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Introduction

Ungulates interact with their environment through
top-down and bottom-up mechanisms. They can play a
“keystone” role in ecosystems because of their top-
down influences on forest structure, composition, and
biodiversity (Rooney 2001). For example, herbivory may
significantly affect early successional plant species
because young plants have increased nutritional quality
and decreased secondary defense compounds, increas-
ing palatability and therefore herbivory (Rhodes et al.
2018). This can affect some species’ regeneration early in
the growing season or after disturbance (e.g. aspen
Populus spp.; Seager et al. 2013), thereby influencing the
structure and composition of forests (Rhodes et al. 2018).
Similarly, bottom-up changes in vegetation structure,
composition, availability, and nutritional content across
seasons and weather events (e.g., droughts, floods, etc.;
Beck and Peek 2005) can influence ungulate distribution
and population dynamics (Rooney 2001). For instance,
changes in forest management such as fire suppression
may reduce the quality and extent of habitats available
to support ungulate populations by limiting the amount
of available early successional forage (Proffitt et al. 2016).

Globally, ungulates are native to most forested regions
and their densities have increased across the Northern
Hemisphere in recent decades (Reimoser 2003; Pellerin et
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al. 2010). This effect has been especially pronounced in
temperate zones with increased agricultural production,
conservative management policies, and forestry practic-
es favoring early successional forest stands, in conjunc-
tion with increasingly mild winters (e.g., white-tailed deer
Odocoileus virginianus Kuijper 2011). However, some
populations across the northern hemisphere have the
opposite trend (Merems et al. 2020) as locations of early
successional stands have changed and may no longer
occur in areas accessible to ungulates (e.g., elk Cervus
canadensis; Cook et al. 2016). Because of these differing
trends, there has been increased interest in ungulate-
forest interactions and their cascading effects, which has
motivated the development of methods to address
research and monitoring needs. This has resulted in
multiple methods addressing similar questions, leading
to uncertainty when determining which method is most
appropriate for a study’s objectives and spatiotemporal
scale.

Here, we review current methods used to answer
ecologically important questions of how ungulate
populations affect their environment and how environ-
mental conditions affect ungulate populations. We used
Web of Science and Google Scholar to search for
scientific publications relating to ungulate-habitat inter-
actions in temperate regions using a snowball sampling
method (Vogt 2005), collecting relevant papers on the
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Ungulate-Forest Interactions

basis of citations within examined manuscripts. In total,
we reviewed 274 publications ranging between 1939
and 2020 (Text S2, Supplemental Material). For each
commonly used method identified in the literature
review (Figure S1, Supplemental Material), we compiled
the type of data required, assumptions, advantages and
disadvantages, and research questions addressed. Our
goal is to provide a practical guide for researchers to
select optimal monitoring techniques to gather data on
the basis of their specific research question(s).

Obijectives of this primer are to 1) summarize common
techniques used to address interactions between ungu-
lates and forested ecosystems from top-down and
bottom-up perspectives, 2) present advantages and
disadvantages of each technique, and 3) provide
examples of research questions appropriate for each
method. More information for each method, including
additional references, is provided in the supplemental
material (Text S1, Supplemental Material). We organized
this into two broad categories on the basis of the
mechanism being investigated: 1) top-down interactions
include questions about ungulate impacts on forests,
and 2) bottom-up interactions address questions about
forest impacts on ungulates. For instance, reduction in
average twig age of woody tree species due to high deer
browsing (Waller et al. 2017) reflects a top-down effect,
whereas the use of denser forest stands during high heat
by moose is a bottom-up effect (Borowik et al. 2020).
Without commenting on ecological debates about the
utility of the top-down/bottom-up framework (Kay 1998;
Gandiwa 2013) or the strength or direction of trophic
effects (Martin et al. 2010; Nuttle et al. 2011), we adopted
the top-down/bottom-up structure as a useful dichoto-
my for understanding research and monitoring motiva-
tions related to ungulate-forest interactions.

Methods Review

Top-down: measuring effects of ungulates on forests

Ungulates may influence the structure, composition,
and biodiversity of forests by affecting regeneration,
growth, and survival of plant species directly (e.g.,
browsing) or indirectly (e.g. trampling, competition).
This ultimately affects forest structural heterogeneity, the
structure of understory plant communities, and other
ecological phenomena (Putman 1986; Rooney 2001;
Rooney and Waller 2003; Coté et al. 2004), meaning
ungulates have important impacts on forest ecosystems,
even at low densities (Mclnnes et al. 1992; Hobbs 1996;
Waller and Maas 2013). Furthermore, areas with high
ungulate densities or with selective browsers may see a
change in plant community composition due to ungu-
late impacts on sensitive plant species (Rooney 2001;
Schumacher and Carson 2013). For example, white-tailed
deer tend to favor oaks Quercus spp. relative to other
available species such as maples Acer spp. and ash
Fraxinus spp., suppressing oak regeneration (Strole and
Anderson 1992). Persistent browsing of this nature may
lead to an alternative stable state dominated by ferns,
graminoids, and shrubs rather than mature hardwoods
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(Royo and Carson 2006). A growing understanding of the
cascading effects of herbivory indicates that ungulates
can function as a keystone species in ecosystems
because of their disproportionate direct effects on
vegetation and indirect effects on other organisms
(Waller and Alverson 1997; Rooney and Waller 2003).
Therefore, management of ungulate herbivory in forests
is critical for biodiversity conservation (Mitchell and Kirby
1990; Gotmark 2013).

