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Abstract 80 

In this review, we focus on electrospun nanofibers as a promising material alternative for 81 

the niche application of decentralized, point-of-use (POU) and point-of-entry (POE) water 82 

treatment systems. We focus our review on prior work with various formulations of electrospun 83 

materials, including nanofibers of carbon, pure metal oxides, functionalized polymers, and 84 

polymer-metal oxide composites, that exhibit analogous performance to media (e.g., activated 85 

carbon, ion exchange resins) commonly used in commercially available, certified POU/POE 86 

devices for contaminants including organic pollutants, metals (e.g., lead) and persistent 87 

oxyanions (e.g., nitrate). We then analyze the relevant strengths and remaining research and 88 

development opportunities of the relevant literature based on an evaluation framework that 89 

considers (i) performance comparison to commercial analogs; (ii) appropriate pollutant targets 90 

for POU/POE applications; (iii) testing in flow-through systems consistent with POU/POE 91 

applications; (iv) consideration of water quality effects; and (v) evaluation of material strength 92 

and longevity.  We also identify several emerging issues in decentralized water treatment where 93 

nanofiber-based POU/POE devices could help meet existing needs including their use for 94 

treatment of uranium, disinfection, and in electrochemical treatment systems. To date, research 95 

has demonstrated promising material performance toward relevant targets for POU/POE 96 

applications, using appropriate aquatic matrices and considering material stability. To fully 97 

realize their promise as an emerging treatment technology, our analysis of available literature 98 

reveals the need for more work that benchmarks nanofiber performance against established 99 

commercial analogs, as well as fabrication and performance validation at scales and under 100 

conditions simulating POU/POE water treatment.    101 

 102 
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1. Introduction 103 

Because of high-profile instances of widespread industrial pollution (e.g., contamination 104 

from per- and polyfluoroalkyl substances or PFAS) and decaying water infrastructure (e.g., lead 105 

contamination in Flint, Michigan), the United States has witnessed a growing distrust over tap 106 

water quality, especially in communities of color.1,2 A large number of Americans also rely on 107 

unregulated water sources (e.g., domestic or private drinking water wells), while many still lack 108 

routine access to a reliable piped water supply.3 These challenges have led many consumers to 109 

seek out alternative commercial supplies (e.g., bottled water) and/or other means to improve the 110 

quality of water available to them.4,5 111 

 112 

 113 

Figure 1. Schematic of electrospun nanofiber membrane-integrated point-of-use (POU) and point-of-entry 114 
(POE) devices in a household. Insets include diagrams of the housing and cartridge of a POU device and 115 
an SEM of an electrospun nanofiber mesh for a potential nanofiber membrane-integrated POU cartridge. 116 

Adapted from Tap Score.6 117 

 When properly installed, operated, and maintained, decentralized technologies can play 118 

an important role in helping consumers secure safe and reliable drinking water. Point-of-use 119 

(POU) and point-of-entry (POE) devices are treatment technologies that treat water at the 120 

location of primary use (e.g., the tap) or upon entry into a building, respectively (Figure 1).7 121 

POU

POE

POU/POE device in home setting POU housing and cartridge Electrospun nanofiber mesh
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With the noted challenges that many consumers still face in securing their drinking water supply, 122 

increasing reliability, affordability, and access to POU/POE devices could, in certain cases, 123 

address these concerns.8 Widely used options for POU/POE treatment include activated carbon 124 

filters, ion exchange devices, and reverse osmosis membranes, with devices in the US certified 125 

by outside agencies to ensure a certain level of performance (e.g., National Science Foundation 126 

(NSF) International and the American National Standards Institute (ANSI) are two private 127 

organizations that issue standards to certify the efficacy of in-home water treatment devices).9,10 128 

Nevertheless, all commercially available POU/POE devices have limitations, including cost of 129 

acquisition and the need for routine maintenance and replacement to ensure performance.  There 130 

are also persistent questions of equity and justice surrounding POU/POE devices; can those that 131 

most often need these technologies afford them?  132 

Decentralized water treatment offers an opportunity for the integration of 133 

nanotechnology, potentially enhancing performance and lowering the cost of, and thereby 134 

increasing access to, POU/POE technologies. Engineered nanomaterials exhibit more surface 135 

area per unit mass than their larger-scale material analogs, which can equate to longer 136 

operational lifetimes and smaller technology footprints more suitable for in-home use.11–13 The 137 

potential for greater inherent reactivity relative to larger-scale materials may also help with the 138 

removal of traditionally recalcitrant pollutant classes. However, nanotechnology-enabled water 139 

treatment devices are not without their own set of challenges.14 It can be reasonably concluded 140 

that the use of nanoparticle suspensions or dispersions is simply not practical, especially in 141 

POU/POE treatment. Alternative reactor assemblies also suffer from limitations (e.g., packed 142 

columns of nanomaterials are likely infeasible due to large pressure head),15–19 and all 143 

applications include the potential for unwanted release of nanomaterials into the treated supply.  144 
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Notably, to the best of our knowledge, no known commercially available POU/POE certified 145 

through NSF International or ANSI uses engineered nanomaterials or nanomaterial composites. 146 

In this review, we focus on one particularly promising type of nanoengineered material 147 

for POU/POE applications: electrospun nanofiber composites. Electrospinning is an industrial 148 

viable fabrication route for the production of nonwoven membranes ideal for water treatment 149 

applications.20–22 Critical evaluation of the literature shows that the laboratory performance of 150 

electrospun materials is well established (as evidenced by several recent reviews on different 151 

nanofiber applications),23–27 and that they generally behave as would be expected from the 152 

wealth of complementary literature on more conventional membranes, engineered nanomaterials, 153 

and their composites.  Thus, the primary goal of this review is to identify and establish the 154 

unique attributes of various electrospun nanofiber formulations that may make them suitable, if 155 

not preferred, alternatives to more traditional materials used in commercially available, certified 156 

POU/POE devices. We will focus on literature that has demonstrated the use of electrospun 157 

nanofibers and their composites for targets relevant to POU/POE treatment including regulated 158 

and emerging organic pollutants, distribution system derived metals, and typically recalcitrant 159 

oxyanions. Where possible, we will prioritize results from studies conducted using reactor 160 

assemblies (e.g., flow through devices) that are representative of POU/POE treatment, thereby 161 

allowing preliminary assessment of application performance and longevity. Finally, we will 162 

conclude by discussing some emerging areas of nanofiber application for water treatment, while 163 

also highlighting research needs and future challenges associated with translating promising 164 

laboratory studies into commercially available, nanofiber-enabled POU/POE technologies. 165 

While there have been several recent reviews on various environmental applications of 166 

electrospun nanofibers,23–27 to the best of our knowledge this is the first to critically evaluate the 167 
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existing literature to assess their potential for the specific application of decentralized water 168 

treatment using POU/POE technologies and identify future research needs to realize their 169 

POU/POE application at scale. Because certification of POU/POE technologies requires strict 170 

adherence to water quality and testing conditions, while focusing on select pollutant targets most 171 

relevant to decentralized water treatment, we believe there is need for a review that focuses 172 

specifically on the existing state-of-the-art and future research priorities for this intended use 173 

application.   174 

 175 

Figure 2. Schematic of electrospinning system and tunable parameters at various stages of synthesis 176 
that can be used to control nanofiber physical and chemical properties. 177 

 178 

2. Overview of electrospun nanofibers for use in water treatment  179 

Electrospinning is a versatile fabrication process that produces three-dimensional 180 

networks of nonwoven fibers with nm to µm size ranges in diameter.28,29 During the synthesis 181 

process (Figure 2), a polymeric sol-gel precursor solution is ejected from a spinneret under a 182 

high potential (kV), and it is stretched and elongated under a whipping motion until reaching a 183 

grounded collector, forming fine fibers.30 As shown in Figure 2, synthesis variables provide a 184 

high degree of tunability in the resulting fiber properties. Parameters including the concentration 185 

Calcination

Synthesis Post-synthesis

Surface Treatment

Temperature
Duration
Ramping rate

Metal deposition
Functional groups
Dissolution
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of the polymer in the sol-gel, the applied voltage, the feed rate of the syringe, and the distance 186 

between the spinneret and grounded collector all can be used to tune fiber morphology and 187 

properties. Additives including nanoparticles and surfactants can also be integrated into the sol-188 

gel to alter fiber composition and impart new types of surface groups to influence performance. 189 

After synthesis, calcination can be used to transform organic polymer precursors into inorganic 190 

fibers, while various forms of chemical post-processing can also be used to tailor surface 191 

chemistry. Through careful control of these variables, electrospinning can be used to produce a 192 

variety of membrane architectures, from pure polymers to functionalized polymer-nanoparticle 193 

composites (Figure 3) that we and others have argued are ideal for use in hybrid filtration 194 

platforms capable of removing contaminants using both physical and chemical processes.   195 

 196 

Figure 3. The evolution of electrospun nanofiber (ENF) materials from pure materials of either polymers 197 
or metal oxides (MOx) to integrated composites of these materials. 198 

