigating the role that frequency cre-
ation plays in GNNs. We show that, by replacing nonlinear acti-
vation functions by NVGFs, frequency creation mechanisms can be
designed or learned. By doing so, the role of frequency creation
is separated from the nonlinear nature of traditional GNNs. Simula-
tions on graph signal processing problems are carried out to pinpoint
the role of frequency creation.

1. INTRODUCTION

Graph neural networks (GNNs) [1,2] are learning architectures that
have been successfully applied to a wide array of graph signal pro-
cessing (GSP) problems ranging from recommendation systems [3,
4] and authorship attribution [5, 6], to physical network problems
including wireless communications [7], control [8], and sensor net-
works [9]. In the context of GSP, frequency analysis has been suc-
cessful at providing theoretical insight into the observed success of
GNNs [10-12] and graph scattering transforms [13, 14].

Of particular interest is the seminal work by Mallat [15,16], con-
cerning discrete-time signals and images, that argues that the im-
proved performance of convolutional neural networks (CNNs) over
linear convolutional filters is due to the activation functions. Con-
cretely, nonlinear activation functions allow for high-frequency con-
tent to be spread into lower frequencies, where it can be processed in
a stable manner—a feat that cannot be achieved by convolutional fil-
ters alone.Leveraging the notion of graph Fourier transform (GFT)
[17], these results have been extended to GNNs [10], establishing
that the use of functions capable of creating low-eigenvalue fre-
quency content allows them to be robust to changes in the graph
topology, facilitating scalability and transferability [18].

While nonlinear activation functions play a key role in the cre-
ation of low-eigenvalue frequency content, it is not possible to know
the exact shape in which this frequency content is actually generated.
Node-variant graph filters (NVGFs) [19], which essentially assign a
different filter tap to each node in the graph, are also able to gener-
ate frequency content. Different from nonlinear activation functions,
this frequency content can be exactly computed, given the filter taps.
Thus, by learning or carefully designing these filter taps, it is possi-
ble to know exactly how the frequency content is being generated.

This work is partially supported by NSF and ONR.

The NVGF is a linear filter, which means that replacing the non-
linear activation functions with NVGFs actually renders the whole
architecture a linear one. Therefore, by comparing the performance
of this architecture to that of a traditional GNN, it is possible to iso-
late the role of frequency creation in the overall performance of the
architecture, from that of the nonlinear nature of mappings. The
contributions of this paper can be summarized as follows:

1. We introduce NVGFs as a means of replacing nonlinear activation
functions, motivated by their ability to create frequencies. We obtain
closed-form expressions for the frequency response of NVGFs as a
function of the filter taps.

2.We prove that NVGFs are Lipschitz continuous with respect to
changes in the underlying graph topology.

3. We put forth a framework for designing NVGFs.

4. We propose a GNN architecture where the nonlinear activation func-
tion is replaced by a NVGF. The filter taps of the NVGF can be ei-
ther learned or designed. The resulting architecture decouples the
role of frequency creation from the nonlinear nature of the GNN.

5. We investigate the problem of authorship attribution to demonstrate,
both quantitatively and qualitatively, the role of frequency creation
in the performance of a GNN, and its relationship to the nonlinear
nature of traditional architectures.

In essence, we show that nonlinear activation functions are
not strictly required for creating frequencies, as originally thought
in [10, 15], but that linear NVGF activation functions are sufficient.
Furthermore, we demonstrate that this frequency content can be
learned with respect to the specific problem under study. All proofs,
as well as the code and further simulations, can be found online'
Related work. GNNs constitute a very active area of research [20,
21]. From a GSP perspective, spectral filtering is used in [22], it
is then replaced by computationally simpler Chebyshev polynomi-
als [23], and subsequently by general graph convolutional filters
[6]. GNNs were also adopted in non-GSP problems [24-26]. The
proposed replacement of nonlinear activation functions by NVGFs
creates a linear architecture that uses both convolutional and non-
convolutional graph filters.

