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Abstract

In this review, we focus on electrospun nanofibers as a promising material alternative for
the niche application of decentralized, point-of-use (POU) and point-of-entry (POE) water
treatment systems. We focus our review on prior work with various formulations of electrospun
materials, including nanofibers of carbon, pure metal oxides, functionalized polymers, and
polymer-metal oxide composites, that exhibit analogous performance to media (e.g., activated
carbon, ion exchange resins) commonly used in commercially available, certified POU/POE
devices for contaminants including organic pollutants, metals (e.g., lead) and persistent
oxyanions (e.g., nitrate). We then analyze the relevant strengths and remaining research and
development opportunities of the relevant literature based on an evaluation framework that
considers (i) performance comparison to commercial analogs; (i) appropriate pollutant targets
for POU/POE applications; (iii) testing in flow-through systems consistent with POU/POE
applications; (iv) consideration of water quality effects; and (v) evaluation of material strength
and longevity. We also identify several emerging issues in decentralized water treatment where
nanofiber-based POU/POE devices could help meet existing needs including their use for
treatment of uranium, disinfection, and in electrochemical treatment systems. To date, research
has demonstrated promising material performance toward relevant targets for POU/POE
applications, using appropriate aquatic matrices and considering material stability. To fully
realize their promise as an emerging treatment technology, our analysis of available literature
reveals the need for more work that benchmarks nanofiber performance against established
commercial analogs, as well as fabrication and performance validation at scales and under

conditions simulating POU/POE water treatment.



103

104

105

106

107

108

109

110

111

112

113
114
115
116
117

118

119

120

121

1. Introduction

Because of high-profile instances of widespread industrial pollution (e.g., contamination
from per- and polyfluoroalkyl substances or PFAS) and decaying water infrastructure (e.g., lead
contamination in Flint, Michigan), the United States has witnessed a growing distrust over tap
water quality, especially in communities of color."? A large number of Americans also rely on
unregulated water sources (e.g., domestic or private drinking water wells), while many still lack
routine access to a reliable piped water supply.® These challenges have led many consumers to
seek out alternative commercial supplies (e.g., bottled water) and/or other means to improve the

quality of water available to them.*>
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POU/POE device in home setting POU housing and cartridge Electrospun nanofiber mesh

Figure 1. Schematic of electrospun nanofiber membrane-integrated point-of-use (POU) and point-of-entry

(POE) devices in a household. Insets include diagrams of the housing and cartridge of a POU device and

an SEM of an electrospun nanofiber mesh for a potential nanofiber membrane-integrated POU cartridge.
Adapted from Tap Score.®

When properly installed, operated, and maintained, decentralized technologies can play
an important role in helping consumers secure safe and reliable drinking water. Point-of-use
(POU) and point-of-entry (POE) devices are treatment technologies that treat water at the

location of primary use (e.g., the tap) or upon entry into a building, respectively (Figure 1).”
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122 With the noted challenges that many consumers still face in securing their drinking water supply,
123 increasing reliability, affordability, and access to POU/POE devices could, in certain cases,

124  address these concerns.® Widely used options for POU/POE treatment include activated carbon
125 filters, ion exchange devices, and reverse osmosis membranes, with devices in the US certified
126 by outside agencies to ensure a certain level of performance (e.g., National Science Foundation
127  (NSF) International and the American National Standards Institute (ANSI) are two private
128  organizations that issue standards to certify the efficacy of in-home water treatment devices).”!°
129  Nevertheless, all commercially available POU/POE devices have limitations, including cost of
130  acquisition and the need for routine maintenance and replacement to ensure performance. There
131  are also persistent questions of equity and justice surrounding POU/POE devices; can those that
132 most often need these technologies afford them?

133 Decentralized water treatment offers an opportunity for the integration of

134  nanotechnology, potentially enhancing performance and lowering the cost of, and thereby

135  increasing access to, POU/POE technologies. Engineered nanomaterials exhibit more surface
136  area per unit mass than their larger-scale material analogs, which can equate to longer

137 operational lifetimes and smaller technology footprints more suitable for in-home use.!'!* The
138  potential for greater inherent reactivity relative to larger-scale materials may also help with the
139  removal of traditionally recalcitrant pollutant classes. However, nanotechnology-enabled water
140  treatment devices are not without their own set of challenges.'* It can be reasonably concluded
141  that the use of nanoparticle suspensions or dispersions is simply not practical, especially in

142 POU/POE treatment. Alternative reactor assemblies also suffer from limitations (e.g., packed
143 columns of nanomaterials are likely infeasible due to large pressure head),'>"!° and all

144  applications include the potential for unwanted release of nanomaterials into the treated supply.
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Notably, to the best of our knowledge, no known commercially available POU/POE certified
through NSF International or ANSI uses engineered nanomaterials or nanomaterial composites.
In this review, we focus on one particularly promising type of nanoengineered material
for POU/POE applications: electrospun nanofiber composites. Electrospinning is an industrial
viable fabrication route for the production of nonwoven membranes ideal for water treatment
applications.?*2? Critical evaluation of the literature shows that the laboratory performance of
electrospun materials is well established (as evidenced by several recent reviews on different

nanofiber applications),?> %’

and that they generally behave as would be expected from the
wealth of complementary literature on more conventional membranes, engineered nanomaterials,
and their composites. Thus, the primary goal of this review is to identify and establish the
unique attributes of various electrospun nanofiber formulations that may make them suitable, if
not preferred, alternatives to more traditional materials used in commercially available, certified
POU/POE devices. We will focus on literature that has demonstrated the use of electrospun
nanofibers and their composites for targets relevant to POU/POE treatment including regulated
and emerging organic pollutants, distribution system derived metals, and typically recalcitrant
oxyanions. Where possible, we will prioritize results from studies conducted using reactor
assemblies (e.g., flow through devices) that are representative of POU/POE treatment, thereby
allowing preliminary assessment of application performance and longevity. Finally, we will
conclude by discussing some emerging areas of nanofiber application for water treatment, while

also highlighting research needs and future challenges associated with translating promising

laboratory studies into commercially available, nanofiber-enabled POU/POE technologies.

While there have been several recent reviews on various environmental applications of

electrospun nanofibers,?> 7 to the best of our knowledge this is the first to critically evaluate the
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existing literature to assess their potential for the specific application of decentralized water
treatment using POU/POE technologies and identify future research needs to realize their
POU/POE application at scale. Because certification of POU/POE technologies requires strict
adherence to water quality and testing conditions, while focusing on select pollutant targets most
relevant to decentralized water treatment, we believe there is need for a review that focuses
specifically on the existing state-of-the-art and future research priorities for this intended use

application.

Synthesis Post-synthesis
Environment "'/q\\raylor cone Calcination
& Temperature \ 8 Temperature
@ Humidity Nanofiber jet O Dburation
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mat
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Figure 2. Schematic of electrospinning system and tunable parameters at various stages of synthesis
that can be used to control nanofiber physical and chemical properties.

2. Overview of electrospun nanofibers for use in water treatment

Electrospinning is a versatile fabrication process that produces three-dimensional
networks of nonwoven fibers with nm to um size ranges in diameter.?®2° During the synthesis
process (Figure 2), a polymeric sol-gel precursor solution is ejected from a spinneret under a
high potential (kV), and it is stretched and elongated under a whipping motion until reaching a
grounded collector, forming fine fibers.>® As shown in Figure 2, synthesis variables provide a

high degree of tunability in the resulting fiber properties. Parameters including the concentration
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of the polymer in the sol-gel, the applied voltage, the feed rate of the syringe, and the distance
between the spinneret and grounded collector all can be used to tune fiber morphology and
properties. Additives including nanoparticles and surfactants can also be integrated into the sol-
gel to alter fiber composition and impart new types of surface groups to influence performance.
After synthesis, calcination can be used to transform organic polymer precursors into inorganic
fibers, while various forms of chemical post-processing can also be used to tailor surface
chemistry. Through careful control of these variables, electrospinning can be used to produce a
variety of membrane architectures, from pure polymers to functionalized polymer-nanoparticle
composites (Figure 3) that we and others have argued are ideal for use in hybrid filtration

platforms capable of removing contaminants using both physical and chemical processes.

e)

a) b) ) », d)

Pure polymeric Pure metal oxide MOx-decorated Functionalized Functionalized MOx-
NFs (MOx) NFs polymeric composite NFs polymeric NFs polymer composite NFs

Figure 3. The evolution of electrospun nanofiber (ENF) materials from pure materials of either polymers
or metal oxides (MOx) to integrated composites of these materials.