 199 

Initially, most applications of electrospun nanofibers for water treatment concentrated on 200 

the use of polymeric nanofibers, usually from precursors such as polyvinyl pyrrolidone (PVP), 201 

polyacrylic acid (PAA), and polyvinylidene fluoride (PVDF), for membrane filtration 202 

applications (Figure 3a).24,31,32 Such work focused on identifying electrospun alternatives to 203 

polymers fabricated using more traditional routes for applications in low and high-pressure 204 
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membrane filtration [e.g., microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and 205 

reverse osmosis (RO)].33 These applications exploit the three-dimensional nanofiber network for 206 

physical separation processes to remove unwanted constituents from source water.  At present, 207 

electrospun polymeric nanofibers represent viable membrane alternatives;34,35 for example, 208 

nanofibers with high hydrophobicity, porosity, and an interconnected open pore structure have 209 

been shown to provide higher permeability compared to traditional polymeric membranes (i.e., 210 

analogous materials fabricated via phase-inversion approaches).21,35–37 211 

Electrospinning can also be used for the production of pure metal oxide nanofibers 212 

(Figure 3b) and composites of polymeric nanofibers (Figure 3c) with embedded metal or metal 213 

oxide nanoparticles, thereby enabling chemical treatment applications including chemical 214 

oxidation (via photocatalysis), disinfection, sorption and ion exchange.38–40 Pure inorganic 215 

nanofibers offer potential benefits analogous to ceramic membranes, including higher stability in 216 

the presence of strong acids and bases or active oxidants (e.g., ozone, hydroxyl radical, peroxyl 217 

radical) during advanced oxidation processes.41,42 Popular examples include pure titanium 218 

dioxide and iron oxide (e.g., hematite) fibers,43–45 which can be fabricated by transforming 219 

polymer fibers containing metal oxide precursors into corresponding oxides via high-temperature 220 

annealing in a controlled atmosphere. Similarly, carbon fibers can be produced from a polymer 221 

like polyacrylonitrile after thermal treatment in the absence of oxygen.46,47 Extensive work with 222 

inorganic nanofibers has demonstrated that the same physical/(photo)electrochemical property 223 

variables desirable in discrete nanoparticles are beneficial in pure inorganic nanofiber 224 

performance;48,49 for example, specific surface area can be manipulated by decreasing fiber 225 

diameter, thereby increasing the capacity of electrospun sorbents.50  226 
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Because pure inorganic and carbon nanofibers often lack the strength and durability of 227 

polymers, which may limit their practical viability, electrospun composites represent a possible 228 

compromise in reactivity and durability.51–54 For these materials, (nano)particles of metals, metal 229 

oxides, and/or nanostructured carbon are integrated into polymer nanofibers to increase the 230 

membrane’s functionality. Such composites are easily produced using electrospinning by simply 231 

dispersing nanoparticles into the polymer sol-gel precursor solution. Although the resulting 232 

nanoparticle-polymer composites overcome some of the material strength deficiencies 233 

encountered with pure inorganic fibers, they can suffer from more limited chemical reactivity as 234 

some reactive surface area on the integrated nanoparticles will be lost when embedded within the 235 

polymer.55 Accordingly, there is much ongoing interest in exploiting the fabrication of these 236 

materials (e.g., increasing polymer porosity)56–58 to increase the access of the embedded particles 237 

to solution during application and expose more reactive surface area.   238 

Some studies have investigated surface modifications of polymeric nanofibers by means 239 

of grafting, blending, or coating to form functional groups (i.e., amine, thiol, carboxyl, carbonyl, 240 

etc.) on the fiber surface for specific applications and processes (Figure 3d). Through the 241 

addition of organic compounds, metal salts, surfactants, or co-polymers, these functionalized 242 

polymers can exhibit increased flux and higher surface area, leading to improved treatment 243 

performance compared to unmodified polymeric nanofibers.23,59,60 Depending on the nature of 244 

the surface groups, they can also impart functionality including pollutant uptake through 245 

chelation or surface complexation processes.61,62 Through imparting such surface groups, 246 

nanofibers are able to not just rely on physical separation processes common for more traditional 247 

membranes but also removal, ideally highly specific or targeted, for dissolved solutes.  248 
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A final modification of nanofibers combines the chemical functionality imparted by 249 

surface groups and nanofiber-nanoparticle composites (Figure 3e). Made either by post-250 

processing to introduce surface functional groups to composites or through a combination of 251 

appropriate building blocks in the sol-gel precursor solution, these materials are promising for 252 

their potential multi-functionality.25,63 Through simple additive performance from each 253 

component or possible synergies through interactions between the surface group and embedded 254 

particles, these materials help to increase the functionality of chemically reactive nanofibers 255 

without changing the physical footprint of the non-woven fiber membrane. 256 

 257 

3. Applications of electrospun nanofibers relevant for POU/POE treatment 258 

In the United States, NSF International and ANSI categorize POU/POE devices based on 259 

their treatment focus, which dictates device certification. These include devices specifically 260 

intended to improve the aesthetic quality of water (i.e., taste and odor), water softening devices 261 

(i.e., removal of hardness causing ions Ca2+ and Mg2+), and various technologies to removal 262 

contaminants that pose risk to human health including organic and inorganic chemicals, 263 

emerging pollutants, and microbial pathogens. Here, we will highlight some of the most recent 264 

and promising research, development, and applications of electrospun technologies to meet these 265 

drinking water consumer needs. While we acknowledge the large group of recent reviews on 266 

electrospun fibers and their physical/chemical properties,23–27 these have been broad in their 267 

scope of applications and not always highlighted the materials most promising for us in 268 

decentralized treatment based on material design and testing considerations most relevant to 269 

these applications 270 
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In Table S1, we have compiled an extensive list of published works looking at 271 

applications of electrospun nanofibers we have found most relevant to POU/POE applications. 272 

For each of the studies included, Table S1 summarizes key characteristics of the materials that 273 

were fabricated (elemental composition and nanofiber diameter), the experimental conditions 274 

used to test the performance of these materials (including the aquatic matrix and target 275 

pollutants), as well as the relative strengths of these works and the opportunities that exist to 276 

build upon the published findings to further advance POU/POE technology development with 277 

electrospun materials. As evaluation criteria for the relative strengths and opportunities identified 278 

in Table S1, we have selected the following criteria, which we contend are required elements for 279 

nanofiber research necessary for POU/POE technology development. They are:  280 

• Comparison to commercially available analog materials (CA): An important 281 

performance benchmark for new materials is how their performance compares to 282 

analogous, commercially proven materials used in POU/POE treatment (e.g., 283 

activated carbon, commercial ion exchange resins, under-counter reverse osmosis 284 

membranes) or those materials that represent the industry standard for established 285 

full-scale treatment (e.g., Aeroxide P25 for photocatalytic processes). Such 286 

comparisons would ideally be integrated into all development and testing for 287 

materials intended for POU/POE applications.  288 

• Relevant pollutant targets for commercial POU/POE applications (RT):  We 289 

define relevant targets as contaminants of emerging concern such as unregulated 290 

organic contaminants (or models thereof), taste and odor causing compounds, 291 

regulated inorganic oxyanions (e.g., nitrate and arsenate), pathogens, and corrosion 292 
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derived metals (e.g., lead, copper), focusing on targets for which certified POU/POE 293 

devices exist.  294 

• Use of complex, drinking water relevant water quality in performance trials 295 

(WQ): This includes considering the influence of aquatic matrix such as different pH 296 

values, temperature, and the influence of common co-solutes found in source and 297 

finished drinking water (e.g., co-existing CO2-, NOM and other co-occurring 298 

contaminants).  299 

• Evaluation of material properties including strength, durability, and longevity 300 

(MS): A critical aspect of materials used in POU/POE applications is their longevity 301 

and stability during application. Most certification processes are associated with 302 

expectations for performance lifetime. Moreover, for nanoengineered materials, there 303 

is need to demonstrate the integrity of the material during operation to ensure no 304 

release or leaching of unwanted materials into the treated supply. Materials must also 305 

be sufficiently flexible and strong to be engineered into appropriate reactor platforms 306 

for POU/POE use.  307 

• Performance testing that includes simulated POU/POE treatment (ST): Finally, 308 

materials intended for use in POU/POE systems must be tested under conditions 309 

simulating such application platforms, which includes trials that extend beyond 310 

simple batch sorption studies (for equilibrium capacity) and also consider 311 

performance under more dynamic, likely kinetically limited, flow-through conditions. 312 

Of equal importance is demonstrating that the material can be translated from 313 

laboratory benchtop scale studies to technology demonstrations and prototyping at 314 

scales more representative of POU/POE applications.   315 
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We note that in our analysis of the appropriate literature summarized in Table S1, the 316 

extent to which certain of these factors were considered was somewhat variable. For example, a 317 

study may only have tested a nanofiber sorbent across different pH values, but not examined 318 

performance over more complex aquatic chemistries. Nevertheless, we categorized this study as 319 

having a strength related to WQ because it was at least considering how some aquatic variables 320 

could influence performance. 321 

Thus, the intent of this contribution, which we believe distinguishes this work from prior 322 

reviews in this area, is to emphasize recent advances and emerging opportunities for the 323 

fabrication of chemically-active electrospun membranes specifically for decentralized water 324 

treatment. We will focus on work relevant to electrospun membrane applications in POU/POE 325 

technologies, which often are used as a final polishing step for a relatively clean source water 326 

matrix. This is an ideal application point for such nanofiber membranes so as to avoid their rapid 327 

fouling or clogging when applied to lower-quality source water with elevated suspended solids. 328 