Methods for assessing effects on trees

Recruitment: ten-tallest. The ten-tallest method uses
the height of focal tree species to understand the
influence of ungulate herbivory on population- and site-
level forest regeneration and recruitment (Rawinski
2018). This method is based on the heights at which
stems are most susceptible to browsing and the point at
which they escape browse, representing sapling recruit-
ment (e.g., 0.3-0.6 and 2 m, respectively, for white-tailed
deer; Walters et al. 2020). It measures species-specific
browse across time in permanent plots to understand if
individuals of preferentially browsed species reach
recruitment height. This method provides insight into
site- and population-level impacts of ungulate browse
on forest recruitment. Specifically, the method addresses
questions related to recruitment trajectories, long-term
trends in forest regeneration, and inter- and intraspecific
recruitment comparisons. Example questions include
“Are tree saplings on track to grow beyond browse
height?” “Is browse damage increasing or decreasing
across time within a site?” and “Are there recruitment
differences among and within species?” This method can
also be adapted to address questions related to shrubs
and herbaceous vegetation, as well as dormant-season
browsing (Rawinski 2018).

The ten-tallest method is useful for quick, simple, and
repeatable evaluation of ungulate browse and its impact
on seedling regeneration across time. It can be completed
with relatively high accuracy and consistency across field
crews without extensive training or experience. As a
result, this method is relatively inexpensive and can be
done annually. Given that this method focuses on several
focal species rather than all species within the plot, it does
not provide insight into community-level shifts. Thus, it
may not accurately portray future forest conditions or
potential interspecific competition from nonfocal species,
and it cannot address broader community-level questions
without additional work to calibrate it to measure
community change.

Regeneration: twig age. The twig age method uses
browsing rate (i.e, the length of time a twig grows
before it is browsed) to estimate impacts of browsing on
seedling development (Waller et al. 2017). In other
words, it indicates the duration of time a plant grew
before being browsed, which influences seedling survival
(Waller 2018). This method addresses questions related
to rate of herbivory and tree growth, and changes in
herbivory rate and intensity across time. Through a single
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sampling event, questions such as “Is the frequency of
browse significantly inhibiting forest regeneration?”
“What is the browse return interval or time between
browse events?” or “Is browse consistent across time or
does it vary?” can be answered.

Twig age is a relatively quick and easy method to
implement but is limited in its inference as it cannot
differentiate between browse and other sources of twig
damage. It requires limited training and has been shown
to produce reliable and consistent estimates of ungulate
impacts (Waller et al. 2017). Additionally, it does not
require repeated samples or visits to obtain several years
of data. It does, however, tend to underestimate mean
time between browse events as it cannot differentiate
between causes of twig damage (Waller et al. 2017). For
example, deer and rabbit browse cannot be distin-
guished definitively. Thus, it is not an ideal method for a
study if a site or tree species are prone to internal or
external twig killing phenomena and there is a goal of
understanding ungulate browse impacts only.

Regeneration: Forest Inventory Assessment Regeneration
Indicator. The Forest Inventory Assessment Regeneration
Indicator is a set of standard measurements managed by
the U.S. Forest Service. It incorporates a browse index and
seedling stem counts to evaluate herbivore impacts on
forest regeneration at a landscape scale (e.g., home range
or study area). The broad-scale, public nature of
Regeneration Indicator data lends itself to landscape-level
questions about forest regeneration. Specifically, it can be
used independently to address questions related to forest
regeneration or can be combined with other regeneration
indices to provide a herbivore impact metric across time
and space (McWilliams and Westfall 2015). Patton et al.
(2018), for instance, used Regeneration Indicator data
from across the Great Lakes region to determine the
predictive power of socioecological data to forecast deer
browsing at the county level. These sorts of analyses may
not be possible in all areas as Regeneration Indicator data
is only available for the northeastern United States
(McWilliams and Westfall 2015).

This method covers a broad spatial scale and is easily
combined with other metrics to address complex
questions. It can also augment the Forest Inventory
Assessment’s vegetation profile and invasive plant data
to provide a more holistic look at forest communities
(McWilliams and Westfall 2015). However, it is relatively
simplistic with limited inference and evaluates past,
rather than present, browse impacts and it tends to have
a high error at the extremes (estimates mid-level
browsing impacts the best; McWilliams et al. 2015). Thus,
in areas with high browsing, abundant seedlings must be
present to accurately estimate the impact of browse
(McWilliams et al. 2015).

Methods for assessing impacts on woody and
herbaceous vegetation

Herbaceous only: herbaceous indicators. Herbaceous
indicator species act as proxies for understory conditions

w.% Journal of Fish and Wildlife Management | www.fwspubs.org

J.L. Merems et al.

and indicate whether herbivory is driving native species
declines or community-level shifts in species composi-
tion and structure. Field methods vary depending on
research needs, species availability, and plant abun-
dance. The adaptability of this method to various
indicator species and experimental designs makes it
amenable to a variety of questions across diverse spatial
and temporal scales. Questions such as “How does
browse affect plant growth across time?” can be
addressed without repeated sampling when sampling a
long-lived species (Augustine and Decalesta 2003).
Likewise, questions addressing multiple spatial scales
like “How does browse affect plant communities at local
and regional scales?” can be evaluated using indicator
species with broad distributions.