Initially, most applications of electrospun nanofibers for water treatment concentrated on
the use of polymeric nanofibers, usually from precursors such as polyvinyl pyrrolidone (PVP),
polyacrylic acid (PAA), and polyvinylidene fluoride (PVDF), for membrane filtration
applications (Figure 3a).2**!32 Such work focused on identifying electrospun alternatives to

polymers fabricated using more traditional routes for applications in low and high-pressure
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membrane filtration [e.g., microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and

reverse osmosis (RO)].*

These applications exploit the three-dimensional nanofiber network for
physical separation processes to remove unwanted constituents from source water. At present,
electrospun polymeric nanofibers represent viable membrane alternatives;***> for example,
nanofibers with high hydrophobicity, porosity, and an interconnected open pore structure have
been shown to provide higher permeability compared to traditional polymeric membranes (i.e.,
analogous materials fabricated via phase-inversion approaches).?!*>-37

Electrospinning can also be used for the production of pure metal oxide nanofibers
(Figure 3b) and composites of polymeric nanofibers (Figure 3¢) with embedded metal or metal
oxide nanoparticles, thereby enabling chemical treatment applications including chemical
oxidation (via photocatalysis), disinfection, sorption and ion exchange.*®*° Pure inorganic
nanofibers offer potential benefits analogous to ceramic membranes, including higher stability in
the presence of strong acids and bases or active oxidants (e.g., ozone, hydroxyl radical, peroxyl
radical) during advanced oxidation processes.*"**> Popular examples include pure titanium

43-45 which can be fabricated by transforming

dioxide and iron oxide (e.g., hematite) fibers,
polymer fibers containing metal oxide precursors into corresponding oxides via high-temperature
annealing in a controlled atmosphere. Similarly, carbon fibers can be produced from a polymer
like polyacrylonitrile after thermal treatment in the absence of oxygen.***” Extensive work with
inorganic nanofibers has demonstrated that the same physical/(photo)electrochemical property
variables desirable in discrete nanoparticles are beneficial in pure inorganic nanofiber

performance;*** for example, specific surface area can be manipulated by decreasing fiber

diameter, thereby increasing the capacity of electrospun sorbents.>
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Because pure inorganic and carbon nanofibers often lack the strength and durability of
polymers, which may limit their practical viability, electrospun composites represent a possible
compromise in reactivity and durability.’'>* For these materials, (nano)particles of metals, metal
oxides, and/or nanostructured carbon are integrated into polymer nanofibers to increase the
membrane’s functionality. Such composites are easily produced using electrospinning by simply
dispersing nanoparticles into the polymer sol-gel precursor solution. Although the resulting
nanoparticle-polymer composites overcome some of the material strength deficiencies
encountered with pure inorganic fibers, they can suffer from more limited chemical reactivity as
some reactive surface area on the integrated nanoparticles will be lost when embedded within the
polymer.*> Accordingly, there is much ongoing interest in exploiting the fabrication of these
materials (e.g., increasing polymer porosity)>®>® to increase the access of the embedded particles
to solution during application and expose more reactive surface area.

Some studies have investigated surface modifications of polymeric nanofibers by means
of grafting, blending, or coating to form functional groups (i.e., amine, thiol, carboxyl, carbonyl,
etc.) on the fiber surface for specific applications and processes (Figure 3d). Through the
addition of organic compounds, metal salts, surfactants, or co-polymers, these functionalized
polymers can exhibit increased flux and higher surface area, leading to improved treatment
performance compared to unmodified polymeric nanofibers.?***% Depending on the nature of
the surface groups, they can also impart functionality including pollutant uptake through
chelation or surface complexation processes.®'*> Through imparting such surface groups,
nanofibers are able to not just rely on physical separation processes common for more traditional

membranes but also removal, ideally highly specific or targeted, for dissolved solutes.

11
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A final modification of nanofibers combines the chemical functionality imparted by
surface groups and nanofiber-nanoparticle composites (Figure 3e). Made either by post-
processing to introduce surface functional groups to composites or through a combination of
appropriate building blocks in the sol-gel precursor solution, these materials are promising for
their potential multi-functionality.?>% Through simple additive performance from each
component or possible synergies through interactions between the surface group and embedded
particles, these materials help to increase the functionality of chemically reactive nanofibers

without changing the physical footprint of the non-woven fiber membrane.

3. Applications of electrospun nanofibers relevant for POU/POE treatment

In the United States, NSF International and ANSI categorize POU/POE devices based on
their treatment focus, which dictates device certification. These include devices specifically
intended to improve the aesthetic quality of water (i.e., taste and odor), water softening devices
(i.e., removal of hardness causing ions Ca** and Mg?"), and various technologies to removal
contaminants that pose risk to human health including organic and inorganic chemicals,
emerging pollutants, and microbial pathogens. Here, we will highlight some of the most recent
and promising research, development, and applications of electrospun technologies to meet these
drinking water consumer needs. While we acknowledge the large group of recent reviews on
electrospun fibers and their physical/chemical properties,> 2 these have been broad in their
scope of applications and not always highlighted the materials most promising for us in
decentralized treatment based on material design and testing considerations most relevant to

these applications

12
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In Table S1, we have compiled an extensive list of published works looking at
applications of electrospun nanofibers we have found most relevant to POU/POE applications.
For each of the studies included, Table S1 summarizes key characteristics of the materials that
were fabricated (elemental composition and nanofiber diameter), the experimental conditions
used to test the performance of these materials (including the aquatic matrix and target
pollutants), as well as the relative strengths of these works and the opportunities that exist to
build upon the published findings to further advance POU/POE technology development with
electrospun materials. As evaluation criteria for the relative strengths and opportunities identified
in Table S1, we have selected the following criteria, which we contend are required elements for
nanofiber research necessary for POU/POE technology development. They are:

o Comparison to commercially available analog materials (CA): An important
performance benchmark for new materials is how their performance compares to
analogous, commercially proven materials used in POU/POE treatment (e.g.,
activated carbon, commercial ion exchange resins, under-counter reverse 0smosis
membranes) or those materials that represent the industry standard for established
full-scale treatment (e.g., Aeroxide P25 for photocatalytic processes). Such
comparisons would ideally be integrated into all development and testing for
materials intended for POU/POE applications.

e Relevant pollutant targets for commercial POU/POE applications (RT): We
define relevant targets as contaminants of emerging concern such as unregulated
organic contaminants (or models thereof), taste and odor causing compounds,

regulated inorganic oxyanions (e.g., nitrate and arsenate), pathogens, and corrosion

13
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derived metals (e.g., lead, copper), focusing on targets for which certified POU/POE
devices exist.

o Use of complex, drinking water relevant water quality in performance trials
(WQ): This includes considering the influence of aquatic matrix such as different pH
values, temperature, and the influence of common co-solutes found in source and
finished drinking water (e.g., co-existing CO*, NOM and other co-occurring
contaminants).

e Evaluation of material properties including strength, durability, and longevity
(MS): A critical aspect of materials used in POU/POE applications is their longevity
and stability during application. Most certification processes are associated with
expectations for performance lifetime. Moreover, for nanoengineered materials, there
is need to demonstrate the integrity of the material during operation to ensure no
release or leaching of unwanted materials into the treated supply. Materials must also
be sufficiently flexible and strong to be engineered into appropriate reactor platforms
for POU/POE use.

e Performance testing that includes simulated POU/POE treatment (ST): Finally,
materials intended for use in POU/POE systems must be tested under conditions
simulating such application platforms, which includes trials that extend beyond
simple batch sorption studies (for equilibrium capacity) and also consider
performance under more dynamic, likely kinetically limited, flow-through conditions.
Of equal importance is demonstrating that the material can be translated from
laboratory benchtop scale studies to technology demonstrations and prototyping at

scales more representative of POU/POE applications.
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We note that in our analysis of the appropriate literature summarized in Table S1, the
extent to which certain of these factors were considered was somewhat variable. For example, a
study may only have tested a nanofiber sorbent across different pH values, but not examined
performance over more complex aquatic chemistries. Nevertheless, we categorized this study as
having a strength related to WQ because it was at least considering how some aquatic variables
could influence performance.

Thus, the intent of this contribution, which we believe distinguishes this work from prior
reviews in this area, is to emphasize recent advances and emerging opportunities for the
fabrication of chemically-active electrospun membranes specifically for decentralized water
treatment. We will focus on work relevant to electrospun membrane applications in POU/POE
technologies, which often are used as a final polishing step for a relatively clean source water
matrix. This is an ideal application point for such nanofiber membranes so as to avoid their rapid
fouling or clogging when applied to lower-quality source water with elevated suspended solids.
For example, one can envision an application platform in which electrospun membranes can be
integrated into a standard POU cylindrical filter housing, perhaps even supported by more
traditional and widely used block carbon filters, to enhance device performance (Figure 4). It
may even be possible to layer functionalized fibers or fiber composite, each designed to target
specific constituents of concern in drinking water so that the overall treatment device exhibits
multi-functionality. As illustrated in Figure 4, nanofiber membrane layers would be assembled in
the same arrangement of the current footprint used in most POU/POE filtration devices, making
integration into existing platforms highly plausible. It is with such application end point in mind

that we critically review the available literature on the development of electrospun membranes

15
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for treatment of drinking water pollutants commonly targeted with current commercially

available POU/POE devices.
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Figure 4. Schematic of a multi-layered, electrospun nanofiber mesh-integrated POU device, enabling
sequential treatment processes in a single unit with small technology footprint.