For example, one can envision an application platform in which electrospun membranes can be 329 

integrated into a standard POU cylindrical filter housing, perhaps even supported by more 330 

traditional and widely used block carbon filters, to enhance device performance (Figure 4). It 331 

may even be possible to layer functionalized fibers or fiber composite, each designed to target 332 

specific constituents of concern in drinking water so that the overall treatment device exhibits 333 

multi-functionality. As illustrated in Figure 4, nanofiber membrane layers would be assembled in 334 

the same arrangement of the current footprint used in most POU/POE filtration devices, making 335 

integration into existing platforms highly plausible. It is with such application end point in mind 336 

that we critically review the available literature on the development of electrospun membranes 337 
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for treatment of drinking water pollutants commonly targeted with current commercially 338 

available POU/POE devices.  339 

  340 

 341 

Figure 4. Schematic of a multi-layered, electrospun nanofiber mesh-integrated POU device, enabling 342 
sequential treatment processes in a single unit with small technology footprint. 343 

 344 

3.1. Traditional membrane application including RO.  Traditional membrane systems 345 

have been extensively studied for bacterial/viral removal, organic compound removal, and 346 

desalination, depending on the size requirement (i.e., microfiltration, nanofiltration, reverse 347 

osmosis). Since the earliest years of electrospinning, initial environmental applications revolved 348 

around polymeric nanofibers for filtration treatment.37,63 Polymeric nanofibers membranes, often 349 

composed of polyacrylonitrile (PAN), polyvinylchloride (PVC), or polypropylene (PP) as a few 350 
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examples, have been reported to possess good flexibility, high flux, and low transmembrane 351 

pressure,61 all of which are desirable attributes for such performance applications. Additionally, 352 

electrospun membranes have shown great promise due to their higher interconnected porosity, 353 

larger effective surface area, and greater mechanical stability and hydrophobicity, markedly 354 

improving flux performance compared to traditional filtration membranes.25 355 

 Fouling is still a significant challenge facing the field of membrane filtration. To combat 356 

membrane fouling, many studies have demonstrated surface modification of electrospun 357 

nanofiber membranes via grafting, surface coating, and interfacial polymerization, leading to 358 

increased hydrophobicity and better flux throughput.61 Others report the decoration of 359 

electrospun membranes with silver nanoparticles, a well-known antimicrobial agent, to alleviate 360 

biofouling.64 Additionally, electrospun membranes require additional support for better 361 

mechanical strength and are usually manufactured or utilized in a hybrid system with a substrate. 362 

 3.2. Sorption of organic compounds. In designing a proper sorbent, broad spectrum 363 

activity, high surface area, and rapid rate of pollutant uptake are most desirable.65 Specifically 364 

for sorption of organic pollutants, hydrophobicity is a common driver of pollutant uptake in 365 

traditional sorbents such as granular or powdered activated carbon (GAC and PAC, 366 

respectively).66 More polar organic compounds tend to be susceptible to uptake via specific 367 

binding interactions. Accordingly, appropriate sorbents, including some forms of activated 368 

carbon, are designed to contain surface functional groups that may contribute to hydrogen-369 

bonding and other types of chemical binding interactions for polar organic pollutant uptake. For 370 

POU water treatment, carbon block filters are popular in brands including the Amway eSpringTM 371 

water treatment system.67 These carbon block filters are typically produced from carbon derived 372 

from charcoal, wood, or coconut and manufactured via either extrusion or molding.68  373 
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An appropriate electrospun analog to activated carbon is carbon nanofibers (CNFs) 374 

typically 200-500 nm in diameter due to their tunable chemical and material properties, high 375 

internal porosity, and large specific surface area.47,49,69 The promise of CNFs is the ability to 376 

combine the application platform of a flexible membrane mesh with the high-capacity 377 

performance toward aqueous organic contaminants70,71 of GAC and PAC. For example, Li et al. 378 

reported that the adsorption capacity of electrospun CNFs was significantly greater than PAC 379 

against a select group of emerging organic pollutants (i.e., ciprofloxacin, bisphenol, and 2-380 

chlorophenol), attributing the enhanced performance to the greater surface area and pore size 381 

distribution of the fibers (Figure 5).70  382 

Functionalized CNFs and CNF composites have often shown improved sorption 383 

performance relative to unmodified CNFs.72,73  For example, integration of nanoparticles (e.g., 384 

CNTs, graphene oxides, metal oxides) and/or surface oxidation (via HNO3, H2SO4) of CNFs can 385 

improve sorption performance, especially towards more polar organic compounds.72,74,75 In one 386 

instance, Behnam et al.72  reported on the fabrication of metal oxide-decorated CNFs (via 387 

nanoparticle integration into the precursor sol-gel) for the removal of Diazinon, a liquid-phase 388 

organophosphorus compound. Adsorption studies revealed a 4-fold improvement in the uptake 389 

rate due to the presence of embedded MgO and Al2O3 nanoparticles compared to the bare 390 

activated carbon nanofibers, which the authors attribute to the presence of surface hydroxyl 391 

groups on the integrated metal oxide nanoparticles (Figure 6).72  392 

https://www.sciencedirect.com/topics/chemistry/ciprofloxacin
https://www.sciencedirect.com/topics/chemistry/bisphenol
https://www.sciencedirect.com/topics/chemistry/2-chlorophenol
https://www.sciencedirect.com/topics/chemistry/2-chlorophenol
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 393 

Figure 5. SEM (a, b) and TEM (c, d) images of carbon nanofibers (CNF) used for sorption of emerging 394 
organic pollutants. Also shown are sorption isotherms of the CNFs and powdered activated carbon (PAC) 395 
for e) bisphenol (BPA), 2-chlorophenol (2-CP), and f) ciprofloxacin (CIP) fitted with Langmuir model (red 396 
dotted line) and Freundlich model (solid black line), respectively. In all cases shown, CNFs resulted in 397 
greater organic pollutant uptake than PAC. Reproduced from Li et al.70 with permission from Elsevier. 398 

 399 

e

f
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 400 

Figure 6. SEM and TEM images of ACNFs embedded with: (a, d) no metal oxide nanoparticles, (b, e) 401 
10 wt.% MgO Plus, and (c, f) 10 wt.% Al2O3 Plus nanoparticles. Also provided (g) destructive adsorption 402 
of Diazinon, (h) initial adsorption rate of Diazinon after 5 min, and (i) the amount of adsorbed Diazinon 403 
after 30 and 240 min by ACNFs containing MgO, Al2O3, MgO plus, Al2O3, and no nanoparticles, with 404 

corresponding values indicated. We note that Plus grade nanoparticles were noted by the authors to have 405 
smaller crystal size and greater specific surface area compared to standard grade materials. Reproduced 406 

from Behnam et al.72 and Dadvar et al.74 with permission from Springer and Elsevier, respectively. 407 

 408 

There remain practical challenges with the mechanical strength of CNFs, which may 409 

ultimately hinder their use in flow-through filtration systems.76,77 However, recent advances in 410 

synthesis have led to more flexible nanofibers that can be more easily built into treatment 411 

systems. For example, we and others have found that the introduction of porosity (from 412 

(d) (e) (f)
(g)

(h) (i)
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sublimation of volatile phthalic acids) in CNT-CNF composite membranes increased membrane 413 

flexibility and durability during simulated testing in flow-through treatment systems.75 We found 414 

that the porosity, in combination with embedded CNTs, produced a composite CNF with faster 415 

uptake rates and comparable surface-area normalized capacity to a commercial GAC for both 416 

atrazine, a widely used herbicide, and sulfamethoxazole, an unregulated emerging organic 417 

pollutant. Notably, porous CNFs without embedded CNTs exhibited limited uptake capacity 418 

toward these two compounds, suggesting that the embedded CNTs, accessible to solution 419 

through the induced porosity, were the primary sorbent driving pollutant uptake with these 420 

composites. Thus, these composites may represent a promising way to take advantage of CNTs 421 

in water treatment in a composite platform that limits the potential for their release into the 422 

finished water supply.  423 

We note that polymeric nanofibers34,78,79 and their composites80 can also exhibit good 424 

sorption capabilities, but they typically fall short in terms of microporosity, and ultimately 425 

sorption capacity, when compared to their carbonized analogs.69  In fact, the relative success of 426 

polymeric electrospun materials as sorbents will largely depend on the nature of the organic 427 

pollutant being targeted and the type of polymer or polymer composite being used for pollutant 428 

uptake. In our own work with polymer composites, we found that organic pollutant uptake did 429 

vary in response to the type of polymer (hydrophobic versus hydrophilic), as well as the nature 430 

of the chemical, in some instances.80 Although potentially promising for hydrophobic 431 

compounds (logKow > 4), we would generally classify uptake as too slow (i.e., equilibrium on the 432 

order of several hours to one day) for moderately hydrophobic to polar organic compounds. This 433 

may limit the use of polymer sorbents in in-home treatment systems, which can be limited by 434 

residence time (e.g., POU filtration systems). As such, polymer-based sorbent materials are 435 
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probably best suited for treatment systems with sufficient residence time to allow operation at or 436 

near equilibrium uptake (i.e., use in batch or semi-batch reactor systems). 437 

3.3. Sorption of metals. Many commercially certified POU and POE treatment devices 438 

target metals including lead, copper, cadmium, chromium (hexavalent and trivalent), arsenic, and 439 

mercury.81 Several of these metals such as lead, copper, and cadmium are those originating from 440 

corrosion of plumbing within centralized water distribution systems, premise plumbing on the 441 

consumer’s property, or other forms of more decentralized drinking water infrastructure (e.g., 442 

private well components).82–86 Because such corrosion-associated metals enter into the water 443 

supply solely through water delivery to the tap, POU treatment devices are relied on by many 444 

consumers to minimize exposure to these metals. POU devices are also frequently relied upon 445 

during public health crises associated with lead in drinking water exposure (e.g., Flint, 446 

