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ABSTRACT
Traditional methods for coding underwater acoustic communica-
tions are bound to be surpassed by methods optimizing for source-
channel coding jointly. However, the complexity of joint-optimization
has thwarted successful breakthroughs in this area. We, therefore,
present a novel approach, where we model the coding problem
as the translation problem of the input sequence to another ‘lan-
guage’, depending on the estimated channel conditions. We use
Long Short-Term Memory (LSTM)-based sequence-to-sequence
models to enable this and explain our approach in detail.
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1 INTRODUCTION
The transmission of multimedia data such as images and videos
is of foremost importance for researchers working in the field of
underwater exploration and monitoring as such data could pro-
vide vital information about the number, health and distribution
of various species in the underwater environment. However, such
transmission is challenging as underwater acoustic channel is chal-
lenging and has low bandwidth. It’s usually modelled as a Rician fad-
ing channel for short-range shallow water communication (with a
depth of less than 100m,where the power of the Line-of-Sight (LOS)
signal is stronger than the multipath delay signals) [15, 22]. Fur-
thermore, it is non-stationary on time scales relevant to usual com-
munication applications. These fluctuations can be due to seasonal
changes in temperature profiles, fish populations, storms, tidal
changes, and internal or surface gravity waves [28]. This means
that even static images require innovative communication solutions
to be transmitted successfully. Furthermore, the physical properties
determining sound propagation underwater are myriad and their
complex interactions make the modelling of multipath propagation
and Doppler effects theoretically intractable. Due to this reason, a
system that uses one kind of coding and modulation scheme pa-
rameters will underperform over an extended period of time and
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hence an adaptive system is desired [19]. Therefore, we present
our adaptive scheme in Figure 1, which adapts the coding based
on both the estimated Channel State Information (CSI), received as
feedback, and the current input data.

Motivation:Most of the work towards realizing such an adap-
tive communication protocol has been directed towards optimizing
source coding and channel coding separately, or rather optimizing
parameters of hand-made codes [19], such as Joint Photographic
Experts Group (JPEG) coding, Turbo coding, etc. This has been
mainly motivated by Shannon’s separation theorem [24], which
states that under unlimited delay and complexity, separate optimiza-
tion is as good as global optimization. However, this assumption
breaks down in multi-user scenarios, and non-ergodic source or
channel distributions [29], making it a subpar policy for design-
ing communication pipelines, especially underwater. This is the
reason a Joint Source-Channel Coding (JSCC) scheme is necessary
for achieving the best performance in challenging conditions such
as underwater acoustic channel. Conventionally, the transmitter
changes its coding and modulation scheme to achieve the lowest
Bit Error Rate (BER) and the best effective data rate possible. This
conventional approach, however, has two major deficiencies: i) It
does not take into account the input data distribution, leading to
subpar compression, and ii) It attempts to optimize an inherently
separate source-channel coding design. We, therefore, propose a
data- as well as the channel-aware approach (see Figure 1) to en-
code an image. Our approach, in addition to benefiting from the
joint optimization, also benefits from being data-aware, in so as we
use both nature of underwater images as well as adaptively change
the error-protection (channel coding) based on the CSI feedback to
achieve optimum trade-offs.

Our Contributions: Overall, we make the following contribu-
tions to the state-of-the-art research in the area of adaptive joint
source-channel coding:

• We propose a Convolutional Neural Network (CNN) based
encoder and decoder structure that is used to extract useful
and important features out of the images.

• We propose a novel approach for joint source-channel coding
by posing it as a translation problem and using sequence-to-
sequence learning to solve it, which is the first time it has
been tried for this application.

• We evaluate our proposed approach against all types of con-
ventional approaches (both model-based and Neural Net-
work (NN)-based) and present a detailed analysis under dif-
ferent channel conditions and data.