3.1. Traditional membrane application including RO. Traditional membrane systems
have been extensively studied for bacterial/viral removal, organic compound removal, and
desalination, depending on the size requirement (i.e., microfiltration, nanofiltration, reverse
osmosis). Since the earliest years of electrospinning, initial environmental applications revolved
around polymeric nanofibers for filtration treatment.?”** Polymeric nanofibers membranes, often

composed of polyacrylonitrile (PAN), polyvinylchloride (PVC), or polypropylene (PP) as a few
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examples, have been reported to possess good flexibility, high flux, and low transmembrane
pressure,®! all of which are desirable attributes for such performance applications. Additionally,
electrospun membranes have shown great promise due to their higher interconnected porosity,
larger effective surface area, and greater mechanical stability and hydrophobicity, markedly

improving flux performance compared to traditional filtration membranes.?

Fouling is still a significant challenge facing the field of membrane filtration. To combat
membrane fouling, many studies have demonstrated surface modification of electrospun
nanofiber membranes via grafting, surface coating, and interfacial polymerization, leading to

increased hydrophobicity and better flux throughput.6!

Others report the decoration of
electrospun membranes with silver nanoparticles, a well-known antimicrobial agent, to alleviate

biofouling.** Additionally, electrospun membranes require additional support for better

mechanical strength and are usually manufactured or utilized in a hybrid system with a substrate.

3.2. Sorption of organic compounds. In designing a proper sorbent, broad spectrum
activity, high surface area, and rapid rate of pollutant uptake are most desirable.®®> Specifically
for sorption of organic pollutants, hydrophobicity is a common driver of pollutant uptake in
traditional sorbents such as granular or powdered activated carbon (GAC and PAC,

).%¢ More polar organic compounds tend to be susceptible to uptake via specific

respectively
binding interactions. Accordingly, appropriate sorbents, including some forms of activated
carbon, are designed to contain surface functional groups that may contribute to hydrogen-
bonding and other types of chemical binding interactions for polar organic pollutant uptake. For
POU water treatment, carbon block filters are popular in brands including the Amway eSpring™

water treatment system.%” These carbon block filters are typically produced from carbon derived

from charcoal, wood, or coconut and manufactured via either extrusion or molding.®®
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An appropriate electrospun analog to activated carbon is carbon nanofibers (CNFs)
typically 200-500 nm in diameter due to their tunable chemical and material properties, high
internal porosity, and large specific surface area.*’**° The promise of CNFs is the ability to
combine the application platform of a flexible membrane mesh with the high-capacity
performance toward aqueous organic contaminants’”’! of GAC and PAC. For example, Li et al.
reported that the adsorption capacity of electrospun CNFs was significantly greater than PAC
against a select group of emerging organic pollutants (i.e., ciprofloxacin, bisphenol, and 2-
chlorophenol), attributing the enhanced performance to the greater surface area and pore size

distribution of the fibers (Figure 5).7°

Functionalized CNFs and CNF composites have often shown improved sorption
performance relative to unmodified CNFs.”>”® For example, integration of nanoparticles (e.g.,
CNTs, graphene oxides, metal oxides) and/or surface oxidation (via HNO3, H2SO4) of CNFs can
improve sorption performance, especially towards more polar organic compounds.’>’*"> In one

instance, Behnam et al.””

reported on the fabrication of metal oxide-decorated CNFs (via
nanoparticle integration into the precursor sol-gel) for the removal of Diazinon, a liquid-phase
organophosphorus compound. Adsorption studies revealed a 4-fold improvement in the uptake
rate due to the presence of embedded MgO and Al20O3 nanoparticles compared to the bare

activated carbon nanofibers, which the authors attribute to the presence of surface hydroxyl

groups on the integrated metal oxide nanoparticles (Figure 6).”
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Figure 5. SEM (a, b) and TEM (c, d) images of carbon nanofibers (CNF) used for sorption of emerging
organic pollutants. Also shown are sorption isotherms of the CNFs and powdered activated carbon (PAC)
for e) bisphenol (BPA), 2-chlorophenol (2-CP), and f) ciprofloxacin (CIP) fitted with Langmuir model (red
dotted line) and Freundlich model (solid black line), respectively. In all cases shown, CNFs resulted in
greater organic pollutant uptake than PAC. Reproduced from Li et al.”® with permission from Elsevier.
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Figure 6. SEM and TEM images of ACNFs embedded with: (a, d) no metal oxide nanoparticles, (b, €)
10 wt.% MgO Plus, and (c, f) 10 wt.% Al203 Plus nanoparticles. Also provided (g) destructive adsorption
of Diazinon, (h) initial adsorption rate of Diazinon after 5 min, and (i) the amount of adsorbed Diazinon
after 30 and 240 min by ACNFs containing MgO, Al203, MgO plus, Al203, and no nanoparticles, with
corresponding values indicated. We note that Plus grade nanoparticles were noted by the authors to have
smaller crystal size and greater specific surface area compared to standard grade materials. Reproduced
from Behnam et al.”? and Dadvar et al.”* with permission from Springer and Elsevier, respectively.

There remain practical challenges with the mechanical strength of CNFs, which may
ultimately hinder their use in flow-through filtration systems.”®”” However, recent advances in
synthesis have led to more flexible nanofibers that can be more easily built into treatment
systems. For example, we and others have found that the introduction of porosity (from
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sublimation of volatile phthalic acids) in CNT-CNF composite membranes increased membrane
flexibility and durability during simulated testing in flow-through treatment systems.”” We found
that the porosity, in combination with embedded CNTs, produced a composite CNF with faster
uptake rates and comparable surface-area normalized capacity to a commercial GAC for both
atrazine, a widely used herbicide, and sulfamethoxazole, an unregulated emerging organic
pollutant. Notably, porous CNFs without embedded CNTs exhibited limited uptake capacity
toward these two compounds, suggesting that the embedded CNTs, accessible to solution
through the induced porosity, were the primary sorbent driving pollutant uptake with these
composites. Thus, these composites may represent a promising way to take advantage of CNTs
in water treatment in a composite platform that limits the potential for their release into the
finished water supply.

347879 and their composites®® can also exhibit good

We note that polymeric nanofibers
sorption capabilities, but they typically fall short in terms of microporosity, and ultimately
sorption capacity, when compared to their carbonized analogs.® In fact, the relative success of
polymeric electrospun materials as sorbents will largely depend on the nature of the organic
pollutant being targeted and the type of polymer or polymer composite being used for pollutant
uptake. In our own work with polymer composites, we found that organic pollutant uptake did
vary in response to the type of polymer (hydrophobic versus hydrophilic), as well as the nature
of the chemical, in some instances.®® Although potentially promising for hydrophobic
compounds (logKow > 4), we would generally classify uptake as too slow (i.e., equilibrium on the
order of several hours to one day) for moderately hydrophobic to polar organic compounds. This

may limit the use of polymer sorbents in in-home treatment systems, which can be limited by

residence time (e.g., POU filtration systems). As such, polymer-based sorbent materials are
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probably best suited for treatment systems with sufficient residence time to allow operation at or
near equilibrium uptake (i.e., use in batch or semi-batch reactor systems).

3.3. Sorption of metals. Many commercially certified POU and POE treatment devices
target metals including lead, copper, cadmium, chromium (hexavalent and trivalent), arsenic, and
mercury.®! Several of these metals such as lead, copper, and cadmium are those originating from
corrosion of plumbing within centralized water distribution systems, premise plumbing on the
consumer’s property, or other forms of more decentralized drinking water infrastructure (e.g.,
private well components).3? ¢ Because such corrosion-associated metals enter into the water
supply solely through water delivery to the tap, POU treatment devices are relied on by many
consumers to minimize exposure to these metals. POU devices are also frequently relied upon
during public health crises associated with lead in drinking water exposure (e.g., Flint,
Michigan).3

For many metals, particularly lead, activated carbon filters have often been the POU
treatment of choice.®” For example, both Pur (PPT111)® and Brita (e.g., Longlast+)% offer
pitcher filters that are certified for removal of copper, cadmium, and mercury that rely on carbon
filters, occasionally in combination with an ion exchange resin. Block carbon filters certified for
lead removal under NSF/ANSI 53° are also common in many common bottle-filling devices
marketed by companies including Elkay®' and other vendors. Use of activated carbon for metals
relies on the high surface area and large number of electron-rich sites on the carbon surface to
produce a high-capacity sorbent for positively charged metal ions.*® Beyond activated carbon,
POU or whole-home reverse osmosis units are also effective for metal removal (e.g., Aquasana
OptimH20™ AQ-RO-3, among others®?). In fact, membrane systems, while more expensive,

may be preferred for lead removal, particularly given recent evidence of variable performance of
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traditional block carbon filters and granular carbon filters toward (nano)particulate lead
species.”