Michigan).84 447 

 For many metals, particularly lead, activated carbon filters have often been the POU 448 

treatment of choice.87 For example, both Pur (PPT111)88 and Brita (e.g., Longlast+)89 offer 449 

pitcher filters that are certified for removal of copper, cadmium, and mercury that rely on carbon 450 

filters, occasionally in combination with an ion exchange resin. Block carbon filters certified for 451 

lead removal under NSF/ANSI 5390 are also common in many common bottle-filling devices 452 

marketed by companies including Elkay91 and other vendors. Use of activated carbon for metals 453 

relies on the high surface area and large number of electron-rich sites on the carbon surface to 454 

produce a high-capacity sorbent for positively charged metal ions.66 Beyond activated carbon, 455 

POU or whole-home reverse osmosis units are also effective for metal removal (e.g., Aquasana 456 

OptimH2O™ AQ-RO-3, among others92). In fact, membrane systems, while more expensive, 457 

may be preferred for lead removal, particularly given recent evidence of variable performance of 458 
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traditional block carbon filters and granular carbon filters toward (nano)particulate lead 459 

species.93  460 

Electrospun fibers can advance technologies for metal treatment through their ability to 461 

capture colloidal particulates via entrapment in pore spaces and remove dissolved metal species 462 

via sorption processes driven by electrostatic or more specific binding interactions. Electrospun 463 

membranes may also enable certain proven approaches for metal uptake to be more easily 464 

deployed at the POU scale; for example, granular ferric hydroxide (GFH), which is marketed as 465 

media for arsenic removal, is likely limited to whole home and larger treatment applications due 466 

to its grain size.94–96 To the best of our knowledge, there is no iron oxide-based POU treatment 467 

analog for GFH, despite the well-recognized ability of iron oxides as sorbents for many 468 

dissolved metals.97 469 

Several studies have demonstrated the immense potential for pure inorganic or ceramic 470 

electrospun fibers for metal uptake. These can be fabricated by electrospinning polymer sol-gels 471 

containing precursors that are then annealed into pure inorganic materials, typically metal oxide 472 

and carbon nanofibers, with relatively high surface area and porosity.98–102 Examples of 473 

electrospun fibers used for metal uptake include oxides of iron (Fe2O3),103,104 aluminum 474 

(Al2O3),105 silica (SiO2),106 and cerium (CeO2).107 For instance, Ma et al. reported on the 475 

synthesis of electrospun silica fibers composed of a nonporous core and a mesoporous shell, 476 

exhibiting excellent adsorption of heavy metal cations (i.e., Pb2+, Cd2+).106 Furthermore, post-477 

process grafting of thiol functional groups on the silica fibers led to enhanced adsorption 478 

performance (Figure 7). Additional performance optimization has also been demonstrated 479 

through multi-component metal oxide nanofibers, most notably Al2O3-Fe2O3, which some have 480 

shown to exhibit greater adsorption capacity toward hexavalent chromium compared to either 481 
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pure counterpart (Figure 8).108–111 More generally, work to date with pure inorganic fibers has 482 

demonstrated that links between fiber performance and their physical properties follow 483 

expectations that are now well established for nanoparticle analogs (e.g., smaller particle size 484 

results in high specific surface area and, thus, more uptake per unit mass).104 485 

 486 

 487 

Figure 7. SEM images of electrospun silica nanofibers prepared using different hydrolyzing times: (a) 150 488 
min, (b) 170 min, (c) 190 min, and (d) 210 min. Sorption isotherms of silica nanofibers (nSiO2@mSiO2) 489 

and thiol-functionalized silica nanofibers (SH-nSiO2@mSiO2) with corresponding fits (as indicated) for (e) 490 
cadmium (Cd2+) and (f) lead (Pb2+) uptake. Reproduced from Ma et al.106 with permission from RSC. 491 

 492 

(f)
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 493 

Figure 8. SEM images of (a) ammonium ferric citrate/polyvinyl alcohol (PVA) composite nanofibers and 494 
(b) α-Fe2O3–γ-Al2O3 core–shell nanofibers used for metal uptake. (c and f) TEM images of α-Fe2O3–γ-495 

Al2O3 core–shell nanofibers. Also provided are the distribution of fiber diameters from (d) the ammonium 496 
ferric citrate/PVA composite nanofibers (470 ± 7 nm), and (e) α-Fe2O3–γ-Al2O3 core–shell nanofibers (330 497 
± 9 nm). For uptake of hexavalent chromium (Cr(VI)) on α-Fe2O3–γ-Al2O3 core–shell nanofibers, shown 498 
are (g) reported uptake curves over time for several different initial chromate concentrations and (h) the 499 
corresponding pseudo-second-order model-fit plots. Reproduced from Li et al.110 with permission from 500 

RSC. 501 

 502 

Although capable of achieving high removal of metals from water, there are considerable 503 

practical limitations to the use of pure inorganic fibers in POU and POE technologies. Like 504 

CNFs discussed earlier, pure inorganic fibers of metal oxides are typically very brittle and 505 

exhibit poor mechanical stability and flexibility, a result of morphological changes that occur 506 

g) h)
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while annealing (e.g., loss of mass due to the combustion of the polymer from the sol-gel).13,112 507 

Accordingly, without advances in fabrication to improve material strength, it will be difficult to 508 

envision technology applications for inorganic nanofiber materials.  509 

A more promising approach for metal uptake may be polymer-metal oxide composites. 510 

Here, metal oxide nanoparticles are simply loaded into the sol-gel precursor solution prior to 511 

electrospinning. This approach allows high-capacity sorbent materials (e.g., metal oxide 512 

nanoparticles) to be deployed for POU and POE applications in a more flexible, polymer-based 513 

filtration platform. Because there has been extensive work with such polymer composites 514 

targeting a range of pollutants,59,113–121 we have elected to focus on recent applications for uptake 515 

of common corrosion-derived metals (lead, copper, cadmium), as well as other metals of concern 516 

(As) that have existing POU/POE treatment options. 517 

Perhaps the biggest challenge with such electrospun composites is preserving the sorbent 518 

activity of the metal oxide nanoparticles once embedded on or within the polymer nanofiber 519 

support, which will consume reactive surface area. To avoid this challenge, many, including our 520 

own research team, have used post-processing of nanofibers to surface enrich or decorate 521 

underlying polymers with high surface area metal oxide sorbents (Figure 9).122 This produces 522 

surface-enriched or even core-shell composites that exhibit greater capacity (i.e., more sorbent 523 

accessible to solution) and faster rates of pollutant uptake (i.e., uptake can be slow on embedded 524 

particles due to necessary pore diffusion to access the sorbent surface) than traditional, 525 

homogeneously blended composites. We acknowledge, however, that additional post-processing 526 

to achieve such surface-enriched materials may be disadvantageous from the perspective of 527 

manufacturing and material production cost, thereby impacting the practical viability of such 528 

surface functionalized materials. 529 
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 530 

Figure 9. Size distribution histograms for (a) PAN, (b) PAN embedded with Fe2O3 that was prepared by 531 
blending the Fe2O3 nanoparticles into the precursor sol-gel (PAN/ Fe2O3), and (c) core-shell 532 

PAN/Fe2O3@Fe2O3 nanofibers that were prepared via the hydrothermal post-processing of PAN/ Fe2O3). 533 
In addition to nanofiber diameter distributions, which increase with composite and core shell materials, 534 

also shown are corresponding digital pictures and SEM images of the nanofiber mats. Reproduced from 535 
Greenstein et al.122 with permission from Elsevier. 536 

 537 

To avoid the issue of additional post-processing after electrospinning, we have 538 

discovered a unique approach to composite fabrication that exploits interactions between 539 

embedded nanoparticles and surface-segregating surfactants.114,116 Surfactants are often included 540 

in precursor solutions to control surface tension.123 We have found that certain surfactants with 541 

quaternary ammonium groups, functionalities often used in water treatment as coagulants and in 542 

ion exchange resins,124,125 can also be used to impart chemical functionality to polymer nanofiber 543 

surfaces. We have fabricated polyacrylonitrile (PAN) nanofibers containing tetrabutylammonium 544 

bromide (TBAB), a common cationic quaternary ammonium salt (QAS), and also explored 545 

possible synergies arising from the inclusion of both QAS and iron oxide nanoparticles during 546 

electrospinning.114 Our initial focus on QAS was motivated by prior observations that this class 547 
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of surfactants is surface-segregating126 TBAB accumulates at the polymer-air interface during 548 

synthesis, resulting in surface enrichment of positively charged, quaternary ammonium binding 549 

sites. Iron oxide nanoparticles (in this case, commercially available amorphous Fe2O3) were used 550 

because of their sorbent activity toward several species targeted with POU/POE devices, 551 

including Pb and As.127,128 Notably, and as we recently detailed,114 PAN nanofibers electrospun 552 

from solutions with QAS and iron oxide nanoparticles exhibit surface enrichment of not only 553 

cationic quaternary ammonium functionalities, but also the iron oxide nanoparticles; both species 554 

appear to co-locate to the polymer surface. This, in turn, produces a sorbent with higher capacity 555 

than expected based on the performances displayed by PAN modified with only TBAB or the 556 

iron oxide particles.  557 

We have subsequently also observed and reported116 on this surface-segregating behavior 558 

for anionic surfactants like sodium dodecyl sulfate (SDS) in combination with iron oxide 559 

nanoparticles. The combination of SDS and a commercial iron oxide nanoparticle during 560 

synthesis of electrospun PAN produces a composite enriched in iron oxide sites. Notably, we 561 