Outline: The rest of this article is organized as follows: In Sect. 2,
we examine the relevant literature and position our work in regards
to it. In Sect. 3, we introduce our proposed approach, while Sect. 4
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Figure 1: An outline of our proposed acoustic deep JSCC scheme as well as the variable length encoder, which is both data- and channel-
dependent.

details the evaluation of our approach with comparisons of both the
state-of-the-art as well as comparable techniques. Finally, Sect. 5
concludes the paper with a final summary and discussion on the
future directions of this work.

2 RELATEDWORK
Our approach is related to several topics, including compression,
channel coding, JSCC, and channel-aware adaptivity. Accordingly,
we present the comparison under three headings: i) JSCC, ii) Image
Compression and ii) Adaptive Modulation and Coding (AMC).

JSCC: Existing works in the area of JSCC have been mostly
limited to theoretical analysis under idealistic source and channel
distributions [11, 12], or to the joint optimization of inherently
separate source and channel encoders. Bourtsoulatze et al. [7] pro-
pose a deep autoencoder-based architecture to map an image to
complex symbols to be transmitted through the channel, and show
that their scheme outperforms separate source-channel encoding
schemes like JPEG, or Low-Density Parity-Check (LDPC) codes [9],
etc. This work is then also shown to do well when the available
channel inputs are limited (QAM, BPSK, etc.), e.g., due to the trans-
mitter’s physical limitations [27]. Yan et al. [33] propose a similar
deep autoencoder network for a multi-input network with one re-
ceiver (MISO) with multiple encoders at the transmitter side. These
works, however, lack the concept of feedback to enable adaptation
at the transmitter side. Towards this end, Kurka et al. [16] use chan-
nel feedback to enable better-quality image transmission. However,
their adaptation consists of re-transmissions of the partial image
samples, based on channel feedback, hence enhancing the received
image quality at the receiver. Xu et al. [32] propose an end-to-end
deep JSCC scheme that adapts the Signal-to-Noise Ratio (SNR) us-
ing the CSI obtained through feedback, and reports a performance
boost as compared to other feedback-based separate source-coding
schemes. However, their testing environment is limited to a ter-
restrial radio channel, and their approach has not been tested for
a challenging underwater acoustic channel. On the other hand,
our approach generates variable length transmission codes, which
depend on the input image and CSI. This leads to better usage of
the bandwidth and superior adaptation to the variable underwater
acoustic channel.

Image Compression: A lot of work has been done towards
making the compression (source coding) of images selective to the
content and the structure of the image. Model-based techniques
like JPEG [30], or JPEG 2000 [26] do not take into account the na-
ture of the input image or the data distribution, leading to subpar
performance. JPEG 2000 has a mode that accepts the specification

of a Region of Interest (RoI) and optimizes its compression at the
expense of the background. This, however, still needs a specification
of the RoI by the user or some other algorithm. On the other hand,
better performances have been achieved by using neural networks
to learn the relatively important content in images. For example,
Akutsu et al. [3] propose an additional selective detail decoder that
pays more attention to the generation of smaller, finer details in
order to reconstruct images with higher sharpness for elements
such as text or faces, and hence a higher performance in the Struc-
tural Similarity Index (SSIM) [31]. Post-processing enhancement
using generative techniques has also been used in several other
techniques [6, 8, 18] and serves well to fill in the gaps in the recov-
ered distorted image. However, even though such compression is
data-aware, it is not designed with any communication challenge in
mind. For example, JPEG exhibits a “cliff effect” [7] whereby under
a certain Signal-to-Noise Ratio (SNR), it is almost never able to
recover the image leading to a sudden deterioration in performance.
Similar concerns may exist for generative methods as it is known
that noise added to latent representations can change the generated
output. Anjum et al. [4] devise a neural network based approach to
deal with such “cliff effects” and showed that a smooth deterioration
can be achieved using this approach but assume perfect knowledge
of the acoustic channel. In this paper, on the other hand, we go one
step further and account for both source-coding (compression) and
channel-coding at the same time, and evaluate it for different SNR
regimes for both Additive White Gaussian Noise (AWGN) channels
and multipath fading channels.