Electrospun fibers can advance technologies for metal treatment through their ability to
capture colloidal particulates via entrapment in pore spaces and remove dissolved metal species
via sorption processes driven by electrostatic or more specific binding interactions. Electrospun
membranes may also enable certain proven approaches for metal uptake to be more easily
deployed at the POU scale; for example, granular ferric hydroxide (GFH), which is marketed as
media for arsenic removal, is likely limited to whole home and larger treatment applications due
to its grain size.”* % To the best of our knowledge, there is no iron oxide-based POU treatment
analog for GFH, despite the well-recognized ability of iron oxides as sorbents for many
dissolved metals.”’

Several studies have demonstrated the immense potential for pure inorganic or ceramic
electrospun fibers for metal uptake. These can be fabricated by electrospinning polymer sol-gels
containing precursors that are then annealed into pure inorganic materials, typically metal oxide
and carbon nanofibers, with relatively high surface area and porosity.”* 12 Examples of
electrospun fibers used for metal uptake include oxides of iron (Fe203),'%*1% aluminum
(A203),'% silica (Si02),'% and cerium (CeO2).!%” For instance, Ma et al. reported on the
synthesis of electrospun silica fibers composed of a nonporous core and a mesoporous shell,
exhibiting excellent adsorption of heavy metal cations (i.e., Pb*", Cd*").!% Furthermore, post-
process grafting of thiol functional groups on the silica fibers led to enhanced adsorption
performance (Figure 7). Additional performance optimization has also been demonstrated
through multi-component metal oxide nanofibers, most notably Al2O3-Fe203, which some have

shown to exhibit greater adsorption capacity toward hexavalent chromium compared to either
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pure counterpart (Figure 8).1%°!!! More generally, work to date with pure inorganic fibers has

demonstrated that links between fiber performance and their physical properties follow

expectations that are now well established for nanoparticle analogs (e.g., smaller particle size

results in high specific surface area and, thus, more uptake per unit mass).'
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Figure 7. SEM images of electrospun silica nanofibers prepared using different hydrolyzing times: (a) 150
min, (b) 170 min, (c) 190 min, and (d) 210 min. Sorption isotherms of silica nanofibers (nSiO2@mSiO2)
and thiol-functionalized silica nanofibers (SH-nSiO2@mSiOz2) with corresponding fits (as indicated) for (e)
cadmium (Cd?*) and (f) lead (Pb?*) uptake. Reproduced from Ma et al.'% with permission from RSC.

24



493

494
495
496
497
498
499
500
501

502

503

504

505

506

S
A

-

e T
Talna R e
]

PRy
70

s
P

d sy € o] Ymd
w.\.tm 1a] wet00 /—K
@ 12+
g 20 T 1w
g g .
i
104 o
] :
0 o Eggmﬂ?rm{ nr|15;hcr oo 80 100 200 Ili%ﬁﬂcf’tignmsfu b ml:-.'_'.i‘.‘_..\..".. ELTE T : =y
g) h)
GoL™ 10.7 mg/L a0l | 1
= s 197 mg/lL = 10.7 mg/L .
= a - 324 mglL s 19.7 mg/L
2500 , 41.8mglL s 32.4mgll
E “ “ N 15+ »
< « 61.7 mglL — v 41.8mglL .
-‘g’ 40 - Eﬂ 4 B61.7 mgiL
o “ o -
S 30t v v v g 10F - .
g v s & -§- . L ] ¥
-] A s &
Baof <« 7 I v .
g & . . . = i i : <
= v g - . . 2 v M <
< 10+ $ H " 1 .
- A L L ) 0 L i i L
0 50 100 150 200 250 50 100 150 200 250
Time (min) Time (min)

Figure 8. SEM images of (a) ammonium ferric citrate/polyvinyl alcohol (PVA) composite nanofibers and
(b) a-Fe203—y-Al203 core—shell nanofibers used for metal uptake. (c and f) TEM images of a-Fe203—y-
Al203 core—shell nanofibers. Also provided are the distribution of fiber diameters from (d) the ammonium
ferric citrate/PVA composite nanofibers (470 + 7 nm), and (e) a-Fe203—y-Al203 core—shell nanofibers (330
+ 9 nm). For uptake of hexavalent chromium (Cr(VI)) on a-Fe203—y-Al203 core—shell nanofibers, shown
are (g) reported uptake curves over time for several different initial chromate concentrations and (h) the
corresponding pseudo-second-order model-fit plots. Reproduced from Li et al.'"® with permission from
RSC.

Although capable of achieving high removal of metals from water, there are considerable
practical limitations to the use of pure inorganic fibers in POU and POE technologies. Like
CNFs discussed earlier, pure inorganic fibers of metal oxides are typically very brittle and

exhibit poor mechanical stability and flexibility, a result of morphological changes that occur
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while annealing (e.g., loss of mass due to the combustion of the polymer from the sol-gel).!>!!2

Accordingly, without advances in fabrication to improve material strength, it will be difficult to
envision technology applications for inorganic nanofiber materials.

A more promising approach for metal uptake may be polymer-metal oxide composites.
Here, metal oxide nanoparticles are simply loaded into the sol-gel precursor solution prior to
electrospinning. This approach allows high-capacity sorbent materials (e.g., metal oxide
nanoparticles) to be deployed for POU and POE applications in a more flexible, polymer-based
filtration platform. Because there has been extensive work with such polymer composites

targeting a range of pollutants,”'!312!

we have elected to focus on recent applications for uptake
of common corrosion-derived metals (lead, copper, cadmium), as well as other metals of concern
(As) that have existing POU/POE treatment options.

Perhaps the biggest challenge with such electrospun composites is preserving the sorbent
activity of the metal oxide nanoparticles once embedded on or within the polymer nanofiber
support, which will consume reactive surface area. To avoid this challenge, many, including our
own research team, have used post-processing of nanofibers to surface enrich or decorate
underlying polymers with high surface area metal oxide sorbents (Figure 9).'>? This produces
surface-enriched or even core-shell composites that exhibit greater capacity (i.e., more sorbent
accessible to solution) and faster rates of pollutant uptake (i.e., uptake can be slow on embedded
particles due to necessary pore diffusion to access the sorbent surface) than traditional,
homogeneously blended composites. We acknowledge, however, that additional post-processing
to achieve such surface-enriched materials may be disadvantageous from the perspective of

manufacturing and material production cost, thereby impacting the practical viability of such

surface functionalized materials.
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Figure 9. Size distribution histograms for (a) PAN, (b) PAN embedded with Fe20s that was prepared by
blending the Fe203 nanoparticles into the precursor sol-gel (PAN/ Fe203), and (c) core-shell
PAN/Fe203@Fe203 nanofibers that were prepared via the hydrothermal post-processing of PAN/ Fe20s).
In addition to nanofiber diameter distributions, which increase with composite and core shell materials,
also shown are corresponding digital pictures and SEM images of the nanofiber mats. Reproduced from
Greenstein et al.’?? with permission from Elsevier.

To avoid the issue of additional post-processing after electrospinning, we have
discovered a unique approach to composite fabrication that exploits interactions between
embedded nanoparticles and surface-segregating surfactants.!'*!16 Surfactants are often included
in precursor solutions to control surface tension.'”> We have found that certain surfactants with
quaternary ammonium groups, functionalities often used in water treatment as coagulants and in

ion exchange resins,!?+!1%°

can also be used to impart chemical functionality to polymer nanofiber
surfaces. We have fabricated polyacrylonitrile (PAN) nanofibers containing tetrabutylammonium
bromide (TBAB), a common cationic quaternary ammonium salt (QAS), and also explored

possible synergies arising from the inclusion of both QAS and iron oxide nanoparticles during

electrospinning.!'* Our initial focus on QAS was motivated by prior observations that this class
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of surfactants is surface-segregating'?® TBAB accumulates at the polymer-air interface during
synthesis, resulting in surface enrichment of positively charged, quaternary ammonium binding
sites. Iron oxide nanoparticles (in this case, commercially available amorphous Fe203) were used
because of their sorbent activity toward several species targeted with POU/POE devices,
including Pb and As.'?”!128 Notably, and as we recently detailed,''* PAN nanofibers electrospun
from solutions with QAS and iron oxide nanoparticles exhibit surface enrichment of not only
cationic quaternary ammonium functionalities, but also the iron oxide nanoparticles; both species
appear to co-locate to the polymer surface. This, in turn, produces a sorbent with higher capacity
than expected based on the performances displayed by PAN modified with only TBAB or the
iron oxide particles.