found that SDS is not retained in the polymer after synthesis, releasing into solution and leaving 562 

behind pores in the PAN (i.e., SDS acts as a porogen), which ultimately increases the capacity of 563 

the PAN/iron oxide composite. We contend that this unique, single-pot synthesis approach to 564 

produce nanofiber composites with surface-enriched binding sites may help streamline 565 

composite fabrication at the scale necessary for use in POU/POE devices.  566 

3.4. Ion exchange for oxyanion removal. Ion exchange technologies use a 567 

functionalized stationary phase or resin. Typically, this resin consists of a cross-linked polymer 568 

matrix with covalently bonded functional groups that possess a fixed ionic charge able to attract 569 

dissolved ionic species.129 Prior to application, these functional groups are initially saturated with 570 
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a counter ion, which then is displaced or exchanged by the target ion when the pollutant is 571 

removed from solution.130–132  572 

Ion exchange is commonly used in POU/POE technologies for the removal of common 573 

cations and anions. For example, many in-home water softeners rely on cation exchange resins, 574 

which are often certified to not only remove hardness-causing ions (Ca2+ and Mg2+) but also 575 

regulated cations like barium and radium.81 Similarly, Brita Standard Filters for pitchers and 576 

other water dispensers contain cation exchange resin for the purpose of removing contaminants 577 

like copper, zinc, and cadmium.133 There are also a variety of more specialized treatment devices 578 

available commercially that rely on anion exchange for targets like nitrate, often in the form of 579 

POE devices for whole-home use.134 580 

Because ion exchange most often relies on functionalized polymer resins, electrospun 581 

polymers with appropriate surface functional groups can be designed to function similarly in 582 

water treatment settings.52 Design of such polymer fibers can be guided by chemistries 583 

successfully used in traditional materials. Specifically, there are four general types of 584 

conventional resins: strong-acid cation (SAC), weak acid cation (WAC), strong-base anion 585 

(SBA), and weak-base anion (WBA).129 SBA resins, for example, have a quaternary amine group 586 

as the fixed charge.129 For dilute aqueous phase concentrations, ion exchange resins tend to 587 

prefer the counterion of greater valence. For example, in the case of SBA, the selectivity 588 

preference follows: PO43- > SO42- > Cl-. For monovalent anion exchange, the selectivity sequence 589 

is typically: ClO4− > I− > NO3− > Br− > Cl− > HCO3− > OH.129 Practically, this preference 590 

towards highly charged ions reduces removal efficiencies for some target pollutants (e.g., 591 

perchlorate preferred over nitrate).7,129  Resins can also be produced so as to be selective to 592 

certain targets in order to overcome such interferences from ionic co-solutes. For example, 593 
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commercially available nitrate-selective ion exchange resins rely on triethylamine or 594 

tributylamine functional groups,135 and are popular because of their durability and selectivity of 595 

nitrate over other common anionic constituents in groundwater (e.g., sulfate, bicarbonate and 596 

chloride).  597 

Motivated by the target application of POU/POE ion exchange, we114 have designed 598 

polymer and polymer-composite nanofibers functionalized with cationic surfactants, such as 599 

cetrimonium bromide (CTAB) and tetrabutylammonium bromide (TBAB), for oxyanion removal 600 

from drinking water. These materials exploit the phenomenon of surface-segregation, in which 601 

surfactants like quaternary ammonium surfactants (QAS), preferentially migrate to the nanofiber 602 

surface during electrospinning to minimize the resulting free energy in the functionalized 603 

polymer materials (Figure 10). This produces a polymer mat consisting of nanofibers that are 604 

surface-enriched with positively charged, quaternary ammonium sites, enabling the removal of 605 

oxyanions (like chromate) from solution via ion exchange as confirmed by counterion release 606 

during oxyanion uptake. We have found that TBAB, which is a QAS with branched alkyl chains, 607 

is preferred for such applications over CTAB, which contains a linear alkyl chain, because it is 608 

better retained in the polymer (PAN) matrices during application for anion removal. 609 

 610 
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 611 

Figure 10. SEM images of (a) bare PAN fibers, (b) PAN fibers with CTAB, (c) PAN fibers with TBAB, (d) 612 
Fh-decorated PAN fibers, (e) Fh-decorated PAN fibers with CTAB, and (f) Fh-decorated PAN fibers with 613 

TBAB. Chromate sorption isotherms are shown as a function of (g) CTAB and (h) TBAB loading for 614 
materials that were used in uptake experiments as prepared (so-called “unrinsed” materials shown as 615 

open symbols with isotherm fits shown as dashed lines) and materials that were extensively washed with 616 
water prior to uptake experiments (so-called “rinsed” materials shown as solid symbols with isotherm fits 617 
solid lines). The decrease in performance observed between unrinsed and rinsed samples was attributed 618 

to the release of CTAB and TBAB (molecular structures shown in inset) from PAN during chromate 619 
uptake studies. Lines represent model fits to the Langmuir isotherm model for all composites except 620 

CTAB2 and CTAB3, for which data were best described by the Freundlich isotherm model. We note that 621 
in this work, composite mats were referred to as ‘Fhx-CTABy’ or ‘Fhx-TBABz’, where x, y, and z denote 622 

the ferrihydrite (Fh) nanoparticles, CTAB, and TBAB concentrations in the sol-gel, respectively, based on 623 
wt.% to the total sol-gel mass.  Reproduced from Peter et al.114 with permission from Elsevier. 624 

This single-pot approach used in Peter et al.,114 and in subsequent studies by our group,136 625 

represents a promising route to produce functionalized nanofibers suitable for ion exchange 626 

applications without any necessary post-processing of the polymer surface. There remain 627 

opportunities to expand this approach, including the use of alternative surfactants that may 628 

enable targeting of different pollutant types and represent more sustainable alternatives (e.g., 629 

QAS and concerns for their potential antimicrobial activity).137 There is also a need to consider 630 

(j)
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more closely the role of the polymer. Although surface-segregation has occurred readily in our 631 

work with polyacrylonitrile (PAN), there may be treatment applications where a hydrophobic 632 

membrane substrate (e.g., PVDF or polystyrene) is more beneficial, and exploiting surfactant-633 

polymer interactions for such polymer materials requires additional investigation.  634 

Ion exchange technologies, whether using conventional materials or electrospun 635 

polymers, are not without limitations. As with any technology relying on equilibrium 636 

partitioning, ion exchange systems require sufficient contact time for pollutant removal and 637 

exhibit limited capacity. They also must be regenerated, which often involves the use of 638 

concentration brine solution, and brine management is a well-documented challenge with such 639 

units.138,139 640 

 With more research and development, it is possible that electrospinning may enable new 641 

application platforms that overcome these traditional challenges of ion exchange while also 642 

increasing integration of ion exchange processes into existing POU/POE treatment systems. For 643 

example, block carbon filters are widely used in many in-home units (e.g., refrigerators). 644 

Amending block carbon with a functionalized polymer layer would allow ion exchange to be 645 

integrated into this existing POU architecture, thereby enabling removal of selected ions, like 646 

nitrate. However, this will require increases in the capacity and rate of ion uptake on such 647 

functionalized polymers to ensure sufficient removal during the contact time and lifetime 648 

afforded by such block carbon filters. 649 

3.5. Organic chemical transformation. Recent advances in POU and POE technologies 650 

have led to the integration of ultraviolet (UV) lamps for disinfection.140,141 Amway142 and 651 

Aquasense,143 for example, both offer in-home water treatment that relies on UV light to kill 652 
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pathogens including bacteria and viruses. The emergence of UV light-emitting diodes (LEDs) 653 

has helped catalyze the growth of this approach in POU/POE devices.144 654 

UV photolysis in POU systems could be exploited further to address the emergence of 655 

recalcitrant organic compounds by coupling them with photocatalytic materials to drive 656 

advanced oxidation processes (AOPs). AOPs are a group of treatment methods that utilize a 657 

combination of oxidative reagents to form highly reactive radical oxygen species (i.e., hydroxyl 658 

radicals) for organic pollutant degradation.145,146 Some recent work has been conducted on the 659 

use of photocatalytic nanomaterials for POU applications, but specifically towards microbial 660 

disinfection rather than organic photo-oxidation.147,148 Thus, there is much potential for the 661 

effective incorporation of UV-active photocatalytic membranes in POU/POE devices, 662 

particularly electrospun materials. 663 

Titanium dioxide (TiO2), considered the gold standard of photocatalysts, has garnered a 664 

great amount of attention in the environmental field for decades,149,150 and thus, not surprisingly, 665 

has been heavily investigated as electrospun nanofibers,151–153 as well as a slew of other 666 

nanomaterials.154 These studies revealed the systematic control of physical properties (i.e., 667 

crystal phase, grain size, porosity, fiber diameter) of the nanofibers, which can be appropriately 668 

tuned towards optimizing photocatalytic activity. As a result, TiO2 nanofibers with diameters that 669 

range from 30 to 300 nm have been investigated towards the degradation of pharmaceuticals 670 

such as phenol,155 tetracycline,156 carbamazepine,157 and ranitidine,158 as well as a host of dye 671 

contaminants.159–161 For instance, Maeng et al. reported on the degradation of organic 672 

contaminants (i.e., cimetidine, carbamazepine, propranolol) by electrospun TiO2 nanofibers and 673 

identified how the chemical moieties of the compounds interacted with variable aquatic 674 

conditions (i.e., DOM content, scavenger compounds, pH), ultimately affecting photocatalytic 675 
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performance (Figure 11).157 Moreover, TiO2 nanofibers have been reported to outperform 676 

conventional nanoparticles based on photocatalytic activity, especially commercially available 677 

