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Abstract— The reliability of the electric power grid is in-
creasingly linked to the reliability of measured data which is
used to understand the current state of the system. Determining
the current state of the electric grid is the basis for decision-
making related to the normal operation of the grid as well as
operations in the case of an emergency scenario. When some
of this data is corrupted in the case of a cyberattack, it is
important that we can recover the true state of the system via
state estimation (SE). Inspired by the work in [1] and [2], we
propose a novel method using a notion in machine learning to
optimize the choice of measurements in a given power network,
formulating the problem as a mixed-integer linear program
(MILP). Using this MILP, we study some test cases and show
that it is impossible to certify that the network is fully robust
in the case of bad data. However, we propose a method to
optimally place the sensors in order to make the network more
robust in the case of cyberattacks.

I. INTRODUCTION

Power system state estimation (PSSE) is a critical problem

for the reliability of the electric grid. PSSE uses data from

sensors throughout a transmission or distribution network to

monitor the state of the network [3]. The estimated state is in

turn used to make decisions about real-time power dispatch,

implement voltage control, and take action in the case of a

contingency, such as a line or generator outage [4]. During

the Northeast power blackout of 2003, which affected over

50 million people in the U.S. and Canada, the propagation

of cascading failures could have been mitigated had the

operators been able to recover the true state of the network

[5]. Because sensor measurements may be subject to both

random noise and intentional cyberattacks, it is important to

consider a robust version of the SE problem [6]. Furthermore,

as cyberattacks increase in frequency, robust PSSE will

become more important in the design of algorithms for the

future smart grid [7]–[9].

A special case of graph-structured quadratic sensing, PSSE

is formulated as the minimization of a loss function repre-

senting the difference between the actual set of measure-

ments and the measurements that would be observed for

the estimated state. The state of a power network is defined

by a complex voltage at each bus in the network. Due to

the nonlinearity of alternating-current (AC) power flow, the

classical PSSE problem is nonlinear, making the problem

NP-hard. In practice, nonlinear SE is solved with local search
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algorithms such as Newton’s method [10]. However, local

methods may yield spurious local minima with no physical

meaning since PSSE does not satisfy the restricted isometry

property (RIP) from quadratic sensing that can be used to

certify a lack of spurious local minima [11]. Because of

this, there is growing interest in methods that can yield global

solutions to the PSSE problem such as stochastic and convex

methods [12]–[15]. The paper [1] proposes a two-step PSSE

method which allows for the recovery of the true state of the

system in the case without noise or bad data. Because this

method involves solving a linear SE problem, it is convex and

can be solved to global optimality efficiently with existing

local search methods. Additionally, [1] introduces a sufficient

condition to verify the robustness of PSSE that explicitly

depends on the support of the bad data, and [2] extends this

work to propose a method which certifies that a network is

locally robust to bad data without any dependence on the

bad data support.

A. Contributions

By leveraging the results of [2], this work proposes a novel

MILP to optimize the placement of sensors in a network

in order to satisfy a machine learning condition for PSSE

robustness.

B. Notations

The symbol R denotes the set of real numbers, and R
N

denotes the space of N -dimensional real vectors. The symbol

(·)T denotes the transpose of a vector or matrix. The symbol

| · | is the absolute value operator if the argument is a

scalar, vector, or matrix; otherwise, it is the cardinality of a

measurable set. The imaginary unit is denoted by j =
√
−1.

The elementwise multiplication of two matrices A ∈ R
m×n

and B ∈ R
m×n is denoted as A ⊙ B. The symbol †

denotes the left pseudoinverse of a matrix given as A† ≜

(ATA)−1AT . The notation ||A||∞ corresponds to the matrix

infinity norm, e.g. the maximum absolute column sum of

matrix A. The expression 1n is a vector of ones of dimension

n, and the expression 1{ζ} is the indicator function which

is 1 if ζ is true and 0 otherwise. The notation A[B, C] or

AB,C represents a submatrix of matrix A formed by taking

the rows and columns corresponding respectively to the sets

B and C. The notation A \ B denotes the subtraction of set

B from set A, and A ∪ B denotes the union of sets A and

B. The notation [n] denotes the index set {1, . . . , n}.
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II. BACKGROUND