NVGFs are first introduced in [19] to extend time-variant filters
into the realm of graph signals. In that work, NVGFs are used to
optimally approximate linear operators in a distributed manner. In
this paper, we focus on the frequency response of NVGFs and on
their capacity to create frequency content.

Leveraging the notion of GFT, [10] shows that a GNN is Lips-
chitz continuous to small changes in the underlying graph structure.
Likewise, frequency analysis has been used to understand graph
scattering transforms, where the filters used in the GNN are chosen
to be wavelets (and not learned) [13, 14]. In this paper, we focus on
the role of frequency creation that is put forth in [10, 15], and study
NVGFs as linear mechanisms for achieving this.

"Proofs: http://arxiv.org/abs/2106.00089
Code: http://github.com/fgfgama/nvgf
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2. THE NODE-VARIANT GRAPH FILTER

Let G = (V, &) be an undirected, possibly weighted, graph with a
set of N nodes V = {v1,...,un} and a set of edges £ C V x V.
Define a graph signal as the function x : ¥V — R that associates a
scalar value to each node. For a fixed ordering of the nodes, the graph
signal can be conveniently described by means of a vector x € RY
such that the i entry [x]; is the value z; of the signal on node v,
ie., [x]i =z = x(v;).

Describing a graph signal as the vector x € R is mathemat-
ically convenient but carries no information about the underlying
graph topology that supports it. This information can be recovered
by defining a graph matrix description (GMD) S € R™*" which is
a matrix that respects the sparsity pattern of the graph, i.e., [S];; = 0
for all distinct indices ¢ and j such that (vj,v;) ¢ £. Examples of
GMDs widely used include the adjacency matrix, the Laplacian ma-
trix, and their corresponding normalizations [27-29].

The GMD S can thus be leveraged to process the graph signal x
in such a way that the underlying graph structure is exploited. The
most elementary example is the linear map S : RY — R™ between
graph signals given by y = S(x) = Sx. This linear map is a linear
combination of the information located in the one-hop neighborhood
of each node:

N

yi=lyli=> Sluxl,= > suz ¢))
j=1 JvjeN;U{v; }

where NV; = {v; : (vj,v;) € £} is the set of nodes that share an

edge with node v;. The last equality in the above equation is due to

the sparsity pattern of the GMD S.

More generally, a graph filter H(-; S) : R™ — RY is a mapping
between graph signals that leverages the structure encoded in S [19].
In particular, linear shift-invariant graph filters (LSIGFs) are those
that can be built as a polynomial in S:

K
HY(x;8) = > hiS"x = H™(S)x 2)
k=0

where H™(S) = S5 hi.S* with by, € R. Note that H™(x; S)
is written in the form of H'(S)x to emphasize that the function is
linear in the input x, i.e., x is multiplied by a matrix H" (S) that
is parametrized by S. LSIGFs inherit their name from the fact that
they satisfy the property that H''(S)Sx = SH"(S)x. The set of
polynomial coefficients {hy }i-_, are called filter taps, and can be
collected in a vector h € R¥¥! defined as [h]x11 = hy for all
k € {0,...,K}. Note that the term S*x is a convenient mathe-
matical formulation, but in practice S*x is computed by exchanging
information k times with one-hop neighbors, i.e., there are no matrix
powers involved. In general, GSP regards S as given by the structure
of the problem, and regards x as the actionable data [27-29].

This paper focuses on NVGFs [19], which are linear filters that
assign a different filter tap to each node, for each application of S.
This can be compactly written as follows:

K
HY(x;8) = > diag(h™)S"x = H™(S)x A3)
k=0

where h®® € R and diag(-) is the diagonal operator that takes a
vector and creates a diagonal matrix with the elements of the vector
in the diagonal. Since the NVGF is linear in the input, it holds that
H™(x;S) = H™(S)x, where H™(S) = Y5, diag(h™)S*.