However, herbaceous indices have characteristic
disadvantages. First, there is a short sampling window
because sampling is limited to the focal species’ growing
season (e.g., a 2- to 3-wk window when flowers are
present; Irwin 2000). Second, it may not represent
current-year deer browsing because flower production
may be limited by the previous year's browsing. This
causes a lack of flowers in the present year, representing
the effects of both the current and previous year's
browsing (Knight 2003). Similarly, flower production can
be reduced by intra- and interspecific competition such
as plant density (Waller et al. 2017). Last, herbaceous
indices may not provide a consistent metric across
communities because of variation in growth and
reproductive status of the indicator species among
communities (Waller et al. 2017).

Woody and herbaceous: ungulate exclosures. Exclosures
assess plant or plant community responses to the
absence of herbivory by excluding ungulates using
fencing or other barriers. Studies using exclosures
address questions related to the magnitude of browse
impacts, alternative plant community trajectories in the
absence of ungulate herbivory, and long-term herbivory
impacts. Exclosure studies are ideal for direct compari-
sons between the presence and absence of ungulates,
especially when several small permanent plots are used
(Augustine and Frelich 1998; Urbanek et al. 2011). For
example, Abrams and Johnson (2012) used 30 pairs of
fenced and unfenced 2 X 2 m permanent plots to
characterize the impact of deer browsing on forest
overstory and understory between browsed and un-
browsed plots.

Although several studies have used replicate, small
exclosures (Koh et al. 1996; Urbanek et al. 2011; Abrams
and Johnson 2012), most studies compare one or two
large fenced and unfenced areas (Tanentzap et al. 2011;
Long et al. 2012; Shen et al. 2016). This can be useful for
gaining long-term data and for demonstration. However,
it can lead to pseudoreplication when treating within-
exclosure replicates as independent samples rather than
subsamples (i.e, sampling occurs among exclosures,
whereas subsampling occurs within an exclosure; Hurl-
bert 1984). Additionally, large exclosures may alter
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ungulate movement patterns outside the exclosure and
in turn, conclusions drawn from sampling outside an
exclosure may not be indicative of forest structure under
normal browsing conditions (Horsley et al. 2003). Thus,
Frankland and Nelson (2003) recommended using
several small, replicate exclosures to reduce the proba-
bility of pseudoreplication and reduce bias from altered
ungulate behavior and movement.

Bottom up: measuring effects of forests on ungulates

Ungulate fitness depends on quantity, quality, and
structure of aboveground vegetation in forests. Nutrient
availability can influence populations by affecting their
survival and reproductive success (Merems et al. 2020).
As a result, nutritional measurements are often used as a
metric for population health (Cook et al. 2004b;
Mosbacher et al. 2016; Cain et al. 2017). Similarly,
vegetative structures may affect the demography of
ungulates directly by influencing microclimates and
mitigating predation risk, and indirectly by altering
forage availability (Mysterud and @stbye 1999). For
example, a closed forest canopy may reduce the fitness
costs of heavy snowfall during winter (Kirchhoff and
Schoen 1987; Van Deelen et al. 1998) but may also
reduce herbaceous forage production in the summer by
limiting light and precipitation penetration (Anderson et
al. 1969). This can result in herbivores making trade-offs
between forage acquisition and proximity to thermal and
escape cover (Reynolds 1966; Lyon and Jensen 1980;
Mysterud and @stbye 1999), which can affect reproduc-
tion, lactation, and survival, driving population dynamics
(Proffitt et al. 2016; Merems et al. 2020).

Methods for assessing nutrition

Composition: observational estimates. Observational
estimation of nutritional intake involves watching
captive or habituated animals forage while an observer
counts individual bites an animal takes during a
sampling period (Berry et al. 2019). Direct observation
provides insight into mean bite size (g/bite), mean bite
rate (bites/min), harvest rate (g/min), and biomass
consumed (Berry et al. 2019). Bite count data can be
used to rank forage preference by using a relative
preference index, which compares the relative percent-
age of a species in the diet to its availability on the
landscape (DeYoung et al. 2019). Specifically, this
method quantifies what and how much ungulates are
consuming. Example questions include: “How much
biomass does an individual consume during a certain
time period?” “Which forage species do ungulates
prefer?” and “What nutrients are individuals obtaining
during a foraging period?”

Captive ungulates are good surrogates for their wild
counterparts as their foraging behaviors (e.g., diet
selection, encounter rates [rate of encountering forage
species], bite rates, and search times [time taken to find
forage species]) are similar (Cook et al. 2016). Thus, this
method is ideal for understanding fine-scale behaviors
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and, if combined with other measures of nutrition, can
provide information on nutritional quality of each bite
acquired by an ungulate (Shipley 2007). Although direct
observations occur at fine scales, observed patterns can
be extrapolated to larger spatial and temporal scales
using statistical inference (e.g., Cook et al. 2016);
however, prediction errors may occur and caution is
needed (Yates et al. 2018). The main logistical challenges
are access to captive or habituated animals, their
transition time from supplemental feed to natural forage,
and habituation to the new enclosure (Cook et al. 2016).
One important consideration is that individual ungulates
may have biases in their foraging behavior (e.g., have
reduced foraging intensity) because of prior supplemen-
tal feeding (Olsen-Rutz and Urness 1987). These limita-
tions may cause direct observation to be time and cost
prohibitive.