A. Power System State Estimation (PSSE)

Let a power network be defined as the graph G = (N ,L),
where N is the set of buses and L is the set of lines. The

goal of PSSE is to recover the true state of the network,

given as the complex voltage vi ≜ |vi|ejθi at each bus i ∈
N . We are given some set of measurements M, which can

include measurements of the real or reactive power flows

pij , qij on line (i, j) ∈ L, the real or reactive power injected

pi, qi at bus i ∈ N , or the voltage magnitude |vi| at bus

i ∈ N . We can also extend this method to include phase

angle measurements θi for i ∈ N from phasor measurement

units (PMUs). We will use the PSSE method from [1], which

introduces a linear basis using the unknown state variables

xmg
i ≜ |vi|2 for all i ∈ N , xre

ij ≜ |vi||vj | cos(θij) for all

(i, j) ∈ L, xim
ij ≜ |vi||vj | sin(θij) for all (i, j) ∈ L, where

θij ≜ θi − θj for all (i, j) ∈ L. We will take the set X =
{

{xmg
i }∀∈N , {xre

ij}∀(i,j)∈L, {xim
ij }∀(i,j)∈L

}

to be the set of

all states for the network, which is fixed given the network

topology.

Given this linear basis, the equations which relate the

measurements to the state can be formulated as m = Ax,

where A ∈ R
m×n is the sensing matrix that relates the

unknown state x ∈ R
n to the vector of measurements m ∈

R
m. We have that n ≜ |X | = |N |+2|L| and m ≜ |M|. Note

that A is sparse due to the sparse nature of power networks

(see [1] for the formulation of A). When m > n, the

equation m = Ax represents an over-determined power flow

problem. We will assume that we always have m ≥ n. In

a realistic scenario, the measurements m are corrupted with

random noise and potentially other bad data, and therefore

we cannot just solve this over-determined power flow to

determine the true state. We can model the noisy and/or

corrupted measurements y ∈ R
m as:

y = Ax + w + b (1)

where w ∈ R
m represents random noise and b ∈ R

m

represents the bad data vector. Typical assumptions on these

vectors are that w follows a Gaussian distribution and that b

is a sparse vector [16]. Note that the local recovery method

in [2] is one of the most general methods as it does not make

assumptions on the sparsity of b.

The PSSE methods of [1] and [2] use a two-step process:

1) Solve SE problem defined by (1) to get an estimate x̂.

2) Recover an estimate of the complex voltages using the

relations |v̂i| =
√

x̂mg
i , θ̂ij = arc tan

(

x̂im
ij /x̂

re
ij

)

, and

θ̂ = argminθ∈R|N|

∑

(i,j)∈L(θi − θj − θ̂ij)
2.

If step 1 is able to recover the true state, then step 2

will recover the true complex voltage vector [1]. In the

case of corrupted and/or noisy data, it will be impossible

to recover the true state in step 1, but it is stated in [1] that

the propagation of error is not too great in step 2. Thus, the

focus of this paper for robust SE is on step 1, which we will

call ℓ-PSSE (linearized PSSE) from this point forward.

In the case when both random Gaussian noise and sparse

corruption are present, one version of ℓ-PSSE problem would

be to solve the LASSO problem given in [1]:

x̂ = min
x,b

1

2|M| ||y −Ax − b||22 + λ||b||1 (2)

for some regularization parameter λ > 0 that promotes

the sparsity of b. As an alternative, the paper [2] proposes

minimizing a Huber loss which is more robust to outliers.

B. Mutual Incoherence

Mutual coherence is a measure of the cross-correlation of

the columns of a matrix A ∈ R
m×n, which is a powerful

notion in the area of compressed sensing. The authors of [1]

propose a new metric, which they call “mutual incoherence,”

a measure of the alignment of two particular submatrices of

the sensing matrix A, one related to the clean data and one

related to the corrupted data. As it is proposed in [1], this

metric relies on the knowledge of the support of the bad data

vector b, denoted as B ⊂ M. The mutual incoherence metric

ρ(B) is then defined as ρ(B) =
∣

∣

∣

∣

∣

∣
AT†

BcAT
B

∣

∣

∣

∣

∣

∣

∞
, where Bc ≜

M\B, AB is the submatrix of A with rows corresponding to

B, and ABc is the submatrix of A with rows corresponding

to Bc. We need to make a few assumptions about the matrix

A in order to use the mutual incoherence metric to certify

the robustness of the ℓ-PSSE problem.