Aeroxide P25® photocatalyst.155  678 

Zinc oxide (ZnO) nanofibers have also been investigated as potential photocatalysts for 679 

water treatment.162–164 Although not as photocatalytically efficient as TiO2, a benefit of ZnO is 680 

that it contains mid-band defect states (or quasi-stable energy states) and thus can be activated by 681 

renewable visible light, which comprises a major portion of the solar spectrum. Unfortunately, a 682 

major practical hurdle to the use of ZnO in treatment is its limited stability in water, making it 683 

highly prone to dissolution during application. 684 

 685 

Figure 11. SEM images of (a) as-electrospun titanium isopropoxide-polyvinylpyrrolidone (TiP-PVP) 686 
composite nanofibers, TiO2 NFs after annealing at 600 °C (b) without and with hot pressing at a pressure 687 
of (c) 15 MPa and (d) 20 MPa. Hot pressing was used to improve adhesion of the TiO2 films to the quartz 688 
substrate for the purpose of increasing longevity. Reactivity studies show the effect of organic matter on 689 

the degradation of (e) cimetidine (CMT) and (f) carbamazepine (CBZ) for TiO2 nanofibers under UV 690 
irradiation. Reproduced from Maeng et al.157 with permission from Elsevier. 691 

(e)
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Furthermore, many strategies have been developed to enhance the photocatalytic activity 692 

of semiconductor-driven water treatment technologies due to the narrow window of the solar 693 

energy (i.e., UV light) necessary to trigger the photocatalytic activation of TiO2. In fact, an 694 

advantage of electrospinning is that it makes integrating such strategies into semiconductor 695 

design simple via a single-pot sol-gel fabrication approach. The first method is by manipulating 696 

the composition of traditional UV-responsive semiconductors (e.g., TiO2, ZnO) through doping 697 

and/or decorating with other materials to form hybrid nanofibers. Some examples of such hybrid 698 

nanofibers include TiO2 with metals (e.g., Au, Ag, Cu)165–172 and TiO2 with other metal oxides 699 

(e.g., CuO, ZnO, SnO2).173–179 Results have shown that these decorated/composite materials 700 

outperform conventional pure TiO2 nanofibers and nanoparticles, due to band gap engineering 701 

and/or surface plasmon resonance.180–183 The second method is by altering semiconductor 702 

composition to enable photoactivation by visible light due to an intrinsically shorter band gap 703 

compared to that of traditional TiO2 (i.e., < 3.2 eV).184–188 Results show that towards 704 

pharmaceutical pollutants, these materials, which include bismuth vanadate (BiVO4), bismuth 705 

tungstate (Bi2WO6), bismuth ferrite (BiFeO3), tungsten trioxide (WO3), and niobium oxide 706 

(Nb2O5), outperformed conventional titania nanoparticles and electrospun nanofibers when 707 

irradiated with visible light (λ > 395 nm).189  708 

Perhaps the most mature approach for integrating electrospun photocatalytic materials 709 

into POU/POE devices is through the development and application of TiO2-embedded 710 

composites.190–193 For example, Lee et al. reported on TiO2-embedded polymeric nanofibers 711 

composed of polyvinylidene fluoride (PVDF) or a blend of both PVDF and polyvinylpyrrolidone 712 

(PVP) for coupled sorption and photocatalytic destruction of organic contaminants (Figure 713 

12).193 Composite fibers were produced that were either nonporous (PVDF only) or porous 714 
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(PVDF/PVP blend), where pores to increase reactive surface area were generated via polymer 715 

blending and subsequent washing of PVP. Tested against a group of model and emerging organic 716 

contaminants (i.e., methylene blue, bisphenol A, 17α-ethynylestradiol), the porous composite 717 

fibers exhibited excellent sorption and photocatalytic degradation compared to both the bare 718 

PVDF fibers and the nonporous TiO2-embedded composite fibers.  The work of Lee et al. is 719 

notable for its demonstration of how electrospinning can be used to build multi-functional 720 

composite in a single, reactive filtration platform, assuming challenges in reactor design (e.g., 721 

integrating UV-light into POU/POE devices) can be overcome. 722 

Similarly, composites of TiO2 nanoparticles within carbon nanofibers have also been 723 

synthesized and subsequently tested against a suite of recalcitrant organic micropollutants in a 724 

UV-irradiated cross-flow filtration apparatus (Figure 13). Although the photoactive composite 725 

was only a few hundred microns thick, considerable micropollutant transformation (as much as 726 

60-90% for inlet concentrations of 0.5 µM) was observed during a single pass through the filter 727 

at fluxes typically used in microfiltration applications. Tunable synthesis via electrospinning 728 

could be used to influence composite reactivity, with photocatalytic performance increasing with 729 

TiO2 mass loading in the carbon nanofibers. Moreover, the performance of these composite 730 

materials was reasonably well maintained in complex matrices including co-solutes (e.g., 731 

carbonate) known to scavenge hydroxyl radical, the presumed oxidant responsible for 732 

micropollutant transformation. The mechanical flexibility exhibited by these carbon nanofiber 733 

composites coupled with the chemical activity of the TiO2 photocatalysts could be another 734 

promising approach for integration into POU/POE devices. 735 

 736 
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  737 

 738 

Figure 12. (a) SEM image of TiO2-decorated polymeric nanofibers. (b) Adsorption of methylene blue (MB) 739 
under dark conditions using mats made with electrospun fiber (EF), electrospun nonporous fiber 740 

containing P25 TiO2 (EF-TiO2), or electrospun porous fiber containing TiO2 (EPF(2/1)-TiO2). (c) Removal 741 
of MB by concurrent adsorption and photocatalytic degradation under UVA irradiation using mats made 742 
with EF-TiO2 or electrospun porous fibers prepared with different polymer blending ratio (EPF(2/1)-TiO2: 743 

PVDF(12%)/PVP(6%) and EPF(1/1)-TiO2: PVDF(9%)/PVP(9%)). Reproduced from Lee et al.193 with 744 
permission from ACS. 745 

(b)
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 746 

Figure 13. (a) Histograms and associated SEM images for carbon-TiO2 nanofiber composites. 747 
Composites denoted as C-(wt%), where the TiO2 weight percent is relative to PAN content in the initial 748 
sol-gel. All electrospun sol-gels also contained 2.5 wt% PTA, which was used as a porogen to increase 749 

composite flexibility. (b) Normalized concentration of model organic contaminants (name and structure in 750 
graph insets) over time in the reservoir, retentate, and permeate of the cross-flow, UV-light irradiated 751 

filtration apparatus. Reactivity data are shown for a C-50 nanofiber filter. UV controls, conducted without 752 
C/TiO2 present, are shown by grey dashed lines. Reproduced from Greenstein et al.192 with permission 753 

from RSC. 754 

 755 

 Overall, there are a large number of studies attempting to demonstrate how electrospun 756 

photocatalytic nanofibers may help to overcome practical challenges that have hindered the 757 

widespread application of photocatalytic nanoparticles for organic contaminant removal.194 758 

However, most of the work to date has not investigated nanofiber performance under conditions 759 

representative of water treatment and has also focused on targets and matrices that are not 760 

broadly relevant to POU/POE applications. For example, a good number have centered on the 761 

photodegradation of common dyes (e.g., methylene blue, methyl orange, rhodamine B) at 762 

relatively high concentrations (10-50 mg/L) while also lacking details on necessary water quality 763 

conditions (e.g., pH, buffer systems). Future development of photocatalytic nanofiber 764 

(b)



39 
 

membranes, specifically polymer-based nanofiber composites, must work to conduct 765 

performance benchmarking and employ reactor systems that are most appropriate of simulated 766 

water treatment conditions and deployment at scales suitable for POU/POE treatment 767 

applications. 768 

 769 

4. Opportunities for nanofibers to expand POU/POE technologies 770 

 With the heavy amount of research being conducted around electrospun fiber-enabled 771 

water treatment, there remain opportunities for such technologies to address emerging challenges 772 

in the decentralized water treatment space. Here, we highlight three areas where additional 773 

research and development could help electrospun materials address current and emerging water 774 

treatment needs of various consumers. 775 

One area where there is both an existing need for treatment and a growing body of 776 

research with electrospun membranes is the treatment of uranium in drinking water. In many 777 

areas of the arid southwestern United States, naturally occurring uranium, as well as uranium 778 

contamination resulting from legacy nuclear development, has contaminated groundwater 779 

supplies. This problem is well documented among the Navajo Nation,195,196 where uranium levels 780 

in groundwater supplies can often exceed 50 μg/L (the MCL set by the U.S. EPA is 30 μg/L).197–781 

199   782 

Electrospun materials have been popular choices for uranium removal through the ability 783 

to chemically process polyacrylonitrile (PAN) fibers to produce functional groups that are highly 784 

reactive and specific toward dissolved species of uranium. Most popular among this approach is 785 

the reaction of nitrile groups in PAN with a reducing agent (e.g., hydroxylamine) to yield 786 

amidoxime functional groups.200–203 For instance, we have observed steady performance of 787 
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amidoximated PAN fibers across matrices, including complicated solutions simulating drinking 788 

water sources (i.e., solutions with high hardness and ionic content) and even synthetic urine (for 789 

possible biomonitoring applications).204 Other approaches have involved similar chemical 790 

functionalization of polymers to produce other types of uranium-binding sites including nitrogen 791 