Composition: microhistological analysis. This method
assesses plant fragments found in fresh fecal samples
using microhistological identification (Jenkins and Star-
key 1993) while providing insight into which plants
ungulates are consuming by identifying forage frag-
ments to life form (graminoid, forb, or tree/shrub), genus,
and sometimes species. Microhistological analysis can be
applied to larger questions about forage selection (i.e.,
plant species individuals are choosing to forage; Johnson
1980) by comparing what species are consumed to
species present on the landscape. Additionally, informa-
tion on the quality of forage ingested can be inferred by
linking the consumed species to its nutritional value. This
method addresses questions such as: “Which plant
species are ungulates consuming pre- and postwildfire?”
and “What is the composition of woody browse in their
diet?”

The benefit of this method is that it is noninvasive and
cost-effective (Monteith et al. 2014; Mosbacher et al.
2016; Proffitt et al. 2019). However, plant species have
differing levels of digestibility on the basis of their fiber
content and secondary compounds, meaning highly
digestible species may be consumed but not be found in
fecal pellets (Monteith et al. 2014; Proffitt et al. 2016;
Berini and Badgley 2017; Cain et al. 2017). For instance,
less-digestible species such as conifers and evergreen
shrubs are often overrepresented in microhistologically-
derived diet analyses because of their higher levels of
secondary compounds compared with deciduous
shrubs. Because of this, it is important to not relate
relative abundance of forage in microhistological analysis
to forage preference (i.e., the likelihood of an ungulate
selecting one species over another when both are
equally available: Johnson 1980; Jenkins and Starkey
1991). Another limiting factor is that samples are prone
to decomposition and must be refrigerated (17°C) until
analysis to ensure that at least two microanatomical
epidermal features are maintained for species identifica-
tion (Hanley and McKendrick 1985; Cain et al. 2017).

Composition: forage biomass. Biomass measuring
methods are useful for determining the amount of
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forage available to ungulates on the landscape; biomass
is typically measured at fine scales (e.g., 0.75-m? quadrats
to 3-m? subplots; Lindgren and Sullivan 2018; Robatcek
2019). This method can be combined with quality
measurements to address questions such as “How much
nutrition are ungulates obtaining from the landscape?”
“How is their forage intake affecting their nutritional
condition?” and “Is there enough biomass on the
landscape to provide adequate nutrition for successful
reproduction and survival?” The best method combina-
tions vary on the basis of the focal species and their
location on the browser-grazer continuum (e.g., ungu-
lates who feed on woody plants and forbs to ones who
feed primarily on graminoids; Hofmann 1973; Bodmer
1990). For example, grazers (e.g., bison) rely more heavily
on broad-scale factors such as available forage biomass
to maximize intake rate, whereas browsers (e.g., deer)
select for fine-scale factors like nutrient quality of plant
species, individuals, or plant parts (Bergman et al. 2001).

This method is ideal for understanding fine-scale
biomass availability while allowing for extrapolation to
larger spatial scales (e.g., landscape level; Merems et al.
2020). Specifically, plant species’ mass from a clipped
plot can be related to its estimated percent cover within
the plot to produce a species-specific cover-weight
regression equation. This relationship can be used to
estimate plant species’ biomass within areas of the study
site that were not clipped for biomass (Hanley and
McKendrick 1985; Merems et al. 2020). Plant height can
also be integrated into the regression equation to
produce a more robust estimate of available biomass
(Jenkins and Starkey 1993). However, this method can be
limiting as it requires prior knowledge of forage species
and is labor intensive. Fortunately, new technology is
being assessed such as the use of airborne light
detection and ranging, which may provide a more
accessible method to measure understory biomass in the
future (Hull and Shipley 2019).

Quality: plant samples. Digestibility (dry matter digest-
ibility and digestible energy) and protein content (crude
protein and digestible protein) are common metrics for
understanding the nutritional value of forage for
ungulates (Cook et al. 2016; Proffitt et al. 2019; Merems
et al. 2020; Wisdom et al. 2020). Plant sampling provides
insight into the quality of nutrition available to ungulates
at the scale at which plants were sampled. Like forage
biomass estimations, quality can be extrapolated from
fine-scale measurements to larger scales when combined
with observational methods and biomass methods. This
method can address questions like “Does the habitat
have sufficient nutritional value for the ungulates’
survival and reproductive success?” “Is there enough
crude protein available for a lactating female?” and
“Should management work to increase nutritional
quality?” This method is important for understanding
nutrient acquisition because it directly quantifies nutri-
tion obtained by ungulates; however, it can be time-
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consuming, costly, and samples must quickly be placed
on ice and frozen until analysis.