Assumption 1 (Preconditioning of sensing matrix). Each

row of A is normalized so that ||ai||2 = 1, ∀i ∈ [m], where

ai is the ith row of A.

Assumption 2 (Lower eigenvalue condition).

min

{

λmin

(

AT
BcABc

)

, λmin

([

A

IB

]

[AT
I
T
B ]

)}

> 0 (3)

where IB corresponds to a submatrix formed by the B rows

of the identity matrix I ∈ R
m×n and λmin(·) denotes the

minimum eigenvalue of a matrix.

This second assumption implies that the true vector must

be identifiable if the bad data support B were known. The

authors of [1] show that under these assumptions on A,

if ρ(B) < 1, then problem (2) with a given choice of

regularization parameter λ recovers an estimated state with

a small error from the true state as well as a large degree of

bad data detection with high probability. However, because

this method relies on knowledge of the support of the bad

data vector, its application is limited.

The paper [2] builds on [1] and proposes a way to avoid

using the bad data support, by developing a method for

certification which can be ensured locally for each line in

the network (i, j) ∈ L without considering the actual attack

set. This method partitions the graph into attack, boundary,

and safe regions for a given line (i, j) ∈ L and then looks

at the mutual incoherence metric defined on subsections of

the partitioned boundary measurements, which are fixed for

a given line (i, j) ∈ L and measurement set M. During

an actual attack, if measurements at a node i are attacked

and if every line (i, j) ∈ L attached to node i satisfies

the mutual incoherence condition, then the attack will not

propagate through the network.
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Algorithm 1 Sensing matrix partition for local attack i → j

Inputs: G, M, X , (i, j)
Compute sensing matrix A from G
Set X ij

a ← {xmg
i , xre

ij , x
im
ij }

Set Mij
a ← {all-zero rows of A[: , (X \ X ij

a )]}
Set Mij

db ← {non-zero rows ofA[: ,X ij
a ]} \Mij

a

Set X ij
b ← {non-zero columns of A[Mij

db , :]} \ Xa

Set Mij
ib ← {non-zero rows of A[: ,X ij

b ]} \Mij
db

Set Mij
s ← M\ (Mij

a ∪Mij
db ∪Mij

ib )
Set X ij

s ← X \ (X ij
a ∪ X ij

b )
Outputs: {X ij

a ,X ij
b ,X ij

s }, {Mij
a ,Mij

db,Mij
ib ,Mij

s }

In the next section, we present a modified version of the

graph partitioning that was first introduced in [2]. While

[2] partitions based on kth connected neighbors in the net-

work, this method partitions through variable coupling in

the sensing matrix and thus takes into account the choice

of measurements to determine the variable partition. Unlike

that in [2], our method results in the minimum number of

boundary variables and maximum number of safe variables

and measurements. This version is effectively the same as

that in [2], i.e. it does not change the mutual incoherence

metric or results of [2], but it streamlines the partitioning

process and results in a more intuitive partition for the

application.

III. GRAPH PARTITIONING FOR LOCAL CERTIFICATION

For a given line of attack i → j, we aim to partition the set

of state variables X into the sets of attacked variables X ij
a ,

boundary variables X ij
b , and safe variables X ij

s , where we

use the superscript ij to indicate that the partition is specific

to the chosen attack line i → j. It is desirable to partition the

measurement sets into the attacked measurements Mij
a that

depend only on X ij
a , the dependent boundary measurements

that depend on both X ij
a and X ij

b , the independent boundary

measurements Mij
ib that depend only on X ij

b , and the remain-

ing safe measurements Mij
s that can depend on both X ij

s

and X ij
b . We note that the “independent” and “dependent”

boundary measurements are defined as dependent in relation

to the attacked variables X ij
a . The algorithm to formulate the

variable and measurement partitions is given in Algorithm 1.

With this partition, we can rewrite the sensing matrix A as

coupled through the boundary region.