We have subsequently also observed and reported!!® on this surface-segregating behavior
for anionic surfactants like sodium dodecyl sulfate (SDS) in combination with iron oxide
nanoparticles. The combination of SDS and a commercial iron oxide nanoparticle during
synthesis of electrospun PAN produces a composite enriched in iron oxide sites. Notably, we
found that SDS is not retained in the polymer after synthesis, releasing into solution and leaving
behind pores in the PAN (i.e., SDS acts as a porogen), which ultimately increases the capacity of
the PAN/iron oxide composite. We contend that this unique, single-pot synthesis approach to
produce nanofiber composites with surface-enriched binding sites may help streamline
composite fabrication at the scale necessary for use in POU/POE devices.

3.4. Ion exchange for oxyanion removal. lon exchange technologies use a
functionalized stationary phase or resin. Typically, this resin consists of a cross-linked polymer
matrix with covalently bonded functional groups that possess a fixed ionic charge able to attract

dissolved ionic species.'? Prior to application, these functional groups are initially saturated with
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a counter ion, which then is displaced or exchanged by the target ion when the pollutant is
removed from solution.!30-132

Ion exchange is commonly used in POU/POE technologies for the removal of common
cations and anions. For example, many in-home water softeners rely on cation exchange resins,
which are often certified to not only remove hardness-causing ions (Ca?* and Mg?") but also
regulated cations like barium and radium.®' Similarly, Brita Standard Filters for pitchers and
other water dispensers contain cation exchange resin for the purpose of removing contaminants
like copper, zinc, and cadmium.'** There are also a variety of more specialized treatment devices
available commercially that rely on anion exchange for targets like nitrate, often in the form of
POE devices for whole-home use.!3*

Because ion exchange most often relies on functionalized polymer resins, electrospun
polymers with appropriate surface functional groups can be designed to function similarly in
water treatment settings.’? Design of such polymer fibers can be guided by chemistries
successfully used in traditional materials. Specifically, there are four general types of
conventional resins: strong-acid cation (SAC), weak acid cation (WAC), strong-base anion
(SBA), and weak-base anion (WBA).!?” SBA resins, for example, have a quaternary amine group
as the fixed charge.'?’ For dilute aqueous phase concentrations, ion exchange resins tend to
prefer the counterion of greater valence. For example, in the case of SBA, the selectivity
preference follows: PO4* > SO4> > CI". For monovalent anion exchange, the selectivity sequence
is typically: ClO4~ >1">NO3™ > Br > Cl- > HCO3™ > OH.'® Practically, this preference
towards highly charged ions reduces removal efficiencies for some target pollutants (e.g.,

perchlorate preferred over nitrate).”'?° Resins can also be produced so as to be selective to

certain targets in order to overcome such interferences from ionic co-solutes. For example,
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commercially available nitrate-selective ion exchange resins rely on triethylamine or
tributylamine functional groups,'* and are popular because of their durability and selectivity of
nitrate over other common anionic constituents in groundwater (e.g., sulfate, bicarbonate and
chloride).

Motivated by the target application of POU/POE ion exchange, we!!'* have designed
polymer and polymer-composite nanofibers functionalized with cationic surfactants, such as
cetrimonium bromide (CTAB) and tetrabutylammonium bromide (TBAB), for oxyanion removal
from drinking water. These materials exploit the phenomenon of surface-segregation, in which
surfactants like quaternary ammonium surfactants (QAS), preferentially migrate to the nanofiber
surface during electrospinning to minimize the resulting free energy in the functionalized
polymer materials (Figure 10). This produces a polymer mat consisting of nanofibers that are
surface-enriched with positively charged, quaternary ammonium sites, enabling the removal of
oxyanions (like chromate) from solution via ion exchange as confirmed by counterion release
during oxyanion uptake. We have found that TBAB, which is a QAS with branched alkyl chains,
is preferred for such applications over CTAB, which contains a linear alkyl chain, because it is

better retained in the polymer (PAN) matrices during application for anion removal.
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Figure 10. SEM images of (a) bare PAN fibers, (b) PAN fibers with CTAB, (c) PAN fibers with TBAB, (d)
Fh-decorated PAN fibers, (e) Fh-decorated PAN fibers with CTAB, and (f) Fh-decorated PAN fibers with
TBAB. Chromate sorption isotherms are shown as a function of (g) CTAB and (h) TBAB loading for
materials that were used in uptake experiments as prepared (so-called “unrinsed” materials shown as
open symbols with isotherm fits shown as dashed lines) and materials that were extensively washed with
water prior to uptake experiments (so-called “rinsed” materials shown as solid symbols with isotherm fits
solid lines). The decrease in performance observed between unrinsed and rinsed samples was attributed
to the release of CTAB and TBAB (molecular structures shown in inset) from PAN during chromate
uptake studies. Lines represent model fits to the Langmuir isotherm model for all composites except
CTAB2 and CTABS, for which data were best described by the Freundlich isotherm model. We note that
in this work, composite mats were referred to as ‘Fhx-CTABY’ or ‘Fhx-TBABZ’, where X, y, and z denote
the ferrihydrite (Fh) nanoparticles, CTAB, and TBAB concentrations in the sol-gel, respectively, based on
wt.% to the total sol-gel mass. Reproduced from Peter et al.''* with permission from Elsevier.

This single-pot approach used in Peter et al.,''* and in subsequent studies by our group, '3
represents a promising route to produce functionalized nanofibers suitable for ion exchange
applications without any necessary post-processing of the polymer surface. There remain
opportunities to expand this approach, including the use of alternative surfactants that may
enable targeting of different pollutant types and represent more sustainable alternatives (e.g.,

QAS and concerns for their potential antimicrobial activity).'*” There is also a need to consider
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more closely the role of the polymer. Although surface-segregation has occurred readily in our
work with polyacrylonitrile (PAN), there may be treatment applications where a hydrophobic
membrane substrate (e.g., PVDF or polystyrene) is more beneficial, and exploiting surfactant-
polymer interactions for such polymer materials requires additional investigation.

Ion exchange technologies, whether using conventional materials or electrospun
polymers, are not without limitations. As with any technology relying on equilibrium
partitioning, ion exchange systems require sufficient contact time for pollutant removal and
exhibit limited capacity. They also must be regenerated, which often involves the use of
concentration brine solution, and brine management is a well-documented challenge with such
units, 138139

With more research and development, it is possible that electrospinning may enable new
application platforms that overcome these traditional challenges of ion exchange while also
increasing integration of ion exchange processes into existing POU/POE treatment systems. For
example, block carbon filters are widely used in many in-home units (e.g., refrigerators).
Amending block carbon with a functionalized polymer layer would allow ion exchange to be
integrated into this existing POU architecture, thereby enabling removal of selected ions, like
nitrate. However, this will require increases in the capacity and rate of ion uptake on such
functionalized polymers to ensure sufficient removal during the contact time and lifetime
afforded by such block carbon filters.

3.5. Organic chemical transformation. Recent advances in POU and POE technologies
have led to the integration of ultraviolet (UV) lamps for disinfection.!*>!'*! Amway'** and

Aquasense,'* for example, both offer in-home water treatment that relies on UV light to kill
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pathogens including bacteria and viruses. The emergence of UV light-emitting diodes (LEDs)

has helped catalyze the growth of this approach in POU/POE devices.'**

UV photolysis in POU systems could be exploited further to address the emergence of
recalcitrant organic compounds by coupling them with photocatalytic materials to drive
advanced oxidation processes (AOPs). AOPs are a group of treatment methods that utilize a
combination of oxidative reagents to form highly reactive radical oxygen species (i.e., hydroxyl
radicals) for organic pollutant degradation.'*!46 Some recent work has been conducted on the
use of photocatalytic nanomaterials for POU applications, but specifically towards microbial
disinfection rather than organic photo-oxidation.'*-'4® Thus, there is much potential for the
effective incorporation of UV-active photocatalytic membranes in POU/POE devices,
particularly electrospun materials.