Adaptive Modulation and Coding (AMC): Adaptation of
transmitter as well as receiver parameters (modulation, transmit
power, message size, equalizer taps, etc.) in a communication sys-
tem depending on the condition of the communication channel to
achieve the best performance is a well-known topic in underwa-
ter communications [10, 21]. In this design, the algorithm for this
adaptation takes the central stage, and therefore, many kinds of
solutions have been proposed, including model-based as well as
NN-based solutions. Pelekanakis et al. [19] propose a decision-tree-
based approach to determine modulation and coding schemes for
a required BER using estimates of channel delay, Doppler spread
and the received SNR. Furthermore, Shankar and Chitre [23] frame
the adaptation as a multi-armed bandit problem, where the goal
is to select between different schemes to maximize the expected
reward. They present a Dynamic Programming (DP) solution to this
problem by carefully balancing the exploration and exploitation
in the search-space to optimize both expected BER and code rate.
Petroccia et al. [20] propose a Cross-Entropy (CE) based algorithm
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Figure 2: Detailed structure of our JSCC network with feedback and description of the parameters used. Conv2D layers are parameterized as
(output channels, kernel size, stride, padding).

to select between schemes. Using a machine learning perspective,
Huang et al. [13, 14] frame the adaptation as a classification prob-
lem. All of these works, however, operate in a selection space that
is discrete, and try to choose a combination of optimal parameters
given some channel indicator (SNR, Doppler spread, etc.). Further-
more, they do not take into account the nature of the input data. On
the other hand, our proposed approach takes care of both of these
short-comings by: i) Learning a network that generates complex
coded symbols depending on CSI and SNR, and ii) Taking into ac-
count the content of a given image and extracting relevant features
out of it.

3 PROPOSED APPROACH
Our proposed approach is illustrated in detail in Figure 1, and
consists of three main components, which are explained exhaus-
tively in this section. First we explain the structure of our proposed
Convolutional NN-based feature extractor, and then we move on
to Long Short-Term Memory (LSTM)-based joint source-channel
encoder. Finally, we describe the proposed loss functions and train-
ing scheme for our approach and then present a comprehensive
evaluation in Sect. 4.

3.1 CNN-based Feature Extraction
Given the nature of underwater data, the images taken underwater
vary considerably in their nature. A vast number of images in
the underwater scene are unclear as the water is either muddy
or has a number of particles dissolved in it. Furthermore, such
passive photography is only possible in shallow water as natural
light rapidly scatters when entering the water through the surface.
Furthermore, a vast majority of underwater images have large parts
of the images containing only water, or plain background. This
presents an opportunity to extract and compress the underwater
images accordingly, i.e., by first extracting the features and then
using them to unequally code different parts of the image.

We propose a CNN encoder E to extract the important parts
of the image in an unsupervised manner. The architecture of our
CNN-encoder is illustrated in detail in Figure 2. It consists of first
a batch-normalization layer, which is then followed by a convo-
lution layer with Generalized Divisive Normalization (GDN) [5],
and Rectified Linear Unit (ReLU) non-linearities. This block is then
repeated three more times with slightly different parameters, as
shown in Figure 2. Finally, the flatten layer converts the features
from a matrix of size (𝐶,𝐻,𝑊 ) to size (𝐶,𝐻 ×𝑊 ), where 𝐶 is the
number of channels in the last layer, and 𝐻 and 𝑊 denote the