The i entry of the vector, [n®)]; = hiy, is the filter tap that node
v; uses to weigh the information incoming after k exchanges with its
neighbors. The set of all filter taps can be conveniently collected in
amatrix H € RV X+ where the (k + 1)™ column is h®® ¢ RY
and the i™ row, denoted by h; € RE*! contains the K + 1 filter
taps used by node v;, i.e., [hi]k+1 = hik.

The LSIGF in (2) and the NVGF in (3) are both linear and local
processing operators. They depend linearly on the input graph signal
x as indicated by the matrix multiplication notation in (2) and in (3).
They are local in the sense that, to compute the output, each node
requires information relayed directly by their immediate neighbors.
The LSIGF is characterized by the collection of K + 1 filter taps.
The NVGEF, on the other hand, is characterized by N (K + 1) filter
taps. It is noted that while the NVGF requires additional memory to
store more parameters, this can be distributed throughout the graph.
It is also observed that both the LSIGF and the NVGF have the same
computational complexity.

3. FREQUENCY ANALYSIS

The GMD S € RV can be used to define a spectral represen-
tation of the graph signal x € R [17]. Since the graph is undi-
rected, assume that S is symmetric so that it can be diagonalized
by an orthonormal basis of eigenvectors {v;}X,, where v; € RY
and Sv; = \;v;, with \; € R being the corresponding eigenvalue.
Then, it holds that S = Vdiag(A)V ", where the i column of V is
v; and where A € R” is given by [A]; = \; fori = 1,..., N. We
assume throughout this paper that the eigenvalues are distinct, which
is typically the case for random connected graphs.

The spectral representation of a graph signal x with respect to
its underlying graph support described by S is given by

x=V'x 4)

where % € R”, see [17]. The spectral representation X of the graph
signal x contains the coordinates of representing x on the eigenbasis
{v:i}2L, of the support matrix S. The resulting vector X is known as
the frequency response of the signal x. The i entry [X]; = v x =
#; € R of the frequency response % measures how much the "
eigenvector v; contributes to the signal x. The operation in (4) is
called the GFT, and thus the frequency response X is often referred
to as the GFT of the signal x.

The GFT offers an alternative representation of the graph signal
x that takes into account the graph structure in S. The effect of a
filter can be characterized in the spectral domain by computing the
GFT of the output. For instance, when considering a LSIGF, the
spectral representation of the output y = H™(S)x is

K K
F=V'Y mS'x = hidiag(\")% = diag(h)x  (5)
k=0 k=0

where the eigendecomposition of S, the GFT of x, and the fact that
S* = Vdiag(A*)VT were all used. Note that A* is a shorthand
notation that means [A¥]; = A¥. The vector h € R” is known as
the frequency response of the filter and its i entry is given by

K
[B]; = h(A) = hedt ©)
k=0

where h : R — Risa polynomial defined by the set of filter taps
{hx}_ . The function h(-) depends only on the filter coefficients
and not on the specific graph on which it is applied, and thus is valid
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for all graphs. The effect of filtering on a specific graph comes from
instantiating h(-) on the specific eigenvalues of that graph. The func-
tion ﬁ() is denoted as the frequency response as well, and it will be
clear from context whether we refer to the function ﬁ() or to the
vector h given in (6). Note that since ﬁ( -) is an analytic function, it
can be applied to the square matrix S so that h(S) = H™(S).

In the case of the LSIGF, it is observed from (5) that the i entry
of the frequency response of the output [§]; = ¥; is given by the
elementwise multiplication

G = h(\i) ;. )

This implies that the frequency response of the output g; is the ele-
mentwise multiplication of the frequency response of the filter h(\;)
and the frequency response of the input z;. This makes (7) the ana-
logue of the convolution theorem for graph signals. Therefore, of-
tentimes the LSIGF in (2) is called graph convolution. It is observed
from (7) that LSIGFs are capable of learning any type of frequency
response (low-pass, high-pass, etc.), but that they are not able to cre-
ate frequencies, i.e., if z; = 0, then g; = 0.