(N) and phosphorus (P)-based binding agents.201,205 There is a large body of literature on the use 792 

of such materials for the recovery of uranium from matrices like seawater, with growing interest 793 

in their application for water treatment.206,207 There remain challenges: post-processing of fibers 794 

may increase production cost and time, which may make use of amidoxime or similar groups 795 

infeasible at the industrial scale needed for POU/POE device manufacturing. However, given the 796 

clear consumer need for reliable technologies for uranium treatment, development of high 797 

performance and cost effective electrospun fibers for uranium removal from drinking water 798 

should be viewed as a priority.  799 

Another opportunity is expanding the use of antimicrobial fibers for applications in 800 

drinking water disinfection.208 Even prior to the emergence of COVID-19 and the critical need it 801 

revealed for antimicrobial filtration materials,209,210 there was a relatively deep body of research 802 

on antibacterial electrospun fibers, usually for use in bandages and antimicrobial surfaces.211–215 803 

These types of electrospun fibers are most typically produced through the integration of an 804 

antibacterial agent during synthesis.216–218 Silver (Ag) has garnered much interest for use in 805 

antifouling and disinfection applications,56 usually integrated into ceramic and polymeric 806 

substrates as nanoparticles to produce composite fibers. Given established antimicrobial activity 807 

of Ag particles, such composites are often touted as promising materials for point-of-use water 808 

treatment, especially for developing and underdeveloped countries.219–227 809 
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A persistent concern about such applications of biocidal-integrated materials is the 810 

release of the biocidal agent over time, potentially diminishing performance while also 811 

contaminating the finished water supply. Here, more work is needed, and a focus should be on 812 

exploring the fundamental interactions between biocides (e.g., Ag) and support matrices to 813 

optimize retention and minimize the release of these agents under simulated treatment 814 

applications at scale. For example, while more work is needed, some studies have shown that due 815 

to strong interaction between Ag nanoparticles and certain support materials (e.g., N-containing 816 

polyurethane), Ag loss during such filter applications can be minimized, resulting in Ag levels in 817 

the finished water that are below the current U.S. EPA and WHO limit for drinking water (0.1 818 

ppm).64,228,229 Beyond concerns over Ag release, the disinfection capacity of such Ag-819 

impregnated filters will likely be exhausted over continuous operation because Ag ion resulting 820 

from nanoparticle dissolution is believed responsible for pathogen kill.230,231  Further, as is 821 

observed for most reactive metal substrates, surface fouling by natural organic matter (NOM) or 822 

sulfide (which may be important during treatment of some groundwater sources) may 823 

compromise the efficacy of disinfection.232 As such, practical studies evaluating performance 824 

and operational lifetime during simulated applications involving complicated matrices and 825 

conditions most representative of POU/POE devices are needed, perhaps even more so than 826 

additional, purely fundamental research studies with such biocidal materials.  827 

Finally, another emerging opportunity relates to the use of electrospun fiber networks in 828 

electrochemical water treatment, especially with the extensive amount of work already 829 

conducted with electrospun carbon nanofibers (CNFs).233–238 There is surging interest in the use 830 

of electrochemical approaches for water treatment because these approaches can be decentralized 831 

while being powered by renewal sources of electricity (e.g., solar).239 Critical to recognizing the 832 
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promise of electrochemical water treatment is the development of appropriate electrode materials 833 

for use in such applications. Here, electrospun CNFs may be useful due to their high surface area 834 

and tunable characteristics during synthesis. For example, higher carbonization temperatures can 835 

be used to increase their graphitic structure, and thus improve the conductivity of these 836 

materials.240 Yet, higher temperatures can also result in more brittle materials due to extensive 837 

mass loss during carbonization, which may make the most conductive materials impractical for 838 

application with intentional efforts to increase their material strength.241 Accordingly, as is the 839 

case with most other applications of electrospun CNFs, a priority for advancing their use in 840 

electrochemical water treatment applications will be finding the appropriate balance between 841 

high material strength and desirable attributes of electrode materials (e.g., low resistivity, high 842 

surface area). 843 

 844 

5. Outlook and Recommendations 845 

Our review of the literature yielded 59 studies, summarized in Table S1, with relevance 846 

to the application of electrospun nanofibers in POU/POE treatment. The results of our literature 847 

analysis are summarized in Table S2, where we aggregate these studies based on their identified 848 

strengths and the remaining research opportunities they present. From this analysis, we find that 849 

most of the work to date have focused on suitable targets for POU/POE applications (i.e., based 850 

on the contaminants that are frequently the focus of certification). Moreover, most studies have 851 

challenged their materials with various aquatic matrices to establish how performance varies 852 

with water quality. A number of investigations have also considered the strength and stability of 853 

the nanofibers to assess their integrity and potential for unwanted component leaching during 854 

application. 855 
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An important consideration is also benchmarking the performance of electrospun 856 

materials toward appropriate commercial analogs. We found that a considerable percentage of 857 

the studies considered herein did benchmark against a commercially relevant treatment, where 858 

the majority of these were instances of Aeroxide P25 being used as a basis of comparison for 859 

photocatalytic nanofiber performance. Studies that provided quantitative performance 860 

benchmarks (e.g., sorption capacities, rate constants) for nanofibers relative to commercial 861 

analogs tested under the same experimental conditions are summarized in Table 1. Generally, 862 

our analysis of the literature shows that electrospun nanofibers and nanofiber composites 863 

performed comparably to, and in some instances outperformed, their commercial analog 864 

counterparts. We note that we limited our comparison in Table 1 to those studies that tested 865 

commercial analogs toward the same contaminant target and using the same experimental 866 

conditions, otherwise differences in experimental conditions during performance testing may 867 

confound comparison to analogs.  868 

 869 

Table 1. List of select nanofiber and nanofiber composite (NF) studies with performance 870 
comparisons with commercial analogs (CA). 871 

Treatment Materialsa Reactivity Reference 

Organic 
Sorption 

NF: CNF 
CA: PAC 

CNF  ciprofloxacin qm = 0.68 mmol/g 
             bisphenol  qm = 4.82 mmol/g 
               2-chlorophenol qm = 6.18 mmol/g 
PAC        ciprofloxacin qm = 0.26 mmol/g 
               bisphenol  qm = 2.98 mmol/g 
               2-chlorophenol qm = 5.37 mmol/g 

Li et al., 70 

Metal 
Sorption 

NF: PAN/Fe2O3 & 
PAN/Fe2O3@Fe2O3 
CA: GFH powder 

PAN/Fe2O3 NF As5+  qm = 7.2 mg/g qSA = 0.10 mg/m2 
  Cr6+  qm = 4.6 mg/g  qSA = 0.06 mg/m2 
  Pb2+  qm = 42 mg/g  qSA = 0.59 mg/m2 
  Cu2+  qm = 26 mg/g  qSA = 0.37 mg/m2 
PAN/Fe2O3@Fe2O3 As5+  qm = 9.3 mg/g  qSA = 0.18 mg/m2 
  Cr6+  qm = 7.3 mg/g  qSA = 0.14 mg/m2 
  Pb2+  qm = 57 mg/g  qSA = 1.1 mg/m2 
  Cu2+  qm = 35 mg/g  qSA = 0.67 mg/m2 
GFH powder As5+  qm = 62 mg/g  qSA = 0.13 mg/m2 
  Cr6+  qm = 38 mg/g  qSA = 0.08 mg/m2 
  Pb2+  qm = 110 mg/g  qSA = 0.25 mg/m2 
  Cu2+  qm = 31 mg/g  qSA = 0.07 mg/m2 

Greenstein 
et al., 122 

Chemical 
Oxidation 

NF: TiO2 & Au-TiO2 
CA: Aeroxide P25 

TiO2 NF  phenol  kobs = 0.07 min-1 

  atrazine  kobs = 0.05 min-1 
  carbamazepine kobs = 0.1 min-1 
  DEET  kobs = 0.06 min-1 

Nalbandian 
et al., 155 



44 
 

  sulfamethoxazole kobs = 0.08 min-1 
Au-TiO2 NF  phenol  kobs = 0.65 min-1 

  atrazine  kobs = 0.35 min-1 
  carbamazepine kobs = 0.8 min-1 
  DEET  kobs = 0.67 min-1 
  sulfamethoxazole kobs = 0.4 min-1 
Aeroxide P25 phenol  kobs = 0.15 min-1 

  atrazine  kobs = 0.1 min-1 
  carbamazepine kobs = 0.25 min-1 
  DEET  kobs = 0.1 min-1 
  sulfamethoxazole kobs = 0.15 min-1 

NF: TiO2 
CA: Aeroxide P25 

TiO2 NF  ranitidine  kobs = 0.008 min-1 
Aeroxide P25 ranitidine  kobs = 0.011 min-1 

Choi et al., 
1578 

NF: TiO2 & Ag-TiO2 
CA: Aeroxide P25 

TiO2 NF  phenol  kobs = 0.097 min-1 
Ag-TiO2 NF  phenol  kobs = 0.27 min-1 
Aeroxide P25 phenol  kobs = 0.074 min-1 

Nalbandian 
et al., 172 

NF: BiViO4, Ag-
BiViO4 

& Au-BiViO4 
CA: Aeroxide P25 

BiViO4 NF  phenol  kobs = 0.0014 min-1 kobs,395 nm = 0.0011 min-1 
Ag-BiViO4 NF phenol  kobs = 0.0023 min-1  kobs,395 nm = 0.0016 min-1 