height and width of the resulting features. The final encoded repre-
sentations are then passed through an LSTM-based JSCC encoder
which generates variable-length latent-vector encodings given the
feedback CSI of the channel. After going through the LSTM-based
JSCC encoder, the signal is also quantized to INT8 representation to
be then encoded into a given scheme (based on CSI) and transmit-
ted over the acoustic channel. The parameters for the Orthogonal
Frequency-Division Multiplexing (OFDM)-based transmission are
also estimated using another feed-forward network which deter-
mines the mode of transmission of the image. Hence, finally, the
decoder receives quantized and distorted representations to be re-
stored. The decoder is designed as an inverse multi-scale transform
network that is also composed of multiple convolutional layers. The
decoder consists of a deflatten layer, and then four deconvolutional
blocks, finally resulting in the reproduction of the original image.
First, we de-flatten from (𝐶,𝐻 ×𝑊 ) to (𝐶,𝐻,𝑊 ), and then each
deconvolutional block executes transposed-convolutional layer, fol-
lowed by inverse-GDN and ReLU non-linearities. The last layer
of the decoder uses Sigmoid as the activation function, which is
interpreted as an image.

3.2 LSTM-based JSCC
One of the main drawbacks of regular deep neural-network-based
JSCC schemes is that they predict a constant-sized vector to be
transmitted through the channel. We imagine our input (from en-
coder E) as a pseudo-sequence of embedded features from the
image concatenated with information from receiver-side (CSI). Fea-
tures from CNN of the size (𝐶,𝐻 ×𝑊 ) are first considered as a
sentence of 𝐶 words of embedding dimension 𝐻 ×𝑊 . Then we
extend this representation in two ways: i) We extend the embed-
ding dimension by adding SOS (start of sentence) and EOS (end
of sentence) tokens on the first and last indices, making the new
feature dimensions (𝐶,𝐻 ×𝑊 + 2), and ii) We transform the CSI of
size (𝑁𝑃 , 𝑁𝐹𝐹𝑇 ), where𝑁𝑃 is the number of pilot packets and𝑁𝐹𝐹𝑇
is OFDM FFT size, to (𝑁𝑃 , 𝐻 ×𝑊 +2) using a dense neural network.
Finally, we concatenate both sources of information and have a
final pseudo-sequence of size (𝐶 + 𝑁𝑃 , 𝐻 ×𝑊 + 2). In order to feed
this pseudo-sequence to the LSTM model, we use another dense
layer to map onto the size (𝐶 +𝑁𝑃 , ℎ), where ℎ is the hidden-size of
the LSTM-layer. We then apply sequence-to-sequence model [25]
to learn to transform this pseudo-sequence to another one which
is robust to the channel. Just as languages have redundancy and
have the ability to correct themselves in the presence of noise, we
expect our translator to translate multi-scale features of our image
into a language that is redundant enough to correct itself given
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Figure 3: Proposed sequence-to-sequence encoder and decoder for
the channel.

the current channel conditions. Since, a larger redundancy usu-
ally corresponds to a lengthier sentence, we expect a trade-off in
terms of channel conditions and length of the latent vector, i.e., the
worse the channel conditions, the longer the code-word to recover
from the expected distortion. Our architecture is shown in Figure 3.
Based on the Recurrent Neural Network (RNN)’s internal state, it
is decided if more code words of hidden-size ℎ should be output or
if the sequence is finished. In this way, the final code-word has a
length of 𝐿 = 𝑁ℎ, where 𝑁 differs for each channel condition and
is learned during back-propagation. At the decoder, the received
message (which is distorted due to the channel multi-path effects)
is passed through the network, which performs the reverse transla-
tion task, i.e., converts the received message back to the multi-scale
features then used to reconstruct the image. This network is also
expected to perform as a channel decoder, i.e., correct errors in
the received message by using redundancy as encoded by the RNN
encoder on the transmitter side. For our experiments, ℎ is equal to
1024 and 𝐻 =𝑊 = 50 for an image-size of (200, 200, 3).