If the matrix A satisfies some mutual incoherence condi-

tion for independent and dependent boundary measurement

sets given by the partition in Algorithm 1, then line i → j
is robust and bad data cannot propagate from i to j. In this

case, if node i is part of the unknown attack set, then it will

still be possible to recover a reasonable estimate of the state

at node j with high probability. The required local mutual

incoherence condition is given as:

ρij ≜
∣

∣

∣

∣

∣

∣
AT†

Mij

ib
,X ij

b

AT

Mij

db
,X ij

b

∣

∣

∣

∣

∣

∣

∞
< 1 (4)

We can see that condition (4) depends on the

measurement-variable partition. In this case, the mutual in-

coherence ρij captures the alignment between measurements

in the independent boundary set and the dependent bound-

ary set. This condition ensures that attacked measurements

do not propagate from the dependent boundary set to the

independent boundary set.

Because condition (4) depends on the measurement set, it

is apparent that we can optimize the choice of measurements

M in order to decrease ρij with the goal of finding measure-

ments such that ρij < 1. If we can find a measurement set M
such that ρij < 1 for all i → j and j → i for (i, j) ∈ L, then

we can say that the network is fully robust. If the network

is fully robust, then we can find good estimates for local

recovery of the safe and boundary region state variables via

the method in [2]. In order to formalize the goal of placing

sensors in a power network so that the network is robust,

we will consider this mutual incoherence condition in an

optimization framework, as presented in the next section.

IV. PROBLEM FORMULATION

The goal is to find a minimum choice of measurements

over the network such that the mutual incoherence condition

is satisfied for all boundary measurement sets {Mij
db,Mij

ib }
in both i → j and j → i directions for every line (i, j) ∈ L.

Note that in the formulations below we will use the notation

(i, j) ∈ L to denote lines in both i → j and j → i directions.

Let ϕ ∈ {0, 1}m be a binary vector which indicates the

choice of measurements such that ϕi = 1 if measurement

i ∈ [m] is chosen and ϕi = 0 otherwise. Note that m is

equal to the total possible number of measurements for a

given power network.

When we consider the mutual incoherence condition

across a line i → j, we can define a partition of all

possible measurements M̃, which is invariant to the choice

of measurements ϕ and depends only on the graph topology.

Given this partition, let M̃ij
db be the set of total possible

dependent boundary measurements and M̃ij
ib be the set

of total possible independent boundary measurements. Let

mij
db ≜ |M̃ij

db|, mij
ib ≜ |M̃ij

ib |, and nij
b ≜ |X ij

b |. We could

formulate an optimization problem with condition (4) as a

constraint. However, this problem may be infeasible if the

constraints (4) cannot be satisfied for all lines (i, j) ∈ L.

Thus, it is more useful to consider the following mixed-

integer nonlinear program (MINLP):

min
β∈R,φ∈{0,1}m

Xij ,Eij ,Jij ,∀(i,j)

β (5a)

s.t. M ≤
∑m

i=1
ϕi ≤ M (5b)

∀(i, j) ∈ L :
(

Rij ⊙ Eij
)

Xij = Sij ⊙ J ij (5c)

Eij
k = ϕ[M̃ij

ib (k)] 1
n
ij

b
, ∀k ∈ [mij

ib ] (5d)

J ij
k = ϕ[M̃ij

db(k)] 1
n
ij

b
, ∀k ∈ [mij

db] (5e)

||Xij ||∞ ≤ β (5f)

where Rij ≜ AT

M̃ij

ib
,X ij

b

∈ R
n
ij

b
×m

ij

ib and Sij ≜ AT

M̃ij

db
,X ij

b

∈
R

n
ij

b
×m

ij

db are subsets of the transposed sensing matrix AT .
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We have introduced the variable Xij ∈ R
m

ij

ib
×m

ij

db in order

to represent the mutual incoherence as ||Xij ||∞ for each

line (i, j) ∈ L. The matrix variables Eij ∈ R
n
ij

b
×m

ij

ib and

J ij ∈ R
n
ij

b
×m

ij

db are used to choose columns of the sens-

ing matrix corresponding respectively to independent and

dependent boundary measurements. Eij
k and J ij

k represent

the kth columns of Eij and J ij , respectively. The notation

ϕ[M̃ij
ib (k)] represents the element of ϕ corresponding to

the kth entry of M̃ij
ib (similarly for ϕ[M̃ij

db(k)]). The given

parameters M and M are respectively the minimum and

maximum numbers of measurements, where we select M
such that M ≥ n.

Theorem 1. If the objective of (5) is strictly less than 1,

then a measurement set can be found such that the network

is robust in terms of the mutual incoherence condition (4).