Titanium dioxide (TiOz), considered the gold standard of photocatalysts, has garnered a

149,150

great amount of attention in the environmental field for decades, and thus, not surprisingly,

1312153 45 well as a slew of other

has been heavily investigated as electrospun nanofibers,
nanomaterials.'** These studies revealed the systematic control of physical properties (i.e.,
crystal phase, grain size, porosity, fiber diameter) of the nanofibers, which can be appropriately
tuned towards optimizing photocatalytic activity. As a result, TiO2 nanofibers with diameters that
range from 30 to 300 nm have been investigated towards the degradation of pharmaceuticals
such as phenol,' tetracycline,'® carbamazepine,'*” and ranitidine,'*® as well as a host of dye
contaminants.'*1%! For instance, Maeng et al. reported on the degradation of organic
contaminants (i.e., cimetidine, carbamazepine, propranolol) by electrospun TiO2 nanofibers and

identified how the chemical moieties of the compounds interacted with variable aquatic

conditions (i.e., DOM content, scavenger compounds, pH), ultimately affecting photocatalytic
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performance (Figure 11).!3” Moreover, TiO2 nanofibers have been reported to outperform
conventional nanoparticles based on photocatalytic activity, especially commercially available
Aeroxide P25® photocatalyst.!>

Zinc oxide (ZnO) nanofibers have also been investigated as potential photocatalysts for
water treatment.'9?1%* Although not as photocatalytically efficient as TiO2, a benefit of ZnO is
that it contains mid-band defect states (or quasi-stable energy states) and thus can be activated by
renewable visible light, which comprises a major portion of the solar spectrum. Unfortunately, a
major practical hurdle to the use of ZnO in treatment is its limited stability in water, making it

highly prone to dissolution during application.
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Figure 11. SEM images of (a) as-electrospun titanium isopropoxide-polyvinylpyrrolidone (TiP-PVP)
composite nanofibers, TiO2 NFs after annealing at 600 °C (b) without and with hot pressing at a pressure
of (c) 15 MPa and (d) 20 MPa. Hot pressing was used to improve adhesion of the TiO2 films to the quartz
substrate for the purpose of increasing longevity. Reactivity studies show the effect of organic matter on

the degradation of (e) cimetidine (CMT) and (f) carbamazepine (CBZ) for TiO2 nanofibers under UV

irradiation. Reproduced from Maeng et al.’>” with permission from Elsevier.
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Furthermore, many strategies have been developed to enhance the photocatalytic activity
of semiconductor-driven water treatment technologies due to the narrow window of the solar
energy (i.e., UV light) necessary to trigger the photocatalytic activation of TiOz. In fact, an
advantage of electrospinning is that it makes integrating such strategies into semiconductor
design simple via a single-pot sol-gel fabrication approach. The first method is by manipulating
the composition of traditional UV-responsive semiconductors (e.g., TiO2, ZnO) through doping
and/or decorating with other materials to form hybrid nanofibers. Some examples of such hybrid
nanofibers include TiO2 with metals (e.g., Au, Ag, Cu)!%~172 and TiO: with other metal oxides
(e.g., CuO, ZnO, Sn02).!317 Results have shown that these decorated/composite materials
outperform conventional pure TiO2 nanofibers and nanoparticles, due to band gap engineering

180-183 The second method is by altering semiconductor

and/or surface plasmon resonance.
composition to enable photoactivation by visible light due to an intrinsically shorter band gap
compared to that of traditional TiO2 (i.e., < 3.2 eV).!8+18 Results show that towards
pharmaceutical pollutants, these materials, which include bismuth vanadate (BiVOs4), bismuth
tungstate (Bi2WOg), bismuth ferrite (BiFeO3), tungsten trioxide (WOs3), and niobium oxide
(Nb20s), outperformed conventional titania nanoparticles and electrospun nanofibers when
irradiated with visible light (A > 395 nm).'®

Perhaps the most mature approach for integrating electrospun photocatalytic materials
into POU/POE devices is through the development and application of TiO2-embedded
composites.'?*!* For example, Lee et al. reported on TiO2-embedded polymeric nanofibers
composed of polyvinylidene fluoride (PVDF) or a blend of both PVDF and polyvinylpyrrolidone

(PVP) for coupled sorption and photocatalytic destruction of organic contaminants (Figure

12).'} Composite fibers were produced that were either nonporous (PVDF only) or porous
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715 (PVDF/PVP blend), where pores to increase reactive surface area were generated via polymer
716  blending and subsequent washing of PVP. Tested against a group of model and emerging organic
717  contaminants (i.e., methylene blue, bisphenol A, 17a-ethynylestradiol), the porous composite
718  fibers exhibited excellent sorption and photocatalytic degradation compared to both the bare
719  PVDF fibers and the nonporous TiO2-embedded composite fibers. The work of Lee et al. is
720  notable for its demonstration of how electrospinning can be used to build multi-functional

721  composite in a single, reactive filtration platform, assuming challenges in reactor design (e.g.,
722 integrating UV-light into POU/POE devices) can be overcome.

723 Similarly, composites of TiO2 nanoparticles within carbon nanofibers have also been
724  synthesized and subsequently tested against a suite of recalcitrant organic micropollutants in a
725  UV-irradiated cross-flow filtration apparatus (Figure 13). Although the photoactive composite
726  was only a few hundred microns thick, considerable micropollutant transformation (as much as
727  60-90% for inlet concentrations of 0.5 uM) was observed during a single pass through the filter
728 at fluxes typically used in microfiltration applications. Tunable synthesis via electrospinning
729  could be used to influence composite reactivity, with photocatalytic performance increasing with
730  TiO2 mass loading in the carbon nanofibers. Moreover, the performance of these composite
731  materials was reasonably well maintained in complex matrices including co-solutes (e.g.,

732 carbonate) known to scavenge hydroxyl radical, the presumed oxidant responsible for

733 micropollutant transformation. The mechanical flexibility exhibited by these carbon nanofiber
734 composites coupled with the chemical activity of the TiO2 photocatalysts could be another

735  promising approach for integration into POU/POE devices.

736
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739 Figure 12. (a) SEM image of TiO2-decorated polymeric nanofibers. (b) Adsorption of methylene blue (MB)

740 under dark conditions using mats made with electrospun fiber (EF), electrospun nonporous fiber
741 containing P25 TiO2 (EF-TiOz2), or electrospun porous fiber containing TiO2 (EPF(2/1)-TiOz2). (c) Removal
742 of MB by concurrent adsorption and photocatalytic degradation under UVA irradiation using mats made
743 with EF-TiO2 or electrospun porous fibers prepared with different polymer blending ratio (EPF(2/1)-TiOz2:
744 PVDF(12%)/PVP(6%) and EPF(1/1)-TiO2: PVDF(9%)/PVP(9%)). Reproduced from Lee et al.'® with
745 permission from ACS.
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Figure 13. (a) Histograms and associated SEM images for carbon-TiO2 nanofiber composites.
Composites denoted as C-(wt%), where the TiO2 weight percent is relative to PAN content in the initial
sol-gel. All electrospun sol-gels also contained 2.5 wt% PTA, which was used as a porogen to increase

composite flexibility. (b) Normalized concentration of model organic contaminants (name and structure in
graph insets) over time in the reservoir, retentate, and permeate of the cross-flow, UV-light irradiated
filtration apparatus. Reactivity data are shown for a C-50 nanofiber filter. UV controls, conducted without
C/TiOz present, are shown by grey dashed lines. Reproduced from Greenstein et al.'® with permission
from RSC.

Overall, there are a large number of studies attempting to demonstrate how electrospun
photocatalytic nanofibers may help to overcome practical challenges that have hindered the
widespread application of photocatalytic nanoparticles for organic contaminant removal.!**
However, most of the work to date has not investigated nanofiber performance under conditions
representative of water treatment and has also focused on targets and matrices that are not
broadly relevant to POU/POE applications. For example, a good number have centered on the
photodegradation of common dyes (e.g., methylene blue, methyl orange, rhodamine B) at
relatively high concentrations (10-50 mg/L) while also lacking details on necessary water quality

conditions (e.g., pH, buffer systems). Future development of photocatalytic nanofiber
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membranes, specifically polymer-based nanofiber composites, must work to conduct
performance benchmarking and employ reactor systems that are most appropriate of simulated
water treatment conditions and deployment at scales suitable for POU/POE treatment

applications.

4. Opportunities for nanofibers to expand POU/POE technologies

With the heavy amount of research being conducted around electrospun fiber-enabled
water treatment, there remain opportunities for such technologies to address emerging challenges
in the decentralized water treatment space. Here, we highlight three areas where additional
research and development could help electrospun materials address current and emerging water
treatment needs of various consumers.