Unlike discrete-time signals, the frequency response of the
LSIGF is not computed in the same manner as the frequency re-
sponse of graph signals. More specifically, the frequency response
of the filter h can be directly computed from the filter taps h
by means of a Vandermonde matrix A € RV X (K+D) given by
[A]ix = N1 as follows:

h = Ah. 8)
This implies that the graph convolution is not commutative.
When considering NVGFs, as in (3), the convolution theorem

(7) no longer holds. Instead, the frequency response of the output is
given in the following proposition.

Proposition 1 (Frequency response of NVGF). Lety = H"(S)x =
Zki-(:o diag(h™®)S*x be the output of an arbitrary NVGF charac-

terized by some filter tap matrix H € RN*EFY . Then, the
frequency response § = V 1y of the output is given by
§=V'(Vo(HA"))x ©)

where o denotes elementwise product of matrices.

Itis immediately observed that NVGFs are capable of generating
new frequency content, even though they are linear.

Corollary 2. If the matrix V" (Vo (HAT)) is not diagonal, then
the output exhibits frequency content that is not present in the input.

To finalize the frequency analysis of NVGFs, we establish their
Lipschitz continuity to changes in the underlying graph support, as
decribed by the matrix S. In what follows, we denote the spectral
norm of a matrix A by || A]|2.

Theorem 3 (Lipschitz continuity of the NVGF with respect to S).
Let G and Q be two graphs with N nodes, described by GMDs S €
RY*N and § € RV, respectively. Let H € ]RNXA(Kle> be the
coefficients of any NVGF. Given a constante > 0, if ||S — S|z < ¢,
it holds that

H(H””(s)—H"”(S))xHQ < cCVN(148N)[|x]l2 +O(e2) (10)

where H™ (S) and H™ (S) are the NVGF on S and S, respectively,
and where C'is the Lipschitz constant of the frequency responses at
each node, i.e., |hi(X\;) — hi(X)| < C|A; — A forall i,5,t €
{1,...,N}.

Theorem 3 establishes the Lipschitz continuity of the NVGF fil-
ter with respect to the support matrix S (Lipschitz continuity with
respect to the input x is immediately given for bounded filter taps)
as long as the graphs S and S are similar, i.e., ¢ < 1. The bound is
proportional to this difference, ¢, and to the shape of the frequency
responses at each node through the Lipschitz constant C'. It also de-
pends on the number of nodes NV, but it is fixed for given graphs with
the same number of nodes. In short, Theorem 3 gives mild guaran-
tees on the expected performance of the NVGF across a wide range
of graphs S that are close to the graph S.

4. APPROXIMATING ACTIVATION FUNCTIONS

One of the main roles of activation functions in neural networks is to
create low-frequency content that can be processed in a stable man-
ner [15]. However, the way the nonlinearities create this frequency
content is unknown and cannot be shaped. One alternative for tai-
loring the frequency creation process to the specific problem under
study is to learn the NVGEF filter taps (Sec. 5). However, doing so,
implies that the number of learnable parameters depend on /N which
may lead to overfitting. In what follows we propose one method of
designing, instead of learning, the NVGFs.

Problem statement. Assume that each data point x is a ran-
dom graph signal with mean E[x] = p, correlation matrix R, =
E[xx"], and covariance matrix C, = E[(x — p,)(x — pu,)"]. The
objective is to estimate a pointwise nonlinear function p : R — R
such that [p(x)]; = p([x]:), using a NVGF-based estimator as § =
H™(S)x + c for H™(8S) as in (3) and ¢ € RY. Given the random
variable y = p(x), the aim is to find the filter taps H € RV > (K+1)
that minimize the mean squared error (MSE)

H" = argmin E[||y —yl|3]. (11)

HERN X (K+1)
Our particular focus is set on obtaining unbiased estimators.