3.3 Loss Function and Training
In order to train our multi-component neural network-based ap-
proach, we employ a complex loss function and training process
ensuring correct training of the network. Our loss function is com-
posed of four components in total, which are then added together to
compose an aggregate loss function to be optimized. In these com-
ponents, the first component is the Mean Squared Error (MSE) of
the encoder-decoder network: L𝑀𝑆𝐸 (𝑦,𝑦) = 1

𝐻×𝑊
∑𝑁
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2,

where 𝑦𝑖 and 𝑦𝑖 are the 𝑖-th pixels of the input image 𝑦 and re-
constructed image 𝑦 respectively. 𝐻 and𝑊 denote the height and
width of the image respectively. The second component of the loss
function consists of the structural similarity index (SSIM) [31]. This
metric is based on the assumption that human vision perceives
structural information in a scene more robustly than the individual
pixels. For this reason, it is modelled using luminance, contrast
and structure common between two images (ground truth and
reconstructed image). The structure is modeled using covariance
matrix of both images. We add this metric into the loss function as
well, as MSE alone is a poor indicator of how useful and clear an
image is. Furthermore, we use the multi-scale version of this met-
ric (MS-SSIM), which is defined in the range [0, 1], and is directly

Table 1: Tunable parameters in the underwater simulation for Sep-
arate Source-Channel Coding scheme.

Coding Type Parameter Tunable Values
Source Coding Type 0 (JPEG), 1 (JP2)

Quality {𝑞 : 𝑞 ∈ Z; 1 ≤ 𝑞 ≤ 100}
Channel Coding Type 0 (Turbo), 1 (LDPC)

Coding Rate {1/2, 1/3, 1/4}
Transmission Mod. Symbols 2𝑚,𝑚 ∈ {1, 2, 3, 4, 6}

Ratio of 𝐷 to 𝑃 {1,2,3,4,5}
No. of Sub-carriers {64, 128, 256, 512, 1024}

proportional to image quality. In order to use it as a loss function,
we define: L𝑆𝐼𝑀 (𝑦,𝑦) = 1 −MSSSIM(𝑦,𝑦) .

The third component of our proposed loss function concerns
itself with the length of the code-word generated for transmission
across the channel. This component depends on two major factors:
i) The length of the code-word transmitted through the channel
must be as short as possible to facilitate the highest rate at which
data can be transmitted, but at the same time, ii) The features must
also be reconstructed fairly accurately, which requires a longer
code-length, hence acting as a counterbalance. Let 𝑓 be the multi-
scale features input into the RNN, 𝑓 ′ be the reconstructed features,
and 𝐿 be the length of the sequence being transmitted. The loss
function is given as:L𝑇𝑅 = 𝐿 | |𝑓 − 𝑓 ′ | |22 . Finally, the overall network
is trained in the following manner: The CNN-based autoencoder is
trained first and so is the RNN for the code generation using the
losses L𝑀𝑆𝐸 and L𝑆𝐼𝑀 respectively. After these sub-networks are
pre-trained, the final network is trained overall with a combination
of the losses, which is, L̂ = 𝜆𝑀𝑆𝐸L𝑀𝑆𝐸 + 𝜆𝑆𝐼𝑀L𝑆𝐼𝑀 + 𝜆𝑇𝑅L𝑇𝑅,
where 𝜆𝑀𝑆𝐸 , 𝜆𝑆𝐼𝑀 , and 𝜆𝑇𝑅 depend on the dataset being used.

4 PERFORMANCE EVALUATION
We present in detail the comparison of our proposed method with
three other baselines in this section, i) model-based disjoint param-
eter selection and joint data-driven parameter selection via ii) NN
and iii) Reinforcement Learning (RL). First, we present our experi-
mental setup, and then move on to the baseline comparison, and
then show further experiments on the technical intricacies of our
approach.

4.1 Experimental Setup
We employ both simulations and real-life testbed experiments as
conducted on Rutgers University, New Brunswick, NJ premises, to
test our approach and compare against several baselines. Below we
detail our setup for both the simulations and experimental setup.