Quality: fecal samples, stable isotopes, and urinary
analysis. Fecal nitrogen is a widely used index of diet
quality because diets rich in digestible protein have
larger concentrations of fecal nitrogen (Monteith et al.
2014; Berini and Badgley 2017; Cain et al. 2017). Urinary
analysis, used as a nutritional index, examines the ratio of
urinary metabolites derived from urine-saturated snow
(Garrott et al. 1997). Two commonly used measurements
are 1) urea nitrogen : creatinine ratio (DelGiudice et al.
1996) and 2) allantoin : creatinine ratio, which have been
shown to be strongly correlated to daily digestible dry
matter intake (Vagnoni et al. 1996; White et al. 2011).
Last, stable isotope analysis is a tool for tracking dietary
changes and diet history and for monitoring ungulate
populations (Mosbacher et al. 2016). Isotopes can be
collected from bone collagen, hair samples, or fecal
samples. Bone collagen can provide average foraging
trends over the ungulate’s lifetime (Berini and Badgley
2017). Hair samples provide shorter-term information on
dietary changes induced by seasonal and annual
fluctuations in ambient temperatures when the hair
was growing (Mosbacher et al. 2016). Fecal samples
provide information on forage ingested during the
previous 24-48 h (Berini and Badgley 2017).

Stable isotope analysis can address dietary questions
such as “Are ungulates obtaining enough dietary protein
to meet their nutritional requirements?” “Has an
individual’s diet changed over time?” “How does diet
change across seasons?” and “What nutrients have been
obtained during a fine-scale period?” However, these
measurements are insensitive to animal body conditions
(i.e., body fat levels), which can be misleading (Cook et al.
2007). Comparative analysis between species of different
body sizes or different life-history stages within a species
(e.g., males, nonlactating females, and lactating females)
may be challenging because of differences in digestive
morphology and function (Monteith et al. 2014). These
variations within the study population must be account-
ed for to make reliable inferences.

Quality: remote sensing. Remotely sensed greenness
metrics such as normalized difference vegetation index,
soil-adjusted vegetation index, and linear spectral
unmixing are used as surrogates for nutrition when
fine-scale nutritional metrics cannot be obtained (Merkle
et al. 2016; Wisdom et al. 2020; Sadeh et al. 2021). In the
ungulate literature, normalized difference vegetation
index is the most-used proxy for vegetation net primary
productivity and phenology across time and space
(Espunyes et al. 2019; Olsoy et al. 2020) and can address
questions such as “Does ungulate migration match
spring green-up?” and “How does quality of forage
change across the growing season?” Normalized differ-
ence vegetation index is an easily accessible and
commonly used metric that is more cost-effective than
fine-scale nutritional sampling (Olsoy et al. 2020).
Applying this as a metric of nutrition assumes that
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foraging behavior and associated landscape use by the
ungulate match the spatial and temporal grain of the
imagery (Wisdom et al. 2020). Many widely used raster
data sets use a 30 X 30 m pixel size; however, some
ungulate species may forage in very small patches where
a smaller grain (e.g., 10 X 10 m pixels) may be more
appropriate (Wisdom et al. 2020). Using the larger grain
that normalized difference vegetation index provides
may lead to misinterpretation of functional traits since
ungulates may be selecting or avoiding certain plant
species at finer scales (Olsoy et al. 2020), so results
should be interpreted with caution (Hebblewhite 2008;
Pettorelli et al. 2011).

Methods for assessing thermal cover and shelter

Direct: snow depth and density. Snow interception by
forest overstory and snow density may be critically
important for overwintering ungulates as deep snow
limits access to forage, increases energy required to
move, and increases predation risk (Parker et al. 1984;
Kirchhoff and Schoen 1987; Van Deelen et al. 1996;
Visscher et al. 2006). The depth at which snow inhibits
movement and foraging behavior varies with ungulate
species and snow density (Parker et al. 1984). Snow tubes
estimate snow density (g/cm?) using marked metal rods
to measure the depth (cm) and weight (cm?) of snow,
whereas compaction gauges measure the depth at
which a rod penetrates the snow to estimate snow
compaction.

These methods are efficient and cost-effective and can
address questions such as “Does snow depth or density
cause ungulates to use areas with greater canopy
cover?” “Does snow interception by forest canopy
reduce predation risk?”” or “Will timber harvest remove
important snow-intercepting canopies on ungulates’
winter range?” However, these measurements tend to
result in overestimations and can vary on the basis of
snow conditions and the type of equipment being used
(Work et al. 1965). To mitigate overestimations, research-
ers should take multiple measurements at a site to create
a reasonable average estimation, although this may not
be practical at the landscape level. If measurements at
the landscape level are necessary, remotely sensed data
has emerged as a method for measuring snow cover
relative to ungulate habitat use (Maher et al. 2012). For
example, Maher et al. (2012) used Landsat data to relate
forage availability to snow cover for caribou across the
Bathurst Island complex in Canada.

Direct: operative temperature. Operative temperature is
the measurement of thermal environments experienced
by an animal, which accounts for ambient air tempera-
ture and convective heat transfer caused by wind or solar
radiation (Demarchi and Bunnell 1993). Demarchi and
Bunnell (1993) took this a step further, developing a
model for operative temperature that incorporates air
temperature, wind speed, and solar radiation. These
measurements can answer questions about the physio-
logical stress experienced by ungulates in environments
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with extreme hot or cold temperatures and to assess the
availability of thermal cover (Parker and Gillingham
1990). This method can be applied to questions such
as “Does the thermal environment experienced by
ungulates differ between habitat types?” “Does thermal
stress affect ungulate survival or reproduction?” or “Do
habitat management practices alter the thermal land-
scape experienced by ungulates?” Behavioral or physi-
ological responses to temperature at the population
level can be assessed using landscape-level weather data
sets (e.g., Borowik et al. 2020), whereas the impact of
habitat or timber management on site-specific microcli-
mates is better addressed by fine-scale measurements
(e.g., Grace and Easterbee 1979).