Lemma 4 (Unbiased estimator). Let p, = E[p(x)]. The NVGF-
based estimator is unbiased if and only ifc = p, — H" (S)p

z

From Lemma 4, the unbiased estimator is now

y=H"(S)(x—p,) +m,. (12)

Therefore, the objective becomes finding the filter tap matrix H €
RNV XKD for some fixed value of K that satisfies

nv 2
B[l H"(8)(x— )~ (p(x) ) 3] (13)

H* = argmin

HeRNx(K+1)

Note that, due to the orthogonal nature of the GFT, minimizing (13)
is equivalent to minimizing the difference of the corresponding fre-
quency responses.

The optimal filter taps for each node, i.e., the rows h} € R¥+!
of H* that solve (13), can be obtained by solving a linear system of
equations as follows.

Proposition 5 (Optimal NVGF). Let u; denote the i" row of V,
R, = ATdiag(ui)VTCsziag(ui)A be the covariance matrix
of the frequency response at node v; for the input x, and p; =
ATdiag(u))V'E[(p(x;) — ppi)(x — w,)] denote the correlation
between the filtered signal and the target nonlinearity. Then, a set of
Sfilter taps {h7, ... hiy} is optimal for (13) if and only if they solve
the system of linear equations

Rih::pi, iG{l,...,N}. (14)
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Fig. 1. Authorship attribution problem: Jane Austen. ((a)) Comparison between the Learn NVGF and three popular architectures (GCN [24],
SGC [25] and GAT [26]). ((b)) Change with respect to a GCNN (15) when considering no activation function (LSIGF), a designed NVGF (16)
and a learned NVGF (17). ((c)) A sample of the input frequencies to the architectures, where a large high-frequency component is observed.

From Proposition 5, it is immediate that only knowledge of the
first and second moments of x, and of the correlation between the
input x and the output y = p(x), is required to solve for the optimal
NVGF. These moments can be estimated from training data. Also
observed is that the optimal filter taps for each node can be computed
separately at each node.

5. GRAPH NEURAL NETWORK ARCHITECTURES
USING NODE-VARIANT GRAPH FILTERS

A graph convolutional neural network (GCNN) ¢ has a layered ar-
chitecture [6, 23], where each layer applies a LSIGF as in (2), fol-
lowed by a pointwise nonlinear activation function p : R — R ap-
plied to each node [p(x)]; = p([x]:) and

xo = %, x¢ = p(H (x—13S, hy)), xp = ®(x; S, H). (15)

The LSIGF HY'(-; S, hy) is characterized by the specific filter taps
h, € RE¢+1 Note that the output of the GCNN is collected as the
output of the last layer x;, = ®(x; S, H). This notation emphasizes
that the input is x, while the matrix S is given by the problem, and
the filter taps = {h,}}_; are learned from data.

Nonlinear activation functions are used in GCNNs to enable
them to learn nonlinear relationships between input and output. Ad-
ditionally, theoretical results have found that they play a key role
in creating frequency content that can be better processed by subse-
quent graph convolutional filters. As previously discussed, NVGFs
are also capable of creating new frequency content, albeit in a linear
manner. Therefore, by replacing the nonlinear activation functions
by NVGFs, it is possible to decouple the contribution made by fre-
quency creation from that made by the architecture’s nonlinearity.

The first architecture proposed here is to use a designed NVGF
in lieu of the activation function. That is, instead of using the non-
linear activation function p, an optimal NVGF filter designed as in
Proposition 5 is used. This requires estimating the first and second
moments of the NVGF input data. The architecture, herein termed
“Design NVGF”, is given by

x¢ = H}' (H7 (x¢; S, he); S, H7). (16)

Note that, in this case, the filter taps H; € RY*(¥e+1) of the NVGF
are obtained by Proposition 5, while the filter taps H = {h,}{_; of
the LSIGF are learned from data.