Proof: Using equations (5d) and (5e), we have that

Rij ⊙ Eij is equivalent to AT

Mij

ib
,X ij

b

and Sij ⊙ J ij is

equivalent to AT

Mij

db
,X ij

b

, thus Xij = AT†

Mij

ib
,X ij

b

AT

Mij

db
,X ij

b

by

constraint (5c). We have that ||Xij ||∞ corresponds to ρij as

defined in Equation (4), and if β < 1 then (5f) enforces that

ρij is under 1 for every line (i, j) ∈ L.

Note that Problem (5) is nonconvex due to both the

discrete nature of the binary variables ϕ and the nonlinearity

of the EijXij term in constraint (5c). If we examine the

constraint (5c) for some line (i, j) ∈ L, we see that it is

equivalent to: (for ∀k ∈ [nij
b ], ∀l ∈ [mij

db])

∑m
ij

ib

r=1
Rij

krX
ij
rlϕ[M̃

ij
ib (r)] = Sij

klϕ[M̃
ij
db(l)] (6)

We can relax the nonconvexity due to the nonlinearity by

introducing new variables:

Zij
rl ≜ Xij

rlϕ[M̃
ij
ib (r)] ∈ R, ∀r ∈ [mij

ib ], ∀l ∈ [mij
db] (7)

Then we can reformulate (6) with linear relations:

m
ij

ib
∑

r=1

Rij
krZ

ij
rl = Sij

klϕ[M̃
ij
db(l)], ∀k ∈ [nij

b ], ∀l ∈ [mij
db] (8)

With this reformulation, all the nonlinearity is in the

constraints (7). If we relax (7), we have:

Zij
rl ≤ Xij

rlϕ[M̃
ij
ib (r)], ∀r ∈ [mij

ib ], ∀l ∈ [mij
db] (9)

We also note that Xij
rl = Zij

rl . If ϕ[M̃ij
ib (r)] = 1, this

is obvious. If ϕ[M̃ij
ib (r)] = 0, then the only constraint Xij

rl

appears in is (5f), and since we are minimizing the infinity

norm of Xij , we have that Xij
rl will be equal to zero. Thus,

we can substitute Zij into (5f) and (9) in place of Xij . We

can also reformulate constraint (9) using the big-M method

by introducing some large constant C > 0 such that Zij
rl ≤ C

for all r ∈ [mij
ib ], l ∈ [mij

db], for all (i, j) ∈ L to yield the

constraints:

Zij
rl ≤ Cϕ[M̃ij

ib (r)], ∀r ∈ [mij
ib ], ∀l ∈ [mij

db] (10)

To reformulate the constraint (5f) in order to yield a MILP,

we introduce a new variable Y ij
rl corresponding to |Zij

rl | for

all r ∈ [mij
ib ] and l ∈ [mij

db] which can be related to Zij
rl by

the following constraints:

Y ij
rl ≥ max{−Zij

rl , Z
ij
rl}, ∀r ∈ [mij

ib ], ∀l ∈ [mij
db] (11)

We modify (10) to be upper bounds on Y ij :

Y ij
rl ≤ Cϕ[M̃ij

ib (r)], ∀r ∈ [mij
ib ], ∀l ∈ [mij

db] (12)

This formulation allows (5f) to be recast in terms of Y ij :

∑m
ij

db

l=1
Y ij
rl ≤ β, ∀r ∈ [mij

ib ] (13)

In order for the power flow solution to be fully defined

in the case without noise, i.e. m = Ax, we need A to be

full rank, as the authors suggest in [1]. Instead of enforcing

the rank constraint in this optimization problem, we can

enforce a weaker constraint which says that every variable

must appear in at least one of the measurement equations.

We can model this by taking Φx to be the indicator variables

corresponding to the set of measurements that depend on the

variable x ∈ X . The sets Φx are defined based on the struc-

ture of the graph and therefore can easily be incorporated

into the constraints. To enforce that every variable appears

at least once in the chosen measurement equations, we use

the constraints:
∑|Φx|

i=1
Φx[i] ≥ 1 ∀x ∈ X (14)

where Φx[i] corresponds to the ith element of Φx for x ∈ X .