It may be necessary to measure several environmental
factors to accurately model the operative temperature of
the ungulate species being studied if a detailed
understanding of physiological stressors is necessary
for the research goals (Parker and Gillingham 1990).
There is some debate as to whether thermal cover affects
operative temperature enough to influence the perfor-
mance of ungulate species; however, it remains of
interest to conservation managers (Cook et al. 2004a).
Although ungulates have been observed to use thermal
cover to mitigate the effects of extreme heat or cold
(e.g., Grace and Easterbee 1979; Borowik et al. 2020), the
efficacy of thermal cover to alleviate thermal stress
enough to influence survival at the population level is
still unknown (Parker and Gillingham 1990). Whether or
not thermal stress affects survival at the population level,
ungulates are known to respond behaviorally to extreme
temperatures by increasing their use of thermal cover
(Borowik et al. 2020). As extreme weather conditions
increase with climate change, managing wildlife habitat
for thermal cover may become more important.

Indirect: visual estimation of canopy cover. Canopy
cover can influence ungulate habitat use by providing
shade (Borowik et al. 2020), intercepting snowfall (Grace
and Easterbee 1979), and reducing the amount of
available understory forage (Young et al. 1967). Ocular
estimation involves estimating the openness of the tree
canopy by naked eye. This method is fast and cost-
effective, but it can be influenced by weather conditions
and relies on self-calibration by the observers (Jennings
1999). Training could improve consistency in estimates;
however, accuracy remains low even when estimates are
taken by experienced professionals, and it is likely not
accurate enough to produce broad-scale habitat recom-
mendations (Jennings 1999; Korhonen et al. 2006).
Robards et al. (2000) found that ocular estimates
underestimate canopy cover compared with aided
estimates such as spherical densiometers or photogra-
phy. This method may be appropriate when forming
local recommendations and when the observer and
weather conditions remain constant during data collec-
tion, but it is not recommended when the data will be
used more rigorously.
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Viewing devices, such as a spherical densiometer, are
used to systematically estimate the proportion of sky
obscured by vegetative canopy (Lemmon 1956). The
densiometer is widely used, durable, easy to carry,
relatively inexpensive, and appears to be a reliable
method considering the trade-offs of accuracy and time
required in the field (Brown et al. 2000; Korhonen et al.
2006; Streich et al. 2015). However, this device has been
shown to overestimate canopy cover relative to other
devices (Robards et al. 2000; Ko et al. 2009) such as the
moosehorn (Robinson 1947; Garrison 1949), vertical
densiometer (Stumpf 1993), and canopy-scope (Brown
et al. 2000). These devices operate on a similar premise
and may be less biased. No matter the device selected,
there will still be observer bias, which may produce
inaccurate results or obscure patterns (Vales and Bunnell
1988; Cook et al. 1995).

Visual estimation of canopy cover, with or without a
viewing device, is an appropriate method for research
questions about site-specific habitat characteristics. Exam-
ple questions include “Do ungulates select bedding sites
with greater canopy cover as ambient temperature
increases?” “Does the quantity or quality of available
forage change with canopy cover?” and “Do ungulates
use sites with greater canopy cover during periods of
heavy snowfall?” The potential for discrete, point-level
estimation of canopy cover makes this method conve-
nient for answering fine-scale research questions, al-
though impractical for addressing questions at the
landscape level. This method is prone to observer bias
and should therefore be used with caution; some viewing
devices have a higher proclivity for observer bias than
others (Bunnell and Vales 1990; Korhonen et al. 2006).

Indirect: photography for canopy cover. Wide-angle and
hemispherical photography is a method used to quantify
canopy closure and light (Leblanc and Fournier 2017).
Measurements of canopy openness using photography
can vary widely from complex indices (e.g. effective
plant area index; Chen et al. 1991) to relatively simple
metrics (e.g., percent canopy cover; Kirchhoff and
Schoen 1987). Additionally, photographs provide perma-
nent documentation of canopy geometry, and serial
photographic sampling can provide data on changes in
canopy structure over time (Rich 1990). This method can
address research questions similar to visual estimations
of canopy cover, although it has potential to answer
more in-depth, site-level questions such as “Are long-
term changes in canopy cover influencing shifts in
ungulate habitat use?” and “Is ungulate habitat selec-
tion affected by fine-scale differences in canopy cover?”

It is unclear if photography is less biased than other
canopy estimation methods; therefore it should be used
with caution (Lindsay 2005; Korhonen et al. 2006).
Photography is best suited for studies where a detailed
or long-term understanding of canopy effects is required.
In other cases, another method will likely be more time-
and cost-effective. Camera equipment is relatively costly
and fragile, and the time required to set up the camera
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and process the images is restrictive (Brown et al. 2000).
Emerging technology, such as image processing through
deep learning (a subfield of machine learning; Diaz et al.
2021) and photo collection and analysis using smartphone
cameras apps (Patrignani and Ochsner 2015; Bianchi et al.
2017), may make this method more feasible in the future.