Simulations: In our simulations, the Rician channel is chosen to
simulate the underwater channel. We set up this environment with
the help of both MATLAB and Python. Underwater channel, source
coding, channel coding, OFDM-based transmission, and channel es-
timation are all implemented in MATLAB while tuning algorithms
are implemented in Python. Table 1 shows the parameters that could
be tuned in order to get the best data rate under a given channel
condition. Looking at the total number of customizable parameters,
we can see that there could be a total of 150,000 possible Separate



Deep Joint Source-Channel Coding for Underwater Image Transmission WUWNet’22, November 14–16, 2022, Boston, MA, USA

Figure 4: Testbed in the pool experiments at Sonny Werblin Recre-
ation Center in July 2022. The depth of the pool is 4.0 ft, while the
depths of the transducer (TX) and the hydrophone (RX) are equal
to 0.8 ft. The distance is about 3.3 ft between the transducer and the
hydrophone.

Source Channel Coding (SSCC) schemes. In the parameters, modu-
lation symbols denote how many bits are encoded in each symbol,
with𝑚 = 1 denoting the BPSK,𝑚 = 2 denoting the QPSK scheme
and so on. Furthermore, each OFDM frame is composed of both
data symbols 𝐷 and pilot symbols 𝑃 . The ratio of 𝐷 to 𝑃 denotes
how many data symbols are transmitted for each data symbol in
a frame. A higher ratio means a low number of pilots and hence,
a weaker channel estimation at the receiver. Figs. 5 depicts the re-
ceived BER and PSNR of JPEG and JPEG 2000 with different channel
coding methods in simulated Rician channels versus normalized
SNR (Eb/No). We can observe that when BER is higher than 10−4,
the received PSNR is very low and ‘cliff effects’ happen. We can also
find that a low channel coding rate leads to low BER, and a high
compression ratio leads to high PSNR. With the same compression
ratio, the received image quality of JPEG 2000 is higher than that
of JPEG, but the size of JPEG 2000 is larger than JPEG.

Pool experiments: Based on the simulation results, we fur-
ther evaluate our proposal by conducting several rounds of pool
experiments, based on a high-performance and scalable platform
using a programmable Kintex-7 FPGA designed by Ettus Research
Group with the NI Corporation, called Universal Software Radio
Peripheral (USRP) X-300 [? ]. Teledyne Marine RESON TC4013
omnidirectional transducers [? ] with a frequency range from 50 to
150 kHz are used in our testbed. The specifications of the system
are summarized in Table 2. In our experiments, the transducer and
the hydrophone are placed in a large pool as shown in Figure 4.
The image data is passed to the acoustic modem and transducer
to be sent to the hydrophone on the other side of the link. The
transmit power is adjusted mutually by power amplifier to get dif-
ferent levels of SNR. The transmission is then done with the symbol
rate of 100 kBaud. The BER and Peak Signal-to-Noise Ratio (PSNR)
performance of JSCC in the pool is shown in Figure 6. We can
observe that the results in pool experiments are very close to those
in simulated Rician channels. To mitigate the multipath effect as
well as to enhance the spectrum efficiency, the OFDM modulation
is applied in the underwater transmissions. The OFDM FFT size is
chosen to be 6144. Given a bandwidth of 100 kHz, the symbol rate is
100 kBaud and the FFT duration is 6144/100 = 61.44ms. We choose
the cyclic prefix length to be 10.24 ms. Overall the OFDM symbol
length is 61.44 + 10.24 = 71.68 ms, and the subcarrier spacing is
1/71.68ms = 16.28 Hz.

Datasets Used: For training our neural networks, we use both
Underwater Image benchmark dataset [17] and a large dataset of our
own collected underwater images using BlueROVs in Raritan river,
NJ, US. For all our experiments, the input image-size is always set

Table 2: Hardware Specifications.