Au-BiViO4 NF phenol  kobs = 0.0018 min-1  kobs,395 nm = 0.0022 min-1 
Aeroxide P25 phenol  kobs = 0.074 min-1  kobs,395 nm = 0.0009 min-1 

Nalbandian 
et al., 189 

NF: PVDF/TiO2 
CA: Aeroxide P25 

PVDF/TiO2 NF bisphenol A kobs = 0.014 min-1 
Aeroxide P25 bisphenol A kobs = 0.003 min-1 

Lee et al., 
193 

 872 

Another important consideration is how material performance is measured relative to the 873 

unit mass or surface area of material (i.e., mass or surface-area normalized performance 874 

descriptors). For example, Greenstein et al.122 found that their iron-oxide polymer nanofiber 875 

composites were less reactive than commercial granular ferric hydroxide (GFH) on a per unit 876 

mass basis but exhibited greater activity per unit surface area. Relative to GFH, their nanofibers 877 

exhibited greater external surface area that also produced faster uptake rates on the nanofibers.122 878 

We also note that some studies that did conduct performance benchmarking relative to a 879 

commercial analog are not included in Table S2 because a simple activity descriptor was not 880 

available to simply represent the performance comparison. For example, Peter et al.75 conducted 881 

sorption isotherm and pH-edge experiments with their CNFs and with granular activated carbon 882 

(GAC), but the isotherms for both materials were non-linear and did not reveal a sorption 883 

capacity that could serve as a basis for performance comparison. As with Greenstein et al.,122 884 

these CNFs exhibited sorption of organic pollutants (atrazine and sulfamethoxazole) that was 885 

comparable to GAC on a surface-area basis, as well as faster uptake rates.  886 
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Our analysis of existing literature (Table S1) and summary analysis in Table S2 reveals 887 

some clear needs for future study around the use of nanofibers in POU/POE systems. There is a 888 

clear need to test the performance of nanofiber materials using reactors and conditions that better 889 

simulate POU/POE applications, including continuous flow-through or semi-batch systems. 890 

Many studies to date have utilized closed or no flow (batch) experimental systems, which tend to 891 

reflect performance under equilibrium-type conditions. In flow-through systems, which are most 892 

common for POU/POE treatment, kinetic limitations may constrain performance. Thus, more 893 

testing is needed to establish whether performance metrics established in batch systems are 894 

maintained under conditions more representative of treatment. Similarly, there are few studies 895 

that address the larger-scale fabrication of electrospun materials, prototyping of nanofiber-based 896 

POU/POE technologies, and longer-term performance trials of nanofiber-based treatment 897 

devices. This is a high priority need area for future development of POU/POE technologies 898 

leveraging these materials, and it will require research efforts that seek to identify how best to 899 

translate nanofiber fabrication from the laboratory bench to industrial scale (an issue discussed 900 

further below). Finally, more, if not all, studies should include appropriate analogs for 901 

benchmarking nanofiber performance. We acknowledge that in some instances, a clear analog 902 

for comparison may not be obvious (e.g., photocatalytic membrane systems192). Whenever 903 

possible, however, the value of electrospun nanofibers needs to be assessed relative to 904 

commercially available and widely trusted materials established in POU/POE treatment.  905 

Beyond those identified from gaps in existing literature, there are additional advances 906 

that would also promote material and technology development. First, any nanofiber-enabled 907 

water treatment technology must be assembled from the right building blocks. When assessing 908 

the current state of the science and considering the balance in performance priorities of material 909 
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reactivity, strength, and durability, the authors contend that the most promising route is the use of 910 

polymer-metal oxide composites. These materials hold the advantage of combining the beneficial 911 

performance properties that are already well-established for the selected building blocks for such 912 

composites. For example, electrospun polymer nanofibers are considered viable alternatives to 913 

more traditional polymer fabrication routes, while use of granular and powdered forms of carbon 914 

and certain metal oxides are widely used and accepted across water treatment. This should 915 

increase the likelihood that composite technologies using these building blocks gain certification 916 

and commercial acceptance for use in POU/POE devices because their non-electrospun analogs 917 

are already available through the commercial market. Nevertheless, there remain tremendous 918 

opportunities for fundamental discovery related to how the nature of the polymer (hydrophilic 919 

versus hydrophobic) influences composite performance. Moreover, more work is needed related 920 

to understanding and exploiting fundamental interactions between the immobilized or embedded 921 

material (e.g., metal oxide or carbon nanomaterial), base polymer, and other synthesis aids (e.g., 922 

surfactants), as these interactions have implications for material performance (e.g., controlling 923 

the available surface area of immobilized materials) and long-term stability (e.g., ensuring no 924 

release of the embedded materials).  925 

To facilitate more prototype testing, another important area for future development 926 

relates to the reliable and reproducible industrial production of nanofibers that is necessary for 927 

their integration into POU/POE units.25,35 While electrospinning is growing in commercial and 928 

industrial viability, there are still some fabrication obstacles facing electrospun membrane 929 

upscaling. This includes needle clogging, electric field interference, and, most importantly, 930 

property accuracy and repeatability, although some solutions to these problems are available 931 

(i.e., multi-needle spinnerets, needleless spinning, auxiliary electrodes).20 Related to these issues, 932 
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more work is needed to explore how synthesis conducted at laboratory scale, which often 933 

involves simpler (e.g., single-needle) configurations and lower production rates (e.g., sol-gel 934 

solutions electrified at a few tenths of a mL per min) translates to larger fabrication units (e.g., 935 

multi-needle rigs), emerging fabrication routes including needleless electrospinning, and higher 936 

production rates (where parameters like sol-gel viscosity will necessarily be different to 937 

accommodate larger-scale production). Moreover, for applications in water treatment, fabrication 938 

costs will need to be minimal to compete with market-accepted approaches like activated carbon. 939 

As such, identifying relatively simple fabrication routes to highly functional and high-performing 940 

materials will be paramount.  941 

Finally, it is imperative to develop and grow our understanding of nanofiber and 942 

nanofiber composite stability under operation requirements of continuous flow systems (e.g., 943 

high mechanical strength, high permeability, low pressure drops). Indeed, to the best of our 944 

knowledge, there are no certified POU or POE technologies that leverage nanotechnology or 945 

nanoengineered materials. Thus, in developing nanofibers and nanofiber composites such as 946 

those described herein for treatment, special focus will be needed on generating datasets that 947 

demonstrate their performance and promise at scale, ideally under conditions that represent those 948 

used in certification testing. As a final consideration, there has been much focus on considering 949 

the sustainability of new water treatment technologies, particularly as it relates to new or 950 

innovative approaches and materials for application to persistent or emerging pollutants. Thus, 951 

while lifecycle analyses have been conducted on non-electrospun carbon nanofiber membranes 952 

and polymeric membranes to assess their environmental impact,242,243 there persists a paucity of 953 

lifecycle data related to the fabrication and application of electrospun nanofibers for water 954 

treatment. We advocate for more analyses on the sustainability of electrospun nanofiber 955 
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membranes, including associated lifecycle costs from raw materials and emissions associated 956 

with fabrication and device manufacturing, in complement to efforts to further develop and 957 

commercialize such technologies. 958 

Overall, we find the outlook for electrospun technologies at the scale of point-of-use and 959 

point-of-entry treatment systems is positive. Although these are certain to be more costly 960 

materials than those that currently dominate the marketplace, their promise is in the versatility of 961 

their fabrication. This should allow new and different materials that are better suited to target 962 

certain pollutants and fill existing (e.g., iron-based POU analogs for As sorption) and emerging 963 

(e.g., microfiltration membranes for colloidal lead) needs in the certified technology market. 964 

 965 

6. Conclusion 966 

 The relevant research literature shows that electrospun nanofiber materials can be 967 

effective alternatives for the removal of harmful contaminants in decentralized water treatment 968 

applications. Specifically, due to their high external surface area and application as filtration 969 

membranes, they are well-suited to advance nanotechnology-integrated POU/POE devices. In 970 

this review, we examined and scrutinized the current landscape of literature relevant to the 971 

application of electrospun nanofibers for POU/POE treatment, finding that: 972 

• Use of electrospun fibers for traditional membrane separations is well-established, along 973 

with promising research illustrating nanofiber modifications to address issues such as 974 

fouling; 975 

• Fibers used for organic sorption are primarily carbon-based due to their tunable 976 

properties including porosity and hydrophobicity, but opportunities remain to use 977 
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functionalization strategies to improve performance and target a wider range of organic 978 

contaminants; 979 

• Fibers developed for metal sorption are primarily metal oxide-based, where 980 

functionalized polymer-metal oxide composites represent a particularly promising subset 981 

of materials for their ability to integrate high sorption capacity metal oxide nanoparticles; 982 

• Fibers developed for us in ion exchange remain in their infancy, with relatively few 983 

examples in the published literature. There remain opportunities to integrate established 984 

functional groups used in commercial resins into polymeric nanofibers for such 985 

applications; 986 

• There is a wealth of examples in the literature exploring photocatalytic fibers for use in 987 

chemical oxidation processes, but these materials require performance demonstrations 988 

under more appropriate water treatment conditions that use reactor configurations 989 

consistent with currently available UV-based POU/POE devices; 990 

• Fibers may help address recognized needs in decentralized treatment for treatment of 991 

uranium, disinfection of pathogens, and electrochemical treatment approaches, which are 992 

gaining in popularity, and; 993 

• Recommendations for future studies include a better understanding of interactions among 994 

material components, benchmarking to appropriate commercial analogs, reliable scaling 995 

in industrial production, and full-scale demonstrations with appropriate treatment 996 

conditions. 997 

 998 
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