Indirect: standard forestry measurements. Commonly
used forest inventory measurements such as diameter at
breast height (1.37 m), stem density (stems/ha), tree
height (m), and basal area (m%ha) can be used to
estimate canopy cover. These measurements can be used
to investigate questions at a range of geographic scales
such as “How does forest structure influence snow
interception on ungulates’ winter range?” and “How do
silvicultural practices influence ungulate habitat selec-
tion?” These measures reduce or eliminate the need to
take extensive field measurements of canopy cover since
they are often collected in forest monitoring programs
(Gill et al. 2000). However, in cases where fine-scale
canopy estimates are needed, or when stand-level
management decisions are being considered, stand- or
species-specific regression equations should be devel-
oped as the relationship between standard measurements
and crown closure may differ on the basis of stand
composition and structure (Korhonen et al. 2007; Mcln-
tosh et al. 2012). As computing power and modeling
processes improve for calibrating models relating canopy
cover to standard forestry measurements, this method
may become more cost-effective and scalable for
estimating canopy cover. Additionally, other habitat
characteristics can be derived from the same data, and
canopy characterization can be conducted simultaneously
to monitor the effects of ungulate browse.

Indirect: remote sensing for canopy cover. Remote
sensing using active or passive imagery can be used to
explore the relationship between ungulates and canopy
cover at site and landscape scales (Long et al. 2005; Melin
et al. 2014). Active remote sensing is most appropriate
when a detailed measure of the forest canopy is required
in areas too large for visual measurements but smaller
than the landscape scale. Passive remote sensing can be
applied at the site or landscape level depending on
image resolution. These methods address similar re-
search questions to visual and photographic estimation
but may also provide insight to questions like “How does
canopy cover affect ungulate home range selection?”
and “How are changes in canopy cover at the landscape
level influencing ungulate habitat use or survival?”

These methods offer the ability to scale canopy cover
estimations across large spatial extents by providing
detailed canopy maps across broad-scale canopy esti-
mates with publicly available data (e.g., tree canopy cover
product; Ko et al. 2009; Sexton et al. 2013). The
deployment of multispectral imaging technology like
Landsat and the development of models to better
interpret vegetation reflectance in remotely sensed images
have broadened its applicability as a powerful tool for
quantifying and monitoring vegetation (Houborg et al.

December 2022 | Volume 13 | Issue 2 | 7

220z Jequiadaq Lg uo 3sanb Aq ypd-|60-1.2-WMI 966€°01/280611€/L60- | Z-INMLM/966€ 0L/10p/pd-ajoile/wmyljwod ssaidua)|e uelpLawy/:diy wouy papeojumoq



Ungulate-Forest Interactions

2015). However, relying on passive remote sensing may
underestimate canopy cover compared with estimates
from traditional ground-based methods (Ko et al. 2009;
Hadi et al. 2016), and it may be limited by the timing, orbit,
and resolution of the source satellite (Houborg et al. 2015).
Active remote sensing provides more detailed imagery at
higher resolutions compared with passive remote sensing
(Houborg et al. 2015). Although further calibration may be
necessary, remotely sensed data is generally time- and
cost-effective, and is suitable for estimating canopy cover
over large areas (Hadi et al. 2016).

Method to assess concealment cover

Visual obstruction. Vegetation can provide conceal-
ment or hiding cover for ungulates, which may allow
them to avoid predation, as well as providing thermal
cover from wind (Griffith and Youtie 1988). The most
straightforward approach to measuring the visual
obstruction characteristics of vegetation (i.e., horizontal
cover) is the cover board (Nudds 1977). Because of
variability among habitat types and research questions,
similar devices have been developed, such as the density
board (Wight 1939), Robel pole (Robel et al. 1970), and
cover pole (Griffith and Youtie 1988), as well as various
shapes including ungulate-shaped cutouts (Griffith and
Youtie 1988) and three-dimensional ungulate effigies
(Jacques et al. 2011). Cover boards, regardless of type/
shape, can provide insight into questions relating to
predator avoidance strategies and habitat selection by
ungulates. For example, Jacques et al. (2011) measured
the visibility of deer decoys with and without radio
telemetry collars to assess whether tracking collars
increased deer susceptibility to hunting mortality. Other
questions of interest could include “Does vegetation
density influence the frequency of deer—car collisions?”
“Do ungulate dams select habitat with greater conceal-
ment cover during parturition?” or “Does vegetative
cover reduce predation risk to ungulates?”

These methods are simple to use and cost-effective.
They are adaptable to different study species (Nudds
1977) and ecosystems (Coulloudon et al. 1996) and can
be modified to fit the needs of the study (Griffith and
Youtie 1988). These devices used to assess cover can
replace more time-consuming methods for estimating
vegetation cover, such as clipping and weighing
vegetation (Robel et al. 1970). Similarly, these measure-
ments may be used to estimate the thermal cover
benefits of understory vegetation, since shrub height is
related to convective heat loss from wind (Grace and
Easterbee 1979). These devices can also be photo-
graphed in the same location over time to assess long-
term changes in cover (Coulloudon et al. 1996). However,
some of these devices (e.g., cover boards and three-
dimensional deer decoys) may be more cumbersome to
transport than others. These devices require little
training to achieve consistent measurements, but
observer bias should always be considered when
collecting data (Griffith and Youtie 1988).
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Summary

In this review, we offer a practical guide for
understanding methods applicable to studying ungu-
late—forest interactions. Included are two decision trees
(Figures 1 and 2) to help guide method selection on the
basis of research questions. Supplemental materials
provide more information on each method and their
associated references (however, detailed instructions for
each method are not provided; Text S1, Supplemental
Material) and a complete list of manuscripts reviewed for
this primer (Text S2, Supplemental Material). Last, we
created a summary table to help practitioners easily find
methods that suit their research needs (Table ST,
Supplemental Material).