Part Parameter Value
Transducer Frequency range 50–150 kHz (Omnidirectional)

Receiving sensitivity −211 dB ± 3 dB re 1 V/𝜇Pa
Transmit sensitivity 130 dB ± 3 dB re 1 V/𝜇Pa

PreAmp. Frequency (Gain) 0.5–500 kHz (0–50 dB)
HP/LP filters 1 Hz–250 kHz/1 kHz–1 MHz

PowerAmp. HP filters (Gain) 1 Hz–20 kHz (0–36 dB)
Modem Mainboard Kintex-7 FPGA

Frequency (Clock) 0–30 MHz (10 MHz/1 PPS)
ADC sample rate 1 channel, 200MS/s (14 bits)
DAC sample rate 1 channel, 800MS/s (16 bits)

to (200, 200, 3) and any images that do not conform to this size are
resized using Python Imaging Library (PIL). Furthermore, we use
the channel taps (with multiple paths contributing to multiple taps)
estimated and collected during tests conducted at Sonny Werblin
Recreation Center (see Figure 2) for emulating the communication
channel during training time.

4.2 Comparison with AMC literature
We present here the comparisons with three baselines, namely,
i) model-based disjoint parameter selection and joint data-driven
parameter selection via ii) NN and iii) RL.

Model-based Disjoint Parameter Selection: In order to com-
pare our technique to manual parameter selection which can be
controlled by a tuner based on the feedback obtained from the
receiver, we mapped this parameter selection problem as a classifi-
cation problem. Hence, we trained a decision-tree classifier based
on the approach presented in [19] for the parameters we stated in
Table. 1. We first created a dataset with inputs of the dataset being
CSI recovered from our simulations, and the ground truth being the
index of a possible permutation of the parameters, which gave the
best data-rate given that 37 packets are transmitted. That scheme
is then labelled as the ground truth, and the decision-tree classi-
fier is trained on this dataset. Figure 7(b) shows the comparison of
this method with other methods. Given that the number of output
schemes is high, the decision-tree model performs poorly because
of a lack of data, and is not scalable as the number of available
schemes increases.

NN-based Disjoint Parameter Selection: For this baseline, we
trained a neural network classifier to predict the best-performing
schemes for a given CSI, as proposed in [13], and labelled the dataset
a little differently than for the model-based parameter selection.
In this scenario, we labelled 5 top performing schemes for a given
SNR value as the ground truth in order to compensate for less avail-
able data and increase the probability of guessing a ‘good-enough’
scheme. The NN architecture used is the following: a convolutional
Layer with 32 output filters, a kernel size of 5, and a sigmoid activa-
tion, another convolutional layer with 90 output filters and a kernel
size of 5, a flatten layer and finally a dense layer with a Sigmoid
activation predicting probabilities of each class. Figure 7(b) shows
the comparison of this method with other methods. Similar to the
decision-tree model, this method is also not scalable as the number
of available schemes increases.

RL-based Disjoint Parameter Selection: Another way to de-
sign a link-tuning algorithm is to let it experiment directly on a
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Figure 5: In simulated Rician channels with QPSK: (a) BER of LDPC coding with different code rates; (b) PSNR of received images compressed
by JPEG with LDPC coding; (c) PSNR of received images compressed by JPEG 2000 (JP2) with LDPC coding; (d) BER of Turbo coding with
different code rates; (e) PSNR of received images compressed by JPEG with Turbo coding; (f) PSNR of received images compressed by JPEG 2000
with Turbo coding.

live acoustic channel and then betters itself using the feedback it
obtains using the average data-rate achieved and the BER, implic-
itly modelling the current channel conditions. This is the approach
proposed by Shankar and Chitre [23], and we use it as a baseline
in our own method. Since, our setup is slightly different than the
one described in the paper, we adapt it slightly and focus on only
the Dynamic Programming (DP) based solution, as it outperforms
all the rest approaches according to their evaluation. The solution
is based on the method proposed in [23]. This reward function is
directly proportional to the data-rate achieved by a given scheme.
The reward 𝑅 for transmitting a frame 𝑠𝑃