One area where there is both an existing need for treatment and a growing body of
research with electrospun membranes is the treatment of uranium in drinking water. In many
areas of the arid southwestern United States, naturally occurring uranium, as well as uranium
contamination resulting from legacy nuclear development, has contaminated groundwater

195,196

supplies. This problem is well documented among the Navajo Nation, where uranium levels

in groundwater supplies can often exceed 50 pg/L (the MCL set by the U.S. EPA is 30 pg/L).""
199

Electrospun materials have been popular choices for uranium removal through the ability
to chemically process polyacrylonitrile (PAN) fibers to produce functional groups that are highly
reactive and specific toward dissolved species of uranium. Most popular among this approach is
the reaction of nitrile groups in PAN with a reducing agent (e.g., hydroxylamine) to yield

amidoxime functional groups.?’®2%* For instance, we have observed steady performance of
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amidoximated PAN fibers across matrices, including complicated solutions simulating drinking
water sources (i.e., solutions with high hardness and ionic content) and even synthetic urine (for
possible biomonitoring applications).?* Other approaches have involved similar chemical
functionalization of polymers to produce other types of uranium-binding sites including nitrogen
(N) and phosphorus (P)-based binding agents.?!**> There is a large body of literature on the use
of such materials for the recovery of uranium from matrices like seawater, with growing interest
in their application for water treatment.?’®27 There remain challenges: post-processing of fibers
may increase production cost and time, which may make use of amidoxime or similar groups
infeasible at the industrial scale needed for POU/POE device manufacturing. However, given the
clear consumer need for reliable technologies for uranium treatment, development of high
performance and cost effective electrospun fibers for uranium removal from drinking water
should be viewed as a priority.

Another opportunity is expanding the use of antimicrobial fibers for applications in
drinking water disinfection.?® Even prior to the emergence of COVID-19 and the critical need it
revealed for antimicrobial filtration materials,?**2! there was a relatively deep body of research
on antibacterial electrospun fibers, usually for use in bandages and antimicrobial surfaces.?'! 2!
These types of electrospun fibers are most typically produced through the integration of an
antibacterial agent during synthesis.?'*!® Silver (Ag) has garnered much interest for use in
antifouling and disinfection applications,>® usually integrated into ceramic and polymeric
substrates as nanoparticles to produce composite fibers. Given established antimicrobial activity
of Ag particles, such composites are often touted as promising materials for point-of-use water

treatment, especially for developing and underdeveloped countries.>!* %7
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A persistent concern about such applications of biocidal-integrated materials is the
release of the biocidal agent over time, potentially diminishing performance while also
contaminating the finished water supply. Here, more work is needed, and a focus should be on
exploring the fundamental interactions between biocides (e.g., Ag) and support matrices to
optimize retention and minimize the release of these agents under simulated treatment
applications at scale. For example, while more work is needed, some studies have shown that due
to strong interaction between Ag nanoparticles and certain support materials (e.g., N-containing
polyurethane), Ag loss during such filter applications can be minimized, resulting in Ag levels in
the finished water that are below the current U.S. EPA and WHO limit for drinking water (0.1
ppm).5422822% Beyond concerns over Ag release, the disinfection capacity of such Ag-
impregnated filters will likely be exhausted over continuous operation because Ag ion resulting
from nanoparticle dissolution is believed responsible for pathogen kill.>**?3! Further, as is
observed for most reactive metal substrates, surface fouling by natural organic matter (NOM) or
sulfide (which may be important during treatment of some groundwater sources) may
compromise the efficacy of disinfection.?*? As such, practical studies evaluating performance
and operational lifetime during simulated applications involving complicated matrices and
conditions most representative of POU/POE devices are needed, perhaps even more so than
additional, purely fundamental research studies with such biocidal materials.

Finally, another emerging opportunity relates to the use of electrospun fiber networks in
electrochemical water treatment, especially with the extensive amount of work already
conducted with electrospun carbon nanofibers (CNFs).2337238 There is surging interest in the use
of electrochemical approaches for water treatment because these approaches can be decentralized

while being powered by renewal sources of electricity (e.g., solar).?*’ Critical to recognizing the
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promise of electrochemical water treatment is the development of appropriate electrode materials
for use in such applications. Here, electrospun CNFs may be useful due to their high surface area
and tunable characteristics during synthesis. For example, higher carbonization temperatures can
be used to increase their graphitic structure, and thus improve the conductivity of these
materials.?*’ Yet, higher temperatures can also result in more brittle materials due to extensive
mass loss during carbonization, which may make the most conductive materials impractical for

application with intentional efforts to increase their material strength.?*!

Accordingly, as is the
case with most other applications of electrospun CNFs, a priority for advancing their use in
electrochemical water treatment applications will be finding the appropriate balance between

high material strength and desirable attributes of electrode materials (e.g., low resistivity, high

surface area).

5. Outlook and Recommendations

Our review of the literature yielded 59 studies, summarized in Table S1, with relevance
to the application of electrospun nanofibers in POU/POE treatment. The results of our literature
analysis are summarized in Table S2, where we aggregate these studies based on their identified
strengths and the remaining research opportunities they present. From this analysis, we find that
most of the work to date have focused on suitable targets for POU/POE applications (i.e., based
on the contaminants that are frequently the focus of certification). Moreover, most studies have
challenged their materials with various aquatic matrices to establish how performance varies
with water quality. A number of investigations have also considered the strength and stability of
the nanofibers to assess their integrity and potential for unwanted component leaching during

application.
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An important consideration is also benchmarking the performance of electrospun
materials toward appropriate commercial analogs. We found that a considerable percentage of
the studies considered herein did benchmark against a commercially relevant treatment, where
the majority of these were instances of Aeroxide P25 being used as a basis of comparison for
photocatalytic nanofiber performance. Studies that provided quantitative performance
benchmarks (e.g., sorption capacities, rate constants) for nanofibers relative to commercial
analogs tested under the same experimental conditions are summarized in Table 1. Generally,
our analysis of the literature shows that electrospun nanofibers and nanofiber composites

performed comparably to, and in some instances outperformed, their commercial analog

counterparts. We note that we limited our comparison in Table 1 to those studies that tested

commercial analogs toward the same contaminant target and using the same experimental

conditions, otherwise differences in experimental conditions during performance testing may

confound comparison to analogs.

Table 1. List of select nanofiber and nanofiber composite (NF) studies with performance

comparisons with commercial analogs (CA).

Treatment Materials® Reactivity Reference
CNF ciprofloxacin gm = 0.68 mmol/g
bisphenol Om = 4.82 mmol/g
Organic NF: CNF 2-chlorophenol gm = 6.18 mmol/g Lietal. 70
Sorption CA: PAC PAC ciprofloxacin gm =0.26 mmol/g v
bisphenol gm = 2.98 mmol/g
2-chlorophenol gm = 5.37 mmol/g
PAN/Fe;03 NF As®* gm=7.2 mg/g gsa = 0.10 mg/m?
Cré gm=4.6 mg/g gsa = 0.06 mg/m?
Pb%* gm =42 mg/g gsa = 0.59 mg/m?
Cu® gm =26 mg/g gsa = 0.37 mg/m?
NF: PAN/Fex0s & PAN/Fe203@Fe20s As:* gm=9.3mg/g gsa=0.18 mg/mi ‘
Metal Cr* gm=7.3mg/g gsa =0.14 mg/m Greenstein
N PAN/Fe,0s@Fe,03 24 2
Sorption CA: GFH powder Pb Om =57 mg/g gsa = 1.1 mg/m etal., 122
Cu® gm =35 mg/g gsa = 0.67 mg/m?
GFH powder As™* gm =62 mg/g gsa = 0.13 mg/m?
cré* gm =38 mg/g gsa = 0.08 mg/m?
Pb% gm =110 mg/g gsa = 0.25 mg/m?
Cu® gm =31 mg/g gsa = 0.07 mg/m?
TiO2 NF phenol Kobs = 0.07 min™
Chemical NF: TiO2 & Au-TiOz atrazine Kobs = 0.05 min™* Nalbandian
Oxidation CA: Aeroxide P25 carbamazepine Kobs = 0.1 min™ etal., 155
DEET Kobs = 0.06 min™
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Au-TiO2 NF

Aeroxide P25

sulfamethoxazole
phenol

atrazine
carbamazepine
DEET
sulfamethoxazole
phenol

atrazine
carbamazepine
DEET
sulfamethoxazole

Kobs = 0.08 min’
Kobs = 0.65 min
Kobs = 0.35 min™
Kobs = 0.8 min’?
Kobs = 0.67 min
Kobs = 0.4 min™
Kobs = 0.15 min’?
Kobs = 0.1 min
Kobs = 0.25 min™
Kobs = 0.1 min’?
Kobs = 0.15 min™?