Combining these constraints, we have the MILP of interest:

min
β∈R,φ∈{0,1}m

Zij ,Y ij ,∀(i,j)∈L

β

s.t. (5b), (14)

∀(i, j) ∈ L : (8), (11), (12), (13)

(15)

In the case that it is impossible to recover a set of

measurements that yields β < 1 for Problem (15), it will

be more helpful to minimize the number of violations of the

mutual incoherence condition, i.e. where ||Y ij ||∞ ≥ 1. We

can do this by solving the related MIP:

min
φ∈{0,1}m

Zij ,Y ij ,βij ,∀(i,j)∈L

∑

(i,j)∈L

1{βij ≥ 1}

s.t. (5b), (14)

∀(i, j) ∈ L :

(8), (11), (12)

∑m
ij

db

l=1
Y ij
rl ≤ βij , ∀r ∈ [mij

ib ]

(16)

which is converted to a MILP by introducing binary variables

αij corresponding to the indicators 1{βij ≥ 1} and using the

big-M method to recast the constraints in linear form.

V. SIMULATIONS

The simulations are run on a standard laptop using the

Pyomo modeling language in Python 3.8. The MILPs given

by (15) and (16) are solved with the Gurobi solver, which

uses a branch-and-bound method to determine the binary

variables.
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Fig. 1. Four bus network showing all possible voltage magnitude
measurements, real power flow measurements, and real power injection
measurements. Note that because real power injections at buses 1 and 4
are equivalent to p12 and p43 respectively, these measurements are not
considered.

TABLE I

MUTUAL INCOHERENCE METRIC FOR FOUR BUS NETWORK

Line i → j Mutual incoherence ρij Mutual incoherence ρij

from solving (15) from solving (16)

1 → 2 0.91 0.00
2 → 3 1.02 0.90
3 → 4 1.39 1.52
2 → 1 1.39 1.52
3 → 2 1.02 0.93
4 → 3 0.91 0.19

A. Four-Bus Test Case

We first consider the four-bus test network shown in Figure

1. In [2], the authors considered this network and showed

that different combinations of measurement choices yielded

mutual incoherence metrics that were greater than 1 for

certain lines in the network. By considering Problem (15),

we formalize their guess-and-check process.

For the four bus network, we take the line parameters to be

Gij = 5, Bij = −20, and Bsh
ij = 0.5 in per unit values. If we

set M = 3|N |−2 = 10, and M = m = 20, then for the four

bus network, we find that it is impossible to recover a set of

measurements such that the mutual incoherence condition is

satisfied in both directions for every line (i, j) ∈ L, as shown

in Table I. Instead, we can solve (16) to yield a choice of

measurements that minimizes the number of violations of the

mutual incoherence metric. By solving (16), we see that it is

possible to create a measurement set such that 2 out of 3 of

the lines are robust in both directions, as shown in the third

column of Table I. We see that a mutual incoherence of 0

is obtained for line 1 → 2. This occurs because the chosen

measurement set has no coupling between attack variables

and the rest of the variables, resulting in X 12
b = ∅.

B. IEEE Test Cases

We solve Problem (15) for some IEEE test cases [17],

finding that there is no choice of measurements such that

mutual incoherence is below 1 for every line on the network

(see [18]). However, we can still solve problem (16) to

yield the optimal choice of measurements for the mutual

incoherence robustness condition. The results of (16) are

given in Table II. Note that if the data for a part of the

network is under attack, having more lines satisfy the mutual

incoherence condition guarantees a reduction in the impact

of the attack on the SE for nodes far away from the attacked

region [2].

VI. CONCLUSIONS

This paper presented an original framework for optimizing

the choice of measurements in a power system to protect

TABLE II

SOLUTION TO (16) FOR VARIOUS IEEE TEST CASES

Network Fraction of chosen Fraction of lines Solve time (s)

measurements with ρij < 1

case5 30 / 39 6 / 12 1.89
case9 36 / 57 12 / 18 1.49
case14 92 / 120 18 / 40 120.5
case30 190 / 248 37 / 82 831.1

against false data injection. By examining a local metric for

robust PSSE, we were able to define a coupled optimization

problem over all lines of the network. We showed that

for some test cases, there is no choice of measurements

such that every line can be certified as robust in both

directions. However, this framework allows us to find subsets

of measurements that are more optimal than others in terms

of PSSE robustness.
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