𝑖
, while being in state 𝜉𝑡

at time 𝑡 is given by: 𝑅(𝜉𝑡 , 𝑠𝑃𝑖 ) = 𝛼 ( 𝑗,𝑐 ),𝑡 𝛽 𝑗𝑟𝑐𝑒𝑐 . Here, 𝜉𝑡 and 𝑠𝑃𝑖 ,
namely agent’s state and packet transmitted using scheme 𝑖 , are de-
fined in the same fashion as [23]. Furthermore, 𝛼 ( 𝑗,𝑐 ),𝑡 denotes the
estimated packet-success probability for a given scheme 𝑖 ≡ ( 𝑗, 𝑐),
𝛽 𝑗 denotes the uncoded data-rate, and 𝑟𝑐 denotes the information
rate of the channel-coding scheme being used. One adaptation
introduced by us to this formula is the parameter 𝑒𝑐 , which is de-
fined as the compression-to-clarity ratio. Therefore, we define the
compression-to-clarity ratio as: 𝑒𝑐 = log 𝐾

BPP×MSE . The distribution
of this metric is shown in Figure 7(a), where both codecs’ perfor-
mance crosses each other in the mid-quality area, while JPEG2000
ultimately provides better performance at higher quality values.
We use 𝐾 = 10 for our results. We use this final reward formula to
update our agent’s value function 𝑉 ∗

𝑖
(𝜉𝑡 ) using the Bellman equa-

tion: The performance of the agent is shown in Figure 7(c), where
across multiple runs, the agent steadily increases performance. In

lower SNR channels, the agent does a lot of exploration, because of
an overall lower probability of success, while at higher SNRs, the
agent does well with exploring the space and discovering schemes
with higher rewards. Figure 7(b) also shows the comparison of this
method with other kinds of parameter selection. Overall, the RL
method is scalable and adaptive but needs time to tune its reward
functions. However, it may still result in sub-optimal performance
as it only slowly explores the available search space. Finally, as
shown in Figure 7(b), we compare the effective datarate achieved
using all the different baselines, we observe that our JSCC scheme
performs better than the disjoint NN and decision tree algorithms,
while RL performs better. RL, however, takes a long time to con-
verge for different SNR values (as shown in Figure 7(c)), while our
approach achieves similar performance with a few transmissions.

5 CONCLUSION AND FUTUREWORK
We presented our data-driven scheme for JSCC in underwater
acoustic channel using CNN-based feature extraction and a novel
variable-length encoder and decoder design based on RNNs. The
variable-length encoder-decoder design has the potential to adapt
to changing underwater channel depending on the feedback re-
ceived from the receiver. As future work, we would further conduct
experiments to establish the efficacy of our approach, namely the
quality of final images received, and do ablation studies to make
it more efficient. We will also investigate how training on a spe-
cific channel data (pool) generalizes to acoustic communication on
other channel conditions such as a bay, or the ocean. We also plan
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Figure 6: In pool experiments with QPSK: (a) BER of LDPC coding with different code rates; (b) PSNR of received images compressed by JPEG
with LDPC coding; (c) PSNR of received images compressed by JPEG 2000 (JP2) with LDPC coding; (d) BER of Turbo coding with different code
rates; (e) PSNR of received images compressed by JPEG with Turbo coding; (f) PSNR of received images compressed by JPEG 2000 with Turbo
coding.

(a) (b) (c)

Figure 7: (a) Quality analysis of the source-coding algorithms (JPEG and JPEG2000), as tested on our own underwater dataset; (b) Comparison
against various baseline schemes; (c) Average estimated data-rate achieved with the variation of SNR.

to conduct on-the-field experiments in the Barnaget bay, NJ, US
which will comprise of multiple ROVs exploring the underwater
environment adaptively sampling the area. We will then use this
collected data to investigate the generalizability of our approach.
Furthermore, we will also expand the scope of our work towards
more multimedia data such as videos, which has the potential for
enabling live acoustic underwater video-streams, and develop our

data-driven encoding decoding technique further, by deploying it
to underwater robots for acoustic communications.
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