NF: TiO2 TiO2 NF ranitidine Kobs = 0.008 min™? Choi et al.,
CA: Aeroxide P25 Aeroxide P25 ranitidine Kobs = 0.011 min™* 1578
NE: TiO, & Ag-Tio, | HO2NF phenol kobs = 0.097 mint Nalbandian
CA: Aeroxide p25 | A& TIOzNF phenol Kops = 0.27 min etal, 172
Aeroxide P25 phenol Kobs = 0.074 min™ ’
NF: BiViOs, Ag- BiViO4 NF phenol Kobs = 0.0014 min™  Kobs,395 nm = 0.0011 min™
BiViOs Ag-BiViOs NF phenol Kobs = 0.0023 min™  Kobs,395 nm = 0.0016 min™* Nalbandian
& Au-BiViOs Au-BiViOs NF phenol Kobs = 0.0018 min™®  Kobs395 nm = 0.0022 min™ etal., 189
CA: Aeroxide P25 Aeroxide P25 phenol Kobs = 0.074 min™! Kobs,395 nm = 0.0009 min™
NF: PVDF/TiO; PVDF/TiO, NF bisphenol A Kobs = 0.014 min? Lee et al.,
CA: Aeroxide P25 Aeroxide P25 bisphenol A Kobs = 0.003 min™ 193

Another important consideration is how material performance is measured relative to the
unit mass or surface area of material (i.e., mass or surface-area normalized performance
descriptors). For example, Greenstein et al.'?? found that their iron-oxide polymer nanofiber
composites were less reactive than commercial granular ferric hydroxide (GFH) on a per unit
mass basis but exhibited greater activity per unit surface area. Relative to GFH, their nanofibers
exhibited greater external surface area that also produced faster uptake rates on the nanofibers.!*?
We also note that some studies that did conduct performance benchmarking relative to a
commercial analog are not included in Table S2 because a simple activity descriptor was not

1.7° conducted

available to simply represent the performance comparison. For example, Peter et a
sorption isotherm and pH-edge experiments with their CNFs and with granular activated carbon
(GAC), but the isotherms for both materials were non-linear and did not reveal a sorption

capacity that could serve as a basis for performance comparison. As with Greenstein et al.,'??

these CNFs exhibited sorption of organic pollutants (atrazine and sulfamethoxazole) that was

comparable to GAC on a surface-area basis, as well as faster uptake rates.
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Our analysis of existing literature (Table S1) and summary analysis in Table S2 reveals
some clear needs for future study around the use of nanofibers in POU/POE systems. There is a
clear need to test the performance of nanofiber materials using reactors and conditions that better
simulate POU/POE applications, including continuous flow-through or semi-batch systems.
Many studies to date have utilized closed or no flow (batch) experimental systems, which tend to
reflect performance under equilibrium-type conditions. In flow-through systems, which are most
common for POU/POE treatment, kinetic limitations may constrain performance. Thus, more
testing is needed to establish whether performance metrics established in batch systems are
maintained under conditions more representative of treatment. Similarly, there are few studies
that address the larger-scale fabrication of electrospun materials, prototyping of nanofiber-based
POU/POE technologies, and longer-term performance trials of nanofiber-based treatment
devices. This is a high priority need area for future development of POU/POE technologies
leveraging these materials, and it will require research efforts that seek to identify how best to
translate nanofiber fabrication from the laboratory bench to industrial scale (an issue discussed
further below). Finally, more, if not all, studies should include appropriate analogs for
benchmarking nanofiber performance. We acknowledge that in some instances, a clear analog
for comparison may not be obvious (e.g., photocatalytic membrane systems'*?). Whenever
possible, however, the value of electrospun nanofibers needs to be assessed relative to
commercially available and widely trusted materials established in POU/POE treatment.

Beyond those identified from gaps in existing literature, there are additional advances
that would also promote material and technology development. First, any nanofiber-enabled
water treatment technology must be assembled from the right building blocks. When assessing

the current state of the science and considering the balance in performance priorities of material
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reactivity, strength, and durability, the authors contend that the most promising route is the use of
polymer-metal oxide composites. These materials hold the advantage of combining the beneficial
performance properties that are already well-established for the selected building blocks for such
composites. For example, electrospun polymer nanofibers are considered viable alternatives to
more traditional polymer fabrication routes, while use of granular and powdered forms of carbon
and certain metal oxides are widely used and accepted across water treatment. This should
increase the likelihood that composite technologies using these building blocks gain certification
and commercial acceptance for use in POU/POE devices because their non-electrospun analogs
are already available through the commercial market. Nevertheless, there remain tremendous
opportunities for fundamental discovery related to how the nature of the polymer (hydrophilic
versus hydrophobic) influences composite performance. Moreover, more work is needed related
to understanding and exploiting fundamental interactions between the immobilized or embedded
material (e.g., metal oxide or carbon nanomaterial), base polymer, and other synthesis aids (e.g.,
surfactants), as these interactions have implications for material performance (e.g., controlling
the available surface area of immobilized materials) and long-term stability (e.g., ensuring no
release of the embedded materials).

To facilitate more prototype testing, another important area for future development
relates to the reliable and reproducible industrial production of nanofibers that is necessary for
their integration into POU/POE units.>>* While electrospinning is growing in commercial and
industrial viability, there are still some fabrication obstacles facing electrospun membrane
upscaling. This includes needle clogging, electric field interference, and, most importantly,
property accuracy and repeatability, although some solutions to these problems are available

(i.e., multi-needle spinnerets, needleless spinning, auxiliary electrodes).?’ Related to these issues,
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more work is needed to explore how synthesis conducted at laboratory scale, which often
involves simpler (e.g., single-needle) configurations and lower production rates (e.g., sol-gel
solutions electrified at a few tenths of a mL per min) translates to larger fabrication units (e.g.,
multi-needle rigs), emerging fabrication routes including needleless electrospinning, and higher
production rates (where parameters like sol-gel viscosity will necessarily be different to
accommodate larger-scale production). Moreover, for applications in water treatment, fabrication
costs will need to be minimal to compete with market-accepted approaches like activated carbon.
As such, identifying relatively simple fabrication routes to highly functional and high-performing
materials will be paramount.

Finally, it is imperative to develop and grow our understanding of nanofiber and
nanofiber composite stability under operation requirements of continuous flow systems (e.g.,
high mechanical strength, high permeability, low pressure drops). Indeed, to the best of our
knowledge, there are no certified POU or POE technologies that leverage nanotechnology or
nanoengineered materials. Thus, in developing nanofibers and nanofiber composites such as
those described herein for treatment, special focus will be needed on generating datasets that
demonstrate their performance and promise at scale, ideally under conditions that represent those
used in certification testing. As a final consideration, there has been much focus on considering
the sustainability of new water treatment technologies, particularly as it relates to new or
innovative approaches and materials for application to persistent or emerging pollutants. Thus,
while lifecycle analyses have been conducted on non-electrospun carbon nanofiber membranes
and polymeric membranes to assess their environmental impact,?*>>*? there persists a paucity of
lifecycle data related to the fabrication and application of electrospun nanofibers for water

treatment. We advocate for more analyses on the sustainability of electrospun nanofiber
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membranes, including associated lifecycle costs from raw materials and emissions associated
with fabrication and device manufacturing, in complement to efforts to further develop and
commercialize such technologies.

Overall, we find the outlook for electrospun technologies at the scale of point-of-use and
point-of-entry treatment systems is positive. Although these are certain to be more costly
materials than those that currently dominate the marketplace, their promise is in the versatility of
their fabrication. This should allow new and different materials that are better suited to target
certain pollutants and fill existing (e.g., iron-based POU analogs for As sorption) and emerging

(e.g., microfiltration membranes for colloidal lead) needs in the certified technology market.

6. Conclusion

The relevant research literature shows that electrospun nanofiber materials can be
effective alternatives for the removal of harmful contaminants in decentralized water treatment
applications. Specifically, due to their high external surface area and application as filtration
membranes, they are well-suited to advance nanotechnology-integrated POU/POE devices. In
this review, we examined and scrutinized the current landscape of literature relevant to the

application of electrospun nanofibers for POU/POE treatment, finding that:

e Use of electrospun fibers for traditional membrane separations is well-established, along
with promising research illustrating nanofiber modifications to address issues such as
fouling;

e Fibers used for organic sorption are primarily carbon-based due to their tunable

properties including porosity and hydrophobicity, but opportunities remain to use
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functionalization strategies to improve performance and target a wider range of organic
contaminants;

Fibers developed for metal sorption are primarily metal oxide-based, where
functionalized polymer-metal oxide composites represent a particularly promising subset
of materials for their ability to integrate high sorption capacity metal oxide nanoparticles;
Fibers developed for us in ion exchange remain in their infancy, with relatively few
examples in the published literature. There remain opportunities to integrate established
functional groups used in commercial resins into polymeric nanofibers for such
applications;

There is a wealth of examples in the literature exploring photocatalytic fibers for use in
chemical oxidation processes, but these materials require performance demonstrations
under more appropriate water treatment conditions that use reactor configurations
consistent with currently available UV-based POU/POE devices;

Fibers may help address recognized needs in decentralized treatment for treatment of
uranium, disinfection of pathogens, and electrochemical treatment approaches, which are
gaining in popularity, and,

Recommendations for future studies include a better understanding of interactions among
material components, benchmarking to appropriate commercial analogs, reliable scaling
in industrial production, and full-scale demonstrations with appropriate treatment

conditions.
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