Alternatively, the filter taps of the NVGF replacing the nonlinear
activation function can also be learned from data, together with the
filter taps of the LSIGF:

x¢ = Hy' (H7 (x¢; S, hye); S, Hy) (17)

where the filter taps to be learned are % = {(hg, H¢)}f—,. This
approach avoids the need to estimate first and second moments. Ad-
ditionally, it allows the NVGF to learn how to create frequency con-
tent tailored to the application at hand, instead of just approximating
the chosen nonlinear activation function. We note that while the in-
creased number of parameters may lead to overfitting, this can be
tackled by dropout. This architecture is termed “Learn NVGF”.

6. NUMERICAL EXPERIMENTS

The objective of the numerical experiment is to isolate the impact
that frequency creation has on the overall performance. To do this,
we focus on the GSP problem of authorship attribution, which is a
problem with signals known to have high-frequency content [5].

Problem statement. In the problem of authorship attribution,
the goal is to determine whether a given text has been written by a
certain author, relying on other texts that the author is known to have
written. To this end, word adjacency networks (WANs) are lever-
aged. WANSs are graphs that are built by considering function words
(i.e., words without semantic meaning) as nodes, and considering
their co-occurrences as edges [5]. As it happens, the way each au-
thor uses function words gives rise to a stylistic signature that can be
used to attribute authorship. In what follows, we address this prob-
lem by leveraging previously constructed WANs as graphs, and the
frequency count (histogram) of function words as the corresponding
graph signals.

Dataset. For illustrative purposes, in what follows, works by
Jane Austen are considered. Attribution of other 19™ century authors
can be found in the supplementary material. A WAN consisting of
189 nodes (function words) and 9812 edges is built from texts be-
longing to a given corpus considered to be the training set. These
texts are partitioned into segments of approximately 1000 words
each, and the frequency count of those 189 function words in each
of the texts is obtained. These represent the graph signals x that are
considered to be part of the training set. Each of these is assigned
a label 1 to indicate that they have been authored by Jane Austen.
An equal number of segments from other contemporary authors are
randomly selected, and then their frequency count is computed and
added to the training set with the label O to indicate that they have not
been written by Jane Austen. The total number of labeled samples
in the training set is 1464, of which 118 are left aside for validation.
The test set is built analogously by considering other text segments
that were not part of the training set (and thus, not used to build the
WAN either), totaling 78 graph signals (half corresponding to texts
authored by Jane Austen, and half corresponding to texts by other
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Fig. 2. Frequency responses to a single high-frequency input x = v . The frequency responses include the outputs of all F' = 64 filters.

contemporary authors).

Architectures and training. For the first experiment, we com-
pare the Learn NVGF architecture (17) with arguably three of the
most popular non-GSP GNNs, namely, GCN [24], SGC [25], and
GAT [26]. Note that the Learn NVGF is an entirely linear archi-
tecture, but one capable of creating frequencies due to the nature
of the NVGF. The filter taps of both the LSIGF and the NVGF are
learned from data. The other three architectures are nonlinear since
they include a ReLU activation function after the first filtering layer.
All architectures include a learnable linear readout layer. Dropout
with a probability 0.5 is included after the first layer. All architec-
tures are trained for 25 epochs with a batch size of 20, using the
ADAM algorithm [30] with the forgetting factors 0.9 and 0.999, re-
spectively, as well as a learning rate n. The value of the learning
rate 7, the number of hidden units F', and the number of filter taps
K are chosen by exhaustive search over triplets (), F, K) in the set
{0.001,0.005,0.01} x {16, 32,64} x {2,3,4}.