Supplemental Material

Please note: The Journal of Fish and Wildlife Management
is not responsible for the content or functionality of any
supplemental material. Queries should be directed to the
corresponding author for the article.

Text S1. In-depth descriptions of commonly used
methods for estimating top-down effects of ungulates
on forests and bottom-up effects of forests on ungulates.
For each method, references of reviewed manuscripts
are provided to easily access additional information.

Available: https://doi.org/10.3996/JFWM-21-091.51 (99
KB DOCX)

Text S2. A complete list of all 274 manuscripts
reviewed for this primer.

Available: https://doi.org/10.3996/JFWM-21-091.52 (86
KB DOCX)

Table S1. Reference table of methods for estimating
top-down effects of ungulates on forests and bottom-up
effects of forests on ungulates, including their pros and
cons, what they are estimating (e.g., timescale, spatial
scale, category), example questions, and relevant citations.

Available: https://doi.org/10.3996/JFWM-21-091.53 (36
KB DOCX)

Figure S1. This primer reviewed a total of 274
manuscripts to obtain commonly used methods ad-
dressing top-down effects of ungulates on vegetation
and bottom-up effects of vegetation on ungulates. Top-
down methods represented 21.5% of the manuscripts,
bottom-up methods represented 67.8% of the manu-
scripts, and the remaining 10.6% were manuscripts with
less common methods and were excluded from the
methods review.

Available: https://doi.org/10.3996/JFWM-21-091.54
(278 KB JPG)

Reference S1. Cook JG, Irwin LL, Bryant LD, Riggs RA,

Thomas JW. 2004a. Thermal cover needs of large
ungulates: a review of hypothesis tests. Pages 708-726
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Figure 1. A decision tree for recommended methods based on individual-level research questions regarding top-down effects of
ungulates on vegetation. Navigation requires an initial decision about whether the research motivations are better characterized as
impacts on forests or impacts on woody or herbaceous vegetation.

in Transactions of the 69th North American Wildlife and
Natural Resources Conference, Spokane, Washington.
Available: https://doi.org/10.3996/JFWM-21-091.55
(1.181 MB PDF) and https://www.fs.fed.us/pnw/pubs/
journals/pnw_2004_cook001.pdf

Reference S2. Coulloudon B, Eshelman K, Gianola J,
Habich N, Hughes L, Johnson C, Pellant M, Podborny P,
Rasmussen A, Robles B, Shaver P, Spehar J, Willoughby J.
1996. Sampling vegetation attributes. Interagency Tech-
nical Reference. Denver, Colorado: Bureau of Land
Management.

Available: https://doi.org/10.3996/JFWM-21-091.56
(2.210 MB) and https://www.nrcs.usda.gov/Internet/
FSE_DOCUMENTS/stelprdb1044175.pdf

Reference S3. McWilliams WH, Westfall JA. 2015. An
early look at forest regeneration indicator results for the
Midwest and Eastern United States. Pages 95-100 in
Stanton CSM, Christensen GA, editors. Pushing bound-
aries: new directions in inventory techniques and
applications. Forest Inventory & Analysis (FIA) Sympo-
sium 2015. General Technical Report PNW-GTR-931.
Portland, Oregon: U.S. Department of Agriculture, Forest
Service, Pacific Northwest Research Station.

Available: https://doi.org/10.3996/JFWM-21-091.57
(20.236 MB PDF) and http://www.fs.fed.us/pnw/pubs/
pnw_gtro31.pdf
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Reference S4. McWilliams WH, Westfall JA, Brose PH,
Dey DC, Hatfield M, Johnson K, Laustsen KM, Lehman SL,
Morin RS, Nelson MD, Ristau TE, Royo AA, Stout SL,
Willard T, Woodall CW. 2015. A regeneration indicator for
forest inventory and analysis: history, sampling, estima-
tion, analytics, and potential use in the Midwest and
Northeast United States. Newtown Square, Pennsylvania:
U.S. Department of Agriculture, Forest Service, Northern
Research Station.

Available: https://doi.org/10.3996/JFWM-21-091.S8
(3.610 MB PDF) and https://www.fs.fed.us/nrs/pubs/gtr/
gtr_nrs148.pdf

Reference S5. Reynolds HG. 1966. Use of openings in
spruce—fir forests of Arizona by elk, deer, and cattle. Fort
Collins, Colorado: U.S. Forest Service Research Note,
Rocky Mountain Forest and Range Experiment Station,
Forest Service, U.S. Department of Agriculture.

Available: https://doi.org/10.3996/JFWM-21-091.S9
(1.754 MB PDF) and https://hdl.handle.net/2027/umn.
31951d02996135d
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