Experiment 1: Performance comparison. The objective of
this first experiment is to illustrate that the performance of the Learn
NVGF is comparable to the performance of popular (non-GSP)
GNNs. The best results for each architecture are shown in Fig-
ure la, where the classification error was averaged over 10 random
splits of texts that are assigned to the training and test sets. One
third of the standard deviation is also shown. It is observed that
the Learn NVGF architecture has a comparable performance. It is
emphasized that the objective of this paper is not to achieve state-
of-the-art performance, but to offer insight on the role of nonlinear
activation functions in frequency creation and how this translates to
performance, as discussed next.

Experiment 2: The role of frequency creation. For the sec-
ond experiment, we compare the Learn NVGF of the previous ex-
periment with (i) a simple LSIGF, (ii) a Design NVGF as in (16),
and (iii) a GCNN as in (15). The same values of (n = 0.001, F =
32, K = 3) are used for all architectures as a means of fixing all
other variabiliity except for the nonlinearity/frequency creation. The
results are shown in Figure 1b. Note that the GCNN in (15) can be
interpreted as a stand-in for ChebNets [23], arguably the most pop-
ular GSP-based GNN architecture.

Discussion. First, note that the LSIGF, Design NVGF, and
Learn NVGF architectures are linear, whereas the GCNN is not.
The LSIGF, however, is not capable of creating frequencies, while
the other three are, albeit through different mechanisms. Second,
Figure 1b shows the percentage difference in performance with
respect to the base architecture (the GCNN). Essentially, the dif-
ference in performance between the LSIGF and the Learn NVGF
can be pinned down to the frequency creation, because both archi-
tectures are linear, while the difference between the Learn NVGF
and the GCNN can be tied to the nonlinear nature of the GCNN. It

is thus observed that the LSIGF performs considerably worse than
the Learn NVGF and the GCNN, which perform the same. It is ob-
served that the Design NVGF performs halfway between the GCNN
and the LSIGF. The Design NVGF depends on the ability to accu-
rately estimate the first and second moments from the data, and this
has an impact on its performance. In any case, it is noted that this
experiment suggests that the main driver of improved performance
is the frequency creation and not necessarily the nonlinear nature of
the GCNN.

From a qualitative standpoint, the average frequency response
of the signals in the test set is shown in Figure 1c. Since the high-
eigenvalue content is significant, it is expected that the ability to bet-
ter process this content will impact the overall performance. This
explains the relatively poor performance of the LSIGF. In Figure 2,
we show the frequency response of the output for each of the three
architectures (LSIGF, Learn NVGF, and GCNN) when the input has
a single high frequency, i.e., x = vy so that X = ey. Figure 2a
shows that the output frequency response of the LSIGF exhibits a
single frequency, the same as the input. Figure 2b shows that the out-
put frequency response of the GCNN has content in all frequencies,
but most notably a low-frequency peak appears. Figure 2c shows
that the output frequency response of the Learn NVGF contains all
frequencies, in a much more spread manner than the GCNN.

General observations. In the supplementary material, a similar
analysis is carried out for 21 other authors. Additionally, it is noted
that Jane Austen is representative of the largest group (consisting
of 11 authors) where the Learn NVGF and the GCNN have similar
performance and are better than the LSIGE. For 7 other authors, the
Learn NVGF actually performs better than the GCNN. Finally, for
the remaining 3 authors, there is no significant difference between
the performance of the LSIGF, the GCNN, and the Learn NVGF,
which implies that the high-frequency eigenvalue content is less sig-
nificant for these authors.

7. CONCLUSION

The objective of this work was to study the role of frequency creation
in GSP problems. To do so, nonlinear activation functions (which
theoretical findings suggest give rise to frequency creation) are re-
placed by NVGFs, which are also capable of creating frequencies,
but in a linear manner. In this way, frequency creation was decou-
pled from the nonlinear nature of activation functions. Numerical
experiments show that the main driver of improved performance is
frequency creation and not necessarily the nonlinear nature of GC-
NNs. As future work, we are interested in extending this frequency
analysis to non-GSP related problems such as semi-supervised node
classification or graph classification problems, which require a care-
ful definition of a notion of frequency.
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